blob: b621e868a736658a4644c435fbe0c8b1a8fb31fa [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h> // For LONG_MIN, LONG_MAX.
#include "src/v8.h"
#if V8_TARGET_ARCH_MIPS64
#include "src/base/division-by-constant.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/cpu-profiler.h"
#include "src/debug.h"
#include "src/isolate-inl.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
has_frame_(false),
has_double_zero_reg_set_(false) {
if (isolate() != NULL) {
code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
isolate());
}
}
void MacroAssembler::Load(Register dst,
const MemOperand& src,
Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8()) {
lb(dst, src);
} else if (r.IsUInteger8()) {
lbu(dst, src);
} else if (r.IsInteger16()) {
lh(dst, src);
} else if (r.IsUInteger16()) {
lhu(dst, src);
} else if (r.IsInteger32()) {
lw(dst, src);
} else {
ld(dst, src);
}
}
void MacroAssembler::Store(Register src,
const MemOperand& dst,
Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
sb(src, dst);
} else if (r.IsInteger16() || r.IsUInteger16()) {
sh(src, dst);
} else if (r.IsInteger32()) {
sw(src, dst);
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
sd(src, dst);
}
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index) {
ld(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond,
Register src1, const Operand& src2) {
Branch(2, NegateCondition(cond), src1, src2);
ld(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index) {
sd(source, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond,
Register src1, const Operand& src2) {
Branch(2, NegateCondition(cond), src1, src2);
sd(source, MemOperand(s6, index << kPointerSizeLog2));
}
// Push and pop all registers that can hold pointers.
void MacroAssembler::PushSafepointRegisters() {
// Safepoints expect a block of kNumSafepointRegisters values on the
// stack, so adjust the stack for unsaved registers.
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
DCHECK(num_unsaved >= 0);
if (num_unsaved > 0) {
Dsubu(sp, sp, Operand(num_unsaved * kPointerSize));
}
MultiPush(kSafepointSavedRegisters);
}
void MacroAssembler::PopSafepointRegisters() {
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
MultiPop(kSafepointSavedRegisters);
if (num_unsaved > 0) {
Daddu(sp, sp, Operand(num_unsaved * kPointerSize));
}
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
sd(src, SafepointRegisterSlot(dst));
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
ld(dst, SafepointRegisterSlot(src));
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the highest encoding,
// which means that lowest encodings are closest to the stack pointer.
return kSafepointRegisterStackIndexMap[reg_code];
}
MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
UNIMPLEMENTED_MIPS();
// General purpose registers are pushed last on the stack.
int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize;
int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
return MemOperand(sp, doubles_size + register_offset);
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch) {
DCHECK(cc == eq || cc == ne);
And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
Branch(branch, cc, scratch,
Operand(ExternalReference::new_space_start(isolate())));
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
RAStatus ra_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!AreAliased(value, dst, t8, object));
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
DCHECK(IsAligned(offset, kPointerSize));
Daddu(dst, object, Operand(offset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
And(t8, dst, Operand((1 << kPointerSizeLog2) - 1));
Branch(&ok, eq, t8, Operand(zero_reg));
stop("Unaligned cell in write barrier");
bind(&ok);
}
RecordWrite(object,
dst,
value,
ra_status,
save_fp,
remembered_set_action,
OMIT_SMI_CHECK,
pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
li(dst, Operand(bit_cast<int64_t>(kZapValue + 8)));
}
}
// Will clobber 4 registers: object, map, dst, ip. The
// register 'object' contains a heap object pointer.
void MacroAssembler::RecordWriteForMap(Register object,
Register map,
Register dst,
RAStatus ra_status,
SaveFPRegsMode fp_mode) {
if (emit_debug_code()) {
DCHECK(!dst.is(at));
ld(dst, FieldMemOperand(map, HeapObject::kMapOffset));
Check(eq,
kWrongAddressOrValuePassedToRecordWrite,
dst,
Operand(isolate()->factory()->meta_map()));
}
if (!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
ld(at, FieldMemOperand(object, HeapObject::kMapOffset));
Check(eq,
kWrongAddressOrValuePassedToRecordWrite,
map,
Operand(at));
}
Label done;
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
CheckPageFlag(map,
map, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
Daddu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
And(at, dst, Operand((1 << kPointerSizeLog2) - 1));
Branch(&ok, eq, at, Operand(zero_reg));
stop("Unaligned cell in write barrier");
bind(&ok);
}
// Record the actual write.
if (ra_status == kRAHasNotBeenSaved) {
push(ra);
}
RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
fp_mode);
CallStub(&stub);
if (ra_status == kRAHasNotBeenSaved) {
pop(ra);
}
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, dst);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
li(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
}
}
// Will clobber 4 registers: object, address, scratch, ip. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(
Register object,
Register address,
Register value,
RAStatus ra_status,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!AreAliased(object, address, value, t8));
DCHECK(!AreAliased(object, address, value, t9));
if (emit_debug_code()) {
ld(at, MemOperand(address));
Assert(
eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value));
}
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
DCHECK_EQ(0, kSmiTag);
JumpIfSmi(value, &done);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
eq,
&done);
// Record the actual write.
if (ra_status == kRAHasNotBeenSaved) {
push(ra);
}
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
if (ra_status == kRAHasNotBeenSaved) {
pop(ra);
}
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at,
value);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
li(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
}
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register address,
Register scratch,
SaveFPRegsMode fp_mode,
RememberedSetFinalAction and_then) {
Label done;
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok);
stop("Remembered set pointer is in new space");
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
li(t8, Operand(store_buffer));
ld(scratch, MemOperand(t8));
// Store pointer to buffer and increment buffer top.
sd(address, MemOperand(scratch));
Daddu(scratch, scratch, kPointerSize);
// Write back new top of buffer.
sd(scratch, MemOperand(t8));
// Call stub on end of buffer.
// Check for end of buffer.
And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
DCHECK(!scratch.is(t8));
if (and_then == kFallThroughAtEnd) {
Branch(&done, eq, t8, Operand(zero_reg));
} else {
DCHECK(and_then == kReturnAtEnd);
Ret(eq, t8, Operand(zero_reg));
}
push(ra);
StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
CallStub(&store_buffer_overflow);
pop(ra);
bind(&done);
if (and_then == kReturnAtEnd) {
Ret();
}
}
// -----------------------------------------------------------------------------
// Allocation support.
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
DCHECK(!holder_reg.is(scratch));
DCHECK(!holder_reg.is(at));
DCHECK(!scratch.is(at));
// Load current lexical context from the stack frame.
ld(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
// In debug mode, make sure the lexical context is set.
#ifdef DEBUG
Check(ne, kWeShouldNotHaveAnEmptyLexicalContext,
scratch, Operand(zero_reg));
#endif
// Load the native context of the current context.
int offset =
Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
ld(scratch, FieldMemOperand(scratch, offset));
ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
// Check the context is a native context.
if (emit_debug_code()) {
push(holder_reg); // Temporarily save holder on the stack.
// Read the first word and compare to the native_context_map.
ld(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
LoadRoot(at, Heap::kNativeContextMapRootIndex);
Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
holder_reg, Operand(at));
pop(holder_reg); // Restore holder.
}
// Check if both contexts are the same.
ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
Branch(&same_contexts, eq, scratch, Operand(at));
// Check the context is a native context.
if (emit_debug_code()) {
push(holder_reg); // Temporarily save holder on the stack.
mov(holder_reg, at); // Move at to its holding place.
LoadRoot(at, Heap::kNullValueRootIndex);
Check(ne, kJSGlobalProxyContextShouldNotBeNull,
holder_reg, Operand(at));
ld(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
LoadRoot(at, Heap::kNativeContextMapRootIndex);
Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
holder_reg, Operand(at));
// Restore at is not needed. at is reloaded below.
pop(holder_reg); // Restore holder.
// Restore at to holder's context.
ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
}
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
int token_offset = Context::kHeaderSize +
Context::SECURITY_TOKEN_INDEX * kPointerSize;
ld(scratch, FieldMemOperand(scratch, token_offset));
ld(at, FieldMemOperand(at, token_offset));
Branch(miss, ne, scratch, Operand(at));
bind(&same_contexts);
}
// Compute the hash code from the untagged key. This must be kept in sync with
// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
// code-stub-hydrogen.cc
void MacroAssembler::GetNumberHash(Register reg0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiUntag(scratch);
// Xor original key with a seed.
xor_(reg0, reg0, scratch);
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
// The algorithm uses 32-bit integer values.
nor(scratch, reg0, zero_reg);
sll(at, reg0, 15);
addu(reg0, scratch, at);
// hash = hash ^ (hash >> 12);
srl(at, reg0, 12);
xor_(reg0, reg0, at);
// hash = hash + (hash << 2);
sll(at, reg0, 2);
addu(reg0, reg0, at);
// hash = hash ^ (hash >> 4);
srl(at, reg0, 4);
xor_(reg0, reg0, at);
// hash = hash * 2057;
sll(scratch, reg0, 11);
sll(at, reg0, 3);
addu(reg0, reg0, at);
addu(reg0, reg0, scratch);
// hash = hash ^ (hash >> 16);
srl(at, reg0, 16);
xor_(reg0, reg0, at);
}
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register result,
Register reg0,
Register reg1,
Register reg2) {
// Register use:
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
//
// Scratch registers:
//
// reg0 - holds the untagged key on entry and holds the hash once computed.
//
// reg1 - Used to hold the capacity mask of the dictionary.
//
// reg2 - Used for the index into the dictionary.
// at - Temporary (avoid MacroAssembler instructions also using 'at').
Label done;
GetNumberHash(reg0, reg1);
// Compute the capacity mask.
ld(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
SmiUntag(reg1, reg1);
Dsubu(reg1, reg1, Operand(1));
// Generate an unrolled loop that performs a few probes before giving up.
for (int i = 0; i < kNumberDictionaryProbes; i++) {
// Use reg2 for index calculations and keep the hash intact in reg0.
mov(reg2, reg0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
Daddu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
}
and_(reg2, reg2, reg1);
// Scale the index by multiplying by the element size.
DCHECK(SeededNumberDictionary::kEntrySize == 3);
dsll(at, reg2, 1); // 2x.
daddu(reg2, reg2, at); // reg2 = reg2 * 3.
// Check if the key is identical to the name.
dsll(at, reg2, kPointerSizeLog2);
daddu(reg2, elements, at);
ld(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset));
if (i != kNumberDictionaryProbes - 1) {
Branch(&done, eq, key, Operand(at));
} else {
Branch(miss, ne, key, Operand(at));
}
}
bind(&done);
// Check that the value is a field property.
// reg2: elements + (index * kPointerSize).
const int kDetailsOffset =
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
ld(reg1, FieldMemOperand(reg2, kDetailsOffset));
DCHECK_EQ(FIELD, 0);
And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
Branch(miss, ne, at, Operand(zero_reg));
// Get the value at the masked, scaled index and return.
const int kValueOffset =
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
ld(result, FieldMemOperand(reg2, kValueOffset));
}
// ---------------------------------------------------------------------------
// Instruction macros.
void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
addu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
addiu(rd, rs, rt.imm64_);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
addu(rd, rs, at);
}
}
}
void MacroAssembler::Daddu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
daddu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
daddiu(rd, rs, rt.imm64_);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
daddu(rd, rs, at);
}
}
}
void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
subu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
addiu(rd, rs, -rt.imm64_); // No subiu instr, use addiu(x, y, -imm).
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
subu(rd, rs, at);
}
}
}
void MacroAssembler::Dsubu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
dsubu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
daddiu(rd, rs, -rt.imm64_); // No subiu instr, use addiu(x, y, -imm).
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
dsubu(rd, rs, at);
}
}
}
void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
mul(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
mul(rd, rs, at);
}
}
void MacroAssembler::Mulh(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
mult(rs, rt.rm());
mfhi(rd);
} else {
muh(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
mult(rs, at);
mfhi(rd);
} else {
muh(rd, rs, at);
}
}
}
void MacroAssembler::Mulhu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
multu(rs, rt.rm());
mfhi(rd);
} else {
muhu(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
multu(rs, at);
mfhi(rd);
} else {
muhu(rd, rs, at);
}
}
}
void MacroAssembler::Dmul(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant == kMips64r6) {
dmul(rd, rs, rt.rm());
} else {
dmult(rs, rt.rm());
mflo(rd);
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant == kMips64r6) {
dmul(rd, rs, at);
} else {
dmult(rs, at);
mflo(rd);
}
}
}
void MacroAssembler::Dmulh(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant == kMips64r6) {
dmuh(rd, rs, rt.rm());
} else {
dmult(rs, rt.rm());
mfhi(rd);
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant == kMips64r6) {
dmuh(rd, rs, at);
} else {
dmult(rs, at);
mfhi(rd);
}
}
}
void MacroAssembler::Mult(Register rs, const Operand& rt) {
if (rt.is_reg()) {
mult(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
mult(rs, at);
}
}
void MacroAssembler::Dmult(Register rs, const Operand& rt) {
if (rt.is_reg()) {
dmult(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
dmult(rs, at);
}
}
void MacroAssembler::Multu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
multu(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
multu(rs, at);
}
}
void MacroAssembler::Dmultu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
dmultu(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
dmultu(rs, at);
}
}
void MacroAssembler::Div(Register rs, const Operand& rt) {
if (rt.is_reg()) {
div(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
div(rs, at);
}
}
void MacroAssembler::Div(Register res, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
div(rs, rt.rm());
mflo(res);
} else {
div(res, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
div(rs, at);
mflo(res);
} else {
div(res, rs, at);
}
}
}
void MacroAssembler::Mod(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
div(rs, rt.rm());
mfhi(rd);
} else {
mod(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
div(rs, at);
mfhi(rd);
} else {
mod(rd, rs, at);
}
}
}
void MacroAssembler::Modu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
divu(rs, rt.rm());
mfhi(rd);
} else {
modu(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
divu(rs, at);
mfhi(rd);
} else {
modu(rd, rs, at);
}
}
}
void MacroAssembler::Ddiv(Register rs, const Operand& rt) {
if (rt.is_reg()) {
ddiv(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddiv(rs, at);
}
}
void MacroAssembler::Ddiv(Register rd, Register rs, const Operand& rt) {
if (kArchVariant != kMips64r6) {
if (rt.is_reg()) {
ddiv(rs, rt.rm());
mflo(rd);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddiv(rs, at);
mflo(rd);
}
} else {
if (rt.is_reg()) {
ddiv(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddiv(rd, rs, at);
}
}
}
void MacroAssembler::Divu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
divu(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
divu(rs, at);
}
}
void MacroAssembler::Divu(Register res, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
divu(rs, rt.rm());
mflo(res);
} else {
divu(res, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
divu(rs, at);
mflo(res);
} else {
divu(res, rs, at);
}
}
}
void MacroAssembler::Ddivu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
ddivu(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddivu(rs, at);
}
}
void MacroAssembler::Ddivu(Register res, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
ddivu(rs, rt.rm());
mflo(res);
} else {
ddivu(res, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
ddivu(rs, at);
mflo(res);
} else {
ddivu(res, rs, at);
}
}
}
void MacroAssembler::Dmod(Register rd, Register rs, const Operand& rt) {
if (kArchVariant != kMips64r6) {
if (rt.is_reg()) {
ddiv(rs, rt.rm());
mfhi(rd);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddiv(rs, at);
mfhi(rd);
}
} else {
if (rt.is_reg()) {
dmod(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
dmod(rd, rs, at);
}
}
}
void MacroAssembler::Dmodu(Register rd, Register rs, const Operand& rt) {
if (kArchVariant != kMips64r6) {
if (rt.is_reg()) {
ddivu(rs, rt.rm());
mfhi(rd);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddivu(rs, at);
mfhi(rd);
}
} else {
if (rt.is_reg()) {
dmodu(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
dmodu(rd, rs, at);
}
}
}
void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
and_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
andi(rd, rs, rt.imm64_);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
and_(rd, rs, at);
}
}
}
void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
or_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
ori(rd, rs, rt.imm64_);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
or_(rd, rs, at);
}
}
}
void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
xor_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
xori(rd, rs, rt.imm64_);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
xor_(rd, rs, at);
}
}
}
void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
nor(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
nor(rd, rs, at);
}
}
void MacroAssembler::Neg(Register rs, const Operand& rt) {
DCHECK(rt.is_reg());
DCHECK(!at.is(rs));
DCHECK(!at.is(rt.rm()));
li(at, -1);
xor_(rs, rt.rm(), at);
}
void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
slt(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
slti(rd, rs, rt.imm64_);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
slt(rd, rs, at);
}
}
}
void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
sltu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
sltiu(rd, rs, rt.imm64_);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
sltu(rd, rs, at);
}
}
}
void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
rotrv(rd, rs, rt.rm());
} else {
rotr(rd, rs, rt.imm64_);
}
}
void MacroAssembler::Dror(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
drotrv(rd, rs, rt.rm());
} else {
drotr(rd, rs, rt.imm64_);
}
}
void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) {
pref(hint, rs);
}
// ------------Pseudo-instructions-------------
void MacroAssembler::Ulw(Register rd, const MemOperand& rs) {
lwr(rd, rs);
lwl(rd, MemOperand(rs.rm(), rs.offset() + 3));
}
void MacroAssembler::Usw(Register rd, const MemOperand& rs) {
swr(rd, rs);
swl(rd, MemOperand(rs.rm(), rs.offset() + 3));
}
// Do 64-bit load from unaligned address. Note this only handles
// the specific case of 32-bit aligned, but not 64-bit aligned.
void MacroAssembler::Uld(Register rd, const MemOperand& rs, Register scratch) {
// Assert fail if the offset from start of object IS actually aligned.
// ONLY use with known misalignment, since there is performance cost.
DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
// TODO(plind): endian dependency.
lwu(rd, rs);
lw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
dsll32(scratch, scratch, 0);
Daddu(rd, rd, scratch);
}
// Do 64-bit store to unaligned address. Note this only handles
// the specific case of 32-bit aligned, but not 64-bit aligned.
void MacroAssembler::Usd(Register rd, const MemOperand& rs, Register scratch) {
// Assert fail if the offset from start of object IS actually aligned.
// ONLY use with known misalignment, since there is performance cost.
DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
// TODO(plind): endian dependency.
sw(rd, rs);
dsrl32(scratch, rd, 0);
sw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
}
void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) {
AllowDeferredHandleDereference smi_check;
if (value->IsSmi()) {
li(dst, Operand(value), mode);
} else {
DCHECK(value->IsHeapObject());
if (isolate()->heap()->InNewSpace(*value)) {
Handle<Cell> cell = isolate()->factory()->NewCell(value);
li(dst, Operand(cell));
ld(dst, FieldMemOperand(dst, Cell::kValueOffset));
} else {
li(dst, Operand(value));
}
}
}
void MacroAssembler::li(Register rd, Operand j, LiFlags mode) {
DCHECK(!j.is_reg());
BlockTrampolinePoolScope block_trampoline_pool(this);
if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) {
// Normal load of an immediate value which does not need Relocation Info.
if (is_int32(j.imm64_)) {
if (is_int16(j.imm64_)) {
daddiu(rd, zero_reg, (j.imm64_ & kImm16Mask));
} else if (!(j.imm64_ & kHiMask)) {
ori(rd, zero_reg, (j.imm64_ & kImm16Mask));
} else if (!(j.imm64_ & kImm16Mask)) {
lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
} else {
lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
ori(rd, rd, (j.imm64_ & kImm16Mask));
}
} else {
lui(rd, (j.imm64_ >> 48) & kImm16Mask);
ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, j.imm64_ & kImm16Mask);
}
} else if (MustUseReg(j.rmode_)) {
RecordRelocInfo(j.rmode_, j.imm64_);
lui(rd, (j.imm64_ >> 32) & kImm16Mask);
ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, j.imm64_ & kImm16Mask);
} else if (mode == ADDRESS_LOAD) {
// We always need the same number of instructions as we may need to patch
// this code to load another value which may need all 4 instructions.
lui(rd, (j.imm64_ >> 32) & kImm16Mask);
ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, j.imm64_ & kImm16Mask);
} else {
lui(rd, (j.imm64_ >> 48) & kImm16Mask);
ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, j.imm64_ & kImm16Mask);
}
}
void MacroAssembler::MultiPush(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kPointerSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kPointerSize;
sd(ToRegister(i), MemOperand(sp, stack_offset));
}
}
}
void MacroAssembler::MultiPushReversed(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kPointerSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kPointerSize;
sd(ToRegister(i), MemOperand(sp, stack_offset));
}
}
}
void MacroAssembler::MultiPop(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
ld(ToRegister(i), MemOperand(sp, stack_offset));
stack_offset += kPointerSize;
}
}
daddiu(sp, sp, stack_offset);
}
void MacroAssembler::MultiPopReversed(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
ld(ToRegister(i), MemOperand(sp, stack_offset));
stack_offset += kPointerSize;
}
}
daddiu(sp, sp, stack_offset);
}
void MacroAssembler::MultiPushFPU(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kDoubleSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kDoubleSize;
sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
}
}
}
void MacroAssembler::MultiPushReversedFPU(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kDoubleSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kDoubleSize;
sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
}
}
}
void MacroAssembler::MultiPopFPU(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
stack_offset += kDoubleSize;
}
}
daddiu(sp, sp, stack_offset);
}
void MacroAssembler::MultiPopReversedFPU(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
stack_offset += kDoubleSize;
}
}
daddiu(sp, sp, stack_offset);
}
void MacroAssembler::FlushICache(Register address, unsigned instructions) {
RegList saved_regs = kJSCallerSaved | ra.bit();
MultiPush(saved_regs);
AllowExternalCallThatCantCauseGC scope(this);
// Save to a0 in case address == a4.
Move(a0, address);
PrepareCallCFunction(2, a4);
li(a1, instructions * kInstrSize);
CallCFunction(ExternalReference::flush_icache_function(isolate()), 2);
MultiPop(saved_regs);
}
void MacroAssembler::Ext(Register rt,
Register rs,
uint16_t pos,
uint16_t size) {
DCHECK(pos < 32);
DCHECK(pos + size < 33);
ext_(rt, rs, pos, size);
}
void MacroAssembler::Dext(Register rt, Register rs, uint16_t pos,
uint16_t size) {
DCHECK(pos < 32);
DCHECK(pos + size < 33);
dext_(rt, rs, pos, size);
}
void MacroAssembler::Ins(Register rt,
Register rs,
uint16_t pos,
uint16_t size) {
DCHECK(pos < 32);
DCHECK(pos + size <= 32);
DCHECK(size != 0);
ins_(rt, rs, pos, size);
}
void MacroAssembler::Cvt_d_uw(FPURegister fd,
FPURegister fs,
FPURegister scratch) {
// Move the data from fs to t8.
mfc1(t8, fs);
Cvt_d_uw(fd, t8, scratch);
}
void MacroAssembler::Cvt_d_uw(FPURegister fd,
Register rs,
FPURegister scratch) {
// Convert rs to a FP value in fd (and fd + 1).
// We do this by converting rs minus the MSB to avoid sign conversion,
// then adding 2^31 to the result (if needed).
DCHECK(!fd.is(scratch));
DCHECK(!rs.is(t9));
DCHECK(!rs.is(at));
// Save rs's MSB to t9.
Ext(t9, rs, 31, 1);
// Remove rs's MSB.
Ext(at, rs, 0, 31);
// Move the result to fd.
mtc1(at, fd);
mthc1(zero_reg, fd);
// Convert fd to a real FP value.
cvt_d_w(fd, fd);
Label conversion_done;
// If rs's MSB was 0, it's done.
// Otherwise we need to add that to the FP register.
Branch(&conversion_done, eq, t9, Operand(zero_reg));
// Load 2^31 into f20 as its float representation.
li(at, 0x41E00000);
mtc1(zero_reg, scratch);
mthc1(at, scratch);
// Add it to fd.
add_d(fd, fd, scratch);
bind(&conversion_done);
}
void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) {
round_l_d(fd, fs);
}
void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) {
floor_l_d(fd, fs);
}
void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) {
ceil_l_d(fd, fs);
}
void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) {
trunc_l_d(fd, fs);
}
void MacroAssembler::Trunc_l_ud(FPURegister fd,
FPURegister fs,
FPURegister scratch) {
// Load to GPR.
dmfc1(t8, fs);
// Reset sign bit.
li(at, 0x7fffffffffffffff);
and_(t8, t8, at);
dmtc1(t8, fs);
trunc_l_d(fd, fs);
}
void MacroAssembler::Trunc_uw_d(FPURegister fd,
FPURegister fs,
FPURegister scratch) {
Trunc_uw_d(fs, t8, scratch);
mtc1(t8, fd);
}
void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
trunc_w_d(fd, fs);
}
void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
round_w_d(fd, fs);
}
void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
floor_w_d(fd, fs);
}
void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
ceil_w_d(fd, fs);
}
void MacroAssembler::Trunc_uw_d(FPURegister fd,
Register rs,
FPURegister scratch) {
DCHECK(!fd.is(scratch));
DCHECK(!rs.is(at));
// Load 2^31 into scratch as its float representation.
li(at, 0x41E00000);
mtc1(zero_reg, scratch);
mthc1(at, scratch);
// Test if scratch > fd.
// If fd < 2^31 we can convert it normally.
Label simple_convert;
BranchF(&simple_convert, NULL, lt, fd, scratch);
// First we subtract 2^31 from fd, then trunc it to rs
// and add 2^31 to rs.
sub_d(scratch, fd, scratch);
trunc_w_d(scratch, scratch);
mfc1(rs, scratch);
Or(rs, rs, 1 << 31);
Label done;
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_w_d(scratch, fd);
mfc1(rs, scratch);
bind(&done);
}
void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft, FPURegister scratch) {
if (0) { // TODO(plind): find reasonable arch-variant symbol names.
madd_d(fd, fr, fs, ft);
} else {
// Can not change source regs's value.
DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch));
mul_d(scratch, fs, ft);
add_d(fd, fr, scratch);
}
}
void MacroAssembler::BranchF(Label* target,
Label* nan,
Condition cc,
FPURegister cmp1,
FPURegister cmp2,
BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (cc == al) {
Branch(bd, target);
return;
}
DCHECK(nan || target);
// Check for unordered (NaN) cases.
if (nan) {
if (kArchVariant != kMips64r6) {
c(UN, D, cmp1, cmp2);
bc1t(nan);
} else {
// Use f31 for comparison result. It has to be unavailable to lithium
// register allocator.
DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
cmp(UN, L, f31, cmp1, cmp2);
bc1nez(nan, f31);
}
}
if (kArchVariant != kMips64r6) {
if (target) {
// Here NaN cases were either handled by this function or are assumed to
// have been handled by the caller.
switch (cc) {
case lt:
c(OLT, D, cmp1, cmp2);
bc1t(target);
break;
case gt:
c(ULE, D, cmp1, cmp2);
bc1f(target);
break;
case ge:
c(ULT, D, cmp1, cmp2);
bc1f(target);
break;
case le:
c(OLE, D, cmp1, cmp2);
bc1t(target);
break;
case eq:
c(EQ, D, cmp1, cmp2);
bc1t(target);
break;
case ueq:
c(UEQ, D, cmp1, cmp2);
bc1t(target);
break;
case ne:
c(EQ, D, cmp1, cmp2);
bc1f(target);
break;
case nue:
c(UEQ, D, cmp1, cmp2);
bc1f(target);
break;
default:
CHECK(0);
}
}
} else {
if (target) {
// Here NaN cases were either handled by this function or are assumed to
// have been handled by the caller.
// Unsigned conditions are treated as their signed counterpart.
// Use f31 for comparison result, it is valid in fp64 (FR = 1) mode.
DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
switch (cc) {
case lt:
cmp(OLT, L, f31, cmp1, cmp2);
bc1nez(target, f31);
break;
case gt:
cmp(ULE, L, f31, cmp1, cmp2);
bc1eqz(target, f31);
break;
case ge:
cmp(ULT, L, f31, cmp1, cmp2);
bc1eqz(target, f31);
break;
case le:
cmp(OLE, L, f31, cmp1, cmp2);
bc1nez(target, f31);
break;
case eq:
cmp(EQ, L, f31, cmp1, cmp2);
bc1nez(target, f31);
break;
case ueq:
cmp(UEQ, L, f31, cmp1, cmp2);
bc1nez(target, f31);
break;
case ne:
cmp(EQ, L, f31, cmp1, cmp2);
bc1eqz(target, f31);
break;
case nue:
cmp(UEQ, L, f31, cmp1, cmp2);
bc1eqz(target, f31);
break;
default:
CHECK(0);
}
}
}
if (bd == PROTECT) {
nop();
}
}
void MacroAssembler::Move(FPURegister dst, double imm) {
static const DoubleRepresentation minus_zero(-0.0);
static const DoubleRepresentation zero(0.0);
DoubleRepresentation value_rep(imm);
// Handle special values first.
if (value_rep == zero && has_double_zero_reg_set_) {
mov_d(dst, kDoubleRegZero);
} else if (value_rep == minus_zero && has_double_zero_reg_set_) {
neg_d(dst, kDoubleRegZero);
} else {
uint32_t lo, hi;
DoubleAsTwoUInt32(imm, &lo, &hi);
// Move the low part of the double into the lower bits of the corresponding
// FPU register.
if (lo != 0) {
li(at, Operand(lo));
mtc1(at, dst);
} else {
mtc1(zero_reg, dst);
}
// Move the high part of the double into the high bits of the corresponding
// FPU register.
if (hi != 0) {
li(at, Operand(hi));
mthc1(at, dst);
} else {
mthc1(zero_reg, dst);
}
if (dst.is(kDoubleRegZero)) has_double_zero_reg_set_ = true;
}
}
void MacroAssembler::Movz(Register rd, Register rs, Register rt) {
if (kArchVariant == kMips64r6) {
Label done;
Branch(&done, ne, rt, Operand(zero_reg));
mov(rd, rs);
bind(&done);
} else {
movz(rd, rs, rt);
}
}
void MacroAssembler::Movn(Register rd, Register rs, Register rt) {
if (kArchVariant == kMips64r6) {
Label done;
Branch(&done, eq, rt, Operand(zero_reg));
mov(rd, rs);
bind(&done);
} else {
movn(rd, rs, rt);
}
}
void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) {
movt(rd, rs, cc);
}
void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) {
movf(rd, rs, cc);
}
void MacroAssembler::Clz(Register rd, Register rs) {
clz(rd, rs);
}
void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode,
Register result,
DoubleRegister double_input,
Register scratch,
DoubleRegister double_scratch,
Register except_flag,
CheckForInexactConversion check_inexact) {
DCHECK(!result.is(scratch));
DCHECK(!double_input.is(double_scratch));
DCHECK(!except_flag.is(scratch));
Label done;
// Clear the except flag (0 = no exception)
mov(except_flag, zero_reg);
// Test for values that can be exactly represented as a signed 32-bit integer.
cvt_w_d(double_scratch, double_input);
mfc1(result, double_scratch);
cvt_d_w(double_scratch, double_scratch);
BranchF(&done, NULL, eq, double_input, double_scratch);
int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions.
if (check_inexact == kDontCheckForInexactConversion) {
// Ignore inexact exceptions.
except_mask &= ~kFCSRInexactFlagMask;
}
// Save FCSR.
cfc1(scratch, FCSR);
// Disable FPU exceptions.
ctc1(zero_reg, FCSR);
// Do operation based on rounding mode.
switch (rounding_mode) {
case kRoundToNearest:
Round_w_d(double_scratch, double_input);
break;
case kRoundToZero:
Trunc_w_d(double_scratch, double_input);
break;
case kRoundToPlusInf:
Ceil_w_d(double_scratch, double_input);
break;
case kRoundToMinusInf:
Floor_w_d(double_scratch, double_input);
break;
} // End of switch-statement.
// Retrieve FCSR.
cfc1(except_flag, FCSR);
// Restore FCSR.
ctc1(scratch, FCSR);
// Move the converted value into the result register.
mfc1(result, double_scratch);
// Check for fpu exceptions.
And(except_flag, except_flag, Operand(except_mask));
bind(&done);
}
void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
DoubleRegister double_input,
Label* done) {
DoubleRegister single_scratch = kLithiumScratchDouble.low();
Register scratch = at;
Register scratch2 = t9;
// Clear cumulative exception flags and save the FCSR.
cfc1(scratch2, FCSR);
ctc1(zero_reg, FCSR);
// Try a conversion to a signed integer.
trunc_w_d(single_scratch, double_input);
mfc1(result, single_scratch);
// Retrieve and restore the FCSR.
cfc1(scratch, FCSR);
ctc1(scratch2, FCSR);
// Check for overflow and NaNs.
And(scratch,
scratch,
kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
// If we had no exceptions we are done.
Branch(done, eq, scratch, Operand(zero_reg));
}
void MacroAssembler::TruncateDoubleToI(Register result,
DoubleRegister double_input) {
Label done;
TryInlineTruncateDoubleToI(result, double_input, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(ra);
Dsubu(sp, sp, Operand(kDoubleSize)); // Put input on stack.
sdc1(double_input, MemOperand(sp, 0));
DoubleToIStub stub(isolate(), sp, result, 0, true, true);
CallStub(&stub);
Daddu(sp, sp, Operand(kDoubleSize));
pop(ra);
bind(&done);
}
void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
Label done;
DoubleRegister double_scratch = f12;
DCHECK(!result.is(object));
ldc1(double_scratch,
MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag));
TryInlineTruncateDoubleToI(result, double_scratch, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(ra);
DoubleToIStub stub(isolate(),
object,
result,
HeapNumber::kValueOffset - kHeapObjectTag,
true,
true);
CallStub(&stub);
pop(ra);
bind(&done);
}
void MacroAssembler::TruncateNumberToI(Register object,
Register result,
Register heap_number_map,
Register scratch,
Label* not_number) {
Label done;
DCHECK(!result.is(object));
UntagAndJumpIfSmi(result, object, &done);
JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number);
TruncateHeapNumberToI(result, object);
bind(&done);
}
void MacroAssembler::GetLeastBitsFromSmi(Register dst,
Register src,
int num_least_bits) {
// Ext(dst, src, kSmiTagSize, num_least_bits);
SmiUntag(dst, src);
And(dst, dst, Operand((1 << num_least_bits) - 1));
}
void MacroAssembler::GetLeastBitsFromInt32(Register dst,
Register src,
int num_least_bits) {
DCHECK(!src.is(dst));
And(dst, src, Operand((1 << num_least_bits) - 1));
}
// Emulated condtional branches do not emit a nop in the branch delay slot.
//
// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
#define BRANCH_ARGS_CHECK(cond, rs, rt) DCHECK( \
(cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \
(cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) {
BranchShort(offset, bdslot);
}
void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BranchShort(offset, cond, rs, rt, bdslot);
}
void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (is_near(L)) {
BranchShort(L, bdslot);
} else {
Jr(L, bdslot);
}
} else {
if (is_trampoline_emitted()) {
Jr(L, bdslot);
} else {
BranchShort(L, bdslot);
}
}
}
void MacroAssembler::Branch(Label* L, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (is_near(L)) {
BranchShort(L, cond, rs, rt, bdslot);
} else {
if (cond != cc_always) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
Jr(L, bdslot);
bind(&skip);
} else {
Jr(L, bdslot);
}
}
} else {
if (is_trampoline_emitted()) {
if (cond != cc_always) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
Jr(L, bdslot);
bind(&skip);
} else {
Jr(L, bdslot);
}
} else {
BranchShort(L, cond, rs, rt, bdslot);
}
}
}
void MacroAssembler::Branch(Label* L,
Condition cond,
Register rs,
Heap::RootListIndex index,
BranchDelaySlot bdslot) {
LoadRoot(at, index);
Branch(L, cond, rs, Operand(at), bdslot);
}
void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) {
b(offset);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
DCHECK(!rs.is(zero_reg));
Register r2 = no_reg;
Register scratch = at;
if (rt.is_reg()) {
// NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or
// rt.
BlockTrampolinePoolScope block_trampoline_pool(this);
r2 = rt.rm_;
switch (cond) {
case cc_always:
b(offset);
break;
case eq:
beq(rs, r2, offset);
break;
case ne:
bne(rs, r2, offset);
break;
// Signed comparison.
case greater:
if (r2.is(zero_reg)) {
bgtz(rs, offset);
} else {
slt(scratch, r2, rs);
bne(scratch, zero_reg, offset);
}
break;
case greater_equal:
if (r2.is(zero_reg)) {
bgez(rs, offset);
} else {
slt(scratch, rs, r2);
beq(scratch, zero_reg, offset);
}
break;
case less:
if (r2.is(zero_reg)) {
bltz(rs, offset);
} else {
slt(scratch, rs, r2);
bne(scratch, zero_reg, offset);
}
break;
case less_equal:
if (r2.is(zero_reg)) {
blez(rs, offset);
} else {
slt(scratch, r2, rs);
beq(scratch, zero_reg, offset);
}
break;
// Unsigned comparison.
case Ugreater:
if (r2.is(zero_reg)) {
bgtz(rs, offset);
} else {
sltu(scratch, r2, rs);
bne(scratch, zero_reg, offset);
}
break;
case Ugreater_equal:
if (r2.is(zero_reg)) {
bgez(rs, offset);
} else {
sltu(scratch, rs, r2);
beq(scratch, zero_reg, offset);
}
break;
case Uless:
if (r2.is(zero_reg)) {
// No code needs to be emitted.
return;
} else {
sltu(scratch, rs, r2);
bne(scratch, zero_reg, offset);
}
break;
case Uless_equal:
if (r2.is(zero_reg)) {
b(offset);
} else {
sltu(scratch, r2, rs);
beq(scratch, zero_reg, offset);
}
break;
default:
UNREACHABLE();
}
} else {
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
b(offset);
break;
case eq:
if (rt.imm64_ == 0) {
beq(rs, zero_reg, offset);
} else {
// We don't want any other register but scratch clobbered.
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
beq(rs, r2, offset);
}
break;
case ne:
if (rt.imm64_ == 0) {
bne(rs, zero_reg, offset);
} else {
// We don't want any other register but scratch clobbered.
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
bne(rs, r2, offset);
}
break;
// Signed comparison.
case greater:
if (rt.imm64_ == 0) {
bgtz(rs, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, r2, rs);
bne(scratch, zero_reg, offset);
}
break;
case greater_equal:
if (rt.imm64_ == 0) {
bgez(rs, offset);
} else if (is_int16(rt.imm64_)) {
slti(scratch, rs, rt.imm64_);
beq(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, rs, r2);
beq(scratch, zero_reg, offset);
}
break;
case less:
if (rt.imm64_ == 0) {
bltz(rs, offset);
} else if (is_int16(rt.imm64_)) {
slti(scratch, rs, rt.imm64_);
bne(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, rs, r2);
bne(scratch, zero_reg, offset);
}
break;
case less_equal:
if (rt.imm64_ == 0) {
blez(rs, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, r2, rs);
beq(scratch, zero_reg, offset);
}
break;
// Unsigned comparison.
case Ugreater:
if (rt.imm64_ == 0) {
bgtz(rs, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, r2, rs);
bne(scratch, zero_reg, offset);
}
break;
case Ugreater_equal:
if (rt.imm64_ == 0) {
bgez(rs, offset);
} else if (is_int16(rt.imm64_)) {
sltiu(scratch, rs, rt.imm64_);
beq(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
beq(scratch, zero_reg, offset);
}
break;
case Uless:
if (rt.imm64_ == 0) {
// No code needs to be emitted.
return;
} else if (is_int16(rt.imm64_)) {
sltiu(scratch, rs, rt.imm64_);
bne(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
bne(scratch, zero_reg, offset);
}
break;
case Uless_equal:
if (rt.imm64_ == 0) {
b(offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, r2, rs);
beq(scratch, zero_reg, offset);
}
break;
default:
UNREACHABLE();
}
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
// We use branch_offset as an argument for the branch instructions to be sure
// it is called just before generating the branch instruction, as needed.
b(shifted_branch_offset(L, false));
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
int32_t offset = 0;
Register r2 = no_reg;
Register scratch = at;
if (rt.is_reg()) {
BlockTrampolinePoolScope block_trampoline_pool(this);
r2 = rt.rm_;
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
switch (cond) {
case cc_always:
offset = shifted_branch_offset(L, false);
b(offset);
break;
case eq:
offset = shifted_branch_offset(L, false);
beq(rs, r2, offset);
break;
case ne:
offset = shifted_branch_offset(L, false);
bne(rs, r2, offset);
break;
// Signed comparison.
case greater:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bgtz(rs, offset);
} else {
slt(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case greater_equal:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bgez(rs, offset);
} else {
slt(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
case less:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bltz(rs, offset);
} else {
slt(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case less_equal:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
blez(rs, offset);
} else {
slt(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
// Unsigned comparison.
case Ugreater:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bgtz(rs, offset);
} else {
sltu(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case Ugreater_equal:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bgez(rs, offset);
} else {
sltu(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
case Uless:
if (r2.is(zero_reg)) {
// No code needs to be emitted.
return;
} else {
sltu(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case Uless_equal:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
b(offset);
} else {
sltu(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
default:
UNREACHABLE();
}
} else {
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
offset = shifted_branch_offset(L, false);
b(offset);
break;
case eq:
if (rt.imm64_ == 0) {
offset = shifted_branch_offset(L, false);
beq(rs, zero_reg, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
offset = shifted_branch_offset(L, false);
beq(rs, r2, offset);
}
break;
case ne:
if (rt.imm64_ == 0) {
offset = shifted_branch_offset(L, false);
bne(rs, zero_reg, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
offset = shifted_branch_offset(L, false);
bne(rs, r2, offset);
}
break;
// Signed comparison.
case greater:
if (rt.imm64_ == 0) {
offset = shifted_branch_offset(L, false);
bgtz(rs, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
slt(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case greater_equal:
if (rt.imm64_ == 0) {
offset = shifted_branch_offset(L, false);
bgez(rs, offset);
} else if (is_int16(rt.imm64_)) {
slti(scratch, rs, rt.imm64_);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
slt(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
case less:
if (rt.imm64_ == 0) {
offset = shifted_branch_offset(L, false);
bltz(rs, offset);
} else if (is_int16(rt.imm64_)) {
slti(scratch, rs, rt.imm64_);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
slt(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case less_equal:
if (rt.imm64_ == 0) {
offset = shifted_branch_offset(L, false);
blez(rs, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
slt(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
// Unsigned comparison.
case Ugreater:
if (rt.imm64_ == 0) {
offset = shifted_branch_offset(L, false);
bne(rs, zero_reg, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
sltu(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case Ugreater_equal:
if (rt.imm64_ == 0) {
offset = shifted_branch_offset(L, false);
bgez(rs, offset);
} else if (is_int16(rt.imm64_)) {
sltiu(scratch, rs, rt.imm64_);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
case Uless:
if (rt.imm64_ == 0) {
// No code needs to be emitted.
return;
} else if (is_int16(rt.imm64_)) {
sltiu(scratch, rs, rt.imm64_);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case Uless_equal:
if (rt.imm64_ == 0) {
offset = shifted_branch_offset(L, false);
beq(rs, zero_reg, offset);
} else {
DCHECK(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
sltu(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
default:
UNREACHABLE();
}
}
// Check that offset could actually hold on an int16_t.
DCHECK(is_int16(offset));
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) {
BranchAndLinkShort(offset, bdslot);
}
void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BranchAndLinkShort(offset, cond, rs, rt, bdslot);
}
void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (is_near(L)) {
BranchAndLinkShort(L, bdslot);
} else {
Jalr(L, bdslot);
}
} else {
if (is_trampoline_emitted()) {
Jalr(L, bdslot);
} else {
BranchAndLinkShort(L, bdslot);
}
}
}
void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (is_near(L)) {
BranchAndLinkShort(L, cond, rs, rt, bdslot);
} else {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
Jalr(L, bdslot);
bind(&skip);
}
} else {
if (is_trampoline_emitted()) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
Jalr(L, bdslot);
bind(&skip);
} else {
BranchAndLinkShort(L, cond, rs, rt, bdslot);
}
}
}
// We need to use a bgezal or bltzal, but they can't be used directly with the
// slt instructions. We could use sub or add instead but we would miss overflow
// cases, so we keep slt and add an intermediate third instruction.
void MacroAssembler::BranchAndLinkShort(int16_t offset,
BranchDelaySlot bdslot) {
bal(offset);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond,
Register rs, const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
Register r2 = no_reg;
Register scratch = at;
if (rt.is_reg()) {
r2 = rt.rm_;
} else if (cond != cc_always) {
r2 = scratch;
li(r2, rt);
}
{
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
bal(offset);
break;
case eq:
bne(rs, r2, 2);
nop();
bal(offset);
break;
case ne:
beq(rs, r2, 2);
nop();
bal(offset);
break;
// Signed comparison.
case greater:
// rs > rt
slt(scratch, r2, rs);
beq(scratch, zero_reg, 2);
nop();
bal(offset);
break;
case greater_equal:
// rs >= rt
slt(scratch, rs, r2);
bne(scratch, zero_reg, 2);
nop();
bal(offset);
break;
case less:
// rs < r2
slt(scratch, rs, r2);
bne(scratch, zero_reg, 2);
nop();
bal(offset);
break;
case less_equal:
// rs <= r2
slt(scratch, r2, rs);
bne(scratch, zero_reg, 2);
nop();
bal(offset);
break;
// Unsigned comparison.
case Ugreater:
// rs > rt
sltu(scratch, r2, rs);
beq(scratch, zero_reg, 2);
nop();
bal(offset);
break;
case Ugreater_equal:
// rs >= rt
sltu(scratch, rs, r2);
bne(scratch, zero_reg, 2);
nop();
bal(offset);
break;
case Uless:
// rs < r2
sltu(scratch, rs, r2);
bne(scratch, zero_reg, 2);
nop();
bal(offset);
break;
case Uless_equal:
// rs <= r2
sltu(scratch, r2, rs);
bne(scratch, zero_reg, 2);
nop();
bal(offset);
break;
default:
UNREACHABLE();
}
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
bal(shifted_branch_offset(L, false));
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
int32_t offset = 0;
Register r2 = no_reg;
Register scratch = at;
if (rt.is_reg()) {
r2 = rt.rm_;
} else if (cond != cc_always) {
r2 = scratch;
li(r2, rt);
}
{
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case eq:
bne(rs, r2, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case ne:
beq(rs, r2, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
// Signed comparison.
case greater:
// rs > rt
slt(scratch, r2, rs);
beq(scratch, zero_reg, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case greater_equal:
// rs >= rt
slt(scratch, rs, r2);
bne(scratch, zero_reg, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case less:
// rs < r2
slt(scratch, rs, r2);
bne(scratch, zero_reg, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case less_equal:
// rs <= r2
slt(scratch, r2, rs);
bne(scratch, zero_reg, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
// Unsigned comparison.
case Ugreater:
// rs > rt
sltu(scratch, r2, rs);
beq(scratch, zero_reg, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case Ugreater_equal:
// rs >= rt
sltu(scratch, rs, r2);
bne(scratch, zero_reg, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case Uless:
// rs < r2
sltu(scratch, rs, r2);
bne(scratch, zero_reg, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case Uless_equal:
// rs <= r2
sltu(scratch, r2, rs);
bne(scratch, zero_reg, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
default:
UNREACHABLE();
}
}
// Check that offset could actually hold on an int16_t.
DCHECK(is_int16(offset));
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::Jump(Register target,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (cond == cc_always) {
jr(target);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jr(target);
}
// Emit a nop in the branch delay slot if required.
if (bd == PROTECT)
nop();
}
void MacroAssembler::Jump(intptr_t target,
RelocInfo::Mode rmode,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
Label skip;
if (cond != cc_always) {
Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
}
// The first instruction of 'li' may be placed in the delay slot.
// This is not an issue, t9 is expected to be clobbered anyway.
li(t9, Operand(target, rmode));
Jump(t9, al, zero_reg, Operand(zero_reg), bd);
bind(&skip);
}
void MacroAssembler::Jump(Address target,
RelocInfo::Mode rmode,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
DCHECK(!RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
}
void MacroAssembler::Jump(Handle<Code> code,
RelocInfo::Mode rmode,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
AllowDeferredHandleDereference embedding_raw_address;
Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd);
}
int MacroAssembler::CallSize(Register target,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
int size = 0;
if (cond == cc_always) {
size += 1;
} else {
size += 3;
}
if (bd == PROTECT)
size += 1;
return size * kInstrSize;
}
// Note: To call gcc-compiled C code on mips, you must call thru t9.
void MacroAssembler::Call(Register target,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Label start;
bind(&start);
if (cond == cc_always) {
jalr(target);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jalr(target);
}
// Emit a nop in the branch delay slot if required.
if (bd == PROTECT)
nop();
DCHECK_EQ(CallSize(target, cond, rs, rt, bd),
SizeOfCodeGeneratedSince(&start));
}
int MacroAssembler::CallSize(Address target,
RelocInfo::Mode rmode,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
int size = CallSize(t9, cond, rs, rt, bd);
return size + 4 * kInstrSize;
}
void MacroAssembler::Call(Address target,
RelocInfo::Mode rmode,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Label start;
bind(&start);
int64_t target_int = reinterpret_cast<int64_t>(target);
// Must record previous source positions before the
// li() generates a new code target.
positions_recorder()->WriteRecordedPositions();
li(t9, Operand(target_int, rmode), ADDRESS_LOAD);
Call(t9, cond, rs, rt, bd);
DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd),
SizeOfCodeGeneratedSince(&start));
}
int MacroAssembler::CallSize(Handle<Code> code,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
AllowDeferredHandleDereference using_raw_address;
return CallSize(reinterpret_cast<Address>(code.location()),
rmode, cond, rs, rt, bd);
}
void MacroAssembler::Call(Handle<Code> code,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id,
Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Label start;
bind(&start);
DCHECK(RelocInfo::IsCodeTarget(rmode));
if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
SetRecordedAstId(ast_id);
rmode = RelocInfo::CODE_TARGET_WITH_ID;
}
AllowDeferredHandleDereference embedding_raw_address;
Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd);
DCHECK_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd),
SizeOfCodeGeneratedSince(&start));
}
void MacroAssembler::Ret(Condition cond,
Register rs,
const Operand& rt,
BranchDelaySlot bd) {
Jump(ra, cond, rs, rt, bd);
}
void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) {
BlockTrampolinePoolScope block_trampoline_pool(this);
uint64_t imm28;
imm28 = jump_address(L);
imm28 &= kImm28Mask;
{ BlockGrowBufferScope block_buf_growth(this);
// Buffer growth (and relocation) must be blocked for internal references
// until associated instructions are emitted and available to be patched.
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
j(imm28);
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) {
BlockTrampolinePoolScope block_trampoline_pool(this);
uint64_t imm64;
imm64 = jump_address(L);
{ BlockGrowBufferScope block_buf_growth(this);
// Buffer growth (and relocation) must be blocked for internal references
// until associated instructions are emitted and available to be patched.
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
li(at, Operand(imm64), ADDRESS_LOAD);
}
jr(at);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) {
BlockTrampolinePoolScope block_trampoline_pool(this);
uint64_t imm64;
imm64 = jump_address(L);
{ BlockGrowBufferScope block_buf_growth(this);
// Buffer growth (and relocation) must be blocked for internal references
// until associated instructions are emitted and available to be patched.
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
li(at, Operand(imm64), ADDRESS_LOAD);
}
jalr(at);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::DropAndRet(int drop) {
Ret(USE_DELAY_SLOT);
daddiu(sp, sp, drop * kPointerSize);
}
void MacroAssembler::DropAndRet(int drop,
Condition cond,
Register r1,
const Operand& r2) {
// Both Drop and Ret need to be conditional.
Label skip;
if (cond != cc_always) {
Branch(&skip, NegateCondition(cond), r1, r2);
}
Drop(drop);
Ret();
if (cond != cc_always) {
bind(&skip);
}
}
void MacroAssembler::Drop(int count,
Condition cond,
Register reg,
const Operand& op) {
if (count <= 0) {
return;
}
Label skip;
if (cond != al) {
Branch(&skip, NegateCondition(cond), reg, op);
}
daddiu(sp, sp, count * kPointerSize);
if (cond != al) {
bind(&skip);
}
}
void MacroAssembler::Swap(Register reg1,
Register reg2,
Register scratch) {
if (scratch.is(no_reg)) {
Xor(reg1, reg1, Operand(reg2));
Xor(reg2, reg2, Operand(reg1));
Xor(reg1, reg1, Operand(reg2));
} else {
mov(scratch, reg1);
mov(reg1, reg2);
mov(reg2, scratch);
}
}
void MacroAssembler::Call(Label* target) {
BranchAndLink(target);
}
void MacroAssembler::Push(Handle<Object> handle) {
li(at, Operand(handle));
push(at);
}
void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
DCHECK(!src.is(scratch));
mov(scratch, src);
dsrl32(src, src, 0);
dsll32(src, src, 0);
push(src);
dsll32(scratch, scratch, 0);
push(scratch);
}
void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
DCHECK(!dst.is(scratch));
pop(scratch);
dsrl32(scratch, scratch, 0);
pop(dst);
dsrl32(dst, dst, 0);
dsll32(dst, dst, 0);
or_(dst, dst, scratch);
}
void MacroAssembler::DebugBreak() {
PrepareCEntryArgs(0);
PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate()));
CEntryStub ces(isolate(), 1);
DCHECK(AllowThisStubCall(&ces));
Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
}
// ---------------------------------------------------------------------------
// Exception handling.
void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
int handler_index) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// For the JSEntry handler, we must preserve a0-a3 and s0.
// a5-a7 are available. We will build up the handler from the bottom by
// pushing on the stack.
// Set up the code object (a5) and the state (a6) for pushing.
unsigned state =
StackHandler::IndexField::encode(handler_index) |
StackHandler::KindField::encode(kind);
li(a5, Operand(CodeObject()), CONSTANT_SIZE);
li(a6, Operand(state));
// Push the frame pointer, context, state, and code object.
if (kind == StackHandler::JS_ENTRY) {
DCHECK_EQ(Smi::FromInt(0), 0);
// The second zero_reg indicates no context.
// The first zero_reg is the NULL frame pointer.
// The operands are reversed to match the order of MultiPush/Pop.
Push(zero_reg, zero_reg, a6, a5);
} else {
MultiPush(a5.bit() | a6.bit() | cp.bit() | fp.bit());
}
// Link the current handler as the next handler.
li(a6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ld(a5, MemOperand(a6));
push(a5);
// Set this new handler as the current one.
sd(sp, MemOperand(a6));
}
void MacroAssembler::PopTryHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
pop(a1);
Daddu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
sd(a1, MemOperand(at));
}
void MacroAssembler::JumpToHandlerEntry() {
// Compute the handler entry address and jump to it. The handler table is
// a fixed array of (smi-tagged) code offsets.
// v0 = exception, a1 = code object, a2 = state.
ld(a3, FieldMemOperand(a1, Code::kHandlerTableOffset));
Daddu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
dsrl(a2, a2, StackHandler::kKindWidth); // Handler index.
dsll(a2, a2, kPointerSizeLog2);
Daddu(a2, a3, a2);
ld(a2, MemOperand(a2)); // Smi-tagged offset.
Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start.
dsra32(t9, a2, 0);
Daddu(t9, t9, a1);
Jump(t9); // Jump.
}
void MacroAssembler::Throw(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in v0.
Move(v0, value);
// Drop the stack pointer to the top of the top handler.
li(a3, Operand(ExternalReference(Isolate::kHandlerAddress,
isolate())));
ld(sp, MemOperand(a3));
// Restore the next handler.
pop(a2);
sd(a2, MemOperand(a3));
// Get the code object (a1) and state (a2). Restore the context and frame
// pointer.
MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
// If the handler is a JS frame, restore the context to the frame.
// (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
// or cp.
Label done;
Branch(&done, eq, cp, Operand(zero_reg));
sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
bind(&done);
JumpToHandlerEntry();
}
void MacroAssembler::ThrowUncatchable(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in v0.
if (!value.is(v0)) {
mov(v0, value);
}
// Drop the stack pointer to the top of the top stack handler.
li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ld(sp, MemOperand(a3));
// Unwind the handlers until the ENTRY handler is found.
Label fetch_next, check_kind;
jmp(&check_kind);
bind(&fetch_next);
ld(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
bind(&check_kind);
STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
ld(a2, MemOperand(sp, StackHandlerConstants::kStateOffset));
And(a2, a2, Operand(StackHandler::KindField::kMask));
Branch(&fetch_next, ne, a2, Operand(zero_reg));
// Set the top handler address to next handler past the top ENTRY handler.
pop(a2);
sd(a2, MemOperand(a3));
// Get the code object (a1) and state (a2). Clear the context and frame
// pointer (0 was saved in the handler).
MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
JumpToHandlerEntry();
}
void MacroAssembler::Allocate(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
li(result, 0x7091);
li(scratch1, 0x7191);
li(scratch2, 0x7291);
}
jmp(gc_required);
return;
}
DCHECK(!result.is(scratch1));
DCHECK(!result.is(scratch2));
DCHECK(!scratch1.is(scratch2));
DCHECK(!scratch1.is(t9));
DCHECK(!scratch2.is(t9));
DCHECK(!result.is(t9));
// Make object size into bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
object_size *= kPointerSize;
}
DCHECK(0 == (object_size & kObjectAlignmentMask));
// Check relative positions of allocation top and limit addresses.
// ARM adds additional checks to make sure the ldm instruction can be
// used. On MIPS we don't have ldm so we don't need additional checks either.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top =
reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(allocation_limit.address());
DCHECK((limit - top) == kPointerSize);
// Set up allocation top address and object size registers.
Register topaddr = scratch1;
li(topaddr, Operand(allocation_top));
// This code stores a temporary value in t9.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into t9.
ld(result, MemOperand(topaddr));
ld(t9, MemOperand(topaddr, kPointerSize));
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry. t9 is used
// immediately below so this use of t9 does not cause difference with
// respect to register content between debug and release mode.
ld(t9, MemOperand(topaddr));
Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
}
// Load allocation limit into t9. Result already contains allocation top.
ld(t9, MemOperand(topaddr, limit - top));
}
DCHECK(kPointerSize == kDoubleSize);
if (emit_debug_code()) {
And(at, result, Operand(kDoubleAlignmentMask));
Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top.
Daddu(scratch2, result, Operand(object_size));
Branch(gc_required, Ugreater, scratch2, Operand(t9));
sd(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
Daddu(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::Allocate(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
li(result, 0x7091);
li(scratch1, 0x7191);
li(scratch2, 0x7291);
}
jmp(gc_required);
return;
}
DCHECK(!result.is(scratch1));
DCHECK(!result.is(scratch2));
DCHECK(!scratch1.is(scratch2));
DCHECK(!object_size.is(t9));
DCHECK(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9));
// Check relative positions of allocation top and limit addresses.
// ARM adds additional checks to make sure the ldm instruction can be
// used. On MIPS we don't have ldm so we don't need additional checks either.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top =
reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(allocation_limit.address());
DCHECK((limit - top) == kPointerSize);
// Set up allocation top address and object size registers.
Register topaddr = scratch1;
li(topaddr, Operand(allocation_top));
// This code stores a temporary value in t9.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into t9.
ld(result, MemOperand(topaddr));
ld(t9, MemOperand(topaddr, kPointerSize));
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry. t9 is used
// immediately below so this use of t9 does not cause difference with
// respect to register content between debug and release mode.
ld(t9, MemOperand(topaddr));
Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
}
// Load allocation limit into t9. Result already contains allocation top.
ld(t9, MemOperand(topaddr, limit - top));
}
DCHECK(kPointerSize == kDoubleSize);
if (emit_debug_code()) {
And(at, result, Operand(kDoubleAlignmentMask));
Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top. Object size may be in words so a shift is
// required to get the number of bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
dsll(scratch2, object_size, kPointerSizeLog2);
Daddu(scratch2, result, scratch2);
} else {
Daddu(scratch2, result, Operand(object_size));
}
Branch(gc_required, Ugreater, scratch2, Operand(t9));
// Update allocation top. result temporarily holds the new top.
if (emit_debug_code()) {
And(t9, scratch2, Operand(kObjectAlignmentMask));
Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg));
}
sd(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
Daddu(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::UndoAllocationInNewSpace(Register object,
Register scratch) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Make sure the object has no tag before resetting top.
And(object, object, Operand(~kHeapObjectTagMask));
#ifdef DEBUG
// Check that the object un-allocated is below the current top.
li(scratch, Operand(new_space_allocation_top));
ld(scratch, MemOperand(scratch));
Check(less, kUndoAllocationOfNonAllocatedMemory,
object, Operand(scratch));
#endif
// Write the address of the object to un-allocate as the current top.
li(scratch, Operand(new_space_allocation_top));
sd(object, MemOperand(scratch));
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
dsll(scratch1, length, 1); // Length in bytes, not chars.
daddiu(scratch1, scratch1,
kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate two-byte string in new space.
Allocate(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result,
length,
Heap::kStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string
// while observing object alignment.
DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
DCHECK(kCharSize == 1);
daddiu(scratch1, length,
kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate one-byte string in new space.
Allocate(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
scratch1, scratch2);
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kConsStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
scratch1, scratch2);
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kSlicedStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateOneByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
scratch1, scratch2);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
Label* not_unique_name) {
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
Label succeed;
And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
Branch(&succeed, eq, at, Operand(zero_reg));
Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE));
bind(&succeed);
}
// Allocates a heap number or jumps to the label if the young space is full and
// a scavenge is needed.
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* need_gc,
TaggingMode tagging_mode,
MutableMode mode) {
// Allocate an object in the heap for the heap number and tag it as a heap
// object.
Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc,
tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
Heap::RootListIndex map_index = mode == MUTABLE
? Heap::kMutableHeapNumberMapRootIndex
: Heap::kHeapNumberMapRootIndex;
AssertIsRoot(heap_number_map, map_index);
// Store heap number map in the allocated object.
if (tagging_mode == TAG_RESULT) {
sd(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
} else {
sd(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
}
}
void MacroAssembler::AllocateHeapNumberWithValue(Register result,
FPURegister value,
Register scratch1,
Register scratch2,
Label* gc_required) {
LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required);
sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
}
// Copies a fixed number of fields of heap objects from src to dst.
void MacroAssembler::CopyFields(Register dst,
Register src,
RegList temps,
int field_count) {
DCHECK((temps & dst.bit()) == 0);
DCHECK((temps & src.bit()) == 0);
// Primitive implementation using only one temporary register.
Register tmp = no_reg;
// Find a temp register in temps list.
for (int i = 0; i < kNumRegisters; i++) {
if ((temps & (1 << i)) != 0) {
tmp.code_ = i;
break;
}
}
DCHECK(!tmp.is(no_reg));
for (int i = 0; i < field_count; i++) {
ld(tmp, FieldMemOperand(src, i * kPointerSize));
sd(tmp, FieldMemOperand(dst, i * kPointerSize));
}
}
void MacroAssembler::CopyBytes(Register src,
Register dst,
Register length,
Register scratch) {
Label align_loop_1, word_loop, byte_loop, byte_loop_1, done;
// Align src before copying in word size chunks.
Branch(&byte_loop, le, length, Operand(kPointerSize));
bind(&align_loop_1);
And(scratch, src, kPointerSize - 1);
Branch(&word_loop, eq, scratch, Operand(zero_reg));
lbu(scratch, MemOperand(src));
Daddu(src, src, 1);
sb(scratch, MemOperand(dst));
Daddu(dst, dst, 1);
Dsubu(length, length, Operand(1));
Branch(&align_loop_1, ne, length, Operand(zero_reg));
// Copy bytes in word size chunks.
bind(&word_loop);
if (emit_debug_code()) {
And(scratch, src, kPointerSize - 1);
Assert(eq, kExpectingAlignmentForCopyBytes,
scratch, Operand(zero_reg));
}
Branch(&byte_loop, lt, length, Operand(kPointerSize));
ld(scratch, MemOperand(src));
Daddu(src, src, kPointerSize);
// TODO(kalmard) check if this can be optimized to use sw in most cases.
// Can't use unaligned access - copy byte by byte.
sb(scratch, MemOperand(dst, 0));
dsrl(scratch, scratch, 8);
sb(scratch, MemOperand(dst, 1));
dsrl(scratch, scratch, 8);
sb(scratch, MemOperand(dst, 2));
dsrl(scratch, scratch, 8);
sb(scratch, MemOperand(dst, 3));
dsrl(scratch, scratch, 8);
sb(scratch, MemOperand(dst, 4));
dsrl(scratch, scratch, 8);
sb(scratch, MemOperand(dst, 5));
dsrl(scratch, scratch, 8);
sb(scratch, MemOperand(dst, 6));
dsrl(scratch, scratch, 8);
sb(scratch, MemOperand(dst, 7));
Daddu(dst, dst, 8);
Dsubu(length, length, Operand(kPointerSize));
Branch(&word_loop);
// Copy the last bytes if any left.
bind(&byte_loop);
Branch(&done, eq, length, Operand(zero_reg));
bind(&byte_loop_1);
lbu(scratch, MemOperand(src));
Daddu(src, src, 1);
sb(scratch, MemOperand(dst));
Daddu(dst, dst, 1);
Dsubu(length, length, Operand(1));
Branch(&byte_loop_1, ne, length, Operand(zero_reg));
bind(&done);
}
void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
Register end_offset,
Register filler) {
Label loop, entry;
Branch(&entry);
bind(&loop);
sd(filler, MemOperand(start_offset));
Daddu(start_offset, start_offset, kPointerSize);
bind(&entry);
Branch(&loop, lt, start_offset, Operand(end_offset));
}
void MacroAssembler::CheckFastElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
Branch(fail, hi, scratch,
Operand(Map::kMaximumBitField2FastHoleyElementValue));
}
void MacroAssembler::CheckFastObjectElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
Branch(fail, ls, scratch,
Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
Branch(fail, hi, scratch,
Operand(Map::kMaximumBitField2FastHoleyElementValue));
}
void MacroAssembler::CheckFastSmiElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
Branch(fail, hi, scratch,
Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
}
void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
Register key_reg,
Register elements_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Label* fail,
int elements_offset) {
Label smi_value, maybe_nan, have_double_value, is_nan, done;
Register mantissa_reg = scratch2;
Register exponent_reg = scratch3;
// Handle smi values specially.
JumpIfSmi(value_reg, &smi_value);
// Ensure that the object is a heap number
CheckMap(value_reg,
scratch1,
Heap::kHeapNumberMapRootIndex,
fail,
DONT_DO_SMI_CHECK);
// Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
// in the exponent.
li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32));
lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1));
lwu(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
bind(&have_double_value);
// dsll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize);
dsra(scratch1, key_reg, 32 - kDoubleSizeLog2);
Daddu(scratch1, scratch1, elements_reg);
sw(mantissa_reg, FieldMemOperand(
scratch1, FixedDoubleArray::kHeaderSize - elements_offset));
uint32_t offset = FixedDoubleArray::kHeaderSize - elements_offset +
sizeof(kHoleNanLower32);
sw(exponent_reg, FieldMemOperand(scratch1, offset));
jmp(&done);
bind(&maybe_nan);
// Could be NaN, Infinity or -Infinity. If fraction is not zero, it's NaN,
// otherwise it's Infinity or -Infinity, and the non-NaN code path applies.
lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg));
bind(&is_nan);
// Load canonical NaN for storing into the double array.
LoadRoot(at, Heap::kNanValueRootIndex);
lw(mantissa_reg, FieldMemOperand(at, HeapNumber::kMantissaOffset));
lw(exponent_reg, FieldMemOperand(at, HeapNumber::kExponentOffset));
jmp(&have_double_value);
bind(&smi_value);
Daddu(scratch1, elements_reg,
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag -
elements_offset));
// dsll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize);
dsra(scratch2, key_reg, 32 - kDoubleSizeLog2);
Daddu(scratch1, scratch1, scratch2);
// scratch1 is now effective address of the double element
Register untagged_value = elements_reg;
SmiUntag(untagged_value, value_reg);
mtc1(untagged_value, f2);
cvt_d_w(f0, f2);
sdc1(f0, MemOperand(scratch1, 0));
bind(&done);
}
void MacroAssembler::CompareMapAndBranch(Register obj,
Register scratch,
Handle<Map> map,
Label* early_success,
Condition cond,
Label* branch_to) {
ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
CompareMapAndBranch(scratch, map, early_success, cond, branch_to);
}
void MacroAssembler::CompareMapAndBranch(Register obj_map,
Handle<Map> map,
Label* early_success,
Condition cond,
Label* branch_to) {
Branch(branch_to, cond, obj_map, Operand(map));
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
Label success;
CompareMapAndBranch(obj, scratch, map, &success, ne, fail);
bind(&success);
}
void MacroAssembler::DispatchMap(Register obj,
Register scratch,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map));
bind(&fail);
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
LoadRoot(at, index);
Branch(fail, ne, scratch, Operand(at));
}
void MacroAssembler::CmpWeakValue(Register match, Register value,
Handle<WeakCell> cell) {
li(match, Operand(cell));
ld(match, FieldMemOperand(match, WeakCell::kValueOffset));
Dsubu(match, value, match);
}
void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
Label* miss) {
li(value, Operand(cell));
ld(value, FieldMemOperand(value, WeakCell::kValueOffset));
JumpIfSmi(value, miss);
}
void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
if (IsMipsSoftFloatABI) {
Move(dst, v0, v1);
} else {
Move(dst, f0); // Reg f0 is o32 ABI FP return value.
}
}
void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
if (IsMipsSoftFloatABI) {
Move(dst, a0, a1);
} else {
Move(dst, f12); // Reg f12 is o32 ABI FP first argument value.
}
}
void MacroAssembler::MovToFloatParameter(DoubleRegister src) {
if (!IsMipsSoftFloatABI) {
Move(f12, src);
} else {
Move(a0, a1, src);
}
}
void MacroAssembler::MovToFloatResult(DoubleRegister src) {
if (!IsMipsSoftFloatABI) {
Move(f0, src);
} else {
Move(v0, v1, src);
}
}
void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
DoubleRegister src2) {
if (!IsMipsSoftFloatABI) {
const DoubleRegister fparg2 = (kMipsAbi == kN64) ? f13 : f14;
if (src2.is(f12)) {
DCHECK(!src1.is(fparg2));
Move(fparg2, src2);
Move(f12, src1);
} else {
Move(f12, src1);
Move(fparg2, src2);
}
} else {
Move(a0, a1, src1);
Move(a2, a3, src2);
}
}
// -----------------------------------------------------------------------------
// JavaScript invokes.
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label regular_invoke;
// Check whether the expected and actual arguments count match. If not,
// setup registers according to contract with ArgumentsAdaptorTrampoline:
// a0: actual arguments count
// a1: function (passed through to callee)
// a2: expected arguments count
// The code below is made a lot easier because the calling code already sets
// up actual and expected registers according to the contract if values are
// passed in registers.
DCHECK(actual.is_immediate() || actual.reg().is(a0));
DCHECK(expected.is_immediate() || expected.reg().is(a2));
DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
if (expected.is_immediate()) {
DCHECK(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
li(a0, Operand(actual.immediate()));
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
li(a2, Operand(expected.immediate()));
}
}
} else if (actual.is_immediate()) {
Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate()));
li(a0, Operand(actual.immediate()));
} else {
Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
}
if (!definitely_matches) {
if (!code_constant.is_null()) {
li(a3, Operand(code_constant));
daddiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
}
Handle<Code> adaptor =
isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor));
Call(adaptor);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
Branch(done);
}
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&regular_invoke);
}
}
void MacroAssembler::InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, Handle<Code>::null(), code,
&done, &definitely_mismatches, flag,
call_wrapper);
if (!definitely_mismatches) {
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
Call(code);
call_wrapper.AfterCall();
} else {
DCHECK(flag == JUMP_FUNCTION);
Jump(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in a1.
DCHECK(function.is(a1));
Register expected_reg = a2;
Register code_reg = a3;
ld(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// The argument count is stored as int32_t on 64-bit platforms.
// TODO(plind): Smi on 32-bit platforms.
lw(expected_reg,
FieldMemOperand(code_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
ld(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
ParameterCount expected(expected_reg);
InvokeCode(code_reg, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in a1.
DCHECK(function.is(a1));
// Get the function and setup the context.
ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
InvokeCode(a3, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
li(a1, function);
InvokeFunction(a1, expected, actual, flag, call_wrapper);
}
void MacroAssembler::IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail) {
ld(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
IsInstanceJSObjectType(map, scratch, fail);
}
void MacroAssembler::IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail) {
lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
}
void MacroAssembler::IsObjectJSStringType(Register object,
Register scratch,
Label* fail) {
DCHECK(kNotStringTag != 0);
ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
And(scratch, scratch, Operand(kIsNotStringMask));
Branch(fail, ne, scratch, Operand(zero_reg));
}
void MacroAssembler::IsObjectNameType(Register object,
Register scratch,
Label* fail) {
ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE));
}
// ---------------------------------------------------------------------------
// Support functions.
void MacroAssembler::TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss,
bool miss_on_bound_function) {
Label non_instance;
if (miss_on_bound_function) {
// Check that the receiver isn't a smi.
JumpIfSmi(function, miss);
// Check that the function really is a function. Load map into result reg.
GetObjectType(function, result, scratch);
Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
ld(scratch,
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
lwu(scratch,
FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
And(scratch, scratch,
Operand(1 << SharedFunctionInfo::kBoundFunction));
Branch(miss, ne, scratch, Operand(zero_reg));
// Make sure that the function has an instance prototype.
lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
Branch(&non_instance, ne, scratch, Operand(zero_reg));
}
// Get the prototype or initial map from the function.
ld(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
LoadRoot(t8, Heap::kTheHoleValueRootIndex);
Branch(miss, eq, result, Operand(t8));
// If the function does not have an initial map, we're done.
Label done;
GetObjectType(result, scratch, scratch);
Branch(&done, ne, scratch, Operand(MAP_TYPE));
// Get the prototype from the initial map.
ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
if (miss_on_bound_function) {
jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
bind(&non_instance);
ld(result, FieldMemOperand(result, Map::kConstructorOffset));
}
// All done.
bind(&done);
}
void MacroAssembler::GetObjectType(Register object,
Register map,
Register type_reg) {
ld(map, FieldMemOperand(object, HeapObject::kMapOffset));
lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
}
// -----------------------------------------------------------------------------
// Runtime calls.
void MacroAssembler::CallStub(CodeStub* stub,
TypeFeedbackId ast_id,
Condition cond,
Register r1,
const Operand& r2,
BranchDelaySlot bd) {
DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id,
cond, r1, r2, bd);
}
void MacroAssembler::TailCallStub(CodeStub* stub,
Condition cond,
Register r1,
const Operand& r2,
BranchDelaySlot bd) {
Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd);
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
int64_t offset = (ref0.address() - ref1.address());
DCHECK(static_cast<int>(offset) == offset);
return static_cast<int>(offset);
}
void MacroAssembler::CallApiFunctionAndReturn(
Register function_address,
ExternalReference thunk_ref,
int stack_space,
MemOperand return_value_operand,
MemOperand* context_restore_operand) {
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate());
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate()),
next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate()),
next_address);
DCHECK(function_address.is(a1) || function_address.is(a2));
Label profiler_disabled;
Label end_profiler_check;
li(t9, Operand(ExternalReference::is_profiling_address(isolate())));
lb(t9, MemOperand(t9, 0));
Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
// Additional parameter is the address of the actual callback.
li(t9, Operand(thunk_ref));
jmp(&end_profiler_check);
bind(&profiler_disabled);
mov(t9, function_address);
bind(&end_profiler_check);
// Allocate HandleScope in callee-save registers.
li(s3, Operand(next_address));
ld(s0, MemOperand(s3, kNextOffset));
ld(s1, MemOperand(s3, kLimitOffset));
ld(s2, MemOperand(s3, kLevelOffset));
Daddu(s2, s2, Operand(1));
sd(s2, MemOperand(s3, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1, a0);
li(a0, Operand(ExternalReference::isolate_address(isolate())));
CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
PopSafepointRegisters();
}
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub(isolate());
stub.GenerateCall(this, t9);
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1, a0);
li(a0, Operand(ExternalReference::isolate_address(isolate())));
CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label exception_handled;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// Load value from ReturnValue.
ld(v0, return_value_operand);
bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
sd(s0, MemOperand(s3, kNextOffset));
if (emit_debug_code()) {
ld(a1, MemOperand(s3, kLevelOffset));
Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
}
Dsubu(s2, s2, Operand(1));
sd(s2, MemOperand(s3, kLevelOffset));
ld(at, MemOperand(s3, kLimitOffset));
Branch(&delete_allocated_handles, ne, s1, Operand(at));
// Check if the function scheduled an exception.
bind(&leave_exit_frame);
LoadRoot(a4, Heap::kTheHoleValueRootIndex);
li(at, Operand(ExternalReference::scheduled_exception_address(isolate())));
ld(a5, MemOperand(at));
Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
bind(&exception_handled);
bool restore_context = context_restore_operand != NULL;
if (restore_context) {
ld(cp, *context_restore_operand);
}
li(s0, Operand(stack_space));
LeaveExitFrame(false, s0, !restore_context, EMIT_RETURN);
bind(&promote_scheduled_exception);
{
FrameScope frame(this, StackFrame::INTERNAL);
CallExternalReference(
ExternalReference(Runtime::kPromoteScheduledException, isolate()),
0);
}
jmp(&exception_handled);
// HandleScope limit has changed. Delete allocated extensions.
bind(&delete_allocated_handles);
sd(s1, MemOperand(s3, kLimitOffset));
mov(s0, v0);
mov(a0, v0);
PrepareCallCFunction(1, s1);
li(a0, Operand(ExternalReference::isolate_address(isolate())));
CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()),
1);
mov(v0, s0);
jmp(&leave_exit_frame);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
return has_frame_ || !stub->SometimesSetsUpAFrame();
}
void MacroAssembler::IndexFromHash(Register hash, Register index) {
// If the hash field contains an array index pick it out. The assert checks
// that the constants for the maximum number of digits for an array index
// cached in the hash field and the number of bits reserved for it does not
// conflict.
DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
}
void MacroAssembler::ObjectToDoubleFPURegister(Register object,
FPURegister result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* not_number,
ObjectToDoubleFlags flags) {
Label done;
if ((flags & OBJECT_NOT_SMI) == 0) {
Label not_smi;
JumpIfNotSmi(object, &not_smi);
// Remove smi tag and convert to double.
// dsra(scratch1, object, kSmiTagSize);
dsra32(scratch1, object, 0);
mtc1(scratch1, result);
cvt_d_w(result, result);
Branch(&done);
bind(&not_smi);
}
// Check for heap number and load double value from it.
ld(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
Branch(not_number, ne, scratch1, Operand(heap_number_map));
if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
// If exponent is all ones the number is either a NaN or +/-Infinity.
Register exponent = scratch1;
Register mask_reg = scratch2;
lwu(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
li(mask_reg, HeapNumber::kExponentMask);
And(exponent, exponent, mask_reg);
Branch(not_number, eq, exponent, Operand(mask_reg));
}
ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
bind(&done);
}
void MacroAssembler::SmiToDoubleFPURegister(Register smi,
FPURegister value,
Register scratch1) {
// dsra(scratch1, smi, kSmiTagSize);
dsra32(scratch1, smi, 0);
mtc1(scratch1, value);
cvt_d_w(value, value);
}
void MacroAssembler::AdduAndCheckForOverflow(Register dst, Register left,
const Operand& right,
Register overflow_dst,
Register scratch) {
if (right.is_reg()) {
AdduAndCheckForOverflow(dst, left, right.rm(), overflow_dst, scratch);
} else {
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
daddiu(dst, left, right.immediate()); // Left is overwritten.
xor_(scratch, dst, scratch); // Original left.
// Load right since xori takes uint16 as immediate.
daddiu(t9, zero_reg, right.immediate());
xor_(overflow_dst, dst, t9);
and_(overflow_dst, overflow_dst, scratch);
} else {
daddiu(dst, left, right.immediate());
xor_(overflow_dst, dst, left);
// Load right since xori takes uint16 as immediate.
daddiu(t9, zero_reg, right.immediate());
xor_(scratch, dst, t9);
and_(overflow_dst, scratch, overflow_dst);
}
}
}
void MacroAssembler::AdduAndCheckForOverflow(Register dst,
Register left,
Register right,
Register overflow_dst,
Register scratch) {
DCHECK(!dst.is(overflow_dst));
DCHECK(!dst.is(scratch));
DCHECK(!overflow_dst.is(scratch));
DCHECK(!overflow_dst.is(left));
DCHECK(!overflow_dst.is(right));
if (left.is(right) && dst.is(left)) {
DCHECK(!dst.is(t9));
DCHECK(!scratch.is(t9));
DCHECK(!left.is(t9));
DCHECK(!right.is(t9));
DCHECK(!overflow_dst.is(t9));
mov(t9, right);
right = t9;
}
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
daddu(dst, left, right); // Left is overwritten.
xor_(scratch, dst, scratch); // Original left.
xor_(overflow_dst, dst, right);
and_(overflow_dst, overflow_dst, scratch);
} else if (dst.is(right)) {
mov(scratch, right); // Preserve right.
daddu(dst, left, right); // Right is overwritten.
xor_(scratch, dst, scratch); // Original right.
xor_(overflow_dst, dst, left);
and_(overflow_dst, overflow_dst, scratch);
} else {
daddu(dst, left, right);
xor_(overflow_dst, dst, left);
xor_(scratch, dst, right);
and_(overflow_dst, scratch, overflow_dst);
}
}
void MacroAssembler::SubuAndCheckForOverflow(Register dst, Register left,
const Operand& right,
Register overflow_dst,
Register scratch) {
if (right.is_reg()) {
SubuAndCheckForOverflow(dst, left, right.rm(), overflow_dst, scratch);
} else {
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
daddiu(dst, left, -(right.immediate())); // Left is overwritten.
xor_(overflow_dst, dst, scratch); // scratch is original left.
// Load right since xori takes uint16 as immediate.
daddiu(t9, zero_reg, right.immediate());
xor_(scratch, scratch, t9); // scratch is original left.
and_(overflow_dst, scratch, overflow_dst);
} else {
daddiu(dst, left, -(right.immediate()));
xor_(overflow_dst, dst, left);
// Load right since xori takes uint16 as immediate.
daddiu(t9, zero_reg, right.immediate());
xor_(scratch, left, t9);
and_(overflow_dst, scratch, overflow_dst);
}
}
}
void MacroAssembler::SubuAndCheckForOverflow(Register dst,
Register left,
Register right,
Register overflow_dst,
Register scratch) {
DCHECK(!dst.is(overflow_dst));
DCHECK(!dst.is(scratch));
DCHECK(!overflow_dst.is(scratch));
DCHECK(!overflow_dst.is(left));
DCHECK(!overflow_dst.is(right));
DCHECK(!scratch.is(left));
DCHECK(!scratch.is(right));
// This happens with some crankshaft code. Since Subu works fine if
// left == right, let's not make that restriction here.
if (left.is(right)) {
mov(dst, zero_reg);
mov(overflow_dst, zero_reg);
return;
}
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
dsubu(dst, left, right); // Left is overwritten.
xor_(overflow_dst, dst, scratch); // scratch is original left.
xor_(scratch, scratch, right); // scratch is original left.
and_(overflow_dst, scratch, overflow_dst);
} else if (dst.is(right)) {
mov(scratch, right); // Preserve right.
dsubu(dst, left, right); // Right is overwritten.
xor_(overflow_dst, dst, left);
xor_(scratch, left, scratch); // Original right.
and_(overflow_dst, scratch, overflow_dst);
} else {
dsubu(dst, left, right);
xor_(overflow_dst, dst, left);
xor_(scratch, left, right);
and_(overflow_dst, scratch, overflow_dst);
}
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles) {
// All parameters are on the stack. v0 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
PrepareCEntryArgs(num_arguments);
PrepareCEntryFunction(ExternalReference(f, isolate()));
CEntryStub stub(isolate(), 1, save_doubles);
CallStub(&stub);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments,
BranchDelaySlot bd) {
PrepareCEntryArgs(num_arguments);
PrepareCEntryFunction(ext);
CEntryStub stub(isolate(), 1);
CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd);
}
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size) {
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
PrepareCEntryArgs(num_arguments);
JumpToExternalReference(ext);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
TailCallExternalReference(ExternalReference(fid, isolate()),
num_arguments,
result_size);
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
BranchDelaySlot bd) {
PrepareCEntryFunction(builtin);
CEntryStub stub(isolate(), 1);
Jump(stub.GetCode(),
RelocInfo::CODE_TARGET,
al,
zero_reg,
Operand(zero_reg),
bd);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a builtin without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
GetBuiltinEntry(t9, id);
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(t9));
Call(t9);
call_wrapper.AfterCall();
} else {
DCHECK(flag == JUMP_FUNCTION);
Jump(t9);
}
}
void MacroAssembler::GetBuiltinFunction(Register target,
Builtins::JavaScript id) {
// Load the builtins object into target register.
ld(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
ld(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
// Load the JavaScript builtin function from the builtins object.
ld(target, FieldMemOperand(target,
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
DCHECK(!target.is(a1));
GetBuiltinFunction(a1, id);
// Load the code entry point from the builtins object.
ld(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
if (FLAG_native_code_counters && counter->Enabled()) {
li(scratch1, Operand(value));
li(scratch2, Operand(ExternalReference(counter)));
sd(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
li(scratch2, Operand(ExternalReference(counter)));
ld(scratch1, MemOperand(scratch2));
Daddu(scratch1, scratch1, Operand(value));
sd(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
li(scratch2, Operand(ExternalReference(counter)));
ld(scratch1, MemOperand(scratch2));
Dsubu(scratch1, scratch1, Operand(value));
sd(scratch1, MemOperand(scratch2));
}
}
// -----------------------------------------------------------------------------
// Debugging.
void MacroAssembler::Assert(Condition cc, BailoutReason reason,
Register rs, Operand rt) {
if (emit_debug_code())
Check(cc, reason, rs, rt);
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
DCHECK(!elements.is(at));
Label ok;
push(elements);
ld(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
LoadRoot(at, Heap::kFixedArrayMapRootIndex);
Branch(&ok, eq, elements, Operand(at));
LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
Branch(&ok, eq, elements, Operand(at));
LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);
Branch(&ok, eq, elements, Operand(at));
Abort(kJSObjectWithFastElementsMapHasSlowElements);
bind(&ok);
pop(elements);
}
}
void MacroAssembler::Check(Condition cc, BailoutReason reason,
Register rs, Operand rt) {
Label L;
Branch(&L, cc, rs, rt);
Abort(reason);
// Will not return here.
bind(&L);
}
void MacroAssembler::Abort(BailoutReason reason) {
Label abort_start;
bind(&abort_start);
#ifdef DEBUG
const char* msg = GetBailoutReason(reason);
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
if (FLAG_trap_on_abort) {
stop(msg);
return;
}
#endif
li(a0, Operand(Smi::FromInt(reason)));
push(a0);
// Disable stub call restrictions to always allow calls to abort.
if (!has_frame_) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
CallRuntime(Runtime::kAbort, 1);
} else {
CallRuntime(Runtime::kAbort, 1);
}
// Will not return here.
if (is_trampoline_pool_blocked()) {
// If the calling code cares about the exact number of
// instructions generated, we insert padding here to keep the size
// of the Abort macro constant.
// Currently in debug mode with debug_code enabled the number of
// generated instructions is 10, so we use this as a maximum value.
static const int kExpectedAbortInstructions = 10;
int abort_instructions = InstructionsGeneratedSince(&abort_start);
DCHECK(abort_instructions <= kExpectedAbortInstructions);
while (abort_instructions++ < kExpectedAbortInstructions) {
nop();
}
}
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
ld(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
ld(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in esi).
Move(dst, cp);
}
}
void MacroAssembler::LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match) {
// Load the global or builtins object from the current context.
ld(scratch,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
// Check that the function's map is the same as the expected cached map.
ld(scratch,
MemOperand(scratch,
Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
size_t offset = expected_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
ld(at, FieldMemOperand(scratch, offset));
Branch(no_map_match, ne, map_in_out, Operand(at));
// Use the transitioned cached map.
offset = transitioned_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
ld(map_in_out, FieldMemOperand(scratch, offset));
}
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the global or builtins object from the current context.
ld(function,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
// Load the native context from the global or builtins object.
ld(function, FieldMemOperand(function,
GlobalObject::kNativeContextOffset));
// Load the function from the native context.
ld(function, MemOperand(function, Context::SlotOffset(index)));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch) {
// Load the initial map. The global functions all have initial maps.
ld(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
Branch(&ok);
bind(&fail);
Abort(kGlobalFunctionsMustHaveInitialMap);
bind(&ok);
}
}
void MacroAssembler::StubPrologue() {
Push(ra, fp, cp);
Push(Smi::FromInt(StackFrame::STUB));
// Adjust FP to point to saved FP.
Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
}
void MacroAssembler::Prologue(bool code_pre_aging) {
PredictableCodeSizeScope predictible_code_size_scope(
this, kNoCodeAgeSequenceLength);
// The following three instructions must remain together and unmodified
// for code aging to work properly.
if (code_pre_aging) {
// Pre-age the code.
Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
nop(Assembler::CODE_AGE_MARKER_NOP);
// Load the stub address to t9 and call it,
// GetCodeAgeAndParity() extracts the stub address from this instruction.
li(t9,
Operand(reinterpret_cast<uint64_t>(stub->instruction_start())),
ADDRESS_LOAD);
nop(); // Prevent jalr to jal optimization.
jalr(t9, a0);
nop(); // Branch delay slot nop.
nop(); // Pad the empty space.
} else {
Push(ra, fp, cp, a1);
nop(Assembler::CODE_AGE_SEQUENCE_NOP);
nop(Assembler::CODE_AGE_SEQUENCE_NOP);
nop(Assembler::CODE_AGE_SEQUENCE_NOP);
// Adjust fp to point to caller's fp.
Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
}
}
void MacroAssembler::EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on mips64.
UNREACHABLE();
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
daddiu(sp, sp, -5 * kPointerSize);
li(t8, Operand(Smi::FromInt(type)));
li(t9, Operand(CodeObject()), CONSTANT_SIZE);
sd(ra, MemOperand(sp, 4 * kPointerSize));
sd(fp, MemOperand(sp, 3 * kPointerSize));
sd(cp, MemOperand(sp, 2 * kPointerSize));
sd(t8, MemOperand(sp, 1 * kPointerSize));
sd(t9, MemOperand(sp, 0 * kPointerSize));
// Adjust FP to point to saved FP.
Daddu(fp, sp,
Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
mov(sp, fp);
ld(fp, MemOperand(sp, 0 * kPointerSize));
ld(ra, MemOperand(sp, 1 * kPointerSize));
daddiu(sp, sp, 2 * kPointerSize);
}
void MacroAssembler::EnterExitFrame(bool save_doubles,
int stack_space) {
// Set up the frame structure on the stack.
STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
// This is how the stack will look:
// fp + 2 (==kCallerSPDisplacement) - old stack's end
// [fp + 1 (==kCallerPCOffset)] - saved old ra
// [fp + 0 (==kCallerFPOffset)] - saved old fp
// [fp - 1 (==kSPOffset)] - sp of the called function
// [fp - 2 (==kCodeOffset)] - CodeObject
// fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
// new stack (will contain saved ra)
// Save registers.
daddiu(sp, sp, -4 * kPointerSize);
sd(ra, MemOperand(sp, 3 * kPointerSize));
sd(fp, MemOperand(sp, 2 * kPointerSize));
daddiu(fp, sp, 2 * kPointerSize); // Set up new frame pointer.
if (emit_debug_code()) {
sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
// Accessed from ExitFrame::code_slot.
li(t8, Operand(CodeObject()), CONSTANT_SIZE);
sd(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
// Save the frame pointer and the context in top.
li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
sd(fp, MemOperand(t8));
li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
sd(cp, MemOperand(t8));
const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
if (save_doubles) {
// The stack is already aligned to 0 modulo 8 for stores with sdc1.
int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
int space = kNumOfSavedRegisters * kDoubleSize ;
Dsubu(sp, sp, Operand(space));
// Remember: we only need to save every 2nd double FPU value.
for (int i = 0; i < kNumOfSavedRegisters; i++) {
FPURegister reg = FPURegister::from_code(2 * i);
sdc1(reg, MemOperand(sp, i * kDoubleSize));
}
}
// Reserve place for the return address, stack space and an optional slot
// (used by the DirectCEntryStub to hold the return value if a struct is
// returned) and align the frame preparing for calling the runtime function.
DCHECK(stack_space >= 0);
Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize));
if (frame_alignment > 0) {
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
And(sp, sp, Operand(-frame_alignment)); // Align stack.
}
// Set the exit frame sp value to point just before the return address
// location.
daddiu(at, sp, kPointerSize);
sd(at, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
void MacroAssembler::LeaveExitFrame(bool save_doubles,
Register argument_count,
bool restore_context,
bool do_return) {
// Optionally restore all double registers.
if (save_doubles) {
// Remember: we only need to restore every 2nd double FPU value.
int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
Dsubu(t8, fp, Operand(ExitFrameConstants::kFrameSize +
kNumOfSavedRegisters * kDoubleSize));
for (int i = 0; i < kNumOfSavedRegisters; i++) {
FPURegister reg = FPURegister::from_code(2 * i);
ldc1(reg, MemOperand(t8, i * kDoubleSize));
}
}
// Clear top frame.
li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
sd(zero_reg, MemOperand(t8));
// Restore current context from top and clear it in debug mode.
if (restore_context) {
li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
ld(cp, MemOperand(t8));
}
#ifdef DEBUG
li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
sd(a3, MemOperand(t8));
#endif
// Pop the arguments, restore registers, and return.
mov(sp, fp); // Respect ABI stack constraint.
ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
if (argument_count.is_valid()) {
dsll(t8, argument_count, kPointerSizeLog2);
daddu(sp, sp, t8);
}
if (do_return) {
Ret(USE_DELAY_SLOT);
// If returning, the instruction in the delay slot will be the addiu below.
}
daddiu(sp, sp, 2 * kPointerSize);
}
void MacroAssembler::InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2) {
// dsll(scratch1, length, kSmiTagSize);
dsll32(scratch1, length, 0);
LoadRoot(scratch2, map_index);
sd(scratch1, FieldMemOperand(string, String::kLengthOffset));
li(scratch1, Operand(String::kEmptyHashField));
sd(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
sd(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
}
int MacroAssembler::ActivationFrameAlignment() {
#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one Mips
// platform for another Mips platform with a different alignment.
return base::OS::ActivationFrameAlignment();
#else // V8_HOST_ARCH_MIPS
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so this is controlled from a
// flag.
return FLAG_sim_stack_alignment;
#endif // V8_HOST_ARCH_MIPS
}
void MacroAssembler::AssertStackIsAligned() {
if (emit_debug_code()) {
const int frame_alignment = ActivationFrameAlignment();
const int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
Label alignment_as_expected;
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
andi(at, sp, frame_alignment_mask);
Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
// Don't use Check here, as it will call Runtime_Abort re-entering here.
stop("Unexpected stack alignment");
bind(&alignment_as_expected);
}
}
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
Register reg,
Register scratch,
Label* not_power_of_two_or_zero) {
Dsubu(scratch, reg, Operand(1));
Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
scratch, Operand(zero_reg));
and_(at, scratch, reg); // In the delay slot.
Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
}
void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
DCHECK(!reg.is(overflow));
mov(overflow, reg); // Save original value.
SmiTag(reg);
xor_(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0.
}
void MacroAssembler::SmiTagCheckOverflow(Register dst,
Register src,
Register overflow) {
if (dst.is(src)) {
// Fall back to slower case.
SmiTagCheckOverflow(dst, overflow);
} else {
DCHECK(!dst.is(src));
DCHECK(!dst.is(overflow));
DCHECK(!src.is(overflow));
SmiTag(dst, src);
xor_(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0.
}
}
void MacroAssembler::SmiLoadUntag(Register dst, MemOperand src) {
if (SmiValuesAre32Bits()) {
lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
} else {
lw(dst, src);
SmiUntag(dst);
}
}
void MacroAssembler::SmiLoadScale(Register dst, MemOperand src, int scale) {
if (SmiValuesAre32Bits()) {
// TODO(plind): not clear if lw or ld faster here, need micro-benchmark.
lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
dsll(dst, dst, scale);
} else {
lw(dst, src);
DCHECK(scale >= kSmiTagSize);
sll(dst, dst, scale - kSmiTagSize);
}
}
// Returns 2 values: the Smi and a scaled version of the int within the Smi.
void MacroAssembler::SmiLoadWithScale(Register d_smi,
Register d_scaled,
MemOperand src,
int scale) {
if (SmiValuesAre32Bits()) {
ld(d_smi, src);
dsra(d_scaled, d_smi, kSmiShift - scale);
} else {
lw(d_smi, src);
DCHECK(scale >= kSmiTagSize);
sll(d_scaled, d_smi, scale - kSmiTagSize);
}
}
// Returns 2 values: the untagged Smi (int32) and scaled version of that int.
void MacroAssembler::SmiLoadUntagWithScale(Register d_int,
Register d_scaled,
MemOperand src,
int scale) {
if (SmiValuesAre32Bits()) {
lw(d_int, UntagSmiMemOperand(src.rm(), src.offset()));
dsll(d_scaled, d_int, scale);
} else {
lw(d_int, src);
// Need both the int and the scaled in, so use two instructions.
SmiUntag(d_int);
sll(d_scaled, d_int, scale);
}
}
void MacroAssembler::UntagAndJumpIfSmi(Register dst,
Register src,
Label* smi_case) {
// DCHECK(!dst.is(src));
JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT);
SmiUntag(dst, src);
}
void MacroAssembler::UntagAndJumpIfNotSmi(Register dst,
Register src,
Label* non_smi_case) {
// DCHECK(!dst.is(src));
JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT);
SmiUntag(dst, src);
}
void MacroAssembler::JumpIfSmi(Register value,
Label* smi_label,
Register scratch,
BranchDelaySlot bd) {
DCHECK_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
}
void MacroAssembler::JumpIfNotSmi(Register value,
Label* not_smi_label,
Register scratch,
BranchDelaySlot bd) {
DCHECK_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
}
void MacroAssembler::JumpIfNotBothSmi(Register reg1,
Register reg2,
Label* on_not_both_smi) {
STATIC_ASSERT(kSmiTag == 0);
// TODO(plind): Find some better to fix this assert issue.
#if defined(__APPLE__)
DCHECK_EQ(1, kSmiTagMask);
#else
DCHECK_EQ((uint64_t)1, kSmiTagMask);
#endif
or_(at, reg1, reg2);
JumpIfNotSmi(at, on_not_both_smi);
}
void MacroAssembler::JumpIfEitherSmi(Register reg1,
Register reg2,
Label* on_either_smi) {
STATIC_ASSERT(kSmiTag == 0);
// TODO(plind): Find some better to fix this assert issue.
#if defined(__APPLE__)
DCHECK_EQ(1, kSmiTagMask);
#else
DCHECK_EQ((uint64_t)1, kSmiTagMask);
#endif
// Both Smi tags must be 1 (not Smi).
and_(at, reg1, reg2);
JumpIfSmi(at, on_either_smi);
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
andi(at, object, kSmiTagMask);
Check(ne, kOperandIsASmi, at, Operand(zero_reg));
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
andi(at, object, kSmiTagMask);
Check(eq, kOperandIsASmi, at, Operand(zero_reg));
}
}
void MacroAssembler::AssertString(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, a4);
Check(ne, kOperandIsASmiAndNotAString, a4, Operand(zero_reg));
push(object);
ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE));
pop(object);
}
}
void MacroAssembler::AssertName(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, a4);
Check(ne, kOperandIsASmiAndNotAName, a4, Operand(zero_reg));
push(object);
ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE));
pop(object);
}
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
Register scratch) {
if (emit_debug_code()) {
Label done_checking;
AssertNotSmi(object);
LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
Branch(&done_checking, eq, object, Operand(scratch));
push(object);
ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex);
Assert(eq, kExpectedUndefinedOrCell, object, Operand(scratch));
pop(object);
bind(&done_checking);
}
}
void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
if (emit_debug_code()) {
DCHECK(!reg.is(at));
LoadRoot(at, index);
Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at));
}
}
void MacroAssembler::JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number) {
ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
}
void MacroAssembler::LookupNumberStringCache(Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
Label* not_found) {
// Use of registers. Register result is used as a temporary.
Register number_string_cache = result;
Register mask = scratch3;
// Load the number string cache.
LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
ld(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
// Divide length by two (length is a smi).
// dsra(mask, mask, kSmiTagSize + 1);
dsra32(mask, mask, 1);
Daddu(mask, mask, -1); // Make mask.
// Calculate the entry in the number string cache. The hash value in the
// number string cache for smis is just the smi value, and the hash for
// doubles is the xor of the upper and lower words. See
// Heap::GetNumberStringCache.
Label is_smi;
Label load_result_from_cache;
JumpIfSmi(object, &is_smi);
CheckMap(object,
scratch1,
Heap::kHeapNumberMapRootIndex,
not_found,
DONT_DO_SMI_CHECK);
STATIC_ASSERT(8 == kDoubleSize);
Daddu(scratch1,
object,
Operand(HeapNumber::kValueOffset - kHeapObjectTag));
ld(scratch2, MemOperand(scratch1, kPointerSize));
ld(scratch1, MemOperand(scratch1, 0));
Xor(scratch1, scratch1, Operand(scratch2));
And(scratch1, scratch1, Operand(mask));
// Calculate address of entry in string cache: each entry consists
// of two pointer sized fields.
dsll(scratch1, scratch1, kPointerSizeLog2 + 1);
Daddu(scratch1, number_string_cache, scratch1);
Register probe = mask;
ld(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
JumpIfSmi(probe, not_found);
ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
BranchF(&load_result_from_cache, NULL, eq, f12, f14);
Branch(not_found);
bind(&is_smi);
Register scratch = scratch1;
// dsra(scratch, object, 1); // Shift away the tag.
dsra32(scratch, scratch, 0);
And(scratch, mask, Operand(scratch));
// Calculate address of entry in string cache: each entry consists
// of two pointer sized fields.
dsll(scratch, scratch, kPointerSizeLog2 + 1);
Daddu(scratch, number_string_cache, scratch);
// Check if the entry is the smi we are looking for.
ld(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
Branch(not_found, ne, object, Operand(probe));
// Get the result from the cache.
bind(&load_result_from_cache);
ld(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
IncrementCounter(isolate()->counters()->number_to_string_native(),
1,
scratch1,
scratch2);
}
void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
Register first, Register second, Register scratch1, Register scratch2,
Label* failure) {
// Test that both first and second are sequential one-byte strings.
// Assume that they are non-smis.
ld(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
ld(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
scratch2, failure);
}
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Check that neither is a smi.
STATIC_ASSERT(kSmiTag == 0);
And(scratch1, first, Operand(second));
JumpIfSmi(scratch1, failure);
JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
scratch2, failure);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first, Register second, Register scratch1, Register scratch2,
Label* failure) {
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
DCHECK(kFlatOneByteStringTag <= 0xffff); // Ensure this fits 16-bit immed.
andi(scratch1, first, kFlatOneByteStringMask);
Branch(failure, ne, scratch1, Operand(kFlatOneByteStringTag));
andi(scratch2, second, kFlatOneByteStringMask);
Branch(failure, ne, scratch2, Operand(kFlatOneByteStringTag));
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
Register scratch,
Label* failure) {
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
And(scratch, type, Operand(kFlatOneByteStringMask));
Branch(failure, ne, scratch, Operand(kFlatOneByteStringTag));
}
static const int kRegisterPassedArguments = (kMipsAbi == kN64) ? 8 : 4;
int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments) {
int stack_passed_words = 0;
num_reg_arguments += 2 * num_double_arguments;
// O32: Up to four simple arguments are passed in registers a0..a3.
// N64: Up to eight simple arguments are passed in registers a0..a7.
if (num_reg_arguments > kRegisterPassedArguments) {
stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
}
stack_passed_words += kCArgSlotCount;
return stack_passed_words;
}
void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
Register index,
Register value,
Register scratch,
uint32_t encoding_mask) {
Label is_object;
SmiTst(string, at);
Check(ne, kNonObject, at, Operand(zero_reg));
ld(at, FieldMemOperand(string, HeapObject::kMapOffset));
lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset));
andi(at, at, kStringRepresentationMask | kStringEncodingMask);
li(scratch, Operand(encoding_mask));
Check(eq, kUnexpectedStringType, at, Operand(scratch));
// TODO(plind): requires Smi size check code for mips32.
ld(at, FieldMemOperand(string, String::kLengthOffset));
Check(lt, kIndexIsTooLarge, index, Operand(at));
DCHECK(Smi::FromInt(0) == 0);
Check(ge, kIndexIsNegative, index, Operand(zero_reg));
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
int num_double_arguments,
Register scratch) {
int frame_alignment = ActivationFrameAlignment();
// n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots.
// O32: Up to four simple arguments are passed in registers a0..a3.
// Those four arguments must have reserved argument slots on the stack for
// mips, even though those argument slots are not normally used.
// Both ABIs: Remaining arguments are pushed on the stack, above (higher
// address than) the (O32) argument slots. (arg slot calculation handled by
// CalculateStackPassedWords()).
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (frame_alignment > kPointerSize) {
// Make stack end at alignment and make room for num_arguments - 4 words
// and the original value of sp.
mov(scratch, sp);
Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
And(sp, sp, Operand(-frame_alignment));
sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
Register scratch) {
PrepareCallCFunction(num_reg_arguments, 0, scratch);
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments) {
li(t8, Operand(function));
CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(Register function,
int num_reg_arguments,
int num_double_arguments) {
CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunction(Register function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunctionHelper(Register function,
int num_reg_arguments,
int num_double_arguments) {
DCHECK(has_frame());
// Make sure that the stack is aligned before calling a C function unless
// running in the simulator. The simulator has its own alignment check which
// provides more information.
// The argument stots are presumed to have been set up by
// PrepareCallCFunction. The C function must be called via t9, for mips ABI.
#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
if (emit_debug_code()) {
int frame_alignment = base::OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
Label alignment_as_expected;
And(at, sp, Operand(frame_alignment_mask));
Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
// Don't use Check here, as it will call Runtime_Abort possibly
// re-entering here.
stop("Unexpected alignment in CallCFunction");
bind(&alignment_as_expected);
}
}
#endif // V8_HOST_ARCH_MIPS
// Just call directly. The function called cannot cause a GC, or
// allow preemption, so the return address in the link register
// stays correct.
if (!function.is(t9)) {
mov(t9, function);
function = t9;
}
Call(function);
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (base::OS::ActivationFrameAlignment() > kPointerSize) {
ld(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
Daddu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
#undef BRANCH_ARGS_CHECK
void MacroAssembler::PatchRelocatedValue(Register li_location,
Register scratch,
Register new_value) {
lwu(scratch, MemOperand(li_location));
// At this point scratch is a lui(at, ...) instruction.
if (emit_debug_code()) {
And(scratch, scratch, kOpcodeMask);
Check(eq, kTheInstructionToPatchShouldBeALui,
scratch, Operand(LUI));
lwu(scratch, MemOperand(li_location));
}
dsrl32(t9, new_value, 0);
Ins(scratch, t9, 0, kImm16Bits);
sw(scratch, MemOperand(li_location));
lwu(scratch, MemOperand(li_location, kInstrSize));
// scratch is now ori(at, ...).
if (emit_debug_code()) {
And(scratch, scratch, kOpcodeMask);
Check(eq, kTheInstructionToPatchShouldBeAnOri,
scratch, Operand(ORI));
lwu(scratch, MemOperand(li_location, kInstrSize));
}
dsrl(t9, new_value, kImm16Bits);
Ins(scratch, t9, 0, kImm16Bits);
sw(scratch, MemOperand(li_location, kInstrSize));
lwu(scratch, MemOperand(li_location, kInstrSize * 3));
// scratch is now ori(at, ...).
if (emit_debug_code()) {
And(scratch, scratch, kOpcodeMask);
Check(eq, kTheInstructionToPatchShouldBeAnOri,
scratch, Operand(ORI));
lwu(scratch, MemOperand(li_location, kInstrSize * 3));
}
Ins(scratch, new_value, 0, kImm16Bits);
sw(scratch, MemOperand(li_location, kInstrSize * 3));
// Update the I-cache so the new lui and ori can be executed.
FlushICache(li_location, 4);
}
void MacroAssembler::GetRelocatedValue(Register li_location,
Register value,
Register scratch) {
lwu(value, MemOperand(li_location));
if (emit_debug_code()) {
And(value, value, kOpcodeMask);
Check(eq, kTheInstructionShouldBeALui,
value, Operand(LUI));
lwu(value, MemOperand(li_location));
}
// value now holds a lui instruction. Extract the immediate.
andi(value, value, kImm16Mask);
dsll32(value, value, kImm16Bits);
lwu(scratch, MemOperand(li_location, kInstrSize));
if (emit_debug_code()) {
And(scratch, scratch, kOpcodeMask);
Check(eq, kTheInstructionShouldBeAnOri,
scratch, Operand(ORI));
lwu(scratch, MemOperand(li_location, kInstrSize));
}
// "scratch" now holds an ori instruction. Extract the immediate.
andi(scratch, scratch, kImm16Mask);
dsll32(scratch, scratch, 0);
or_(value, value, scratch);
lwu(scratch, MemOperand(li_location, kInstrSize * 3));
if (emit_debug_code()) {
And(scratch, scratch, kOpcodeMask);
Check(eq, kTheInstructionShouldBeAnOri,
scratch, Operand(ORI));
lwu(scratch, MemOperand(li_location, kInstrSize * 3));
}
// "scratch" now holds an ori instruction. Extract the immediate.
andi(scratch, scratch, kImm16Mask);
dsll(scratch, scratch, kImm16Bits);
or_(value, value, scratch);
// Sign extend extracted address.
dsra(value, value, kImm16Bits);
}
void MacroAssembler::CheckPageFlag(
Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met) {
And(scratch, object, Operand(~Page::kPageAlignmentMask));
ld(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
And(scratch, scratch, Operand(mask));
Branch(condition_met, cc, scratch, Operand(zero_reg));
}
void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
Register scratch,
Label* if_deprecated) {
if (map->CanBeDeprecated()) {
li(scratch, Operand(map));
ld(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
And(scratch, scratch, Operand(Map::Deprecated::kMask));
Branch(if_deprecated, ne, scratch, Operand(zero_reg));
}
}
void MacroAssembler::JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black) {
HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
}
void MacroAssembler::HasColor(Register object,
Register bitmap_scratch,
Register mask_scratch,
Label* has_color,
int first_bit,
int second_bit) {
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t8));
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t9));
GetMarkBits(object, bitmap_scratch, mask_scratch);
Label other_color;
// Note that we are using a 4-byte aligned 8-byte load.
Uld(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
And(t8, t9, Operand(mask_scratch));
Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg));
// Shift left 1 by adding.
Daddu(mask_scratch, mask_scratch, Operand(mask_scratch));
And(t8, t9, Operand(mask_scratch));
Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg));
bind(&other_color);
}
// Detect some, but not all, common pointer-free objects. This is used by the
// incremental write barrier which doesn't care about oddballs (they are always
// marked black immediately so this code is not hit).
void MacroAssembler::JumpIfDataObject(Register value,
Register scratch,
Label* not_data_object) {
DCHECK(!AreAliased(value, scratch, t8, no_reg));
Label is_data_object;
ld(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
Branch(&is_data_object, eq, t8, Operand(scratch));
DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
Branch(not_data_object, ne, t8, Operand(zero_reg));
bind(&is_data_object);
}
void MacroAssembler::GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg) {
DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
// addr_reg is divided into fields:
// |63 page base 20|19 high 8|7 shift 3|2 0|
// 'high' gives the index of the cell holding color bits for the object.
// 'shift' gives the offset in the cell for this object's color.
And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits);
dsll(t8, t8, Bitmap::kBytesPerCellLog2);
Daddu(bitmap_reg, bitmap_reg, t8);
li(t8, Operand(1));
dsllv(mask_reg, t8, mask_reg);
}
void MacroAssembler::EnsureNotWhite(
Register value,
Register bitmap_scratch,
Register mask_scratch,
Register load_scratch,
Label* value_is_white_and_not_data) {
DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, t8));
GetMarkBits(value, bitmap_scratch, mask_scratch);
// If the value is black or grey we don't need to do anything.
DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
Label done;
// Since both black and grey have a 1 in the first position and white does
// not have a 1 there we only need to check one bit.
// Note that we are using a 4-byte aligned 8-byte load.
Uld(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
And(t8, mask_scratch, load_scratch);
Branch(&done, ne, t8, Operand(zero_reg));
if (emit_debug_code()) {
// Check for impossible bit pattern.
Label ok;
// sll may overflow, making the check conservative.
dsll(t8, mask_scratch, 1);
And(t8, load_scratch, t8);
Branch(&ok, eq, t8, Operand(zero_reg));
stop("Impossible marking bit pattern");
bind(&ok);
}
// Value is white. We check whether it is data that doesn't need scanning.
// Currently only checks for HeapNumber and non-cons strings.
Register map = load_scratch; // Holds map while checking type.
Register length = load_scratch; // Holds length of object after testing type.
Label is_data_object;
// Check for heap-number
ld(map, FieldMemOperand(value, HeapObject::kMapOffset));
LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
{
Label skip;
Branch(&skip, ne, t8, Operand(map));
li(length, HeapNumber::kSize);
Branch(&is_data_object);
bind(&skip);
}
// Check for strings.
DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
Register instance_type = load_scratch;
lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg));
// It's a non-indirect (non-cons and non-slice) string.
// If it's external, the length is just ExternalString::kSize.
// Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
// External strings are the only ones with the kExternalStringTag bit
// set.
DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
And(t8, instance_type, Operand(kExternalStringTag));
{
Label skip;
Branch(&skip, eq, t8, Operand(zero_reg));
li(length, ExternalString::kSize);
Branch(&is_data_object);
bind(&skip);
}
// Sequential string, either Latin1 or UC16.
// For Latin1 (char-size of 1) we shift the smi tag away to get the length.
// For UC16 (char-size of 2) we just leave the smi tag in place, thereby
// getting the length multiplied by 2.
DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
DCHECK(kSmiTag == 0 && kSmiTagSize == 1);
lw(t9, UntagSmiFieldMemOperand(value, String::kLengthOffset));
And(t8, instance_type, Operand(kStringEncodingMask));
{
Label skip;
Branch(&skip, ne, t8, Operand(zero_reg));
// Adjust length for UC16.
dsll(t9, t9, 1);
bind(&skip);
}
Daddu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
DCHECK(!length.is(t8));
And(length, length, Operand(~kObjectAlignmentMask));
bind(&is_data_object);
// Value is a data object, and it is white. Mark it black. Since we know
// that the object is white we can make it black by flipping one bit.
Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
Or(t8, t8, Operand(mask_scratch));
Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
Daddu(t8, t8, Operand(length));
Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
bind(&done);
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
ld(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
}
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
}
void MacroAssembler::EnumLength(Register dst, Register map) {
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
And(dst, dst, Operand(Map::EnumLengthBits::kMask));
SmiTag(dst);
}
void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
Register empty_fixed_array_value = a6;
LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
Label next, start;
mov(a2, a0);
// Check if the enum length field is properly initialized, indicating that
// there is an enum cache.
ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
EnumLength(a3, a1);
Branch(
call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel)));
jmp(&start);
bind(&next);
ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
// For all objects but the receiver, check that the cache is empty.
EnumLength(a3, a1);
Branch(call_runtime, ne, a3, Operand(Smi::FromInt(0)));
bind(&start);
// Check that there are no elements. Register a2 contains the current JS
// object we've reached through the prototype chain.
Label no_elements;
ld(a2, FieldMemOperand(a2, JSObject::kElementsOffset));
Branch(&no_elements, eq, a2, Operand(empty_fixed_array_value));
// Second chance, the object may be using the empty slow element dictionary.
LoadRoot(at, Heap::kEmptySlowElementDictionaryRootIndex);
Branch(call_runtime, ne, a2, Operand(at));
bind(&no_elements);
ld(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
Branch(&next, ne, a2, Operand(null_value));
}
void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
DCHECK(!output_reg.is(input_reg));
Label done;
li(output_reg, Operand(255));
// Normal branch: nop in delay slot.
Branch(&done, gt, input_reg, Operand(output_reg));
// Use delay slot in this branch.
Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg));
mov(output_reg, zero_reg); // In delay slot.
mov(output_reg, input_reg); // Value is in range 0..255.
bind(&done);
}
void MacroAssembler::ClampDoubleToUint8(Register result_reg,
DoubleRegister input_reg,
DoubleRegister temp_double_reg) {
Label above_zero;
Label done;
Label in_bounds;
Move(temp_double_reg, 0.0);
BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg);
// Double value is less than zero, NaN or Inf, return 0.
mov(result_reg, zero_reg);
Branch(&done);
// Double value is >= 255, return 255.
bind(&above_zero);
Move(temp_double_reg, 255.0);
BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg);
li(result_reg, Operand(255));
Branch(&done);
// In 0-255 range, round and truncate.
bind(&in_bounds);
cvt_w_d(temp_double_reg, input_reg);
mfc1(result_reg, temp_double_reg);
bind(&done);
}
void MacroAssembler::TestJSArrayForAllocationMemento(
Register receiver_reg,
Register scratch_reg,
Label* no_memento_found,
Condition cond,
Label* allocation_memento_present) {
ExternalReference new_space_start =
ExternalReference::new_space_start(isolate());
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
Daddu(scratch_reg, receiver_reg,
Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
Branch(no_memento_found, lt, scratch_reg, Operand(new_space_start));
li(at, Operand(new_space_allocation_top));
ld(at, MemOperand(at));
Branch(no_memento_found, gt, scratch_reg, Operand(at));
ld(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
if (allocation_memento_present) {
Branch(allocation_memento_present, cond, scratch_reg,
Operand(isolate()->factory()->allocation_memento_map()));
}
}
Register GetRegisterThatIsNotOneOf(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6) {
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
Register candidate = Register::FromAllocationIndex(i);
if (regs & candidate.bit()) continue;
return candidate;
}
UNREACHABLE();
return no_reg;
}
void MacroAssembler::JumpIfDictionaryInPrototypeChain(
Register object,
Register scratch0,
Register scratch1,
Label* found) {
DCHECK(!scratch1.is(scratch0));
Factory* factory = isolate()->factory();
Register current = scratch0;
Label loop_again;
// Scratch contained elements pointer.
Move(current, object);
// Loop based on the map going up the prototype chain.
bind(&loop_again);
ld(current, FieldMemOperand(current, HeapObject::kMapOffset));
lb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
DecodeField<Map::ElementsKindBits>(scratch1);
Branch(found, eq, scratch1, Operand(DICTIONARY_ELEMENTS));
ld(current, FieldMemOperand(current, Map::kPrototypeOffset));
Branch(&loop_again, ne, current, Operand(factory->null_value()));
}
bool AreAliased(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6,
Register reg7,
Register reg8) {
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
reg7.is_valid() + reg8.is_valid();
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
if (reg7.is_valid()) regs |= reg7.bit();
if (reg8.is_valid()) regs |= reg8.bit();
int n_of_non_aliasing_regs = NumRegs(regs);
return n_of_valid_regs != n_of_non_aliasing_regs;
}
CodePatcher::CodePatcher(byte* address,
int instructions,
FlushICache flush_cache)
: address_(address),
size_(instructions * Assembler::kInstrSize),
masm_(NULL, address, size_ + Assembler::kGap),
flush_cache_(flush_cache) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
if (flush_cache_ == FLUSH) {
CpuFeatures::FlushICache(address_, size_);
}
// Check that the code was patched as expected.
DCHECK(masm_.pc_ == address_ + size_);
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void CodePatcher::Emit(Instr instr) {
masm()->emit(instr);
}
void CodePatcher::Emit(Address addr) {
// masm()->emit(reinterpret_cast<Instr>(addr));
}
void CodePatcher::ChangeBranchCondition(Condition cond) {
Instr instr = Assembler::instr_at(masm_.pc_);
DCHECK(Assembler::IsBranch(instr));
uint32_t opcode = Assembler::GetOpcodeField(instr);
// Currently only the 'eq' and 'ne' cond values are supported and the simple
// branch instructions (with opcode being the branch type).
// There are some special cases (see Assembler::IsBranch()) so extending this
// would be tricky.
DCHECK(opcode == BEQ ||
opcode == BNE ||
opcode == BLEZ ||
opcode == BGTZ ||
opcode == BEQL ||
opcode == BNEL ||
opcode == BLEZL ||
opcode == BGTZL);
opcode = (cond == eq) ? BEQ : BNE;
instr = (instr & ~kOpcodeMask) | opcode;
masm_.emit(instr);
}
void MacroAssembler::TruncatingDiv(Register result,
Register dividend,
int32_t divisor) {
DCHECK(!dividend.is(result));
DCHECK(!dividend.is(at));
DCHECK(!result.is(at));
base::MagicNumbersForDivision<uint32_t> mag =
base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
li(at, Operand(static_cast<int32_t>(mag.multiplier)));
Mulh(result, dividend, Operand(at));
bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
if (divisor > 0 && neg) {
Addu(result, result, Operand(dividend));
}
if (divisor < 0 && !neg && mag.multiplier > 0) {
Subu(result, result, Operand(dividend));
}
if (mag.shift > 0) sra(result, result, mag.shift);
srl(at, dividend, 31);
Addu(result, result, Operand(at));
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS64