blob: 9a0900c88513271e3bdb625de9f0e0e5d18a3644 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "config.h"
#include "platform/Timer.h"
#include "public/platform/Platform.h"
#include "public/platform/WebScheduler.h"
#include "public/platform/WebThread.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <queue>
using testing::ElementsAre;
namespace blink {
namespace {
double gCurrentTimeSecs = 0.0;
double currentTime()
{
return gCurrentTimeSecs;
}
// This class exists because gcc doesn't know how to move an OwnPtr.
class RefCountedTaskContainer : public RefCounted<RefCountedTaskContainer> {
public:
explicit RefCountedTaskContainer(WebTaskRunner::Task* task) : m_task(adoptPtr(task)) { }
~RefCountedTaskContainer() { }
void run()
{
m_task->run();
}
private:
OwnPtr<WebTaskRunner::Task> m_task;
};
class DelayedTask {
public:
DelayedTask(WebTaskRunner::Task* task, double delaySeconds)
: m_task(adoptRef(new RefCountedTaskContainer(task)))
, m_runTimeSeconds(monotonicallyIncreasingTime() + delaySeconds)
, m_delaySeconds(delaySeconds) { }
bool operator<(const DelayedTask& other) const
{
return m_runTimeSeconds > other.m_runTimeSeconds;
}
void run() const
{
m_task->run();
}
double runTimeSeconds() const
{
return m_runTimeSeconds;
}
double delaySeconds() const
{
return m_delaySeconds;
}
private:
RefPtr<RefCountedTaskContainer> m_task;
double m_runTimeSeconds;
double m_delaySeconds;
};
class MockWebTaskRunner : public WebTaskRunner {
public:
explicit MockWebTaskRunner(std::priority_queue<DelayedTask>* timerTasks) : m_timerTasks(timerTasks) { }
~MockWebTaskRunner() override { }
virtual void postTask(const WebTraceLocation&, Task* task)
{
m_timerTasks->push(DelayedTask(task, 0));
}
void postDelayedTask(const WebTraceLocation&, Task* task, double delayMs) override
{
m_timerTasks->push(DelayedTask(task, delayMs * 0.001));
}
std::priority_queue<DelayedTask>* m_timerTasks; // NOT OWNED
};
class MockWebScheduler : public WebScheduler {
public:
MockWebScheduler() : m_timerWebTaskRunner(&m_timerTasks) { }
~MockWebScheduler() override { }
bool shouldYieldForHighPriorityWork() override
{
return false;
}
bool canExceedIdleDeadlineIfRequired() override
{
return false;
}
void postIdleTask(const WebTraceLocation&, WebThread::IdleTask*) override
{
}
void postNonNestableIdleTask(const WebTraceLocation&, WebThread::IdleTask*) override
{
}
void postIdleTaskAfterWakeup(const WebTraceLocation&, WebThread::IdleTask*) override
{
}
WebTaskRunner* timerTaskRunner() override
{
return &m_timerWebTaskRunner;
}
WebTaskRunner* loadingTaskRunner() override
{
ASSERT_NOT_REACHED();
return nullptr;
}
void postTimerTaskAt(const WebTraceLocation&, WebTaskRunner::Task* task, double monotonicTime) override
{
m_timerTasks.push(DelayedTask(task, (monotonicTime - monotonicallyIncreasingTime()) * 1000));
}
void runUntilIdle()
{
while (!m_timerTasks.empty()) {
gCurrentTimeSecs = m_timerTasks.top().runTimeSeconds();
m_timerTasks.top().run();
m_timerTasks.pop();
}
}
void runUntilIdleOrDeadlinePassed(double deadline)
{
while (!m_timerTasks.empty()) {
if (m_timerTasks.top().runTimeSeconds() > deadline) {
gCurrentTimeSecs = deadline;
break;
}
gCurrentTimeSecs = m_timerTasks.top().runTimeSeconds();
m_timerTasks.top().run();
m_timerTasks.pop();
}
}
void runPendingTasks()
{
while (!m_timerTasks.empty() && m_timerTasks.top().runTimeSeconds() <= gCurrentTimeSecs) {
m_timerTasks.top().run();
m_timerTasks.pop();
}
}
bool hasOneTimerTask() const
{
return m_timerTasks.size() == 1;
}
double nextTimerTaskDelaySecs() const
{
ASSERT(hasOneTimerTask());
return m_timerTasks.top().delaySeconds();
}
private:
std::priority_queue<DelayedTask> m_timerTasks;
MockWebTaskRunner m_timerWebTaskRunner;
};
class FakeWebThread : public WebThread {
public:
FakeWebThread() : m_webScheduler(adoptPtr(new MockWebScheduler())) { }
~FakeWebThread() override { }
virtual bool isCurrentThread() const
{
ASSERT_NOT_REACHED();
return true;
}
virtual PlatformThreadId threadId() const
{
ASSERT_NOT_REACHED();
return 0;
}
WebTaskRunner* taskRunner() override
{
ASSERT_NOT_REACHED();
return nullptr;
}
WebScheduler* scheduler() const override
{
return m_webScheduler.get();
}
virtual void enterRunLoop()
{
ASSERT_NOT_REACHED();
}
virtual void exitRunLoop()
{
ASSERT_NOT_REACHED();
}
private:
OwnPtr<MockWebScheduler> m_webScheduler;
};
class TimerTestPlatform : public Platform {
public:
TimerTestPlatform()
: m_webThread(adoptPtr(new FakeWebThread())) { }
~TimerTestPlatform() override { }
WebThread* currentThread() override
{
return m_webThread.get();
}
void cryptographicallyRandomValues(unsigned char*, size_t) override
{
ASSERT_NOT_REACHED();
}
const unsigned char* getTraceCategoryEnabledFlag(const char* categoryName) override
{
static const unsigned char enabled[] = {0};
return enabled;
}
void runUntilIdle()
{
mockScheduler()->runUntilIdle();
}
void runPendingTasks()
{
mockScheduler()->runPendingTasks();
}
void runUntilIdleOrDeadlinePassed(double deadline)
{
mockScheduler()->runUntilIdleOrDeadlinePassed(deadline);
}
bool hasOneTimerTask() const
{
return mockScheduler()->hasOneTimerTask();
}
double nextTimerTaskDelaySecs() const
{
return mockScheduler()->nextTimerTaskDelaySecs();
}
private:
MockWebScheduler* mockScheduler() const
{
return static_cast<MockWebScheduler*>(m_webThread->scheduler());
}
OwnPtr<FakeWebThread> m_webThread;
};
class TimerTest : public testing::Test {
public:
void SetUp() override
{
m_platform = adoptPtr(new TimerTestPlatform());
m_oldPlatform = Platform::current();
Platform::initialize(m_platform.get());
WTF::setMonotonicallyIncreasingTimeFunction(currentTime);
m_runTimes.clear();
gCurrentTimeSecs = 10.0;
m_startTime = gCurrentTimeSecs;
}
void TearDown() override
{
Platform::initialize(m_oldPlatform);
}
void countingTask(Timer<TimerTest>*)
{
m_runTimes.push_back(monotonicallyIncreasingTime());
}
void recordNextFireTimeTask(Timer<TimerTest>* timer)
{
m_nextFireTimes.push_back(monotonicallyIncreasingTime() + timer->nextFireInterval());
}
void advanceTimeBy(double timeSecs)
{
gCurrentTimeSecs += timeSecs;
}
void runUntilIdle()
{
m_platform->runUntilIdle();
}
void runPendingTasks()
{
m_platform->runPendingTasks();
}
void runUntilIdleOrDeadlinePassed(double deadline)
{
m_platform->runUntilIdleOrDeadlinePassed(deadline);
}
bool hasOneTimerTask() const
{
return m_platform->hasOneTimerTask();
}
double nextTimerTaskDelaySecs() const
{
return m_platform->nextTimerTaskDelaySecs();
}
protected:
double m_startTime;
// TODO(alexclarke): Migrate to WTF::Vector and add gmock matcher support.
std::vector<double> m_runTimes;
std::vector<double> m_nextFireTimes;
private:
OwnPtr<TimerTestPlatform> m_platform;
Platform* m_oldPlatform;
};
TEST_F(TimerTest, StartOneShot_Zero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(0.0, nextTimerTaskDelaySecs());
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime));
}
TEST_F(TimerTest, StartOneShot_ZeroAndCancel)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(0.0, nextTimerTaskDelaySecs());
timer.stop();
runUntilIdle();
EXPECT_TRUE(m_runTimes.empty());
}
TEST_F(TimerTest, StartOneShot_ZeroAndCancelThenRepost)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(0.0, nextTimerTaskDelaySecs());
timer.stop();
runUntilIdle();
EXPECT_TRUE(m_runTimes.empty());
timer.startOneShot(0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(0.0, nextTimerTaskDelaySecs());
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime));
}
TEST_F(TimerTest, StartOneShot_Zero_RepostingAfterRunning)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(0.0, nextTimerTaskDelaySecs());
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime));
timer.startOneShot(0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(0.0, nextTimerTaskDelaySecs());
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime, m_startTime));
}
TEST_F(TimerTest, StartOneShot_NonZero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10.0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(10.0, nextTimerTaskDelaySecs());
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 10.0));
}
TEST_F(TimerTest, StartOneShot_NonZeroAndCancel)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(10.0, nextTimerTaskDelaySecs());
timer.stop();
runUntilIdle();
EXPECT_TRUE(m_runTimes.empty());
}
TEST_F(TimerTest, StartOneShot_NonZeroAndCancelThenRepost)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(10.0, nextTimerTaskDelaySecs());
timer.stop();
runUntilIdle();
EXPECT_TRUE(m_runTimes.empty());
double secondPostTime = monotonicallyIncreasingTime();
timer.startOneShot(10, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(10.0, nextTimerTaskDelaySecs());
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(secondPostTime + 10.0));
}
TEST_F(TimerTest, StartOneShot_NonZero_RepostingAfterRunning)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(10.0, nextTimerTaskDelaySecs());
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 10.0));
timer.startOneShot(20, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(20.0, nextTimerTaskDelaySecs());
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 10.0, m_startTime + 30.0));
}
TEST_F(TimerTest, PostingTimerTwiceWithSameRunTimeDoesNothing)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
timer.startOneShot(10, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(10.0, nextTimerTaskDelaySecs());
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 10.0));
}
TEST_F(TimerTest, PostingTimerTwiceWithNewerRunTimeCancelsOriginalTask)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
timer.startOneShot(0, FROM_HERE);
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 0.0));
}
TEST_F(TimerTest, PostingTimerTwiceWithLaterRunTimeCancelsOriginalTask)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(0, FROM_HERE);
timer.startOneShot(10, FROM_HERE);
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 10.0));
}
TEST_F(TimerTest, StartRepeatingTask)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startRepeating(1.0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(1.0, nextTimerTaskDelaySecs());
runUntilIdleOrDeadlinePassed(m_startTime + 5.5);
EXPECT_THAT(m_runTimes, ElementsAre(
m_startTime + 1.0, m_startTime + 2.0, m_startTime + 3.0, m_startTime + 4.0, m_startTime + 5.0));
}
TEST_F(TimerTest, StartRepeatingTask_ThenCancel)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startRepeating(1.0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(1.0, nextTimerTaskDelaySecs());
runUntilIdleOrDeadlinePassed(m_startTime + 2.5);
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 1.0, m_startTime + 2.0));
timer.stop();
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 1.0, m_startTime + 2.0));
}
TEST_F(TimerTest, StartRepeatingTask_ThenPostOneShot)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startRepeating(1.0, FROM_HERE);
ASSERT(hasOneTimerTask());
EXPECT_FLOAT_EQ(1.0, nextTimerTaskDelaySecs());
runUntilIdleOrDeadlinePassed(m_startTime + 2.5);
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 1.0, m_startTime + 2.0));
timer.startOneShot(0, FROM_HERE);
runUntilIdle();
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 1.0, m_startTime + 2.0, m_startTime + 2.5));
}
TEST_F(TimerTest, IsActive_NeverPosted)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
EXPECT_FALSE(timer.isActive());
}
TEST_F(TimerTest, IsActive_AfterPosting_OneShotZero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(0, FROM_HERE);
EXPECT_TRUE(timer.isActive());
}
TEST_F(TimerTest, IsActive_AfterPosting_OneShotNonZero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
EXPECT_TRUE(timer.isActive());
}
TEST_F(TimerTest, IsActive_AfterPosting_Repeating)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startRepeating(1.0, FROM_HERE);
EXPECT_TRUE(timer.isActive());
}
TEST_F(TimerTest, IsActive_AfterRunning_OneShotZero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(0, FROM_HERE);
runUntilIdle();
EXPECT_FALSE(timer.isActive());
}
TEST_F(TimerTest, IsActive_AfterRunning_OneShotNonZero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
runUntilIdle();
EXPECT_FALSE(timer.isActive());
}
TEST_F(TimerTest, IsActive_AfterRunning_Repeating)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startRepeating(1.0, FROM_HERE);
runUntilIdleOrDeadlinePassed(m_startTime + 10);
EXPECT_TRUE(timer.isActive()); // It should run until cancelled.
}
TEST_F(TimerTest, NextFireInterval_OneShotZero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(0, FROM_HERE);
EXPECT_FLOAT_EQ(0.0, timer.nextFireInterval());
}
TEST_F(TimerTest, NextFireInterval_OneShotNonZero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
EXPECT_FLOAT_EQ(10.0, timer.nextFireInterval());
}
TEST_F(TimerTest, NextFireInterval_OneShotNonZero_AfterAFewSeconds)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
advanceTimeBy(2.0);
EXPECT_FLOAT_EQ(8.0, timer.nextFireInterval());
}
TEST_F(TimerTest, NextFireInterval_Repeating)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startRepeating(20, FROM_HERE);
EXPECT_FLOAT_EQ(20.0, timer.nextFireInterval());
}
TEST_F(TimerTest, RepeatInterval_NeverStarted)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
EXPECT_FLOAT_EQ(0.0, timer.repeatInterval());
}
TEST_F(TimerTest, RepeatInterval_OneShotZero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(0, FROM_HERE);
EXPECT_FLOAT_EQ(0.0, timer.repeatInterval());
}
TEST_F(TimerTest, RepeatInterval_OneShotNonZero)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startOneShot(10, FROM_HERE);
EXPECT_FLOAT_EQ(0.0, timer.repeatInterval());
}
TEST_F(TimerTest, RepeatInterval_Repeating)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startRepeating(20, FROM_HERE);
EXPECT_FLOAT_EQ(20.0, timer.repeatInterval());
}
TEST_F(TimerTest, AugmentRepeatInterval)
{
Timer<TimerTest> timer(this, &TimerTest::countingTask);
timer.startRepeating(10, FROM_HERE);
EXPECT_FLOAT_EQ(10.0, timer.repeatInterval());
EXPECT_FLOAT_EQ(10.0, timer.nextFireInterval());
advanceTimeBy(2.0);
timer.augmentRepeatInterval(10);
EXPECT_FLOAT_EQ(20.0, timer.repeatInterval());
EXPECT_FLOAT_EQ(18.0, timer.nextFireInterval());
runUntilIdleOrDeadlinePassed(m_startTime + 50.0);
EXPECT_THAT(m_runTimes, ElementsAre(m_startTime + 20.0, m_startTime + 40.0));
}
class MockTimerWithAlignment : public TimerBase {
public:
MockTimerWithAlignment() : m_lastFireTime(0.0), m_alignedFireTime(0.0) { }
void fired() override
{
}
double alignedFireTime(double fireTime) const override
{
m_lastFireTime = fireTime;
return m_alignedFireTime;
}
void setAlignedFireTime(double alignedFireTime)
{
m_alignedFireTime = alignedFireTime;
}
double lastFireTime() const
{
return m_lastFireTime;
}
private:
mutable double m_lastFireTime;
double m_alignedFireTime;
};
TEST_F(TimerTest, TimerAlignment_OneShotZero)
{
MockTimerWithAlignment timer;
timer.setAlignedFireTime(m_startTime + 1.0);
timer.start(0.0, 0.0, FROM_HERE);
// The nextFireInterval gets overrriden.
EXPECT_FLOAT_EQ(1.0, timer.nextFireInterval());
EXPECT_FLOAT_EQ(0.0, timer.nextUnalignedFireInterval());
EXPECT_FLOAT_EQ(m_startTime, timer.lastFireTime());
}
TEST_F(TimerTest, TimerAlignment_OneShotNonZero)
{
MockTimerWithAlignment timer;
timer.setAlignedFireTime(m_startTime + 1.0);
timer.start(0.5, 0.0, FROM_HERE);
// The nextFireInterval gets overrriden.
EXPECT_FLOAT_EQ(1.0, timer.nextFireInterval());
EXPECT_FLOAT_EQ(0.5, timer.nextUnalignedFireInterval());
EXPECT_FLOAT_EQ(m_startTime + 0.5, timer.lastFireTime());
}
TEST_F(TimerTest, DidChangeAlignmentInterval)
{
MockTimerWithAlignment timer;
timer.setAlignedFireTime(m_startTime + 1.0);
timer.start(0.0, 0.0, FROM_HERE);
EXPECT_FLOAT_EQ(1.0, timer.nextFireInterval());
EXPECT_FLOAT_EQ(0.0, timer.nextUnalignedFireInterval());
EXPECT_FLOAT_EQ(m_startTime, timer.lastFireTime());
timer.setAlignedFireTime(m_startTime);
timer.didChangeAlignmentInterval(monotonicallyIncreasingTime());
EXPECT_FLOAT_EQ(0.0, timer.nextFireInterval());
EXPECT_FLOAT_EQ(0.0, timer.nextUnalignedFireInterval());
EXPECT_FLOAT_EQ(m_startTime, timer.lastFireTime());
}
TEST_F(TimerTest, RepeatingTimerDoesNotDrift)
{
Timer<TimerTest> timer(this, &TimerTest::recordNextFireTimeTask);
timer.startRepeating(2.0, FROM_HERE);
ASSERT(hasOneTimerTask());
recordNextFireTimeTask(&timer); // Next scheduled task to run at m_startTime + 2.0
// Simulate timer firing early. Next scheduled task to run at m_startTime + 4.0
advanceTimeBy(1.9);
runUntilIdleOrDeadlinePassed(gCurrentTimeSecs + 0.2);
advanceTimeBy(2.0);
runPendingTasks(); // Next scheduled task to run at m_startTime + 6.0
advanceTimeBy(2.1);
runPendingTasks(); // Next scheduled task to run at m_startTime + 8.0
advanceTimeBy(2.9);
runPendingTasks(); // Next scheduled task to run at m_startTime + 10.0
advanceTimeBy(3.1);
runPendingTasks(); // Next scheduled task to run at m_startTime + 14.0 (skips a beat)
advanceTimeBy(4.0);
runPendingTasks(); // Next scheduled task to run at m_startTime + 18.0 (skips a beat)
advanceTimeBy(10.0); // Next scheduled task to run at m_startTime + 28.0 (skips 5 beats)
runPendingTasks();
runUntilIdleOrDeadlinePassed(m_startTime + 5.5);
EXPECT_THAT(m_nextFireTimes, ElementsAre(
m_startTime + 2.0,
m_startTime + 4.0,
m_startTime + 6.0,
m_startTime + 8.0,
m_startTime + 10.0,
m_startTime + 14.0,
m_startTime + 18.0,
m_startTime + 28.0));
}
} // namespace
} // namespace blink