blob: 4918d2149c97ba268b97cb60e19820db776112c2 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/main/acm2/audio_coding_module_impl.h"
#include <assert.h>
#include <stdlib.h>
#include <vector>
#include "webrtc/base/checks.h"
#include "webrtc/base/safe_conversions.h"
#include "webrtc/engine_configurations.h"
#include "webrtc/modules/audio_coding/main/interface/audio_coding_module_typedefs.h"
#include "webrtc/modules/audio_coding/main/acm2/acm_common_defs.h"
#include "webrtc/modules/audio_coding/main/acm2/acm_generic_codec.h"
#include "webrtc/modules/audio_coding/main/acm2/acm_resampler.h"
#include "webrtc/modules/audio_coding/main/acm2/call_statistics.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/rw_lock_wrapper.h"
#include "webrtc/system_wrappers/interface/trace.h"
#include "webrtc/typedefs.h"
namespace webrtc {
namespace acm2 {
enum {
kACMToneEnd = 999
};
// Maximum number of bytes in one packet (PCM16B, 20 ms packets, stereo).
enum {
kMaxPacketSize = 2560
};
// Maximum number of payloads that can be packed in one RED packet. For
// regular RED, we only pack two payloads. In case of dual-streaming, in worst
// case we might pack 3 payloads in one RED packet.
enum {
kNumRedFragmentationVectors = 2,
kMaxNumFragmentationVectors = 3
};
// If packet N is arrived all packets prior to N - |kNackThresholdPackets| which
// are not received are considered as lost, and appear in NACK list.
enum {
kNackThresholdPackets = 2
};
namespace {
// TODO(turajs): the same functionality is used in NetEq. If both classes
// need them, make it a static function in ACMCodecDB.
bool IsCodecRED(const CodecInst* codec) {
return (STR_CASE_CMP(codec->plname, "RED") == 0);
}
bool IsCodecRED(int index) {
return (IsCodecRED(&ACMCodecDB::database_[index]));
}
bool IsCodecCN(const CodecInst* codec) {
return (STR_CASE_CMP(codec->plname, "CN") == 0);
}
bool IsCodecCN(int index) {
return (IsCodecCN(&ACMCodecDB::database_[index]));
}
// Stereo-to-mono can be used as in-place.
int DownMix(const AudioFrame& frame, int length_out_buff, int16_t* out_buff) {
if (length_out_buff < frame.samples_per_channel_) {
return -1;
}
for (int n = 0; n < frame.samples_per_channel_; ++n)
out_buff[n] = (frame.data_[2 * n] + frame.data_[2 * n + 1]) >> 1;
return 0;
}
// Mono-to-stereo can be used as in-place.
int UpMix(const AudioFrame& frame, int length_out_buff, int16_t* out_buff) {
if (length_out_buff < frame.samples_per_channel_) {
return -1;
}
for (int n = frame.samples_per_channel_ - 1; n >= 0; --n) {
out_buff[2 * n + 1] = frame.data_[n];
out_buff[2 * n] = frame.data_[n];
}
return 0;
}
void ConvertEncodedInfoToFragmentationHeader(
const AudioEncoder::EncodedInfo& info,
RTPFragmentationHeader* frag) {
if (info.redundant.empty()) {
frag->fragmentationVectorSize = 0;
return;
}
frag->VerifyAndAllocateFragmentationHeader(
static_cast<uint16_t>(info.redundant.size()));
frag->fragmentationVectorSize = static_cast<uint16_t>(info.redundant.size());
size_t offset = 0;
for (size_t i = 0; i < info.redundant.size(); ++i) {
frag->fragmentationOffset[i] = offset;
offset += info.redundant[i].encoded_bytes;
frag->fragmentationLength[i] = info.redundant[i].encoded_bytes;
frag->fragmentationTimeDiff[i] = rtc::checked_cast<uint16_t>(
info.encoded_timestamp - info.redundant[i].encoded_timestamp);
frag->fragmentationPlType[i] = info.redundant[i].payload_type;
}
}
} // namespace
AudioCodingModuleImpl::AudioCodingModuleImpl(
const AudioCodingModule::Config& config)
: acm_crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
id_(config.id),
expected_codec_ts_(0xD87F3F9F),
expected_in_ts_(0xD87F3F9F),
receiver_(config),
codec_manager_(this),
previous_pltype_(255),
aux_rtp_header_(NULL),
receiver_initialized_(false),
first_10ms_data_(false),
first_frame_(true),
callback_crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
packetization_callback_(NULL),
vad_callback_(NULL) {
if (InitializeReceiverSafe() < 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot initialize receiver");
}
WEBRTC_TRACE(webrtc::kTraceMemory, webrtc::kTraceAudioCoding, id_, "Created");
}
AudioCodingModuleImpl::~AudioCodingModuleImpl() {
if (aux_rtp_header_ != NULL) {
delete aux_rtp_header_;
aux_rtp_header_ = NULL;
}
delete callback_crit_sect_;
callback_crit_sect_ = NULL;
delete acm_crit_sect_;
acm_crit_sect_ = NULL;
WEBRTC_TRACE(webrtc::kTraceMemory, webrtc::kTraceAudioCoding, id_,
"Destroyed");
}
int32_t AudioCodingModuleImpl::Encode(const InputData& input_data) {
uint8_t stream[2 * MAX_PAYLOAD_SIZE_BYTE]; // Make room for 1 RED payload.
AudioEncoder::EncodedInfo encoded_info;
uint8_t previous_pltype;
// Keep the scope of the ACM critical section limited.
{
CriticalSectionScoped lock(acm_crit_sect_);
// Check if there is an encoder before.
if (!HaveValidEncoder("Process")) {
return -1;
}
AudioEncoder* audio_encoder =
codec_manager_.current_encoder()->GetAudioEncoder();
// Scale the timestamp to the codec's RTP timestamp rate.
uint32_t rtp_timestamp =
first_frame_ ? input_data.input_timestamp
: last_rtp_timestamp_ +
rtc::CheckedDivExact(
input_data.input_timestamp - last_timestamp_,
static_cast<uint32_t>(rtc::CheckedDivExact(
audio_encoder->SampleRateHz(),
audio_encoder->RtpTimestampRateHz())));
last_timestamp_ = input_data.input_timestamp;
last_rtp_timestamp_ = rtp_timestamp;
first_frame_ = false;
encoded_info = audio_encoder->Encode(rtp_timestamp, input_data.audio,
input_data.length_per_channel,
sizeof(stream), stream);
if (encoded_info.encoded_bytes == 0 && !encoded_info.send_even_if_empty) {
// Not enough data.
return 0;
}
previous_pltype = previous_pltype_; // Read it while we have the critsect.
}
RTPFragmentationHeader my_fragmentation;
ConvertEncodedInfoToFragmentationHeader(encoded_info, &my_fragmentation);
FrameType frame_type;
if (encoded_info.encoded_bytes == 0 && encoded_info.send_even_if_empty) {
frame_type = kFrameEmpty;
encoded_info.payload_type = previous_pltype;
} else {
DCHECK_GT(encoded_info.encoded_bytes, 0u);
frame_type = encoded_info.speech ? kAudioFrameSpeech : kAudioFrameCN;
}
{
CriticalSectionScoped lock(callback_crit_sect_);
if (packetization_callback_) {
packetization_callback_->SendData(
frame_type, encoded_info.payload_type, encoded_info.encoded_timestamp,
stream, encoded_info.encoded_bytes,
my_fragmentation.fragmentationVectorSize > 0 ? &my_fragmentation
: nullptr);
}
if (vad_callback_) {
// Callback with VAD decision.
vad_callback_->InFrameType(frame_type);
}
}
{
CriticalSectionScoped lock(acm_crit_sect_);
previous_pltype_ = encoded_info.payload_type;
}
return static_cast<int32_t>(encoded_info.encoded_bytes);
}
/////////////////////////////////////////
// Sender
//
// TODO(henrik.lundin): Remove this method; only used in tests.
int AudioCodingModuleImpl::ResetEncoder() {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("ResetEncoder")) {
return -1;
}
return 0;
}
// Can be called multiple times for Codec, CNG, RED.
int AudioCodingModuleImpl::RegisterSendCodec(const CodecInst& send_codec) {
CriticalSectionScoped lock(acm_crit_sect_);
return codec_manager_.RegisterSendCodec(send_codec);
}
// Get current send codec.
int AudioCodingModuleImpl::SendCodec(CodecInst* current_codec) const {
CriticalSectionScoped lock(acm_crit_sect_);
return codec_manager_.SendCodec(current_codec);
}
// Get current send frequency.
int AudioCodingModuleImpl::SendFrequency() const {
WEBRTC_TRACE(webrtc::kTraceStream, webrtc::kTraceAudioCoding, id_,
"SendFrequency()");
CriticalSectionScoped lock(acm_crit_sect_);
if (!codec_manager_.current_encoder()) {
WEBRTC_TRACE(webrtc::kTraceStream, webrtc::kTraceAudioCoding, id_,
"SendFrequency Failed, no codec is registered");
return -1;
}
return codec_manager_.current_encoder()->GetAudioEncoder()->SampleRateHz();
}
// Get encode bitrate.
// Adaptive rate codecs return their current encode target rate, while other
// codecs return there longterm avarage or their fixed rate.
// TODO(henrik.lundin): Remove; not used.
int AudioCodingModuleImpl::SendBitrate() const {
CriticalSectionScoped lock(acm_crit_sect_);
if (!codec_manager_.current_encoder()) {
WEBRTC_TRACE(webrtc::kTraceStream, webrtc::kTraceAudioCoding, id_,
"SendBitrate Failed, no codec is registered");
return -1;
}
WebRtcACMCodecParams encoder_param;
codec_manager_.current_encoder()->EncoderParams(&encoder_param);
return encoder_param.codec_inst.rate;
}
// Set available bandwidth, inform the encoder about the estimated bandwidth
// received from the remote party.
// TODO(henrik.lundin): Remove; not used.
int AudioCodingModuleImpl::SetReceivedEstimatedBandwidth(int bw) {
CriticalSectionScoped lock(acm_crit_sect_);
FATAL() << "Dead code?";
return -1;
// return codecs_[current_send_codec_idx_]->SetEstimatedBandwidth(bw);
}
// Register a transport callback which will be called to deliver
// the encoded buffers.
int AudioCodingModuleImpl::RegisterTransportCallback(
AudioPacketizationCallback* transport) {
CriticalSectionScoped lock(callback_crit_sect_);
packetization_callback_ = transport;
return 0;
}
// Add 10MS of raw (PCM) audio data to the encoder.
int AudioCodingModuleImpl::Add10MsData(const AudioFrame& audio_frame) {
InputData input_data;
int r = Add10MsDataInternal(audio_frame, &input_data);
return r < 0 ? r : Encode(input_data);
}
int AudioCodingModuleImpl::Add10MsDataInternal(const AudioFrame& audio_frame,
InputData* input_data) {
if (audio_frame.samples_per_channel_ <= 0) {
assert(false);
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot Add 10 ms audio, payload length is negative or "
"zero");
return -1;
}
if (audio_frame.sample_rate_hz_ > 48000) {
assert(false);
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot Add 10 ms audio, input frequency not valid");
return -1;
}
// If the length and frequency matches. We currently just support raw PCM.
if ((audio_frame.sample_rate_hz_ / 100)
!= audio_frame.samples_per_channel_) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot Add 10 ms audio, input frequency and length doesn't"
" match");
return -1;
}
if (audio_frame.num_channels_ != 1 && audio_frame.num_channels_ != 2) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot Add 10 ms audio, invalid number of channels.");
return -1;
}
CriticalSectionScoped lock(acm_crit_sect_);
// Do we have a codec registered?
if (!HaveValidEncoder("Add10MsData")) {
return -1;
}
const AudioFrame* ptr_frame;
// Perform a resampling, also down-mix if it is required and can be
// performed before resampling (a down mix prior to resampling will take
// place if both primary and secondary encoders are mono and input is in
// stereo).
if (PreprocessToAddData(audio_frame, &ptr_frame) < 0) {
return -1;
}
// Check whether we need an up-mix or down-mix?
bool remix =
ptr_frame->num_channels_ !=
codec_manager_.current_encoder()->GetAudioEncoder()->NumChannels();
if (remix) {
if (ptr_frame->num_channels_ == 1) {
if (UpMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0)
return -1;
} else {
if (DownMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0)
return -1;
}
}
// When adding data to encoders this pointer is pointing to an audio buffer
// with correct number of channels.
const int16_t* ptr_audio = ptr_frame->data_;
// For pushing data to primary, point the |ptr_audio| to correct buffer.
if (codec_manager_.current_encoder()->GetAudioEncoder()->NumChannels() !=
ptr_frame->num_channels_)
ptr_audio = input_data->buffer;
input_data->input_timestamp = ptr_frame->timestamp_;
input_data->audio = ptr_audio;
input_data->length_per_channel = ptr_frame->samples_per_channel_;
input_data->audio_channel =
codec_manager_.current_encoder()->GetAudioEncoder()->NumChannels();
return 0;
}
// Perform a resampling and down-mix if required. We down-mix only if
// encoder is mono and input is stereo. In case of dual-streaming, both
// encoders has to be mono for down-mix to take place.
// |*ptr_out| will point to the pre-processed audio-frame. If no pre-processing
// is required, |*ptr_out| points to |in_frame|.
int AudioCodingModuleImpl::PreprocessToAddData(const AudioFrame& in_frame,
const AudioFrame** ptr_out) {
bool resample =
(in_frame.sample_rate_hz_ !=
codec_manager_.current_encoder()->GetAudioEncoder()->SampleRateHz());
// This variable is true if primary codec and secondary codec (if exists)
// are both mono and input is stereo.
bool down_mix =
(in_frame.num_channels_ == 2) &&
(codec_manager_.current_encoder()->GetAudioEncoder()->NumChannels() == 1);
if (!first_10ms_data_) {
expected_in_ts_ = in_frame.timestamp_;
expected_codec_ts_ = in_frame.timestamp_;
first_10ms_data_ = true;
} else if (in_frame.timestamp_ != expected_in_ts_) {
// TODO(turajs): Do we need a warning here.
expected_codec_ts_ +=
(in_frame.timestamp_ - expected_in_ts_) *
static_cast<uint32_t>(
(static_cast<double>(codec_manager_.current_encoder()
->GetAudioEncoder()
->SampleRateHz()) /
static_cast<double>(in_frame.sample_rate_hz_)));
expected_in_ts_ = in_frame.timestamp_;
}
if (!down_mix && !resample) {
// No pre-processing is required.
expected_in_ts_ += in_frame.samples_per_channel_;
expected_codec_ts_ += in_frame.samples_per_channel_;
*ptr_out = &in_frame;
return 0;
}
*ptr_out = &preprocess_frame_;
preprocess_frame_.num_channels_ = in_frame.num_channels_;
int16_t audio[WEBRTC_10MS_PCM_AUDIO];
const int16_t* src_ptr_audio = in_frame.data_;
int16_t* dest_ptr_audio = preprocess_frame_.data_;
if (down_mix) {
// If a resampling is required the output of a down-mix is written into a
// local buffer, otherwise, it will be written to the output frame.
if (resample)
dest_ptr_audio = audio;
if (DownMix(in_frame, WEBRTC_10MS_PCM_AUDIO, dest_ptr_audio) < 0)
return -1;
preprocess_frame_.num_channels_ = 1;
// Set the input of the resampler is the down-mixed signal.
src_ptr_audio = audio;
}
preprocess_frame_.timestamp_ = expected_codec_ts_;
preprocess_frame_.samples_per_channel_ = in_frame.samples_per_channel_;
preprocess_frame_.sample_rate_hz_ = in_frame.sample_rate_hz_;
// If it is required, we have to do a resampling.
if (resample) {
// The result of the resampler is written to output frame.
dest_ptr_audio = preprocess_frame_.data_;
preprocess_frame_.samples_per_channel_ = resampler_.Resample10Msec(
src_ptr_audio, in_frame.sample_rate_hz_,
codec_manager_.current_encoder()->GetAudioEncoder()->SampleRateHz(),
preprocess_frame_.num_channels_, AudioFrame::kMaxDataSizeSamples,
dest_ptr_audio);
if (preprocess_frame_.samples_per_channel_ < 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot add 10 ms audio, resampling failed");
return -1;
}
preprocess_frame_.sample_rate_hz_ =
codec_manager_.current_encoder()->GetAudioEncoder()->SampleRateHz();
}
expected_codec_ts_ += preprocess_frame_.samples_per_channel_;
expected_in_ts_ += in_frame.samples_per_channel_;
return 0;
}
/////////////////////////////////////////
// (RED) Redundant Coding
//
bool AudioCodingModuleImpl::REDStatus() const {
CriticalSectionScoped lock(acm_crit_sect_);
return codec_manager_.red_enabled();
}
// Configure RED status i.e on/off.
int AudioCodingModuleImpl::SetREDStatus(
#ifdef WEBRTC_CODEC_RED
bool enable_red) {
CriticalSectionScoped lock(acm_crit_sect_);
return codec_manager_.SetCopyRed(enable_red) ? 0 : -1;
#else
bool /* enable_red */) {
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceAudioCoding, id_,
" WEBRTC_CODEC_RED is undefined");
return -1;
#endif
}
/////////////////////////////////////////
// (FEC) Forward Error Correction (codec internal)
//
bool AudioCodingModuleImpl::CodecFEC() const {
CriticalSectionScoped lock(acm_crit_sect_);
return codec_manager_.codec_fec_enabled();
}
int AudioCodingModuleImpl::SetCodecFEC(bool enable_codec_fec) {
CriticalSectionScoped lock(acm_crit_sect_);
return codec_manager_.SetCodecFEC(enable_codec_fec);
}
int AudioCodingModuleImpl::SetPacketLossRate(int loss_rate) {
CriticalSectionScoped lock(acm_crit_sect_);
if (HaveValidEncoder("SetPacketLossRate") &&
codec_manager_.current_encoder()->SetPacketLossRate(loss_rate) < 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Set packet loss rate failed.");
return -1;
}
return 0;
}
/////////////////////////////////////////
// (VAD) Voice Activity Detection
//
int AudioCodingModuleImpl::SetVAD(bool enable_dtx,
bool enable_vad,
ACMVADMode mode) {
CriticalSectionScoped lock(acm_crit_sect_);
return codec_manager_.SetVAD(enable_dtx, enable_vad, mode);
}
// Get VAD/DTX settings.
int AudioCodingModuleImpl::VAD(bool* dtx_enabled, bool* vad_enabled,
ACMVADMode* mode) const {
CriticalSectionScoped lock(acm_crit_sect_);
codec_manager_.VAD(dtx_enabled, vad_enabled, mode);
return 0;
}
/////////////////////////////////////////
// Receiver
//
int AudioCodingModuleImpl::InitializeReceiver() {
CriticalSectionScoped lock(acm_crit_sect_);
return InitializeReceiverSafe();
}
// Initialize receiver, resets codec database etc.
int AudioCodingModuleImpl::InitializeReceiverSafe() {
// If the receiver is already initialized then we want to destroy any
// existing decoders. After a call to this function, we should have a clean
// start-up.
if (receiver_initialized_) {
if (receiver_.RemoveAllCodecs() < 0)
return -1;
}
receiver_.set_id(id_);
receiver_.ResetInitialDelay();
receiver_.SetMinimumDelay(0);
receiver_.SetMaximumDelay(0);
receiver_.FlushBuffers();
// Register RED and CN.
for (int i = 0; i < ACMCodecDB::kNumCodecs; i++) {
if (IsCodecRED(i) || IsCodecCN(i)) {
uint8_t pl_type = static_cast<uint8_t>(ACMCodecDB::database_[i].pltype);
if (receiver_.AddCodec(i, pl_type, 1, NULL) < 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot register master codec.");
return -1;
}
}
}
receiver_initialized_ = true;
return 0;
}
// TODO(turajs): If NetEq opens an API for reseting the state of decoders then
// implement this method. Otherwise it should be removed. I might be that by
// removing and registering a decoder we can achieve the effect of resetting.
// Reset the decoder state.
// TODO(henrik.lundin): Remove; only used in one test, and does nothing.
int AudioCodingModuleImpl::ResetDecoder() {
return 0;
}
// Get current receive frequency.
int AudioCodingModuleImpl::ReceiveFrequency() const {
WEBRTC_TRACE(webrtc::kTraceStream, webrtc::kTraceAudioCoding, id_,
"ReceiveFrequency()");
CriticalSectionScoped lock(acm_crit_sect_);
int codec_id = receiver_.last_audio_codec_id();
return codec_id < 0 ? receiver_.current_sample_rate_hz() :
ACMCodecDB::database_[codec_id].plfreq;
}
// Get current playout frequency.
int AudioCodingModuleImpl::PlayoutFrequency() const {
WEBRTC_TRACE(webrtc::kTraceStream, webrtc::kTraceAudioCoding, id_,
"PlayoutFrequency()");
CriticalSectionScoped lock(acm_crit_sect_);
return receiver_.current_sample_rate_hz();
}
// Register possible receive codecs, can be called multiple times,
// for codecs, CNG (NB, WB and SWB), DTMF, RED.
int AudioCodingModuleImpl::RegisterReceiveCodec(const CodecInst& codec) {
CriticalSectionScoped lock(acm_crit_sect_);
DCHECK(receiver_initialized_);
return codec_manager_.RegisterReceiveCodec(codec);
}
// Get current received codec.
int AudioCodingModuleImpl::ReceiveCodec(CodecInst* current_codec) const {
CriticalSectionScoped lock(acm_crit_sect_);
return receiver_.LastAudioCodec(current_codec);
}
int AudioCodingModuleImpl::RegisterDecoder(int acm_codec_id,
uint8_t payload_type,
int channels,
AudioDecoder* audio_decoder) {
return receiver_.AddCodec(acm_codec_id, payload_type, channels,
audio_decoder);
}
// Incoming packet from network parsed and ready for decode.
int AudioCodingModuleImpl::IncomingPacket(const uint8_t* incoming_payload,
const size_t payload_length,
const WebRtcRTPHeader& rtp_header) {
return receiver_.InsertPacket(rtp_header, incoming_payload, payload_length);
}
// Minimum playout delay (Used for lip-sync).
int AudioCodingModuleImpl::SetMinimumPlayoutDelay(int time_ms) {
if ((time_ms < 0) || (time_ms > 10000)) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Delay must be in the range of 0-1000 milliseconds.");
return -1;
}
return receiver_.SetMinimumDelay(time_ms);
}
int AudioCodingModuleImpl::SetMaximumPlayoutDelay(int time_ms) {
if ((time_ms < 0) || (time_ms > 10000)) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Delay must be in the range of 0-1000 milliseconds.");
return -1;
}
return receiver_.SetMaximumDelay(time_ms);
}
// Estimate the Bandwidth based on the incoming stream, needed for one way
// audio where the RTCP send the BW estimate.
// This is also done in the RTP module.
int AudioCodingModuleImpl::DecoderEstimatedBandwidth() const {
// We can estimate far-end to near-end bandwidth if the iSAC are sent. Check
// if the last received packets were iSAC packet then retrieve the bandwidth.
int last_audio_codec_id = receiver_.last_audio_codec_id();
if (last_audio_codec_id >= 0 &&
STR_CASE_CMP("ISAC", ACMCodecDB::database_[last_audio_codec_id].plname)) {
CriticalSectionScoped lock(acm_crit_sect_);
FATAL() << "Dead code?";
// return codecs_[last_audio_codec_id]->GetEstimatedBandwidth();
}
return -1;
}
// Set playout mode for: voice, fax, streaming or off.
int AudioCodingModuleImpl::SetPlayoutMode(AudioPlayoutMode mode) {
receiver_.SetPlayoutMode(mode);
return 0; // TODO(turajs): return value is for backward compatibility.
}
// Get playout mode voice, fax, streaming or off.
AudioPlayoutMode AudioCodingModuleImpl::PlayoutMode() const {
return receiver_.PlayoutMode();
}
// Get 10 milliseconds of raw audio data to play out.
// Automatic resample to the requested frequency.
int AudioCodingModuleImpl::PlayoutData10Ms(int desired_freq_hz,
AudioFrame* audio_frame) {
// GetAudio always returns 10 ms, at the requested sample rate.
if (receiver_.GetAudio(desired_freq_hz, audio_frame) != 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"PlayoutData failed, RecOut Failed");
return -1;
}
audio_frame->id_ = id_;
return 0;
}
/////////////////////////////////////////
// Statistics
//
// TODO(turajs) change the return value to void. Also change the corresponding
// NetEq function.
int AudioCodingModuleImpl::GetNetworkStatistics(NetworkStatistics* statistics) {
receiver_.GetNetworkStatistics(statistics);
return 0;
}
int AudioCodingModuleImpl::RegisterVADCallback(ACMVADCallback* vad_callback) {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceAudioCoding, id_,
"RegisterVADCallback()");
CriticalSectionScoped lock(callback_crit_sect_);
vad_callback_ = vad_callback;
return 0;
}
// TODO(tlegrand): Modify this function to work for stereo, and add tests.
int AudioCodingModuleImpl::IncomingPayload(const uint8_t* incoming_payload,
size_t payload_length,
uint8_t payload_type,
uint32_t timestamp) {
// We are not acquiring any lock when interacting with |aux_rtp_header_| no
// other method uses this member variable.
if (aux_rtp_header_ == NULL) {
// This is the first time that we are using |dummy_rtp_header_|
// so we have to create it.
aux_rtp_header_ = new WebRtcRTPHeader;
aux_rtp_header_->header.payloadType = payload_type;
// Don't matter in this case.
aux_rtp_header_->header.ssrc = 0;
aux_rtp_header_->header.markerBit = false;
// Start with random numbers.
aux_rtp_header_->header.sequenceNumber = 0x1234; // Arbitrary.
aux_rtp_header_->type.Audio.channel = 1;
}
aux_rtp_header_->header.timestamp = timestamp;
IncomingPacket(incoming_payload, payload_length, *aux_rtp_header_);
// Get ready for the next payload.
aux_rtp_header_->header.sequenceNumber++;
return 0;
}
int AudioCodingModuleImpl::ReplaceInternalDTXWithWebRtc(bool use_webrtc_dtx) {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("ReplaceInternalDTXWithWebRtc")) {
WEBRTC_TRACE(
webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot replace codec internal DTX when no send codec is registered.");
return -1;
}
FATAL() << "Dead code?";
// int res = codecs_[current_send_codec_idx_]->ReplaceInternalDTX(
// use_webrtc_dtx);
// Check if VAD is turned on, or if there is any error.
// if (res == 1) {
// vad_enabled_ = true;
// } else if (res < 0) {
// WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
// "Failed to set ReplaceInternalDTXWithWebRtc(%d)",
// use_webrtc_dtx);
// return res;
// }
return 0;
}
int AudioCodingModuleImpl::IsInternalDTXReplacedWithWebRtc(
bool* uses_webrtc_dtx) {
*uses_webrtc_dtx = true;
return 0;
}
// TODO(henrik.lundin): Remove? Only used in tests. Deprecated in VoiceEngine.
int AudioCodingModuleImpl::SetISACMaxRate(int max_bit_per_sec) {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("SetISACMaxRate")) {
return -1;
}
return codec_manager_.current_encoder()->SetISACMaxRate(max_bit_per_sec);
}
// TODO(henrik.lundin): Remove? Only used in tests. Deprecated in VoiceEngine.
int AudioCodingModuleImpl::SetISACMaxPayloadSize(int max_size_bytes) {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("SetISACMaxPayloadSize")) {
return -1;
}
return codec_manager_.current_encoder()->SetISACMaxPayloadSize(
max_size_bytes);
}
// TODO(henrik.lundin): Remove? Only used in tests.
int AudioCodingModuleImpl::ConfigISACBandwidthEstimator(
int frame_size_ms,
int rate_bit_per_sec,
bool enforce_frame_size) {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("ConfigISACBandwidthEstimator")) {
return -1;
}
FATAL() << "Dead code?";
return -1;
// return codecs_[current_send_codec_idx_]->ConfigISACBandwidthEstimator(
// frame_size_ms, rate_bit_per_sec, enforce_frame_size);
}
int AudioCodingModuleImpl::SetOpusApplication(OpusApplicationMode application,
bool disable_dtx_if_needed) {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("SetOpusApplication")) {
return -1;
}
return codec_manager_.current_encoder()->SetOpusApplication(
application, disable_dtx_if_needed);
}
// Informs Opus encoder of the maximum playback rate the receiver will render.
int AudioCodingModuleImpl::SetOpusMaxPlaybackRate(int frequency_hz) {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("SetOpusMaxPlaybackRate")) {
return -1;
}
return codec_manager_.current_encoder()->SetOpusMaxPlaybackRate(frequency_hz);
}
int AudioCodingModuleImpl::EnableOpusDtx(bool force_voip) {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("EnableOpusDtx")) {
return -1;
}
return codec_manager_.current_encoder()->EnableOpusDtx(force_voip);
}
int AudioCodingModuleImpl::DisableOpusDtx() {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("DisableOpusDtx")) {
return -1;
}
return codec_manager_.current_encoder()->DisableOpusDtx();
}
int AudioCodingModuleImpl::PlayoutTimestamp(uint32_t* timestamp) {
return receiver_.GetPlayoutTimestamp(timestamp) ? 0 : -1;
}
bool AudioCodingModuleImpl::HaveValidEncoder(const char* caller_name) const {
if (!codec_manager_.current_encoder()) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"%s failed: No send codec is registered.", caller_name);
return false;
}
return true;
}
int AudioCodingModuleImpl::UnregisterReceiveCodec(uint8_t payload_type) {
return receiver_.RemoveCodec(payload_type);
}
// TODO(turajs): correct the type of |length_bytes| when it is corrected in
// GenericCodec.
int AudioCodingModuleImpl::REDPayloadISAC(int isac_rate,
int isac_bw_estimate,
uint8_t* payload,
int16_t* length_bytes) {
CriticalSectionScoped lock(acm_crit_sect_);
if (!HaveValidEncoder("EncodeData")) {
return -1;
}
FATAL() << "Dead code?";
return -1;
// int status;
// status = codecs_[current_send_codec_idx_]->REDPayloadISAC(isac_rate,
// isac_bw_estimate,
// payload,
// length_bytes);
// return status;
}
int AudioCodingModuleImpl::SetInitialPlayoutDelay(int delay_ms) {
{
CriticalSectionScoped lock(acm_crit_sect_);
// Initialize receiver, if it is not initialized. Otherwise, initial delay
// is reset upon initialization of the receiver.
if (!receiver_initialized_)
InitializeReceiverSafe();
}
return receiver_.SetInitialDelay(delay_ms);
}
int AudioCodingModuleImpl::SetDtmfPlayoutStatus(bool enable) {
return 0;
}
bool AudioCodingModuleImpl::DtmfPlayoutStatus() const {
return true;
}
int AudioCodingModuleImpl::EnableNack(size_t max_nack_list_size) {
return receiver_.EnableNack(max_nack_list_size);
}
void AudioCodingModuleImpl::DisableNack() {
receiver_.DisableNack();
}
std::vector<uint16_t> AudioCodingModuleImpl::GetNackList(
int64_t round_trip_time_ms) const {
return receiver_.GetNackList(round_trip_time_ms);
}
int AudioCodingModuleImpl::LeastRequiredDelayMs() const {
return receiver_.LeastRequiredDelayMs();
}
void AudioCodingModuleImpl::GetDecodingCallStatistics(
AudioDecodingCallStats* call_stats) const {
receiver_.GetDecodingCallStatistics(call_stats);
}
} // namespace acm2
AudioCodingImpl::AudioCodingImpl(const Config& config) {
AudioCodingModule::Config config_old = config.ToOldConfig();
acm_old_.reset(new acm2::AudioCodingModuleImpl(config_old));
acm_old_->RegisterTransportCallback(config.transport);
acm_old_->RegisterVADCallback(config.vad_callback);
acm_old_->SetDtmfPlayoutStatus(config.play_dtmf);
if (config.initial_playout_delay_ms > 0) {
acm_old_->SetInitialPlayoutDelay(config.initial_playout_delay_ms);
}
playout_frequency_hz_ = config.playout_frequency_hz;
}
AudioCodingImpl::~AudioCodingImpl() = default;
bool AudioCodingImpl::RegisterSendCodec(AudioEncoder* send_codec) {
FATAL() << "Not implemented yet.";
return false;
}
bool AudioCodingImpl::RegisterSendCodec(int encoder_type,
uint8_t payload_type,
int frame_size_samples) {
std::string codec_name;
int sample_rate_hz;
int channels;
if (!MapCodecTypeToParameters(
encoder_type, &codec_name, &sample_rate_hz, &channels)) {
return false;
}
webrtc::CodecInst codec;
AudioCodingModule::Codec(
codec_name.c_str(), &codec, sample_rate_hz, channels);
codec.pltype = payload_type;
if (frame_size_samples > 0) {
codec.pacsize = frame_size_samples;
}
return acm_old_->RegisterSendCodec(codec) == 0;
}
const AudioEncoder* AudioCodingImpl::GetSenderInfo() const {
FATAL() << "Not implemented yet.";
return reinterpret_cast<const AudioEncoder*>(NULL);
}
const CodecInst* AudioCodingImpl::GetSenderCodecInst() {
if (acm_old_->SendCodec(&current_send_codec_) != 0) {
return NULL;
}
return &current_send_codec_;
}
int AudioCodingImpl::Add10MsAudio(const AudioFrame& audio_frame) {
acm2::AudioCodingModuleImpl::InputData input_data;
if (acm_old_->Add10MsDataInternal(audio_frame, &input_data) != 0)
return -1;
return acm_old_->Encode(input_data);
}
const ReceiverInfo* AudioCodingImpl::GetReceiverInfo() const {
FATAL() << "Not implemented yet.";
return reinterpret_cast<const ReceiverInfo*>(NULL);
}
bool AudioCodingImpl::RegisterReceiveCodec(AudioDecoder* receive_codec) {
FATAL() << "Not implemented yet.";
return false;
}
bool AudioCodingImpl::RegisterReceiveCodec(int decoder_type,
uint8_t payload_type) {
std::string codec_name;
int sample_rate_hz;
int channels;
if (!MapCodecTypeToParameters(
decoder_type, &codec_name, &sample_rate_hz, &channels)) {
return false;
}
webrtc::CodecInst codec;
AudioCodingModule::Codec(
codec_name.c_str(), &codec, sample_rate_hz, channels);
codec.pltype = payload_type;
return acm_old_->RegisterReceiveCodec(codec) == 0;
}
bool AudioCodingImpl::InsertPacket(const uint8_t* incoming_payload,
size_t payload_len_bytes,
const WebRtcRTPHeader& rtp_info) {
return acm_old_->IncomingPacket(
incoming_payload, payload_len_bytes, rtp_info) == 0;
}
bool AudioCodingImpl::InsertPayload(const uint8_t* incoming_payload,
size_t payload_len_byte,
uint8_t payload_type,
uint32_t timestamp) {
FATAL() << "Not implemented yet.";
return false;
}
bool AudioCodingImpl::SetMinimumPlayoutDelay(int time_ms) {
FATAL() << "Not implemented yet.";
return false;
}
bool AudioCodingImpl::SetMaximumPlayoutDelay(int time_ms) {
FATAL() << "Not implemented yet.";
return false;
}
int AudioCodingImpl::LeastRequiredDelayMs() const {
FATAL() << "Not implemented yet.";
return -1;
}
bool AudioCodingImpl::PlayoutTimestamp(uint32_t* timestamp) {
FATAL() << "Not implemented yet.";
return false;
}
bool AudioCodingImpl::Get10MsAudio(AudioFrame* audio_frame) {
return acm_old_->PlayoutData10Ms(playout_frequency_hz_, audio_frame) == 0;
}
bool AudioCodingImpl::GetNetworkStatistics(
NetworkStatistics* network_statistics) {
FATAL() << "Not implemented yet.";
return false;
}
bool AudioCodingImpl::EnableNack(size_t max_nack_list_size) {
FATAL() << "Not implemented yet.";
return false;
}
void AudioCodingImpl::DisableNack() {
// A bug in the linker of Visual Studio 2013 Update 3 prevent us from using
// FATAL() here, if we do so then the linker hang when the WPO is turned on.
// TODO(sebmarchand): Re-evaluate this when we upgrade the toolchain.
}
bool AudioCodingImpl::SetVad(bool enable_dtx,
bool enable_vad,
ACMVADMode vad_mode) {
return acm_old_->SetVAD(enable_dtx, enable_vad, vad_mode) == 0;
}
std::vector<uint16_t> AudioCodingImpl::GetNackList(
int round_trip_time_ms) const {
return acm_old_->GetNackList(round_trip_time_ms);
}
void AudioCodingImpl::GetDecodingCallStatistics(
AudioDecodingCallStats* call_stats) const {
acm_old_->GetDecodingCallStatistics(call_stats);
}
bool AudioCodingImpl::MapCodecTypeToParameters(int codec_type,
std::string* codec_name,
int* sample_rate_hz,
int* channels) {
switch (codec_type) {
#ifdef WEBRTC_CODEC_PCM16
case acm2::ACMCodecDB::kPCM16B:
*codec_name = "L16";
*sample_rate_hz = 8000;
*channels = 1;
break;
case acm2::ACMCodecDB::kPCM16Bwb:
*codec_name = "L16";
*sample_rate_hz = 16000;
*channels = 1;
break;
case acm2::ACMCodecDB::kPCM16Bswb32kHz:
*codec_name = "L16";
*sample_rate_hz = 32000;
*channels = 1;
break;
case acm2::ACMCodecDB::kPCM16B_2ch:
*codec_name = "L16";
*sample_rate_hz = 8000;
*channels = 2;
break;
case acm2::ACMCodecDB::kPCM16Bwb_2ch:
*codec_name = "L16";
*sample_rate_hz = 16000;
*channels = 2;
break;
case acm2::ACMCodecDB::kPCM16Bswb32kHz_2ch:
*codec_name = "L16";
*sample_rate_hz = 32000;
*channels = 2;
break;
#endif
#if (defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX))
case acm2::ACMCodecDB::kISAC:
*codec_name = "ISAC";
*sample_rate_hz = 16000;
*channels = 1;
break;
#endif
#ifdef WEBRTC_CODEC_ISAC
case acm2::ACMCodecDB::kISACSWB:
*codec_name = "ISAC";
*sample_rate_hz = 32000;
*channels = 1;
break;
case acm2::ACMCodecDB::kISACFB:
*codec_name = "ISAC";
*sample_rate_hz = 48000;
*channels = 1;
break;
#endif
#ifdef WEBRTC_CODEC_ILBC
case acm2::ACMCodecDB::kILBC:
*codec_name = "ILBC";
*sample_rate_hz = 8000;
*channels = 1;
break;
#endif
case acm2::ACMCodecDB::kPCMA:
*codec_name = "PCMA";
*sample_rate_hz = 8000;
*channels = 1;
break;
case acm2::ACMCodecDB::kPCMA_2ch:
*codec_name = "PCMA";
*sample_rate_hz = 8000;
*channels = 2;
break;
case acm2::ACMCodecDB::kPCMU:
*codec_name = "PCMU";
*sample_rate_hz = 8000;
*channels = 1;
break;
case acm2::ACMCodecDB::kPCMU_2ch:
*codec_name = "PCMU";
*sample_rate_hz = 8000;
*channels = 2;
break;
#ifdef WEBRTC_CODEC_G722
case acm2::ACMCodecDB::kG722:
*codec_name = "G722";
*sample_rate_hz = 16000;
*channels = 1;
break;
case acm2::ACMCodecDB::kG722_2ch:
*codec_name = "G722";
*sample_rate_hz = 16000;
*channels = 2;
break;
#endif
#ifdef WEBRTC_CODEC_OPUS
case acm2::ACMCodecDB::kOpus:
*codec_name = "opus";
*sample_rate_hz = 48000;
*channels = 2;
break;
#endif
case acm2::ACMCodecDB::kCNNB:
*codec_name = "CN";
*sample_rate_hz = 8000;
*channels = 1;
break;
case acm2::ACMCodecDB::kCNWB:
*codec_name = "CN";
*sample_rate_hz = 16000;
*channels = 1;
break;
case acm2::ACMCodecDB::kCNSWB:
*codec_name = "CN";
*sample_rate_hz = 32000;
*channels = 1;
break;
case acm2::ACMCodecDB::kRED:
*codec_name = "red";
*sample_rate_hz = 8000;
*channels = 1;
break;
#ifdef WEBRTC_CODEC_AVT
case acm2::ACMCodecDB::kAVT:
*codec_name = "telephone-event";
*sample_rate_hz = 8000;
*channels = 1;
break;
#endif
default:
FATAL() << "Codec type " << codec_type << " not supported.";
}
return true;
}
} // namespace webrtc