blob: 653434754244cd7075f81d9dd308b9c2368242d5 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/interpreter-assembler.h"
#include <ostream>
#include "src/code-factory.h"
#include "src/compiler/graph.h"
#include "src/compiler/instruction-selector.h"
#include "src/compiler/linkage.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/raw-machine-assembler.h"
#include "src/compiler/schedule.h"
#include "src/frames.h"
#include "src/interface-descriptors.h"
#include "src/interpreter/bytecodes.h"
#include "src/machine-type.h"
#include "src/macro-assembler.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
namespace compiler {
InterpreterAssembler::InterpreterAssembler(Isolate* isolate, Zone* zone,
interpreter::Bytecode bytecode)
: bytecode_(bytecode),
raw_assembler_(new RawMachineAssembler(
isolate, new (zone) Graph(zone),
Linkage::GetInterpreterDispatchDescriptor(zone),
MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags())),
accumulator_(
raw_assembler_->Parameter(Linkage::kInterpreterAccumulatorParameter)),
bytecode_offset_(raw_assembler_->Parameter(
Linkage::kInterpreterBytecodeOffsetParameter)),
context_(
raw_assembler_->Parameter(Linkage::kInterpreterContextParameter)),
code_generated_(false) {}
InterpreterAssembler::~InterpreterAssembler() {}
Handle<Code> InterpreterAssembler::GenerateCode() {
DCHECK(!code_generated_);
// Disallow empty handlers that never return.
DCHECK_NE(0, graph()->end()->InputCount());
const char* bytecode_name = interpreter::Bytecodes::ToString(bytecode_);
Schedule* schedule = raw_assembler_->Export();
Handle<Code> code = Pipeline::GenerateCodeForCodeStub(
isolate(), raw_assembler_->call_descriptor(), graph(), schedule,
Code::STUB, bytecode_name);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_trace_ignition_codegen) {
OFStream os(stdout);
code->Disassemble(bytecode_name, os);
os << std::flush;
}
#endif
code_generated_ = true;
return code;
}
Node* InterpreterAssembler::GetAccumulator() { return accumulator_; }
void InterpreterAssembler::SetAccumulator(Node* value) { accumulator_ = value; }
Node* InterpreterAssembler::GetContext() { return context_; }
void InterpreterAssembler::SetContext(Node* value) { context_ = value; }
Node* InterpreterAssembler::BytecodeOffset() { return bytecode_offset_; }
Node* InterpreterAssembler::RegisterFileRawPointer() {
return raw_assembler_->Parameter(Linkage::kInterpreterRegisterFileParameter);
}
Node* InterpreterAssembler::BytecodeArrayTaggedPointer() {
return raw_assembler_->Parameter(Linkage::kInterpreterBytecodeArrayParameter);
}
Node* InterpreterAssembler::DispatchTableRawPointer() {
return raw_assembler_->Parameter(Linkage::kInterpreterDispatchTableParameter);
}
Node* InterpreterAssembler::RegisterLocation(Node* reg_index) {
return IntPtrAdd(RegisterFileRawPointer(), RegisterFrameOffset(reg_index));
}
Node* InterpreterAssembler::LoadRegister(int offset) {
return raw_assembler_->Load(MachineType::AnyTagged(),
RegisterFileRawPointer(), Int32Constant(offset));
}
Node* InterpreterAssembler::LoadRegister(interpreter::Register reg) {
return LoadRegister(reg.ToOperand() << kPointerSizeLog2);
}
Node* InterpreterAssembler::RegisterFrameOffset(Node* index) {
return WordShl(index, kPointerSizeLog2);
}
Node* InterpreterAssembler::LoadRegister(Node* reg_index) {
return raw_assembler_->Load(MachineType::AnyTagged(),
RegisterFileRawPointer(),
RegisterFrameOffset(reg_index));
}
Node* InterpreterAssembler::StoreRegister(Node* value, int offset) {
return raw_assembler_->Store(MachineRepresentation::kTagged,
RegisterFileRawPointer(), Int32Constant(offset),
value, kNoWriteBarrier);
}
Node* InterpreterAssembler::StoreRegister(Node* value,
interpreter::Register reg) {
return StoreRegister(value, reg.ToOperand() << kPointerSizeLog2);
}
Node* InterpreterAssembler::StoreRegister(Node* value, Node* reg_index) {
return raw_assembler_->Store(
MachineRepresentation::kTagged, RegisterFileRawPointer(),
RegisterFrameOffset(reg_index), value, kNoWriteBarrier);
}
Node* InterpreterAssembler::NextRegister(Node* reg_index) {
// Register indexes are negative, so the next index is minus one.
return IntPtrAdd(reg_index, Int32Constant(-1));
}
Node* InterpreterAssembler::BytecodeOperand(int operand_index) {
DCHECK_LT(operand_index, interpreter::Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(interpreter::OperandSize::kByte,
interpreter::Bytecodes::GetOperandSize(bytecode_, operand_index));
return raw_assembler_->Load(
MachineType::Uint8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(),
Int32Constant(interpreter::Bytecodes::GetOperandOffset(
bytecode_, operand_index))));
}
Node* InterpreterAssembler::BytecodeOperandSignExtended(int operand_index) {
DCHECK_LT(operand_index, interpreter::Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(interpreter::OperandSize::kByte,
interpreter::Bytecodes::GetOperandSize(bytecode_, operand_index));
Node* load = raw_assembler_->Load(
MachineType::Int8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(),
Int32Constant(interpreter::Bytecodes::GetOperandOffset(
bytecode_, operand_index))));
// Ensure that we sign extend to full pointer size
if (kPointerSize == 8) {
load = raw_assembler_->ChangeInt32ToInt64(load);
}
return load;
}
Node* InterpreterAssembler::BytecodeOperandShort(int operand_index) {
DCHECK_LT(operand_index, interpreter::Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(interpreter::OperandSize::kShort,
interpreter::Bytecodes::GetOperandSize(bytecode_, operand_index));
if (TargetSupportsUnalignedAccess()) {
return raw_assembler_->Load(
MachineType::Uint16(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(),
Int32Constant(interpreter::Bytecodes::GetOperandOffset(
bytecode_, operand_index))));
} else {
int offset =
interpreter::Bytecodes::GetOperandOffset(bytecode_, operand_index);
Node* first_byte = raw_assembler_->Load(
MachineType::Uint8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), Int32Constant(offset)));
Node* second_byte = raw_assembler_->Load(
MachineType::Uint8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), Int32Constant(offset + 1)));
#if V8_TARGET_LITTLE_ENDIAN
return raw_assembler_->WordOr(WordShl(second_byte, kBitsPerByte),
first_byte);
#elif V8_TARGET_BIG_ENDIAN
return raw_assembler_->WordOr(WordShl(first_byte, kBitsPerByte),
second_byte);
#else
#error "Unknown Architecture"
#endif
}
}
Node* InterpreterAssembler::BytecodeOperandShortSignExtended(
int operand_index) {
DCHECK_LT(operand_index, interpreter::Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(interpreter::OperandSize::kShort,
interpreter::Bytecodes::GetOperandSize(bytecode_, operand_index));
int operand_offset =
interpreter::Bytecodes::GetOperandOffset(bytecode_, operand_index);
Node* load;
if (TargetSupportsUnalignedAccess()) {
load = raw_assembler_->Load(
MachineType::Int16(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), Int32Constant(operand_offset)));
} else {
#if V8_TARGET_LITTLE_ENDIAN
Node* hi_byte_offset = Int32Constant(operand_offset + 1);
Node* lo_byte_offset = Int32Constant(operand_offset);
#elif V8_TARGET_BIG_ENDIAN
Node* hi_byte_offset = Int32Constant(operand_offset);
Node* lo_byte_offset = Int32Constant(operand_offset + 1);
#else
#error "Unknown Architecture"
#endif
Node* hi_byte =
raw_assembler_->Load(MachineType::Int8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), hi_byte_offset));
Node* lo_byte =
raw_assembler_->Load(MachineType::Uint8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), lo_byte_offset));
hi_byte = raw_assembler_->Word32Shl(hi_byte, Int32Constant(kBitsPerByte));
load = raw_assembler_->Word32Or(hi_byte, lo_byte);
}
// Ensure that we sign extend to full pointer size
if (kPointerSize == 8) {
load = raw_assembler_->ChangeInt32ToInt64(load);
}
return load;
}
Node* InterpreterAssembler::BytecodeOperandCount(int operand_index) {
switch (interpreter::Bytecodes::GetOperandSize(bytecode_, operand_index)) {
case interpreter::OperandSize::kByte:
DCHECK_EQ(
interpreter::OperandType::kCount8,
interpreter::Bytecodes::GetOperandType(bytecode_, operand_index));
return BytecodeOperand(operand_index);
case interpreter::OperandSize::kShort:
DCHECK_EQ(
interpreter::OperandType::kCount16,
interpreter::Bytecodes::GetOperandType(bytecode_, operand_index));
return BytecodeOperandShort(operand_index);
default:
UNREACHABLE();
return nullptr;
}
}
Node* InterpreterAssembler::BytecodeOperandImm(int operand_index) {
DCHECK_EQ(interpreter::OperandType::kImm8,
interpreter::Bytecodes::GetOperandType(bytecode_, operand_index));
return BytecodeOperandSignExtended(operand_index);
}
Node* InterpreterAssembler::BytecodeOperandIdx(int operand_index) {
switch (interpreter::Bytecodes::GetOperandSize(bytecode_, operand_index)) {
case interpreter::OperandSize::kByte:
DCHECK_EQ(
interpreter::OperandType::kIdx8,
interpreter::Bytecodes::GetOperandType(bytecode_, operand_index));
return BytecodeOperand(operand_index);
case interpreter::OperandSize::kShort:
DCHECK_EQ(
interpreter::OperandType::kIdx16,
interpreter::Bytecodes::GetOperandType(bytecode_, operand_index));
return BytecodeOperandShort(operand_index);
default:
UNREACHABLE();
return nullptr;
}
}
Node* InterpreterAssembler::BytecodeOperandReg(int operand_index) {
switch (interpreter::Bytecodes::GetOperandType(bytecode_, operand_index)) {
case interpreter::OperandType::kReg8:
case interpreter::OperandType::kRegPair8:
case interpreter::OperandType::kRegTriple8:
case interpreter::OperandType::kMaybeReg8:
DCHECK_EQ(
interpreter::OperandSize::kByte,
interpreter::Bytecodes::GetOperandSize(bytecode_, operand_index));
return BytecodeOperandSignExtended(operand_index);
case interpreter::OperandType::kReg16:
DCHECK_EQ(
interpreter::OperandSize::kShort,
interpreter::Bytecodes::GetOperandSize(bytecode_, operand_index));
return BytecodeOperandShortSignExtended(operand_index);
default:
UNREACHABLE();
return nullptr;
}
}
Node* InterpreterAssembler::Int32Constant(int value) {
return raw_assembler_->Int32Constant(value);
}
Node* InterpreterAssembler::IntPtrConstant(intptr_t value) {
return raw_assembler_->IntPtrConstant(value);
}
Node* InterpreterAssembler::NumberConstant(double value) {
return raw_assembler_->NumberConstant(value);
}
Node* InterpreterAssembler::HeapConstant(Handle<HeapObject> object) {
return raw_assembler_->HeapConstant(object);
}
Node* InterpreterAssembler::BooleanConstant(bool value) {
return raw_assembler_->BooleanConstant(value);
}
Node* InterpreterAssembler::SmiShiftBitsConstant() {
return Int32Constant(kSmiShiftSize + kSmiTagSize);
}
Node* InterpreterAssembler::SmiTag(Node* value) {
return raw_assembler_->WordShl(value, SmiShiftBitsConstant());
}
Node* InterpreterAssembler::SmiUntag(Node* value) {
return raw_assembler_->WordSar(value, SmiShiftBitsConstant());
}
Node* InterpreterAssembler::IntPtrAdd(Node* a, Node* b) {
return raw_assembler_->IntPtrAdd(a, b);
}
Node* InterpreterAssembler::IntPtrSub(Node* a, Node* b) {
return raw_assembler_->IntPtrSub(a, b);
}
Node* InterpreterAssembler::WordShl(Node* value, int shift) {
return raw_assembler_->WordShl(value, Int32Constant(shift));
}
Node* InterpreterAssembler::LoadConstantPoolEntry(Node* index) {
Node* constant_pool = LoadObjectField(BytecodeArrayTaggedPointer(),
BytecodeArray::kConstantPoolOffset);
Node* entry_offset =
IntPtrAdd(IntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag),
WordShl(index, kPointerSizeLog2));
return raw_assembler_->Load(MachineType::AnyTagged(), constant_pool,
entry_offset);
}
Node* InterpreterAssembler::LoadFixedArrayElement(Node* fixed_array,
int index) {
Node* entry_offset =
IntPtrAdd(IntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag),
WordShl(Int32Constant(index), kPointerSizeLog2));
return raw_assembler_->Load(MachineType::AnyTagged(), fixed_array,
entry_offset);
}
Node* InterpreterAssembler::LoadObjectField(Node* object, int offset) {
return raw_assembler_->Load(MachineType::AnyTagged(), object,
IntPtrConstant(offset - kHeapObjectTag));
}
Node* InterpreterAssembler::LoadContextSlot(Node* context, int slot_index) {
return raw_assembler_->Load(MachineType::AnyTagged(), context,
IntPtrConstant(Context::SlotOffset(slot_index)));
}
Node* InterpreterAssembler::LoadContextSlot(Node* context, Node* slot_index) {
Node* offset =
IntPtrAdd(WordShl(slot_index, kPointerSizeLog2),
Int32Constant(Context::kHeaderSize - kHeapObjectTag));
return raw_assembler_->Load(MachineType::AnyTagged(), context, offset);
}
Node* InterpreterAssembler::StoreContextSlot(Node* context, Node* slot_index,
Node* value) {
Node* offset =
IntPtrAdd(WordShl(slot_index, kPointerSizeLog2),
Int32Constant(Context::kHeaderSize - kHeapObjectTag));
return raw_assembler_->Store(MachineRepresentation::kTagged, context, offset,
value, kFullWriteBarrier);
}
Node* InterpreterAssembler::LoadTypeFeedbackVector() {
Node* function = raw_assembler_->Load(
MachineType::AnyTagged(), RegisterFileRawPointer(),
IntPtrConstant(InterpreterFrameConstants::kFunctionFromRegisterPointer));
Node* shared_info =
LoadObjectField(function, JSFunction::kSharedFunctionInfoOffset);
Node* vector =
LoadObjectField(shared_info, SharedFunctionInfo::kFeedbackVectorOffset);
return vector;
}
Node* InterpreterAssembler::Projection(int index, Node* node) {
return raw_assembler_->Projection(index, node);
}
Node* InterpreterAssembler::CallConstruct(Node* new_target, Node* constructor,
Node* first_arg, Node* arg_count) {
Callable callable = CodeFactory::InterpreterPushArgsAndConstruct(isolate());
CallDescriptor* descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), callable.descriptor(), 0, CallDescriptor::kNoFlags);
Node* code_target = HeapConstant(callable.code());
Node** args = zone()->NewArray<Node*>(5);
args[0] = arg_count;
args[1] = new_target;
args[2] = constructor;
args[3] = first_arg;
args[4] = GetContext();
return CallN(descriptor, code_target, args);
}
void InterpreterAssembler::CallPrologue() {
StoreRegister(SmiTag(bytecode_offset_),
InterpreterFrameConstants::kBytecodeOffsetFromRegisterPointer);
}
void InterpreterAssembler::CallEpilogue() {
// Restore the bytecode offset from the stack frame.
bytecode_offset_ = SmiUntag(LoadRegister(
InterpreterFrameConstants::kBytecodeOffsetFromRegisterPointer));
}
Node* InterpreterAssembler::CallN(CallDescriptor* descriptor, Node* code_target,
Node** args) {
CallPrologue();
Node* stack_pointer_before_call = nullptr;
if (FLAG_debug_code) {
stack_pointer_before_call = raw_assembler_->LoadStackPointer();
}
Node* return_val = raw_assembler_->CallN(descriptor, code_target, args);
if (FLAG_debug_code) {
Node* stack_pointer_after_call = raw_assembler_->LoadStackPointer();
AbortIfWordNotEqual(stack_pointer_before_call, stack_pointer_after_call,
kUnexpectedStackPointer);
}
CallEpilogue();
return return_val;
}
Node* InterpreterAssembler::CallJS(Node* function, Node* first_arg,
Node* arg_count) {
Callable callable = CodeFactory::InterpreterPushArgsAndCall(isolate());
CallDescriptor* descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), callable.descriptor(), 0, CallDescriptor::kNoFlags);
Node* code_target = HeapConstant(callable.code());
Node** args = zone()->NewArray<Node*>(4);
args[0] = arg_count;
args[1] = first_arg;
args[2] = function;
args[3] = GetContext();
return CallN(descriptor, code_target, args);
}
Node* InterpreterAssembler::CallIC(CallInterfaceDescriptor descriptor,
Node* target, Node** args) {
CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), descriptor, 0, CallDescriptor::kNoFlags);
return CallN(call_descriptor, target, args);
}
Node* InterpreterAssembler::CallIC(CallInterfaceDescriptor descriptor,
Node* target, Node* arg1, Node* arg2,
Node* arg3) {
Node** args = zone()->NewArray<Node*>(4);
args[0] = arg1;
args[1] = arg2;
args[2] = arg3;
args[3] = GetContext();
return CallIC(descriptor, target, args);
}
Node* InterpreterAssembler::CallIC(CallInterfaceDescriptor descriptor,
Node* target, Node* arg1, Node* arg2,
Node* arg3, Node* arg4) {
Node** args = zone()->NewArray<Node*>(5);
args[0] = arg1;
args[1] = arg2;
args[2] = arg3;
args[3] = arg4;
args[4] = GetContext();
return CallIC(descriptor, target, args);
}
Node* InterpreterAssembler::CallIC(CallInterfaceDescriptor descriptor,
Node* target, Node* arg1, Node* arg2,
Node* arg3, Node* arg4, Node* arg5) {
Node** args = zone()->NewArray<Node*>(6);
args[0] = arg1;
args[1] = arg2;
args[2] = arg3;
args[3] = arg4;
args[4] = arg5;
args[5] = GetContext();
return CallIC(descriptor, target, args);
}
Node* InterpreterAssembler::CallRuntime(Node* function_id, Node* first_arg,
Node* arg_count, int result_size) {
Callable callable = CodeFactory::InterpreterCEntry(isolate(), result_size);
CallDescriptor* descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), callable.descriptor(), 0, CallDescriptor::kNoFlags,
Operator::kNoProperties, MachineType::AnyTagged(), result_size);
Node* code_target = HeapConstant(callable.code());
// Get the function entry from the function id.
Node* function_table = raw_assembler_->ExternalConstant(
ExternalReference::runtime_function_table_address(isolate()));
Node* function_offset = raw_assembler_->Int32Mul(
function_id, Int32Constant(sizeof(Runtime::Function)));
Node* function = IntPtrAdd(function_table, function_offset);
Node* function_entry =
raw_assembler_->Load(MachineType::Pointer(), function,
Int32Constant(offsetof(Runtime::Function, entry)));
Node** args = zone()->NewArray<Node*>(4);
args[0] = arg_count;
args[1] = first_arg;
args[2] = function_entry;
args[3] = GetContext();
return CallN(descriptor, code_target, args);
}
Node* InterpreterAssembler::CallRuntime(Runtime::FunctionId function_id,
Node* arg1) {
CallPrologue();
Node* return_val =
raw_assembler_->CallRuntime1(function_id, arg1, GetContext());
CallEpilogue();
return return_val;
}
Node* InterpreterAssembler::CallRuntime(Runtime::FunctionId function_id,
Node* arg1, Node* arg2) {
CallPrologue();
Node* return_val =
raw_assembler_->CallRuntime2(function_id, arg1, arg2, GetContext());
CallEpilogue();
return return_val;
}
Node* InterpreterAssembler::CallRuntime(Runtime::FunctionId function_id,
Node* arg1, Node* arg2, Node* arg3,
Node* arg4) {
CallPrologue();
Node* return_val = raw_assembler_->CallRuntime4(function_id, arg1, arg2, arg3,
arg4, GetContext());
CallEpilogue();
return return_val;
}
void InterpreterAssembler::Return() {
Node* exit_trampoline_code_object =
HeapConstant(isolate()->builtins()->InterpreterExitTrampoline());
// If the order of the parameters you need to change the call signature below.
STATIC_ASSERT(0 == Linkage::kInterpreterAccumulatorParameter);
STATIC_ASSERT(1 == Linkage::kInterpreterRegisterFileParameter);
STATIC_ASSERT(2 == Linkage::kInterpreterBytecodeOffsetParameter);
STATIC_ASSERT(3 == Linkage::kInterpreterBytecodeArrayParameter);
STATIC_ASSERT(4 == Linkage::kInterpreterDispatchTableParameter);
STATIC_ASSERT(5 == Linkage::kInterpreterContextParameter);
Node* args[] = { GetAccumulator(),
RegisterFileRawPointer(),
BytecodeOffset(),
BytecodeArrayTaggedPointer(),
DispatchTableRawPointer(),
GetContext() };
raw_assembler_->TailCallN(call_descriptor(), exit_trampoline_code_object,
args);
}
Node* InterpreterAssembler::Advance(int delta) {
return IntPtrAdd(BytecodeOffset(), Int32Constant(delta));
}
Node* InterpreterAssembler::Advance(Node* delta) {
return raw_assembler_->IntPtrAdd(BytecodeOffset(), delta);
}
void InterpreterAssembler::Jump(Node* delta) { DispatchTo(Advance(delta)); }
void InterpreterAssembler::JumpIfWordEqual(Node* lhs, Node* rhs, Node* delta) {
RawMachineLabel match, no_match;
Node* condition = raw_assembler_->WordEqual(lhs, rhs);
raw_assembler_->Branch(condition, &match, &no_match);
raw_assembler_->Bind(&match);
DispatchTo(Advance(delta));
raw_assembler_->Bind(&no_match);
Dispatch();
}
void InterpreterAssembler::Dispatch() {
DispatchTo(Advance(interpreter::Bytecodes::Size(bytecode_)));
}
void InterpreterAssembler::DispatchTo(Node* new_bytecode_offset) {
Node* target_bytecode = raw_assembler_->Load(
MachineType::Uint8(), BytecodeArrayTaggedPointer(), new_bytecode_offset);
// TODO(rmcilroy): Create a code target dispatch table to avoid conversion
// from code object on every dispatch.
Node* target_code_object = raw_assembler_->Load(
MachineType::Pointer(), DispatchTableRawPointer(),
raw_assembler_->Word32Shl(target_bytecode,
Int32Constant(kPointerSizeLog2)));
// If the order of the parameters you need to change the call signature below.
STATIC_ASSERT(0 == Linkage::kInterpreterAccumulatorParameter);
STATIC_ASSERT(1 == Linkage::kInterpreterRegisterFileParameter);
STATIC_ASSERT(2 == Linkage::kInterpreterBytecodeOffsetParameter);
STATIC_ASSERT(3 == Linkage::kInterpreterBytecodeArrayParameter);
STATIC_ASSERT(4 == Linkage::kInterpreterDispatchTableParameter);
STATIC_ASSERT(5 == Linkage::kInterpreterContextParameter);
Node* args[] = { GetAccumulator(),
RegisterFileRawPointer(),
new_bytecode_offset,
BytecodeArrayTaggedPointer(),
DispatchTableRawPointer(),
GetContext() };
raw_assembler_->TailCallN(call_descriptor(), target_code_object, args);
}
void InterpreterAssembler::Abort(BailoutReason bailout_reason) {
Node* abort_id = SmiTag(Int32Constant(bailout_reason));
Node* ret_value = CallRuntime(Runtime::kAbort, abort_id);
// Unreached, but keeps turbofan happy.
raw_assembler_->Return(ret_value);
}
void InterpreterAssembler::AbortIfWordNotEqual(Node* lhs, Node* rhs,
BailoutReason bailout_reason) {
RawMachineLabel match, no_match;
Node* condition = raw_assembler_->WordEqual(lhs, rhs);
raw_assembler_->Branch(condition, &match, &no_match);
raw_assembler_->Bind(&no_match);
Abort(bailout_reason);
raw_assembler_->Bind(&match);
}
// static
bool InterpreterAssembler::TargetSupportsUnalignedAccess() {
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
return false;
#elif V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_PPC
return CpuFeatures::IsSupported(UNALIGNED_ACCESSES);
#elif V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_X87
return true;
#else
#error "Unknown Architecture"
#endif
}
// RawMachineAssembler delegate helpers:
Isolate* InterpreterAssembler::isolate() { return raw_assembler_->isolate(); }
Graph* InterpreterAssembler::graph() { return raw_assembler_->graph(); }
CallDescriptor* InterpreterAssembler::call_descriptor() const {
return raw_assembler_->call_descriptor();
}
Zone* InterpreterAssembler::zone() { return raw_assembler_->zone(); }
} // namespace compiler
} // namespace internal
} // namespace v8