blob: 38884aa65bc2924f50a8f076d9d6553e9104d72d [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_X64
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/cpu-profiler.h"
#include "src/debug.h"
#include "src/heap/heap.h"
#include "src/isolate-inl.h"
#include "src/serialize.h"
#include "src/x64/assembler-x64.h"
#include "src/x64/macro-assembler-x64.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
has_frame_(false),
root_array_available_(true) {
if (isolate() != NULL) {
code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
isolate());
}
}
static const int64_t kInvalidRootRegisterDelta = -1;
int64_t MacroAssembler::RootRegisterDelta(ExternalReference other) {
if (predictable_code_size() &&
(other.address() < reinterpret_cast<Address>(isolate()) ||
other.address() >= reinterpret_cast<Address>(isolate() + 1))) {
return kInvalidRootRegisterDelta;
}
Address roots_register_value = kRootRegisterBias +
reinterpret_cast<Address>(isolate()->heap()->roots_array_start());
int64_t delta = kInvalidRootRegisterDelta; // Bogus initialization.
if (kPointerSize == kInt64Size) {
delta = other.address() - roots_register_value;
} else {
// For x32, zero extend the address to 64-bit and calculate the delta.
uint64_t o = static_cast<uint32_t>(
reinterpret_cast<intptr_t>(other.address()));
uint64_t r = static_cast<uint32_t>(
reinterpret_cast<intptr_t>(roots_register_value));
delta = o - r;
}
return delta;
}
Operand MacroAssembler::ExternalOperand(ExternalReference target,
Register scratch) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(target);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
return Operand(kRootRegister, static_cast<int32_t>(delta));
}
}
Move(scratch, target);
return Operand(scratch, 0);
}
void MacroAssembler::Load(Register destination, ExternalReference source) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(source);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
movp(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
if (destination.is(rax)) {
load_rax(source);
} else {
Move(kScratchRegister, source);
movp(destination, Operand(kScratchRegister, 0));
}
}
void MacroAssembler::Store(ExternalReference destination, Register source) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(destination);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
movp(Operand(kRootRegister, static_cast<int32_t>(delta)), source);
return;
}
}
// Safe code.
if (source.is(rax)) {
store_rax(destination);
} else {
Move(kScratchRegister, destination);
movp(Operand(kScratchRegister, 0), source);
}
}
void MacroAssembler::LoadAddress(Register destination,
ExternalReference source) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(source);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
leap(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
Move(destination, source);
}
int MacroAssembler::LoadAddressSize(ExternalReference source) {
if (root_array_available_ && !serializer_enabled()) {
// This calculation depends on the internals of LoadAddress.
// It's correctness is ensured by the asserts in the Call
// instruction below.
int64_t delta = RootRegisterDelta(source);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
// Operand is leap(scratch, Operand(kRootRegister, delta));
// Opcodes : REX.W 8D ModRM Disp8/Disp32 - 4 or 7.
int size = 4;
if (!is_int8(static_cast<int32_t>(delta))) {
size += 3; // Need full four-byte displacement in lea.
}
return size;
}
}
// Size of movp(destination, src);
return Assembler::kMoveAddressIntoScratchRegisterInstructionLength;
}
void MacroAssembler::PushAddress(ExternalReference source) {
int64_t address = reinterpret_cast<int64_t>(source.address());
if (is_int32(address) && !serializer_enabled()) {
if (emit_debug_code()) {
Move(kScratchRegister, kZapValue, Assembler::RelocInfoNone());
}
Push(Immediate(static_cast<int32_t>(address)));
return;
}
LoadAddress(kScratchRegister, source);
Push(kScratchRegister);
}
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
DCHECK(root_array_available_);
movp(destination, Operand(kRootRegister,
(index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::LoadRootIndexed(Register destination,
Register variable_offset,
int fixed_offset) {
DCHECK(root_array_available_);
movp(destination,
Operand(kRootRegister,
variable_offset, times_pointer_size,
(fixed_offset << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) {
DCHECK(root_array_available_);
movp(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias),
source);
}
void MacroAssembler::PushRoot(Heap::RootListIndex index) {
DCHECK(root_array_available_);
Push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
DCHECK(root_array_available_);
cmpp(with, Operand(kRootRegister,
(index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::CompareRoot(const Operand& with,
Heap::RootListIndex index) {
DCHECK(root_array_available_);
DCHECK(!with.AddressUsesRegister(kScratchRegister));
LoadRoot(kScratchRegister, index);
cmpp(with, kScratchRegister);
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register addr,
Register scratch,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then) {
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
int3();
bind(&ok);
}
// Load store buffer top.
LoadRoot(scratch, Heap::kStoreBufferTopRootIndex);
// Store pointer to buffer.
movp(Operand(scratch, 0), addr);
// Increment buffer top.
addp(scratch, Immediate(kPointerSize));
// Write back new top of buffer.
StoreRoot(scratch, Heap::kStoreBufferTopRootIndex);
// Call stub on end of buffer.
Label done;
// Check for end of buffer.
testp(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
if (and_then == kReturnAtEnd) {
Label buffer_overflowed;
j(not_equal, &buffer_overflowed, Label::kNear);
ret(0);
bind(&buffer_overflowed);
} else {
DCHECK(and_then == kFallThroughAtEnd);
j(equal, &done, Label::kNear);
}
StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
CallStub(&store_buffer_overflow);
if (and_then == kReturnAtEnd) {
ret(0);
} else {
DCHECK(and_then == kFallThroughAtEnd);
bind(&done);
}
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch,
Label::Distance distance) {
if (serializer_enabled()) {
// Can't do arithmetic on external references if it might get serialized.
// The mask isn't really an address. We load it as an external reference in
// case the size of the new space is different between the snapshot maker
// and the running system.
if (scratch.is(object)) {
Move(kScratchRegister, ExternalReference::new_space_mask(isolate()));
andp(scratch, kScratchRegister);
} else {
Move(scratch, ExternalReference::new_space_mask(isolate()));
andp(scratch, object);
}
Move(kScratchRegister, ExternalReference::new_space_start(isolate()));
cmpp(scratch, kScratchRegister);
j(cc, branch, distance);
} else {
DCHECK(kPointerSize == kInt64Size
? is_int32(static_cast<int64_t>(isolate()->heap()->NewSpaceMask()))
: kPointerSize == kInt32Size);
intptr_t new_space_start =
reinterpret_cast<intptr_t>(isolate()->heap()->NewSpaceStart());
Move(kScratchRegister, reinterpret_cast<Address>(-new_space_start),
Assembler::RelocInfoNone());
if (scratch.is(object)) {
addp(scratch, kScratchRegister);
} else {
leap(scratch, Operand(object, kScratchRegister, times_1, 0));
}
andp(scratch,
Immediate(static_cast<int32_t>(isolate()->heap()->NewSpaceMask())));
j(cc, branch, distance);
}
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
DCHECK(IsAligned(offset, kPointerSize));
leap(dst, FieldOperand(object, offset));
if (emit_debug_code()) {
Label ok;
testb(dst, Immediate((1 << kPointerSizeLog2) - 1));
j(zero, &ok, Label::kNear);
int3();
bind(&ok);
}
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(value, kZapValue, Assembler::RelocInfoNone());
Move(dst, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWriteArray(
Register object,
Register value,
Register index,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Array access: calculate the destination address. Index is not a smi.
Register dst = index;
leap(dst, Operand(object, index, times_pointer_size,
FixedArray::kHeaderSize - kHeapObjectTag));
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(value, kZapValue, Assembler::RelocInfoNone());
Move(index, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWriteForMap(Register object,
Register map,
Register dst,
SaveFPRegsMode fp_mode) {
DCHECK(!object.is(kScratchRegister));
DCHECK(!object.is(map));
DCHECK(!object.is(dst));
DCHECK(!map.is(dst));
AssertNotSmi(object);
if (emit_debug_code()) {
Label ok;
if (map.is(kScratchRegister)) pushq(map);
CompareMap(map, isolate()->factory()->meta_map());
if (map.is(kScratchRegister)) popq(map);
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
if (!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
Label ok;
if (map.is(kScratchRegister)) pushq(map);
cmpp(map, FieldOperand(object, HeapObject::kMapOffset));
if (map.is(kScratchRegister)) popq(map);
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// Compute the address.
leap(dst, FieldOperand(object, HeapObject::kMapOffset));
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
CheckPageFlag(map,
map, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
fp_mode);
CallStub(&stub);
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(dst, kZapValue, Assembler::RelocInfoNone());
Move(map, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWrite(
Register object,
Register address,
Register value,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!object.is(value));
DCHECK(!object.is(address));
DCHECK(!value.is(address));
AssertNotSmi(object);
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
Label ok;
cmpp(value, Operand(address, 0));
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
// Skip barrier if writing a smi.
JumpIfSmi(value, &done);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(address, kZapValue, Assembler::RelocInfoNone());
Move(value, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
if (emit_debug_code()) Check(cc, reason);
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
Label ok;
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedDoubleArrayMapRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedCOWArrayMapRootIndex);
j(equal, &ok, Label::kNear);
Abort(kJSObjectWithFastElementsMapHasSlowElements);
bind(&ok);
}
}
void MacroAssembler::Check(Condition cc, BailoutReason reason) {
Label L;
j(cc, &L, Label::kNear);
Abort(reason);
// Control will not return here.
bind(&L);
}
void MacroAssembler::CheckStackAlignment() {
int frame_alignment = base::OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
Label alignment_as_expected;
testp(rsp, Immediate(frame_alignment_mask));
j(zero, &alignment_as_expected, Label::kNear);
// Abort if stack is not aligned.
int3();
bind(&alignment_as_expected);
}
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op,
Label* then_label) {
Label ok;
testl(result, result);
j(not_zero, &ok, Label::kNear);
testl(op, op);
j(sign, then_label);
bind(&ok);
}
void MacroAssembler::Abort(BailoutReason reason) {
#ifdef DEBUG
const char* msg = GetBailoutReason(reason);
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
if (FLAG_trap_on_abort) {
int3();
return;
}
#endif
Move(kScratchRegister, Smi::FromInt(static_cast<int>(reason)),
Assembler::RelocInfoNone());
Push(kScratchRegister);
if (!has_frame_) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
CallRuntime(Runtime::kAbort, 1);
} else {
CallRuntime(Runtime::kAbort, 1);
}
// Control will not return here.
int3();
}
void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs
Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
}
void MacroAssembler::TailCallStub(CodeStub* stub) {
Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::StubReturn(int argc) {
DCHECK(argc >= 1 && generating_stub());
ret((argc - 1) * kPointerSize);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
return has_frame_ || !stub->SometimesSetsUpAFrame();
}
void MacroAssembler::IndexFromHash(Register hash, Register index) {
// The assert checks that the constants for the maximum number of digits
// for an array index cached in the hash field and the number of bits
// reserved for it does not conflict.
DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
if (!hash.is(index)) {
movl(index, hash);
}
DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles) {
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(rax, num_arguments);
LoadAddress(rbx, ExternalReference(f, isolate()));
CEntryStub ces(isolate(), f->result_size, save_doubles);
CallStub(&ces);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments) {
Set(rax, num_arguments);
LoadAddress(rbx, ext);
CEntryStub stub(isolate(), 1);
CallStub(&stub);
}
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : argument num_arguments - 1
// ...
// -- rsp[8 * num_arguments] : argument 0 (receiver)
// -----------------------------------
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(rax, num_arguments);
JumpToExternalReference(ext, result_size);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
TailCallExternalReference(ExternalReference(fid, isolate()),
num_arguments,
result_size);
}
static int Offset(ExternalReference ref0, ExternalReference ref1) {
int64_t offset = (ref0.address() - ref1.address());
// Check that fits into int.
DCHECK(static_cast<int>(offset) == offset);
return static_cast<int>(offset);
}
void MacroAssembler::PrepareCallApiFunction(int arg_stack_space) {
EnterApiExitFrame(arg_stack_space);
}
void MacroAssembler::CallApiFunctionAndReturn(
Register function_address,
ExternalReference thunk_ref,
Register thunk_last_arg,
int stack_space,
Operand return_value_operand,
Operand* context_restore_operand) {
Label prologue;
Label promote_scheduled_exception;
Label exception_handled;
Label delete_allocated_handles;
Label leave_exit_frame;
Label write_back;
Factory* factory = isolate()->factory();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate());
const int kNextOffset = 0;
const int kLimitOffset = Offset(
ExternalReference::handle_scope_limit_address(isolate()),
next_address);
const int kLevelOffset = Offset(
ExternalReference::handle_scope_level_address(isolate()),
next_address);
ExternalReference scheduled_exception_address =
ExternalReference::scheduled_exception_address(isolate());
DCHECK(rdx.is(function_address) || r8.is(function_address));
// Allocate HandleScope in callee-save registers.
Register prev_next_address_reg = r14;
Register prev_limit_reg = rbx;
Register base_reg = r15;
Move(base_reg, next_address);
movp(prev_next_address_reg, Operand(base_reg, kNextOffset));
movp(prev_limit_reg, Operand(base_reg, kLimitOffset));
addl(Operand(base_reg, kLevelOffset), Immediate(1));
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1);
LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate()));
CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
PopSafepointRegisters();
}
Label profiler_disabled;
Label end_profiler_check;
Move(rax, ExternalReference::is_profiling_address(isolate()));
cmpb(Operand(rax, 0), Immediate(0));
j(zero, &profiler_disabled);
// Third parameter is the address of the actual getter function.
Move(thunk_last_arg, function_address);
Move(rax, thunk_ref);
jmp(&end_profiler_check);
bind(&profiler_disabled);
// Call the api function!
Move(rax, function_address);
bind(&end_profiler_check);
// Call the api function!
call(rax);
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1);
LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate()));
CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
PopSafepointRegisters();
}
// Load the value from ReturnValue
movp(rax, return_value_operand);
bind(&prologue);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
subl(Operand(base_reg, kLevelOffset), Immediate(1));
movp(Operand(base_reg, kNextOffset), prev_next_address_reg);
cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset));
j(not_equal, &delete_allocated_handles);
bind(&leave_exit_frame);
// Check if the function scheduled an exception.
Move(rsi, scheduled_exception_address);
Cmp(Operand(rsi, 0), factory->the_hole_value());
j(not_equal, &promote_scheduled_exception);
bind(&exception_handled);
#if ENABLE_EXTRA_CHECKS
// Check if the function returned a valid JavaScript value.
Label ok;
Register return_value = rax;
Register map = rcx;
JumpIfSmi(return_value, &ok, Label::kNear);
movp(map, FieldOperand(return_value, HeapObject::kMapOffset));
CmpInstanceType(map, FIRST_NONSTRING_TYPE);
j(below, &ok, Label::kNear);
CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
j(above_equal, &ok, Label::kNear);
CompareRoot(map, Heap::kHeapNumberMapRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(return_value, Heap::kUndefinedValueRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(return_value, Heap::kTrueValueRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(return_value, Heap::kFalseValueRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(return_value, Heap::kNullValueRootIndex);
j(equal, &ok, Label::kNear);
Abort(kAPICallReturnedInvalidObject);
bind(&ok);
#endif
bool restore_context = context_restore_operand != NULL;
if (restore_context) {
movp(rsi, *context_restore_operand);
}
LeaveApiExitFrame(!restore_context);
ret(stack_space * kPointerSize);
bind(&promote_scheduled_exception);
{
FrameScope frame(this, StackFrame::INTERNAL);
CallRuntime(Runtime::kPromoteScheduledException, 0);
}
jmp(&exception_handled);
// HandleScope limit has changed. Delete allocated extensions.
bind(&delete_allocated_handles);
movp(Operand(base_reg, kLimitOffset), prev_limit_reg);
movp(prev_limit_reg, rax);
LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate()));
LoadAddress(rax,
ExternalReference::delete_handle_scope_extensions(isolate()));
call(rax);
movp(rax, prev_limit_reg);
jmp(&leave_exit_frame);
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
int result_size) {
// Set the entry point and jump to the C entry runtime stub.
LoadAddress(rbx, ext);
CEntryStub ces(isolate(), result_size);
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a builtin without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
// Rely on the assertion to check that the number of provided
// arguments match the expected number of arguments. Fake a
// parameter count to avoid emitting code to do the check.
ParameterCount expected(0);
GetBuiltinEntry(rdx, id);
InvokeCode(rdx, expected, expected, flag, call_wrapper);
}
void MacroAssembler::GetBuiltinFunction(Register target,
Builtins::JavaScript id) {
// Load the builtins object into target register.
movp(target, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
movp(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
movp(target, FieldOperand(target,
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
DCHECK(!target.is(rdi));
// Load the JavaScript builtin function from the builtins object.
GetBuiltinFunction(rdi, id);
movp(target, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
}
#define REG(Name) { kRegister_ ## Name ## _Code }
static const Register saved_regs[] = {
REG(rax), REG(rcx), REG(rdx), REG(rbx), REG(rbp), REG(rsi), REG(rdi), REG(r8),
REG(r9), REG(r10), REG(r11)
};
#undef REG
static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);
void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1,
Register exclusion2,
Register exclusion3) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
for (int i = 0; i < kNumberOfSavedRegs; i++) {
Register reg = saved_regs[i];
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
pushq(reg);
}
}
// R12 to r15 are callee save on all platforms.
if (fp_mode == kSaveFPRegs) {
subp(rsp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
movsd(Operand(rsp, i * kDoubleSize), reg);
}
}
}
void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1,
Register exclusion2,
Register exclusion3) {
if (fp_mode == kSaveFPRegs) {
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
movsd(reg, Operand(rsp, i * kDoubleSize));
}
addp(rsp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
}
for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
Register reg = saved_regs[i];
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
popq(reg);
}
}
}
void MacroAssembler::Cvtlsi2sd(XMMRegister dst, Register src) {
xorps(dst, dst);
cvtlsi2sd(dst, src);
}
void MacroAssembler::Cvtlsi2sd(XMMRegister dst, const Operand& src) {
xorps(dst, dst);
cvtlsi2sd(dst, src);
}
void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8()) {
movsxbq(dst, src);
} else if (r.IsUInteger8()) {
movzxbl(dst, src);
} else if (r.IsInteger16()) {
movsxwq(dst, src);
} else if (r.IsUInteger16()) {
movzxwl(dst, src);
} else if (r.IsInteger32()) {
movl(dst, src);
} else {
movp(dst, src);
}
}
void MacroAssembler::Store(const Operand& dst, Register src, Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
movb(dst, src);
} else if (r.IsInteger16() || r.IsUInteger16()) {
movw(dst, src);
} else if (r.IsInteger32()) {
movl(dst, src);
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
movp(dst, src);
}
}
void MacroAssembler::Set(Register dst, int64_t x) {
if (x == 0) {
xorl(dst, dst);
} else if (is_uint32(x)) {
movl(dst, Immediate(static_cast<uint32_t>(x)));
} else if (is_int32(x)) {
movq(dst, Immediate(static_cast<int32_t>(x)));
} else {
movq(dst, x);
}
}
void MacroAssembler::Set(const Operand& dst, intptr_t x) {
if (kPointerSize == kInt64Size) {
if (is_int32(x)) {
movp(dst, Immediate(static_cast<int32_t>(x)));
} else {
Set(kScratchRegister, x);
movp(dst, kScratchRegister);
}
} else {
movp(dst, Immediate(static_cast<int32_t>(x)));
}
}
// ----------------------------------------------------------------------------
// Smi tagging, untagging and tag detection.
bool MacroAssembler::IsUnsafeInt(const int32_t x) {
static const int kMaxBits = 17;
return !is_intn(x, kMaxBits);
}
void MacroAssembler::SafeMove(Register dst, Smi* src) {
DCHECK(!dst.is(kScratchRegister));
if (IsUnsafeInt(src->value()) && jit_cookie() != 0) {
if (SmiValuesAre32Bits()) {
// JIT cookie can be converted to Smi.
Move(dst, Smi::FromInt(src->value() ^ jit_cookie()));
Move(kScratchRegister, Smi::FromInt(jit_cookie()));
xorp(dst, kScratchRegister);
} else {
DCHECK(SmiValuesAre31Bits());
int32_t value = static_cast<int32_t>(reinterpret_cast<intptr_t>(src));
movp(dst, Immediate(value ^ jit_cookie()));
xorp(dst, Immediate(jit_cookie()));
}
} else {
Move(dst, src);
}
}
void MacroAssembler::SafePush(Smi* src) {
if (IsUnsafeInt(src->value()) && jit_cookie() != 0) {
if (SmiValuesAre32Bits()) {
// JIT cookie can be converted to Smi.
Push(Smi::FromInt(src->value() ^ jit_cookie()));
Move(kScratchRegister, Smi::FromInt(jit_cookie()));
xorp(Operand(rsp, 0), kScratchRegister);
} else {
DCHECK(SmiValuesAre31Bits());
int32_t value = static_cast<int32_t>(reinterpret_cast<intptr_t>(src));
Push(Immediate(value ^ jit_cookie()));
xorp(Operand(rsp, 0), Immediate(jit_cookie()));
}
} else {
Push(src);
}
}
Register MacroAssembler::GetSmiConstant(Smi* source) {
int value = source->value();
if (value == 0) {
xorl(kScratchRegister, kScratchRegister);
return kScratchRegister;
}
if (value == 1) {
return kSmiConstantRegister;
}
LoadSmiConstant(kScratchRegister, source);
return kScratchRegister;
}
void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) {
if (emit_debug_code()) {
Move(dst, Smi::FromInt(kSmiConstantRegisterValue),
Assembler::RelocInfoNone());
cmpp(dst, kSmiConstantRegister);
Assert(equal, kUninitializedKSmiConstantRegister);
}
int value = source->value();
if (value == 0) {
xorl(dst, dst);
return;
}
bool negative = value < 0;
unsigned int uvalue = negative ? -value : value;
switch (uvalue) {
case 9:
leap(dst,
Operand(kSmiConstantRegister, kSmiConstantRegister, times_8, 0));
break;
case 8:
xorl(dst, dst);
leap(dst, Operand(dst, kSmiConstantRegister, times_8, 0));
break;
case 4:
xorl(dst, dst);
leap(dst, Operand(dst, kSmiConstantRegister, times_4, 0));
break;
case 5:
leap(dst,
Operand(kSmiConstantRegister, kSmiConstantRegister, times_4, 0));
break;
case 3:
leap(dst,
Operand(kSmiConstantRegister, kSmiConstantRegister, times_2, 0));
break;
case 2:
leap(dst,
Operand(kSmiConstantRegister, kSmiConstantRegister, times_1, 0));
break;
case 1:
movp(dst, kSmiConstantRegister);
break;
case 0:
UNREACHABLE();
return;
default:
Move(dst, source, Assembler::RelocInfoNone());
return;
}
if (negative) {
negp(dst);
}
}
void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movl(dst, src);
}
shlp(dst, Immediate(kSmiShift));
}
void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) {
if (emit_debug_code()) {
testb(dst, Immediate(0x01));
Label ok;
j(zero, &ok, Label::kNear);
Abort(kInteger32ToSmiFieldWritingToNonSmiLocation);
bind(&ok);
}
if (SmiValuesAre32Bits()) {
DCHECK(kSmiShift % kBitsPerByte == 0);
movl(Operand(dst, kSmiShift / kBitsPerByte), src);
} else {
DCHECK(SmiValuesAre31Bits());
Integer32ToSmi(kScratchRegister, src);
movp(dst, kScratchRegister);
}
}
void MacroAssembler::Integer64PlusConstantToSmi(Register dst,
Register src,
int constant) {
if (dst.is(src)) {
addl(dst, Immediate(constant));
} else {
leal(dst, Operand(src, constant));
}
shlp(dst, Immediate(kSmiShift));
}
void MacroAssembler::SmiToInteger32(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movp(dst, src);
}
if (SmiValuesAre32Bits()) {
shrp(dst, Immediate(kSmiShift));
} else {
DCHECK(SmiValuesAre31Bits());
sarl(dst, Immediate(kSmiShift));
}
}
void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) {
if (SmiValuesAre32Bits()) {
movl(dst, Operand(src, kSmiShift / kBitsPerByte));
} else {
DCHECK(SmiValuesAre31Bits());
movl(dst, src);
sarl(dst, Immediate(kSmiShift));
}
}
void MacroAssembler::SmiToInteger64(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movp(dst, src);
}
sarp(dst, Immediate(kSmiShift));
if (kPointerSize == kInt32Size) {
// Sign extend to 64-bit.
movsxlq(dst, dst);
}
}
void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) {
if (SmiValuesAre32Bits()) {
movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte));
} else {
DCHECK(SmiValuesAre31Bits());
movp(dst, src);
SmiToInteger64(dst, dst);
}
}
void MacroAssembler::SmiTest(Register src) {
AssertSmi(src);
testp(src, src);
}
void MacroAssembler::SmiCompare(Register smi1, Register smi2) {
AssertSmi(smi1);
AssertSmi(smi2);
cmpp(smi1, smi2);
}
void MacroAssembler::SmiCompare(Register dst, Smi* src) {
AssertSmi(dst);
Cmp(dst, src);
}
void MacroAssembler::Cmp(Register dst, Smi* src) {
DCHECK(!dst.is(kScratchRegister));
if (src->value() == 0) {
testp(dst, dst);
} else {
Register constant_reg = GetSmiConstant(src);
cmpp(dst, constant_reg);
}
}
void MacroAssembler::SmiCompare(Register dst, const Operand& src) {
AssertSmi(dst);
AssertSmi(src);
cmpp(dst, src);
}
void MacroAssembler::SmiCompare(const Operand& dst, Register src) {
AssertSmi(dst);
AssertSmi(src);
cmpp(dst, src);
}
void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) {
AssertSmi(dst);
if (SmiValuesAre32Bits()) {
cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value()));
} else {
DCHECK(SmiValuesAre31Bits());
cmpl(dst, Immediate(src));
}
}
void MacroAssembler::Cmp(const Operand& dst, Smi* src) {
// The Operand cannot use the smi register.
Register smi_reg = GetSmiConstant(src);
DCHECK(!dst.AddressUsesRegister(smi_reg));
cmpp(dst, smi_reg);
}
void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) {
if (SmiValuesAre32Bits()) {
cmpl(Operand(dst, kSmiShift / kBitsPerByte), src);
} else {
DCHECK(SmiValuesAre31Bits());
SmiToInteger32(kScratchRegister, dst);
cmpl(kScratchRegister, src);
}
}
void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
Register src,
int power) {
DCHECK(power >= 0);
DCHECK(power < 64);
if (power == 0) {
SmiToInteger64(dst, src);
return;
}
if (!dst.is(src)) {
movp(dst, src);
}
if (power < kSmiShift) {
sarp(dst, Immediate(kSmiShift - power));
} else if (power > kSmiShift) {
shlp(dst, Immediate(power - kSmiShift));
}
}
void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst,
Register src,
int power) {
DCHECK((0 <= power) && (power < 32));
if (dst.is(src)) {
shrp(dst, Immediate(power + kSmiShift));
} else {
UNIMPLEMENTED(); // Not used.
}
}
void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2,
Label* on_not_smis,
Label::Distance near_jump) {
if (dst.is(src1) || dst.is(src2)) {
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
movp(kScratchRegister, src1);
orp(kScratchRegister, src2);
JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump);
movp(dst, kScratchRegister);
} else {
movp(dst, src1);
orp(dst, src2);
JumpIfNotSmi(dst, on_not_smis, near_jump);
}
}
Condition MacroAssembler::CheckSmi(Register src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckSmi(const Operand& src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckNonNegativeSmi(Register src) {
STATIC_ASSERT(kSmiTag == 0);
// Test that both bits of the mask 0x8000000000000001 are zero.
movp(kScratchRegister, src);
rolp(kScratchRegister, Immediate(1));
testb(kScratchRegister, Immediate(3));
return zero;
}
Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
if (first.is(second)) {
return CheckSmi(first);
}
STATIC_ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3);
if (SmiValuesAre32Bits()) {
leal(kScratchRegister, Operand(first, second, times_1, 0));
testb(kScratchRegister, Immediate(0x03));
} else {
DCHECK(SmiValuesAre31Bits());
movl(kScratchRegister, first);
orl(kScratchRegister, second);
testb(kScratchRegister, Immediate(kSmiTagMask));
}
return zero;
}
Condition MacroAssembler::CheckBothNonNegativeSmi(Register first,
Register second) {
if (first.is(second)) {
return CheckNonNegativeSmi(first);
}
movp(kScratchRegister, first);
orp(kScratchRegister, second);
rolp(kScratchRegister, Immediate(1));
testl(kScratchRegister, Immediate(3));
return zero;
}
Condition MacroAssembler::CheckEitherSmi(Register first,
Register second,
Register scratch) {
if (first.is(second)) {
return CheckSmi(first);
}
if (scratch.is(second)) {
andl(scratch, first);
} else {
if (!scratch.is(first)) {
movl(scratch, first);
}
andl(scratch, second);
}
testb(scratch, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckIsMinSmi(Register src) {
DCHECK(!src.is(kScratchRegister));
// If we overflow by subtracting one, it's the minimal smi value.
cmpp(src, kSmiConstantRegister);
return overflow;
}
Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
if (SmiValuesAre32Bits()) {
// A 32-bit integer value can always be converted to a smi.
return always;
} else {
DCHECK(SmiValuesAre31Bits());
cmpl(src, Immediate(0xc0000000));
return positive;
}
}
Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) {
if (SmiValuesAre32Bits()) {
// An unsigned 32-bit integer value is valid as long as the high bit
// is not set.
testl(src, src);
return positive;
} else {
DCHECK(SmiValuesAre31Bits());
testl(src, Immediate(0xc0000000));
return zero;
}
}
void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) {
if (dst.is(src)) {
andl(dst, Immediate(kSmiTagMask));
} else {
movl(dst, Immediate(kSmiTagMask));
andl(dst, src);
}
}
void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) {
if (!(src.AddressUsesRegister(dst))) {
movl(dst, Immediate(kSmiTagMask));
andl(dst, src);
} else {
movl(dst, src);
andl(dst, Immediate(kSmiTagMask));
}
}
void MacroAssembler::JumpIfValidSmiValue(Register src,
Label* on_valid,
Label::Distance near_jump) {
Condition is_valid = CheckInteger32ValidSmiValue(src);
j(is_valid, on_valid, near_jump);
}
void MacroAssembler::JumpIfNotValidSmiValue(Register src,
Label* on_invalid,
Label::Distance near_jump) {
Condition is_valid = CheckInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid, near_jump);
}
void MacroAssembler::JumpIfUIntValidSmiValue(Register src,
Label* on_valid,
Label::Distance near_jump) {
Condition is_valid = CheckUInteger32ValidSmiValue(src);
j(is_valid, on_valid, near_jump);
}
void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
Label* on_invalid,
Label::Distance near_jump) {
Condition is_valid = CheckUInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid, near_jump);
}
void MacroAssembler::JumpIfSmi(Register src,
Label* on_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(smi, on_smi, near_jump);
}
void MacroAssembler::JumpIfNotSmi(Register src,
Label* on_not_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(NegateCondition(smi), on_not_smi, near_jump);
}
void MacroAssembler::JumpUnlessNonNegativeSmi(
Register src, Label* on_not_smi_or_negative,
Label::Distance near_jump) {
Condition non_negative_smi = CheckNonNegativeSmi(src);
j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump);
}
void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
Smi* constant,
Label* on_equals,
Label::Distance near_jump) {
SmiCompare(src, constant);
j(equal, on_equals, near_jump);
}
void MacroAssembler::JumpIfNotBothSmi(Register src1,
Register src2,
Label* on_not_both_smi,
Label::Distance near_jump) {
Condition both_smi = CheckBothSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
}
void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
Register src2,
Label* on_not_both_smi,
Label::Distance near_jump) {
Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
}
void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
return;
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
switch (constant->value()) {
case 1:
addp(dst, kSmiConstantRegister);
return;
case 2:
leap(dst, Operand(src, kSmiConstantRegister, times_2, 0));
return;
case 4:
leap(dst, Operand(src, kSmiConstantRegister, times_4, 0));
return;
case 8:
leap(dst, Operand(src, kSmiConstantRegister, times_8, 0));
return;
default:
Register constant_reg = GetSmiConstant(constant);
addp(dst, constant_reg);
return;
}
} else {
switch (constant->value()) {
case 1:
leap(dst, Operand(src, kSmiConstantRegister, times_1, 0));
return;
case 2:
leap(dst, Operand(src, kSmiConstantRegister, times_2, 0));
return;
case 4:
leap(dst, Operand(src, kSmiConstantRegister, times_4, 0));
return;
case 8:
leap(dst, Operand(src, kSmiConstantRegister, times_8, 0));
return;
default:
LoadSmiConstant(dst, constant);
addp(dst, src);
return;
}
}
}
void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) {
if (constant->value() != 0) {
if (SmiValuesAre32Bits()) {
addl(Operand(dst, kSmiShift / kBitsPerByte),
Immediate(constant->value()));
} else {
DCHECK(SmiValuesAre31Bits());
addp(dst, Immediate(constant));
}
}
}
void MacroAssembler::SmiAddConstant(Register dst,
Register src,
Smi* constant,
SmiOperationExecutionMode mode,
Label* bailout_label,
Label::Distance near_jump) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
LoadSmiConstant(kScratchRegister, constant);
addp(dst, kScratchRegister);
if (mode.Contains(BAILOUT_ON_NO_OVERFLOW)) {
j(no_overflow, bailout_label, near_jump);
DCHECK(mode.Contains(PRESERVE_SOURCE_REGISTER));
subp(dst, kScratchRegister);
} else if (mode.Contains(BAILOUT_ON_OVERFLOW)) {
if (mode.Contains(PRESERVE_SOURCE_REGISTER)) {
Label done;
j(no_overflow, &done, Label::kNear);
subp(dst, kScratchRegister);
jmp(bailout_label, near_jump);
bind(&done);
} else {
// Bailout if overflow without reserving src.
j(overflow, bailout_label, near_jump);
}
} else {
CHECK(mode.IsEmpty());
}
} else {
DCHECK(mode.Contains(PRESERVE_SOURCE_REGISTER));
DCHECK(mode.Contains(BAILOUT_ON_OVERFLOW));
LoadSmiConstant(dst, constant);
addp(dst, src);
j(overflow, bailout_label, near_jump);
}
}
void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
subp(dst, constant_reg);
} else {
if (constant->value() == Smi::kMinValue) {
LoadSmiConstant(dst, constant);
// Adding and subtracting the min-value gives the same result, it only
// differs on the overflow bit, which we don't check here.
addp(dst, src);
} else {
// Subtract by adding the negation.
LoadSmiConstant(dst, Smi::FromInt(-constant->value()));
addp(dst, src);
}
}
}
void MacroAssembler::SmiSubConstant(Register dst,
Register src,
Smi* constant,
SmiOperationExecutionMode mode,
Label* bailout_label,
Label::Distance near_jump) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
LoadSmiConstant(kScratchRegister, constant);
subp(dst, kScratchRegister);
if (mode.Contains(BAILOUT_ON_NO_OVERFLOW)) {
j(no_overflow, bailout_label, near_jump);
DCHECK(mode.Contains(PRESERVE_SOURCE_REGISTER));
addp(dst, kScratchRegister);
} else if (mode.Contains(BAILOUT_ON_OVERFLOW)) {
if (mode.Contains(PRESERVE_SOURCE_REGISTER)) {
Label done;
j(no_overflow, &done, Label::kNear);
addp(dst, kScratchRegister);
jmp(bailout_label, near_jump);
bind(&done);
} else {
// Bailout if overflow without reserving src.
j(overflow, bailout_label, near_jump);
}
} else {
CHECK(mode.IsEmpty());
}
} else {
DCHECK(mode.Contains(PRESERVE_SOURCE_REGISTER));
DCHECK(mode.Contains(BAILOUT_ON_OVERFLOW));
if (constant->value() == Smi::kMinValue) {
DCHECK(!dst.is(kScratchRegister));
movp(dst, src);
LoadSmiConstant(kScratchRegister, constant);
subp(dst, kScratchRegister);
j(overflow, bailout_label, near_jump);
} else {
// Subtract by adding the negation.
LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
addp(dst, src);
j(overflow, bailout_label, near_jump);
}
}
}
void MacroAssembler::SmiNeg(Register dst,
Register src,
Label* on_smi_result,
Label::Distance near_jump) {
if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
movp(kScratchRegister, src);
negp(dst); // Low 32 bits are retained as zero by negation.
// Test if result is zero or Smi::kMinValue.
cmpp(dst, kScratchRegister);
j(not_equal, on_smi_result, near_jump);
movp(src, kScratchRegister);
} else {
movp(dst, src);
negp(dst);
cmpp(dst, src);
// If the result is zero or Smi::kMinValue, negation failed to create a smi.
j(not_equal, on_smi_result, near_jump);
}
}
template<class T>
static void SmiAddHelper(MacroAssembler* masm,
Register dst,
Register src1,
T src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (dst.is(src1)) {
Label done;
masm->addp(dst, src2);
masm->j(no_overflow, &done, Label::kNear);
// Restore src1.
masm->subp(dst, src2);
masm->jmp(on_not_smi_result, near_jump);
masm->bind(&done);
} else {
masm->movp(dst, src1);
masm->addp(dst, src2);
masm->j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!dst.is(src2));
SmiAddHelper<Register>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!src2.AddressUsesRegister(dst));
SmiAddHelper<Operand>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
Register src2) {
// No overflow checking. Use only when it's known that
// overflowing is impossible.
if (!dst.is(src1)) {
if (emit_debug_code()) {
movp(kScratchRegister, src1);
addp(kScratchRegister, src2);
Check(no_overflow, kSmiAdditionOverflow);
}
leap(dst, Operand(src1, src2, times_1, 0));
} else {
addp(dst, src2);
Assert(no_overflow, kSmiAdditionOverflow);
}
}
template<class T>
static void SmiSubHelper(MacroAssembler* masm,
Register dst,
Register src1,
T src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (dst.is(src1)) {
Label done;
masm->subp(dst, src2);
masm->j(no_overflow, &done, Label::kNear);
// Restore src1.
masm->addp(dst, src2);
masm->jmp(on_not_smi_result, near_jump);
masm->bind(&done);
} else {
masm->movp(dst, src1);
masm->subp(dst, src2);
masm->j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!dst.is(src2));
SmiSubHelper<Register>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!src2.AddressUsesRegister(dst));
SmiSubHelper<Operand>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
template<class T>
static void SmiSubNoOverflowHelper(MacroAssembler* masm,
Register dst,
Register src1,
T src2) {
// No overflow checking. Use only when it's known that
// overflowing is impossible (e.g., subtracting two positive smis).
if (!dst.is(src1)) {
masm->movp(dst, src1);
}
masm->subp(dst, src2);
masm->Assert(no_overflow, kSmiSubtractionOverflow);
}
void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
DCHECK(!dst.is(src2));
SmiSubNoOverflowHelper<Register>(this, dst, src1, src2);
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
const Operand& src2) {
SmiSubNoOverflowHelper<Operand>(this, dst, src1, src2);
}
void MacroAssembler::SmiMul(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!dst.is(src2));
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
if (dst.is(src1)) {
Label failure, zero_correct_result;
movp(kScratchRegister, src1); // Create backup for later testing.
SmiToInteger64(dst, src1);
imulp(dst, src2);
j(overflow, &failure, Label::kNear);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
Label correct_result;
testp(dst, dst);
j(not_zero, &correct_result, Label::kNear);
movp(dst, kScratchRegister);
xorp(dst, src2);
// Result was positive zero.
j(positive, &zero_correct_result, Label::kNear);
bind(&failure); // Reused failure exit, restores src1.
movp(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
bind(&zero_correct_result);
Set(dst, 0);
bind(&correct_result);
} else {
SmiToInteger64(dst, src1);
imulp(dst, src2);
j(overflow, on_not_smi_result, near_jump);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
Label correct_result;
testp(dst, dst);
j(not_zero, &correct_result, Label::kNear);
// One of src1 and src2 is zero, the check whether the other is
// negative.
movp(kScratchRegister, src1);
xorp(kScratchRegister, src2);
j(negative, on_not_smi_result, near_jump);
bind(&correct_result);
}
}
void MacroAssembler::SmiDiv(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src2.is(rax));
DCHECK(!src2.is(rdx));
DCHECK(!src1.is(rdx));
// Check for 0 divisor (result is +/-Infinity).
testp(src2, src2);
j(zero, on_not_smi_result, near_jump);
if (src1.is(rax)) {
movp(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
// We need to rule out dividing Smi::kMinValue by -1, since that would
// overflow in idiv and raise an exception.
// We combine this with negative zero test (negative zero only happens
// when dividing zero by a negative number).
// We overshoot a little and go to slow case if we divide min-value
// by any negative value, not just -1.
Label safe_div;
testl(rax, Immediate(~Smi::kMinValue));
j(not_zero, &safe_div, Label::kNear);
testp(src2, src2);
if (src1.is(rax)) {
j(positive, &safe_div, Label::kNear);
movp(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
} else {
j(negative, on_not_smi_result, near_jump);
}
bind(&safe_div);
SmiToInteger32(src2, src2);
// Sign extend src1 into edx:eax.
cdq();
idivl(src2);
Integer32ToSmi(src2, src2);
// Check that the remainder is zero.
testl(rdx, rdx);
if (src1.is(rax)) {
Label smi_result;
j(zero, &smi_result, Label::kNear);
movp(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
bind(&smi_result);
} else {
j(not_zero, on_not_smi_result, near_jump);
}
if (!dst.is(src1) && src1.is(rax)) {
movp(src1, kScratchRegister);
}
Integer32ToSmi(dst, rax);
}
void MacroAssembler::SmiMod(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!src2.is(rax));
DCHECK(!src2.is(rdx));
DCHECK(!src1.is(rdx));
DCHECK(!src1.is(src2));
testp(src2, src2);
j(zero, on_not_smi_result, near_jump);
if (src1.is(rax)) {
movp(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
SmiToInteger32(src2, src2);
// Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
Label safe_div;
cmpl(rax, Immediate(Smi::kMinValue));
j(not_equal, &safe_div, Label::kNear);
cmpl(src2, Immediate(-1));
j(not_equal, &safe_div, Label::kNear);
// Retag inputs and go slow case.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movp(src1, kScratchRegister);
}
jmp(on_not_smi_result, near_jump);
bind(&safe_div);
// Sign extend eax into edx:eax.
cdq();
idivl(src2);
// Restore smi tags on inputs.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movp(src1, kScratchRegister);
}
// Check for a negative zero result. If the result is zero, and the
// dividend is negative, go slow to return a floating point negative zero.
Label smi_result;
testl(rdx, rdx);
j(not_zero, &smi_result, Label::kNear);
testp(src1, src1);
j(negative, on_not_smi_result, near_jump);
bind(&smi_result);
Integer32ToSmi(dst, rdx);
}
void MacroAssembler::SmiNot(Register dst, Register src) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src.is(kScratchRegister));
if (SmiValuesAre32Bits()) {
// Set tag and padding bits before negating, so that they are zero
// afterwards.
movl(kScratchRegister, Immediate(~0));
} else {
DCHECK(SmiValuesAre31Bits());
movl(kScratchRegister, Immediate(1));
}
if (dst.is(src)) {
xorp(dst, kScratchRegister);
} else {
leap(dst, Operand(src, kScratchRegister, times_1, 0));
}
notp(dst);
}
void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
DCHECK(!dst.is(src2));
if (!dst.is(src1)) {
movp(dst, src1);
}
andp(dst, src2);
}
void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
Set(dst, 0);
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
andp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
andp(dst, src);
}
}
void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
if (!dst.is(src1)) {
DCHECK(!src1.is(src2));
movp(dst, src1);
}
orp(dst, src2);
}
void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) {
if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
orp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
orp(dst, src);
}
}
void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
if (!dst.is(src1)) {
DCHECK(!src1.is(src2));
movp(dst, src1);
}
xorp(dst, src2);
}
void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) {
if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
xorp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
xorp(dst, src);
}
}
void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
Register src,
int shift_value) {
DCHECK(is_uint5(shift_value));
if (shift_value > 0) {
if (dst.is(src)) {
sarp(dst, Immediate(shift_value + kSmiShift));
shlp(dst, Immediate(kSmiShift));
} else {
UNIMPLEMENTED(); // Not used.
}
}
}
void MacroAssembler::SmiShiftLeftConstant(Register dst,
Register src,
int shift_value,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (SmiValuesAre32Bits()) {
if (!dst.is(src)) {
movp(dst, src);
}
if (shift_value > 0) {
// Shift amount specified by lower 5 bits, not six as the shl opcode.
shlq(dst, Immediate(shift_value & 0x1f));
}
} else {
DCHECK(SmiValuesAre31Bits());
if (dst.is(src)) {
UNIMPLEMENTED(); // Not used.
} else {
SmiToInteger32(dst, src);
shll(dst, Immediate(shift_value));
JumpIfNotValidSmiValue(dst, on_not_smi_result, near_jump);
Integer32ToSmi(dst, dst);
}
}
}
void MacroAssembler::SmiShiftLogicalRightConstant(
Register dst, Register src, int shift_value,
Label* on_not_smi_result, Label::Distance near_jump) {
// Logic right shift interprets its result as an *unsigned* number.
if (dst.is(src)) {
UNIMPLEMENTED(); // Not used.
} else {
if (shift_value == 0) {
testp(src, src);
j(negative, on_not_smi_result, near_jump);
}
if (SmiValuesAre32Bits()) {
movp(dst, src);
shrp(dst, Immediate(shift_value + kSmiShift));
shlp(dst, Immediate(kSmiShift));
} else {
DCHECK(SmiValuesAre31Bits());
SmiToInteger32(dst, src);
shrp(dst, Immediate(shift_value));
JumpIfUIntNotValidSmiValue(dst, on_not_smi_result, near_jump);
Integer32ToSmi(dst, dst);
}
}
}
void MacroAssembler::SmiShiftLeft(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (SmiValuesAre32Bits()) {
DCHECK(!dst.is(rcx));
if (!dst.is(src1)) {
movp(dst, src1);
}
// Untag shift amount.
SmiToInteger32(rcx, src2);
// Shift amount specified by lower 5 bits, not six as the shl opcode.
andp(rcx, Immediate(0x1f));
shlq_cl(dst);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(src2));
DCHECK(!dst.is(rcx));
if (src1.is(rcx) || src2.is(rcx)) {
movq(kScratchRegister, rcx);
}
if (dst.is(src1)) {
UNIMPLEMENTED(); // Not used.
} else {
Label valid_result;
SmiToInteger32(dst, src1);
SmiToInteger32(rcx, src2);
shll_cl(dst);
JumpIfValidSmiValue(dst, &valid_result, Label::kNear);
// As src1 or src2 could not be dst, we do not need to restore them for
// clobbering dst.
if (src1.is(rcx) || src2.is(rcx)) {
if (src1.is(rcx)) {
movq(src1, kScratchRegister);
} else {
movq(src2, kScratchRegister);
}
}
jmp(on_not_smi_result, near_jump);
bind(&valid_result);
Integer32ToSmi(dst, dst);
}
}
}
void MacroAssembler::SmiShiftLogicalRight(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(src2));
DCHECK(!dst.is(rcx));
if (src1.is(rcx) || src2.is(rcx)) {
movq(kScratchRegister, rcx);
}
if (dst.is(src1)) {
UNIMPLEMENTED(); // Not used.
} else {
Label valid_result;
SmiToInteger32(dst, src1);
SmiToInteger32(rcx, src2);
shrl_cl(dst);
JumpIfUIntValidSmiValue(dst, &valid_result, Label::kNear);
// As src1 or src2 could not be dst, we do not need to restore them for
// clobbering dst.
if (src1.is(rcx) || src2.is(rcx)) {
if (src1.is(rcx)) {
movq(src1, kScratchRegister);
} else {
movq(src2, kScratchRegister);
}
}
jmp(on_not_smi_result, near_jump);
bind(&valid_result);
Integer32ToSmi(dst, dst);
}
}
void MacroAssembler::SmiShiftArithmeticRight(Register dst,
Register src1,
Register src2) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(rcx));
SmiToInteger32(rcx, src2);
if (!dst.is(src1)) {
movp(dst, src1);
}
SmiToInteger32(dst, dst);
sarl_cl(dst);
Integer32ToSmi(dst, dst);
}
void MacroAssembler::SelectNonSmi(Register dst,
Register src1,
Register src2,
Label* on_not_smis,
Label::Distance near_jump) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(src1));
DCHECK(!dst.is(src2));
// Both operands must not be smis.
#ifdef DEBUG
Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
Check(not_both_smis, kBothRegistersWereSmisInSelectNonSmi);
#endif
STATIC_ASSERT(kSmiTag == 0);
DCHECK_EQ(0, Smi::FromInt(0));
movl(kScratchRegister, Immediate(kSmiTagMask));
andp(kScratchRegister, src1);
testl(kScratchRegister, src2);
// If non-zero then both are smis.
j(not_zero, on_not_smis, near_jump);
// Exactly one operand is a smi.
DCHECK_EQ(1, static_cast<int>(kSmiTagMask));
// kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
subp(kScratchRegister, Immediate(1));
// If src1 is a smi, then scratch register all 1s, else it is all 0s.
movp(dst, src1);
xorp(dst, src2);
andp(dst, kScratchRegister);
// If src1 is a smi, dst holds src1 ^ src2, else it is zero.
xorp(dst, src1);
// If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
}
SmiIndex MacroAssembler::SmiToIndex(Register dst,
Register src,
int shift) {
if (SmiValuesAre32Bits()) {
DCHECK(is_uint6(shift));
// There is a possible optimization if shift is in the range 60-63, but that
// will (and must) never happen.
if (!dst.is(src)) {
movp(dst, src);
}
if (shift < kSmiShift) {
sarp(dst, Immediate(kSmiShift - shift));
} else {
shlp(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK(shift >= times_1 && shift <= (static_cast<int>(times_8) + 1));
if (!dst.is(src)) {
movp(dst, src);
}
// We have to sign extend the index register to 64-bit as the SMI might
// be negative.
movsxlq(dst, dst);
if (shift == times_1) {
sarq(dst, Immediate(kSmiShift));
return SmiIndex(dst, times_1);
}
return SmiIndex(dst, static_cast<ScaleFactor>(shift - 1));
}
}
SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
Register src,
int shift) {
if (SmiValuesAre32Bits()) {
// Register src holds a positive smi.
DCHECK(is_uint6(shift));
if (!dst.is(src)) {
movp(dst, src);
}
negp(dst);
if (shift < kSmiShift) {
sarp(dst, Immediate(kSmiShift - shift));
} else {
shlp(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK(shift >= times_1 && shift <= (static_cast<int>(times_8) + 1));
if (!dst.is(src)) {
movp(dst, src);
}
negq(dst);
if (shift == times_1) {
sarq(dst, Immediate(kSmiShift));
return SmiIndex(dst, times_1);
}
return SmiIndex(dst, static_cast<ScaleFactor>(shift - 1));
}
}
void MacroAssembler::AddSmiField(Register dst, const Operand& src) {
if (SmiValuesAre32Bits()) {
DCHECK_EQ(0, kSmiShift % kBitsPerByte);
addl(dst, Operand(src, kSmiShift / kBitsPerByte));
} else {
DCHECK(SmiValuesAre31Bits());
SmiToInteger32(kScratchRegister, src);
addl(dst, kScratchRegister);
}
}
void MacroAssembler::Push(Smi* source) {
intptr_t smi = reinterpret_cast<intptr_t>(source);
if (is_int32(smi)) {
Push(Immediate(static_cast<int32_t>(smi)));
} else {
Register constant = GetSmiConstant(source);
Push(constant);
}
}
void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
DCHECK(!src.is(scratch));
movp(scratch, src);
// High bits.
shrp(src, Immediate(kPointerSize * kBitsPerByte - kSmiShift));
shlp(src, Immediate(kSmiShift));
Push(src);
// Low bits.
shlp(scratch, Immediate(kSmiShift));
Push(scratch);
}
void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
DCHECK(!dst.is(scratch));
Pop(scratch);
// Low bits.
shrp(scratch, Immediate(kSmiShift));
Pop(dst);
shrp(dst, Immediate(kSmiShift));
// High bits.
shlp(dst, Immediate(kPointerSize * kBitsPerByte - kSmiShift));
orp(dst, scratch);
}
void MacroAssembler::Test(const Operand& src, Smi* source) {
if (SmiValuesAre32Bits()) {
testl(Operand(src, kIntSize), Immediate(source->value()));
} else {
DCHECK(SmiValuesAre31Bits());
testl(src, Immediate(source));
}
}
// ----------------------------------------------------------------------------
void MacroAssembler::LookupNumberStringCache(Register object,
Register result,
Register scratch1,
Register scratch2,
Label* not_found) {
// Use of registers. Register result is used as a temporary.
Register number_string_cache = result;
Register mask = scratch1;
Register scratch = scratch2;
// Load the number string cache.
LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
SmiToInteger32(
mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
shrl(mask, Immediate(1));
subp(mask, Immediate(1)); // Make mask.
// Calculate the entry in the number string cache. The hash value in the
// number string cache for smis is just the smi value, and the hash for
// doubles is the xor of the upper and lower words. See
// Heap::GetNumberStringCache.
Label is_smi;
Label load_result_from_cache;
JumpIfSmi(object, &is_smi);
CheckMap(object,
isolate()->factory()->heap_number_map(),
not_found,
DONT_DO_SMI_CHECK);
STATIC_ASSERT(8 == kDoubleSize);
movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
xorp(scratch, FieldOperand(object, HeapNumber::kValueOffset));
andp(scratch, mask);
// Each entry in string cache consists of two pointer sized fields,
// but times_twice_pointer_size (multiplication by 16) scale factor
// is not supported by addrmode on x64 platform.
// So we have to premultiply entry index before lookup.
shlp(scratch, Immediate(kPointerSizeLog2 + 1));
Register index = scratch;
Register probe = mask;
movp(probe,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize));
JumpIfSmi(probe, not_found);
movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
ucomisd(xmm0, FieldOperand(probe, HeapNumber::kValueOffset));
j(parity_even, not_found); // Bail out if NaN is involved.
j(not_equal, not_found); // The cache did not contain this value.
jmp(&load_result_from_cache);
bind(&is_smi);
SmiToInteger32(scratch, object);
andp(scratch, mask);
// Each entry in string cache consists of two pointer sized fields,
// but times_twice_pointer_size (multiplication by 16) scale factor
// is not supported by addrmode on x64 platform.
// So we have to premultiply entry index before lookup.
shlp(scratch, Immediate(kPointerSizeLog2 + 1));
// Check if the entry is the smi we are looking for.
cmpp(object,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize));
j(not_equal, not_found);
// Get the result from the cache.
bind(&load_result_from_cache);
movp(result,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize + kPointerSize));
IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
}
void MacroAssembler::JumpIfNotString(Register object,
Register object_map,
Label* not_string,
Label::Distance near_jump) {
Condition is_smi = CheckSmi(object);
j(is_smi, not_string, near_jump);
CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
j(above_equal, not_string, near_jump);
}
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(
Register first_object, Register second_object, Register scratch1,
Register scratch2, Label* on_fail, Label::Distance near_jump) {
// Check that both objects are not smis.
Condition either_smi = CheckEitherSmi(first_object, second_object);
j(either_smi, on_fail, near_jump);
// Load instance type for both strings.
movp(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
movp(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
// Check that both are flat one-byte strings.
DCHECK(kNotStringTag != 0);
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
andl(scratch1, Immediate(kFlatOneByteStringMask));
andl(scratch2, Immediate(kFlatOneByteStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
leap(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatOneByteStringTag + (kFlatOneByteStringTag << 3)));
j(not_equal, on_fail, near_jump);
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
Register instance_type, Register scratch, Label* failure,
Label::Distance near_jump) {
if (!scratch.is(instance_type)) {
movl(scratch, instance_type);
}
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
andl(scratch, Immediate(kFlatOneByteStringMask));
cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kOneByteStringTag));
j(not_equal, failure, near_jump);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* on_fail,
Label::Distance near_jump) {
// Load instance type for both strings.
movp(scratch1, first_object_instance_type);
movp(scratch2, second_object_instance_type);
// Check that both are flat one-byte strings.
DCHECK(kNotStringTag != 0);
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
andl(scratch1, Immediate(kFlatOneByteStringMask));
andl(scratch2, Immediate(kFlatOneByteStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
leap(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatOneByteStringTag + (kFlatOneByteStringTag << 3)));
j(not_equal, on_fail, near_jump);
}
template<class T>
static void JumpIfNotUniqueNameHelper(MacroAssembler* masm,
T operand_or_register,
Label* not_unique_name,
Label::Distance distance) {
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
Label succeed;
masm->testb(operand_or_register,
Immediate(kIsNotStringMask | kIsNotInternalizedMask));
masm->j(zero, &succeed, Label::kNear);
masm->cmpb(operand_or_register, Immediate(static_cast<uint8_t>(SYMBOL_TYPE)));
masm->j(not_equal, not_unique_name, distance);
masm->bind(&succeed);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
Label* not_unique_name,
Label::Distance distance) {
JumpIfNotUniqueNameHelper<Operand>(this, operand, not_unique_name, distance);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
Label* not_unique_name,
Label::Distance distance) {
JumpIfNotUniqueNameHelper<Register>(this, reg, not_unique_name, distance);
}
void MacroAssembler::Move(Register dst, Register src) {
if (!dst.is(src)) {
movp(dst, src);
}
}
void MacroAssembler::Move(Register dst, Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Move(dst, Smi::cast(*source));
} else {
MoveHeapObject(dst, source);
}
}
void MacroAssembler::Move(const Operand& dst, Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Move(dst, Smi::cast(*source));
} else {
MoveHeapObject(kScratchRegister, source);
movp(dst, kScratchRegister);
}
}
void MacroAssembler::Move(XMMRegister dst, uint32_t src) {
if (src == 0) {
xorps(dst, dst);
} else {
unsigned cnt = base::bits::CountPopulation32(src);
unsigned nlz = base::bits::CountLeadingZeros32(src);
unsigned ntz = base::bits::CountTrailingZeros32(src);
if (nlz + cnt + ntz == 32) {
pcmpeqd(dst, dst);
if (ntz == 0) {
psrld(dst, 32 - cnt);
} else {
pslld(dst, 32 - cnt);
if (nlz != 0) psrld(dst, nlz);
}
} else {
movl(kScratchRegister, Immediate(src));
movq(dst, kScratchRegister);
}
}
}
void MacroAssembler::Move(XMMRegister dst, uint64_t src) {
uint32_t lower = static_cast<uint32_t>(src);
uint32_t upper = static_cast<uint32_t>(src >> 32);
if (upper == 0) {
Move(dst, lower);
} else {
unsigned cnt = base::bits::CountPopulation64(src);
unsigned nlz = base::bits::CountLeadingZeros64(src);
unsigned ntz = base::bits::CountTrailingZeros64(src);
if (nlz + cnt + ntz == 64) {
pcmpeqd(dst, dst);
if (ntz == 0) {
psrlq(dst, 64 - cnt);
} else {
psllq(dst, 64 - cnt);
if (nlz != 0) psrlq(dst, nlz);
}
} else if (lower == 0) {
Move(dst, upper);
psllq(dst, 32);
} else {
movq(kScratchRegister, src);
movq(dst, kScratchRegister);
}
}
}
void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Cmp(dst, Smi::cast(*source));
} else {
MoveHeapObject(kScratchRegister, source);
cmpp(dst, kScratchRegister);
}
}
void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Cmp(dst, Smi::cast(*source));
} else {
MoveHeapObject(kScratchRegister, source);
cmpp(dst, kScratchRegister);
}
}
void MacroAssembler::Push(Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Push(Smi::cast(*source));
} else {
MoveHeapObject(kScratchRegister, source);
Push(kScratchRegister);
}
}
void MacroAssembler::MoveHeapObject(Register result,
Handle<Object> object) {
AllowDeferredHandleDereference using_raw_address;
DCHECK(object->IsHeapObject());
if (isolate()->heap()->InNewSpace(*object)) {
Handle<Cell> cell = isolate()->factory()->NewCell(object);
Move(result, cell, RelocInfo::CELL);
movp(result, Operand(result, 0));
} else {
Move(result, object, RelocInfo::EMBEDDED_OBJECT);
}
}
void MacroAssembler::LoadGlobalCell(Register dst, Handle<Cell> cell) {
if (dst.is(rax)) {
AllowDeferredHandleDereference embedding_raw_address;
load_rax(cell.location(), RelocInfo::CELL);
} else {
Move(dst, cell, RelocInfo::CELL);
movp(dst, Operand(dst, 0));
}
}
void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
Register scratch) {
Move(scratch, cell, RelocInfo::EMBEDDED_OBJECT);
cmpp(value, FieldOperand(scratch, WeakCell::kValueOffset));
}
void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
Label* miss) {
Move(value, cell, RelocInfo::EMBEDDED_OBJECT);
movp(value, FieldOperand(value, WeakCell::kValueOffset));
JumpIfSmi(value, miss);
}
void MacroAssembler::Drop(int stack_elements) {
if (stack_elements > 0) {
addp(rsp, Immediate(stack_elements * kPointerSize));
}
}
void MacroAssembler::DropUnderReturnAddress(int stack_elements,
Register scratch) {
DCHECK(stack_elements > 0);
if (kPointerSize == kInt64Size && stack_elements == 1) {
popq(MemOperand(rsp, 0));
return;
}
PopReturnAddressTo(scratch);
Drop(stack_elements);
PushReturnAddressFrom(scratch);
}
void MacroAssembler::Push(Register src) {
if (kPointerSize == kInt64Size) {
pushq(src);
} else {
// x32 uses 64-bit push for rbp in the prologue.
DCHECK(src.code() != rbp.code());
leal(rsp, Operand(rsp, -4));
movp(Operand(rsp, 0), src);
}
}
void MacroAssembler::Push(const Operand& src) {
if (kPointerSize == kInt64Size) {
pushq(src);
} else {
movp(kScratchRegister, src);
leal(rsp, Operand(rsp, -4));
movp(Operand(rsp, 0), kScratchRegister);
}
}
void MacroAssembler::PushQuad(const Operand& src) {
if (kPointerSize == kInt64Size) {
pushq(src);
} else {
movp(kScratchRegister, src);
pushq(kScratchRegister);
}
}
void MacroAssembler::Push(Immediate value) {
if (kPointerSize == kInt64Size) {
pushq(value);
} else {
leal(rsp, Operand(rsp, -4));
movp(Operand(rsp, 0), value);
}
}
void MacroAssembler::PushImm32(int32_t imm32) {
if (kPointerSize == kInt64Size) {
pushq_imm32(imm32);
} else {
leal(rsp, Operand(rsp, -4));
movp(Operand(rsp, 0), Immediate(imm32));
}
}
void MacroAssembler::Pop(Register dst) {
if (kPointerSize == kInt64Size) {
popq(dst);
} else {
// x32 uses 64-bit pop for rbp in the epilogue.
DCHECK(dst.code() != rbp.code());
movp(dst, Operand(rsp, 0));
leal(rsp, Operand(rsp, 4));
}
}
void MacroAssembler::Pop(const Operand& dst) {
if (kPointerSize == kInt64Size) {
popq(dst);
} else {
Register scratch = dst.AddressUsesRegister(kScratchRegister)
? kSmiConstantRegister : kScratchRegister;
movp(scratch, Operand(rsp, 0));
movp(dst, scratch);
leal(rsp, Operand(rsp, 4));
if (scratch.is(kSmiConstantRegister)) {
// Restore kSmiConstantRegister.
movp(kSmiConstantRegister,
reinterpret_cast<void*>(Smi::FromInt(kSmiConstantRegisterValue)),
Assembler::RelocInfoNone());
}
}
}
void MacroAssembler::PopQuad(const Operand& dst) {
if (kPointerSize == kInt64Size) {
popq(dst);
} else {
popq(kScratchRegister);
movp(dst, kScratchRegister);
}
}
void MacroAssembler::LoadSharedFunctionInfoSpecialField(Register dst,
Register base,
int offset) {
DCHECK(offset > SharedFunctionInfo::kLengthOffset &&
offset <= SharedFunctionInfo::kSize &&
(((offset - SharedFunctionInfo::kLengthOffset) / kIntSize) % 2 == 1));
if (kPointerSize == kInt64Size) {
movsxlq(dst, FieldOperand(base, offset));
} else {
movp(dst, FieldOperand(base, offset));
SmiToInteger32(dst, dst);
}
}
void MacroAssembler::TestBitSharedFunctionInfoSpecialField(Register base,
int offset,
int bits) {
DCHECK(offset > SharedFunctionInfo::kLengthOffset &&
offset <= SharedFunctionInfo::kSize &&
(((offset - SharedFunctionInfo::kLengthOffset) / kIntSize) % 2 == 1));
if (kPointerSize == kInt32Size) {
// On x32, this field is represented by SMI.
bits += kSmiShift;
}
int byte_offset = bits / kBitsPerByte;
int bit_in_byte = bits & (kBitsPerByte - 1);
testb(FieldOperand(base, offset + byte_offset), Immediate(1 << bit_in_byte));
}
void MacroAssembler::Jump(ExternalReference ext) {
LoadAddress(kScratchRegister, ext);
jmp(kScratchRegister);
}
void MacroAssembler::Jump(const Operand& op) {
if (kPointerSize == kInt64Size) {
jmp(op);
} else {
movp(kScratchRegister, op);
jmp(kScratchRegister);
}
}
void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
Move(kScratchRegister, destination, rmode);
jmp(kScratchRegister);
}
void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) {
// TODO(X64): Inline this
jmp(code_object, rmode);
}
int MacroAssembler::CallSize(ExternalReference ext) {
// Opcode for call kScratchRegister is: Rex.B FF D4 (three bytes).
return LoadAddressSize(ext) +
Assembler::kCallScratchRegisterInstructionLength;
}
void MacroAssembler::Call(ExternalReference ext) {
#ifdef DEBUG
int end_position = pc_offset() + CallSize(ext);
#endif
LoadAddress(kScratchRegister, ext);
call(kScratchRegister);
#ifdef DEBUG
CHECK_EQ(end_position, pc_offset());
#endif
}
void MacroAssembler::Call(const Operand& op) {
if (kPointerSize == kInt64Size) {
call(op);
} else {
movp(kScratchRegister, op);
call(kScratchRegister);
}
}
void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) {
#ifdef DEBUG
int end_position = pc_offset() + CallSize(destination);
#endif
Move(kScratchRegister, destination, rmode);
call(kScratchRegister);
#ifdef DEBUG
CHECK_EQ(pc_offset(), end_position);
#endif
}
void MacroAssembler::Call(Handle<Code> code_object,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id) {
#ifdef DEBUG
int end_position = pc_offset() + CallSize(code_object);
#endif
DCHECK(RelocInfo::IsCodeTarget(rmode) ||
rmode == RelocInfo::CODE_AGE_SEQUENCE);
call(code_object, rmode, ast_id);
#ifdef DEBUG
CHECK_EQ(end_position, pc_offset());
#endif
}
void MacroAssembler::Pushad() {
Push(rax);
Push(rcx);
Push(rdx);
Push(rbx);
// Not pushing rsp or rbp.
Push(rsi);
Push(rdi);
Push(r8);
Push(r9);
// r10 is kScratchRegister.
Push(r11);
// r12 is kSmiConstantRegister.
// r13 is kRootRegister.
Push(r14);
Push(r15);
STATIC_ASSERT(11 == kNumSafepointSavedRegisters);
// Use lea for symmetry with Popad.
int sp_delta =
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
leap(rsp, Operand(rsp, -sp_delta));
}
void MacroAssembler::Popad() {
// Popad must not change the flags, so use lea instead of addq.
int sp_delta =
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
leap(rsp, Operand(rsp, sp_delta));
Pop(r15);
Pop(r14);
Pop(r11);
Pop(r9);
Pop(r8);
Pop(rdi);
Pop(rsi);
Pop(rbx);
Pop(rdx);
Pop(rcx);
Pop(rax);
}
void MacroAssembler::Dropad() {
addp(rsp, Immediate(kNumSafepointRegisters * kPointerSize));
}
// Order general registers are pushed by Pushad:
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
const int
MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = {
0,
1,
2,
3,
-1,
-1,
4,
5,
6,
7,
-1,
8,
-1,
-1,
9,
10
};
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst,
const Immediate& imm) {
movp(SafepointRegisterSlot(dst), imm);
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
movp(SafepointRegisterSlot(dst), src);
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
movp(dst, SafepointRegisterSlot(src));
}
Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
return Operand(rsp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
int handler_index) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize +
kFPOnStackSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// We will build up the handler from the bottom by pushing on the stack.
// First push the frame pointer and context.
if (kind == StackHandler::JS_ENTRY) {
// The frame pointer does not point to a JS frame so we save NULL for
// rbp. We expect the code throwing an exception to check rbp before
// dereferencing it to restore the context.
pushq(Immediate(0)); // NULL frame pointer.
Push(Smi::FromInt(0)); // No context.
} else {
pushq(rbp);
Push(rsi);
}
// Push the state and the code object.
unsigned state =
StackHandler::IndexField::encode(handler_index) |
StackHandler::KindField::encode(kind);
Push(Immediate(state));
Push(CodeObject());
// Link the current handler as the next handler.
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
Push(ExternalOperand(handler_address));
// Set this new handler as the current one.
movp(ExternalOperand(handler_address), rsp);
}
void MacroAssembler::PopTryHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
Pop(ExternalOperand(handler_address));
addp(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
}
void MacroAssembler::JumpToHandlerEntry() {
// Compute the handler entry address and jump to it. The handler table is
// a fixed array of (smi-tagged) code offsets.
// rax = exception, rdi = code object, rdx = state.
movp(rbx, FieldOperand(rdi, Code::kHandlerTableOffset));
shrp(rdx, Immediate(StackHandler::kKindWidth));
movp(rdx,
FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize));
SmiToInteger64(rdx, rdx);
leap(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize));
jmp(rdi);
}
void MacroAssembler::Throw(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize +
kFPOnStackSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in rax.
if (!value.is(rax)) {
movp(rax, value);
}
// Drop the stack pointer to the top of the top handler.
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
movp(rsp, ExternalOperand(handler_address));
// Restore the next handler.
Pop(ExternalOperand(handler_address));
// Remove the code object and state, compute the handler address in rdi.
Pop(rdi); // Code object.
Pop(rdx); // Offset and state.
// Restore the context and frame pointer.
Pop(rsi); // Context.
popq(rbp); // Frame pointer.
// If the handler is a JS frame, restore the context to the frame.
// (kind == ENTRY) == (rbp == 0) == (rsi == 0), so we could test either
// rbp or rsi.
Label skip;
testp(rsi, rsi);
j(zero, &skip, Label::kNear);
movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
bind(&skip);
JumpToHandlerEntry();
}
void MacroAssembler::ThrowUncatchable(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize +
kFPOnStackSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in rax.
if (!value.is(rax)) {
movp(rax, value);
}
// Drop the stack pointer to the top of the top stack handler.
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
Load(rsp, handler_address);
// Unwind the handlers until the top ENTRY handler is found.
Label fetch_next, check_kind;
jmp(&check_kind, Label::kNear);
bind(&fetch_next);
movp(rsp, Operand(rsp, StackHandlerConstants::kNextOffset));
bind(&check_kind);
STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
testl(Operand(rsp, StackHandlerConstants::kStateOffset),
Immediate(StackHandler::KindField::kMask));
j(not_zero, &fetch_next);
// Set the top handler address to next handler past the top ENTRY handler.
Pop(ExternalOperand(handler_address));
// Remove the code object and state, compute the handler address in rdi.
Pop(rdi); // Code object.
Pop(rdx); // Offset and state.
// Clear the context pointer and frame pointer (0 was saved in the handler).
Pop(rsi);
popq(rbp);
JumpToHandlerEntry();
}
void MacroAssembler::Ret() {
ret(0);
}
void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
if (is_uint16(bytes_dropped)) {
ret(bytes_dropped);
} else {
PopReturnAddressTo(scratch);
addp(rsp, Immediate(bytes_dropped));
PushReturnAddressFrom(scratch);
ret(0);
}
}
void MacroAssembler::FCmp() {
fucomip();
fstp(0);
}
void MacroAssembler::CmpObjectType(Register heap_object,
InstanceType type,
Register map) {
movp(map, FieldOperand(heap_object, HeapObject::kMapOffset));
CmpInstanceType(map, type);
}
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
Immediate(static_cast<int8_t>(type)));
}
void MacroAssembler::CheckFastElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleyElementValue));
j(above, fail, distance);
}
void MacroAssembler::CheckFastObjectElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleySmiElementValue));
j(below_equal, fail, distance);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleyElementValue));
j(above, fail, distance);
}
void MacroAssembler::CheckFastSmiElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleySmiElementValue));
j(above, fail, distance);
}
void MacroAssembler::StoreNumberToDoubleElements(
Register maybe_number,
Register elements,
Register index,
XMMRegister xmm_scratch,
Label* fail,
int elements_offset) {
Label smi_value, is_nan, maybe_nan, not_nan, have_double_value, done;
JumpIfSmi(maybe_number, &smi_value, Label::kNear);
CheckMap(maybe_number,
isolate()->factory()->heap_number_map(),
fail,
DONT_DO_SMI_CHECK);
// Double value, canonicalize NaN.
uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
cmpl(FieldOperand(maybe_number, offset),
Immediate(kNaNOrInfinityLowerBoundUpper32));
j(greater_equal, &maybe_nan, Label::kNear);
bind(&not_nan);
movsd(xmm_scratch, FieldOperand(maybe_number, HeapNumber::kValueOffset));
bind(&have_double_value);
movsd(FieldOperand(elements, index, times_8,
FixedDoubleArray::kHeaderSize - elements_offset),
xmm_scratch);
jmp(&done);
bind(&maybe_nan);
// Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
// it's an Infinity, and the non-NaN code path applies.
j(greater, &is_nan, Label::kNear);
cmpl(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
j(zero, &not_nan);
bind(&is_nan);
// Convert all NaNs to the same canonical NaN value when they are stored in
// the double array.
Set(kScratchRegister,
bit_cast<uint64_t>(
FixedDoubleArray::canonical_not_the_hole_nan_as_double()));
movq(xmm_scratch, kScratchRegister);
jmp(&have_double_value, Label::kNear);
bind(&smi_value);
// Value is a smi. convert to a double and store.
// Preserve original value.
SmiToInteger32(kScratchRegister, maybe_number);
Cvtlsi2sd(xmm_scratch, kScratchRegister);
movsd(FieldOperand(elements, index, times_8,
FixedDoubleArray::kHeaderSize - elements_offset),
xmm_scratch);
bind(&done);
}
void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
}
void MacroAssembler::CheckMap(Register obj,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
CompareMap(obj, map);
j(not_equal, fail);
}
void MacroAssembler::ClampUint8(Register reg) {
Label done;
testl(reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
setcc(negative, reg); // 1 if negative, 0 if positive.
decb(reg); // 0 if negative, 255 if positive.
bind(&done);
}
void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
XMMRegister temp_xmm_reg,
Register result_reg) {
Label done;
Label conv_failure;
xorps(temp_xmm_reg, temp_xmm_reg);
cvtsd2si(result_reg, input_reg);
testl(result_reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
cmpl(result_reg, Immediate(1));
j(overflow, &conv_failure, Label::kNear);
movl(result_reg, Immediate(0));
setcc(sign, result_reg);
subl(result_reg, Immediate(1));
andl(result_reg, Immediate(255));
jmp(&done, Label::kNear);
bind(&conv_failure);
Set(result_reg, 0);
ucomisd(input_reg, temp_xmm_reg);
j(below, &done, Label::kNear);
Set(result_reg, 255);
bind(&done);
}
void MacroAssembler::LoadUint32(XMMRegister dst,
Register src) {
if (FLAG_debug_code) {
cmpq(src, Immediate(0xffffffff));
Assert(below_equal, kInputGPRIsExpectedToHaveUpper32Cleared);
}
cvtqsi2sd(dst, src);
}
void MacroAssembler::SlowTruncateToI(Register result_reg,
Register input_reg,
int offset) {
DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
call(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
Register input_reg) {
Label done;
movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
cvttsd2siq(result_reg, xmm0);
cmpq(result_reg, Immediate(1));
j(no_overflow, &done, Label::kNear);
// Slow case.
if (input_reg.is(result_reg)) {
subp(rsp, Immediate(kDoubleSize));
movsd(MemOperand(rsp, 0), xmm0);
SlowTruncateToI(result_reg, rsp, 0);
addp(rsp, Immediate(kDoubleSize));
} else {
SlowTruncateToI(result_reg, input_reg);
}
bind(&done);
// Keep our invariant that the upper 32 bits are zero.
movl(result_reg, result_reg);
}
void MacroAssembler::TruncateDoubleToI(Register result_reg,
XMMRegister input_reg) {
Label done;
cvttsd2siq(result_reg, input_reg);
cmpq(result_reg, Immediate(1));
j(no_overflow, &done, Label::kNear);
subp(rsp, Immediate(kDoubleSize));
movsd(MemOperand(rsp, 0), input_reg);
SlowTruncateToI(result_reg, rsp, 0);
addp(rsp, Immediate(kDoubleSize));
bind(&done);
// Keep our invariant that the upper 32 bits are zero.
movl(result_reg, result_reg);
}
void MacroAssembler::DoubleToI(Register result_reg, XMMRegister input_reg,
XMMRegister scratch,
MinusZeroMode minus_zero_mode,
Label* lost_precision, Label* is_nan,
Label* minus_zero, Label::Distance dst) {
cvttsd2si(result_reg, input_reg);
Cvtlsi2sd(xmm0, result_reg);
ucomisd(xmm0, input_reg);
j(not_equal, lost_precision, dst);
j(parity_even, is_nan, dst); // NaN.
if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
Label done;
// The integer converted back is equal to the original. We
// only have to test if we got -0 as an input.
testl(result_reg, result_reg);
j(not_zero, &done, Label::kNear);
movmskpd(result_reg, input_reg);
// Bit 0 contains the sign of the double in input_reg.
// If input was positive, we are ok and return 0, otherwise
// jump to minus_zero.
andl(result_reg, Immediate(1));
j(not_zero, minus_zero, dst);
bind(&done);
}
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
movp(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
}
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
movl(dst, FieldOperand(map, Map::kBitField3Offset));
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
}
void MacroAssembler::EnumLength(Register dst, Register map) {
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
movl(dst, FieldOperand(map, Map::kBitField3Offset));
andl(dst, Immediate(Map::EnumLengthBits::kMask));
Integer32ToSmi(dst, dst);
}
void MacroAssembler::DispatchMap(Register obj,
Register unused,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
j(equal, success, RelocInfo::CODE_TARGET);
bind(&fail);
}
void MacroAssembler::AssertNumber(Register object) {
if (emit_debug_code()) {
Label ok;
Condition is_smi = CheckSmi(object);
j(is_smi, &ok, Label::kNear);
Cmp(FieldOperand(object, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
Check(equal, kOperandIsNotANumber);
bind(&ok);
}
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
Condition is_smi = CheckSmi(object);
Check(NegateCondition(is_smi), kOperandIsASmi);
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
Condition is_smi = CheckSmi(object);
Check(is_smi, kOperandIsNotASmi);
}
}
void MacroAssembler::AssertSmi(const Operand& object) {
if (emit_debug_code()) {
Condition is_smi = CheckSmi(object);
Check(is_smi, kOperandIsNotASmi);
}
}
void MacroAssembler::AssertZeroExtended(Register int32_register) {
if (emit_debug_code()) {
DCHECK(!int32_register.is(kScratchRegister));
movq(kScratchRegister, V8_INT64_C(0x0000000100000000));
cmpq(kScratchRegister, int32_register);
Check(above_equal, k32BitValueInRegisterIsNotZeroExtended);
}
}
void MacroAssembler::AssertString(Register object) {
if (emit_debug_code()) {
testb(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAString);
Push(object);
movp(object, FieldOperand(object, HeapObject::kMapOffset));
CmpInstanceType(object, FIRST_NONSTRING_TYPE);
Pop(object);
Check(below, kOperandIsNotAString);
}
}
void MacroAssembler::AssertName(Register object) {
if (emit_debug_code()) {
testb(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAName);
Push(object);
movp(object, FieldOperand(object, HeapObject::kMapOffset));
CmpInstanceType(object, LAST_NAME_TYPE);
Pop(object);
Check(below_equal, kOperandIsNotAName);
}
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
if (emit_debug_code()) {
Label done_checking;
AssertNotSmi(object);
Cmp(object, isolate()->factory()->undefined_value());
j(equal, &done_checking);
Cmp(FieldOperand(object, 0), isolate()->factory()->allocation_site_map());
Assert(equal, kExpectedUndefinedOrCell);
bind(&done_checking);
}
}
void MacroAssembler::AssertRootValue(Register src,
Heap::RootListIndex root_value_index,
BailoutReason reason) {
if (emit_debug_code()) {
DCHECK(!src.is(kScratchRegister));
LoadRoot(kScratchRegister, root_value_index);
cmpp(src, kScratchRegister);
Check(equal, reason);
}
}
Condition MacroAssembler::IsObjectStringType(Register heap_object,
Register map,
Register instance_type) {
movp(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
testb(instance_type, Immediate(kIsNotStringMask));
return zero;
}
Condition MacroAssembler::IsObjectNameType(Register heap_object,
Register map,
Register instance_type) {
movp(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
cmpb(instance_type, Immediate(static_cast<uint8_t>(LAST_NAME_TYPE)));
return below_equal;
}
void MacroAssembler::TryGetFunctionPrototype(Register function,
Register result,
Label* miss,
bool miss_on_bound_function) {
Label non_instance;
if (miss_on_bound_function) {
// Check that the receiver isn't a smi.
testl(function, Immediate(kSmiTagMask));
j(zero, miss);
// Check that the function really is a function.
CmpObjectType(function, JS_FUNCTION_TYPE, result);
j(not_equal, miss);
movp(kScratchRegister,
FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
// It's not smi-tagged (stored in the top half of a smi-tagged 8-byte
// field).
TestBitSharedFunctionInfoSpecialField(kScratchRegister,
SharedFunctionInfo::kCompilerHintsOffset,
SharedFunctionInfo::kBoundFunction);
j(not_zero, miss);
// Make sure that the function has an instance prototype.
testb(FieldOperand(result, Map::kBitFieldOffset),
Immediate(1 << Map::kHasNonInstancePrototype));
j(not_zero, &non_instance, Label::kNear);
}
// Get the prototype or initial map from the function.
movp(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
CompareRoot(result, Heap::kTheHoleValueRootIndex);
j(equal, miss);
// If the function does not have an initial map, we're done.
Label done;
CmpObjectType(result, MAP_TYPE, kScratchRegister);
j(not_equal, &done, Label::kNear);
// Get the prototype from the initial map.
movp(result, FieldOperand(result, Map::kPrototypeOffset));
if (miss_on_bound_function) {
jmp(&done, Label::kNear);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
bind(&non_instance);
movp(result, FieldOperand(result, Map::kConstructorOffset));
}
// All done.
bind(&done);
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
if (FLAG_native_code_counters && counter->Enabled()) {
Operand counter_operand = ExternalOperand(ExternalReference(counter));
movl(counter_operand, Immediate(value));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand counter_operand = ExternalOperand(ExternalReference(counter));
if (value == 1) {
incl(counter_operand);
} else {
addl(counter_operand, Immediate(value));
}
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand counter_operand = ExternalOperand(ExternalReference(counter));
if (value == 1) {
decl(counter_operand);
} else {
subl(counter_operand, Immediate(value));
}
}
}
void MacroAssembler::DebugBreak() {
Set(rax, 0); // No arguments.
LoadAddress(rbx, ExternalReference(Runtime::kDebugBreak, isolate()));
CEntryStub ces(isolate(), 1);
DCHECK(AllowThisStubCall(&ces));
Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
}
void MacroAssembler::InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected,
actual,
Handle<Code>::null(),
code,
&done,
&definitely_mismatches,
flag,
Label::kNear,
call_wrapper);
if (!definitely_mismatches) {
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
call(code);
call_wrapper.AfterCall();
} else {
DCHECK(flag == JUMP_FUNCTION);
jmp(code);
}
bind(&done);
}
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
DCHECK(function.is(rdi));
movp(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
movp(rsi, FieldOperand(function, JSFunction::kContextOffset));
LoadSharedFunctionInfoSpecialField(rbx, rdx,
SharedFunctionInfo::kFormalParameterCountOffset);
// Advances rdx to the end of the Code object header, to the start of
// the executable code.
movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
ParameterCount expected(rbx);
InvokeCode(rdx, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
DCHECK(function.is(rdi));
movp(rsi, FieldOperand(function, JSFunction::kContextOffset));
// Advances rdx to the end of the Code object header, to the start of
// the executable code.
movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
InvokeCode(rdx, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
Move(rdi, function);
InvokeFunction(rdi, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_register,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
Label::Distance near_jump,
const CallWrapper& call_wrapper) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label invoke;
if (expected.is_immediate()) {
DCHECK(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
Set(rax, actual.immediate());
if (expected.immediate() ==
SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
// Don't worry about adapting arguments for built-ins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
Set(rbx, expected.immediate());
}
}
} else {
if (actual.is_immediate()) {
// Expected is in register, actual is immediate. This is the
// case when we invoke function values without going through the
// IC mechanism.
cmpp(expected.reg(), Immediate(actual.immediate()));
j(equal, &invoke, Label::kNear);
DCHECK(expected.reg().is(rbx));
Set(rax, actual.immediate());
} else if (!expected.reg().is(actual.reg())) {
// Both expected and actual are in (different) registers. This
// is the case when we invoke functions using call and apply.
cmpp(expected.reg(), actual.reg());
j(equal, &invoke, Label::kNear);
DCHECK(actual.reg().is(rax));
DCHECK(expected.reg().is(rbx));
}
}
if (!definitely_matches) {
Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (!code_constant.is_null()) {
Move(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
addp(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
} else if (!code_register.is(rdx)) {
movp(rdx, code_register);
}
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor));
Call(adaptor, RelocInfo::CODE_TARGET);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
jmp(done, near_jump);
}
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&invoke);
}
}
void MacroAssembler::StubPrologue() {
pushq(rbp); // Caller's frame pointer.
movp(rbp, rsp);
Push(rsi); // Callee's context.
Push(Smi::FromInt(StackFrame::STUB));
}
void MacroAssembler::Prologue(bool code_pre_aging) {
PredictableCodeSizeScope predictible_code_size_scope(this,
kNoCodeAgeSequenceLength);
if (code_pre_aging) {
// Pre-age the code.
Call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
RelocInfo::CODE_AGE_SEQUENCE);
Nop(kNoCodeAgeSequenceLength - Assembler::kShortCallInstructionLength);
} else {
pushq(rbp); // Caller's frame pointer.
movp(rbp, rsp);
Push(rsi); // Callee's context.
Push(rdi); // Callee's JS function.
}
}
void MacroAssembler::EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on x64.
UNREACHABLE();
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
pushq(rbp);
movp(rbp, rsp);
Push(rsi); // Context.
Push(Smi::FromInt(type));
Move(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
Push(kScratchRegister);
if (emit_debug_code()) {
Move(kScratchRegister,
isolate()->factory()->undefined_value(),
RelocInfo::EMBEDDED_OBJECT);
cmpp(Operand(rsp, 0), kScratchRegister);
Check(not_equal, kCodeObjectNotProperlyPatched);
}
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
if (emit_debug_code()) {
Move(kScratchRegister, Smi::FromInt(type));
cmpp(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister);
Check(equal, kStackFrameTypesMustMatch);
}
movp(rsp, rbp);
popq(rbp);
}
void MacroAssembler::EnterExitFramePrologue(bool save_rax) {
// Set up the frame structure on the stack.
// All constants are relative to the frame pointer of the exit frame.
DCHECK(ExitFrameConstants::kCallerSPDisplacement ==
kFPOnStackSize + kPCOnStackSize);
DCHECK(ExitFrameConstants::kCallerPCOffset == kFPOnStackSize);
DCHECK(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
pushq(rbp);
movp(rbp, rsp);
// Reserve room for entry stack pointer and push the code object.
DCHECK(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
Push(Immediate(0)); // Saved entry sp, patched before call.
Move(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
Push(kScratchRegister); // Accessed from EditFrame::code_slot.
// Save the frame pointer and the context in top.
if (save_rax) {
movp(r14, rax); // Backup rax in callee-save register.
}
Store(ExternalReference(Isolate::kCEntryFPAddress, isolate()), rbp);
Store(ExternalReference(Isolate::kContextAddress, isolate()), rsi);
Store(ExternalReference(Isolate::kCFunctionAddress, isolate()), rbx);
}
void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space,
bool save_doubles) {
#ifdef _WIN64
const int kShadowSpace = 4;
arg_stack_space += kShadowSpace;
#endif
// Optionally save all XMM registers.
if (save_doubles) {
int space = XMMRegister::kMaxNumAllocatableRegisters * kDoubleSize +
arg_stack_space * kRegisterSize;
subp(rsp, Immediate(space));
int offset = -2 * kPointerSize;
for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); i++) {
XMMRegister reg = XMMRegister::FromAllocationIndex(i);
movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg);
}
} else if (arg_stack_space > 0) {
subp(rsp, Immediate(arg_stack_space * kRegisterSize));
}
// Get the required frame alignment for the OS.
const int kFrameAlignment = base::OS::ActivationFrameAlignment();
if (kFrameAlignment > 0) {
DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment));
DCHECK(is_int8(kFrameAlignment));
andp(rsp, Immediate(-kFrameAlignment));
}
// Patch the saved entry sp.
movp(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
}
void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles) {
EnterExitFramePrologue(true);
// Set up argv in callee-saved register r15. It is reused in LeaveExitFrame,
// so it must be retained across the C-call.
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
leap(r15, Operand(rbp, r14, times_pointer_size, offset));
EnterExitFrameEpilogue(arg_stack_space, save_doubles);
}
void MacroAssembler::EnterApiExitFrame(int arg_stack_space) {
EnterExitFramePrologue(false);
EnterExitFrameEpilogue(arg_stack_space, false);
}
void MacroAssembler::LeaveExitFrame(bool save_doubles) {
// Registers:
// r15 : argv
if (save_doubles) {
int offset = -2 * kPointerSize;
for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); i++) {
XMMRegister reg = XMMRegister::FromAllocationIndex(i);
movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize)));
}
}
// Get the return address from the stack and restore the frame pointer.
movp(rcx, Operand(rbp, kFPOnStackSize));
movp(rbp, Operand(rbp, 0 * kPointerSize));
// Drop everything up to and including the arguments and the receiver
// from the caller stack.
leap(rsp, Operand(r15, 1 * kPointerSize));
PushReturnAddressFrom(rcx);
LeaveExitFrameEpilogue(true);
}
void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
movp(rsp, rbp);
popq(rbp);
LeaveExitFrameEpilogue(restore_context);
}
void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
// Restore current context from top and clear it in debug mode.
ExternalReference context_address(Isolate::kContextAddress, isolate());
Operand context_operand = ExternalOperand(context_address);
if (restore_context) {
movp(rsi, context_operand);
}
#ifdef DEBUG
movp(context_operand, Immediate(0));
#endif
// Clear the top frame.
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
isolate());
Operand c_entry_fp_operand = ExternalOperand(c_entry_fp_address);
movp(c_entry_fp_operand, Immediate(0));
}
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
DCHECK(!holder_reg.is(scratch));
DCHECK(!scratch.is(kScratchRegister));
// Load current lexical context from the stack frame.
movp(scratch, Operand(rbp, StandardFrameConstants::kContextOffset));
// When generating debug code, make sure the lexical context is set.
if (emit_debug_code()) {
cmpp(scratch, Immediate(0));
Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
}
// Load the native context of the current context.
int offset =
Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
movp(scratch, FieldOperand(scratch, offset));
movp(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
// Check the context is a native context.
if (emit_debug_code()) {
Cmp(FieldOperand(scratch, HeapObject::kMapOffset),
isolate()->factory()->native_context_map());
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
}
// Check if both contexts are the same.
cmpp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
j(equal, &same_contexts);
// Compare security tokens.
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
// Check the context is a native context.
if (emit_debug_code()) {
// Preserve original value of holder_reg.
Push(holder_reg);
movp(holder_reg,
FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
CompareRoot(holder_reg, Heap::kNullValueRootIndex);
Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
// Read the first word and compare to native_context_map(),
movp(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
CompareRoot(holder_reg, Heap::kNativeContextMapRootIndex);
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
Pop(holder_reg);
}
movp(kScratchRegister,
FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
int token_offset =
Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
movp(scratch, FieldOperand(scratch, token_offset));
cmpp(scratch, FieldOperand(kScratchRegister, token_offset));
j(not_equal, miss);
bind(&same_contexts);
}
// Compute the hash code from the untagged key. This must be kept in sync with
// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
// code-stub-hydrogen.cc
void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiToInteger32(scratch, scratch);
// Xor original key with a seed.
xorl(r0, scratch);
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
movl(scratch, r0);
notl(r0);
shll(scratch, Immediate(15));
addl(r0, scratch);
// hash = hash ^ (hash >> 12);
movl(scratch, r0);
shrl(scratch, Immediate(12));
xorl(r0, scratch);
// hash = hash + (hash << 2);
leal(r0, Operand(r0, r0, times_4, 0));
// hash = hash ^ (hash >> 4);
movl(scratch, r0);
shrl(scratch, Immediate(4));
xorl(r0, scratch);
// hash = hash * 2057;
imull(r0, r0, Immediate(2057));
// hash = hash ^ (hash >> 16);
movl(scratch, r0);
shrl(scratch, Immediate(16));
xorl(r0, scratch);
}
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register r0,
Register r1,
Register r2,
Register result) {
// Register use:
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// Scratch registers:
//
// r0 - holds the untagged key on entry and holds the hash once computed.
//
// r1 - used to hold the capacity mask of the dictionary
//
// r2 - used for the index into the dictionary.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
Label done;
GetNumberHash(r0, r1);
// Compute capacity mask.
SmiToInteger32(r1, FieldOperand(elements,
SeededNumberDictionary::kCapacityOffset));
decl(r1);
// Generate an unrolled loop that performs a few probes before giving up.
for (int i = 0; i < kNumberDictionaryProbes; i++) {
// Use r2 for index calculations and keep the hash intact in r0.
movp(r2, r0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
addl(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
}
andp(r2, r1);
// Scale the index by multiplying by the entry size.
DCHECK(SeededNumberDictionary::kEntrySize == 3);
leap(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
// Check if the key matches.
cmpp(key, FieldOperand(elements,
r2,
times_pointer_size,
SeededNumberDictionary::kElementsStartOffset));
if (i != (kNumberDictionaryProbes - 1)) {
j(equal, &done);
} else {
j(not_equal, miss);
}
}
bind(&done);
// Check that the value is a field property.
const int kDetailsOffset =
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
DCHECK_EQ(FIELD, 0);
Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
Smi::FromInt(PropertyDetails::TypeField::kMask));
j(not_zero, miss);
// Get the value at the masked, scaled index.
const int kValueOffset =
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
movp(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
}
void MacroAssembler::LoadAllocationTopHelper(Register result,
Register scratch,
AllocationFlags flags) {
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
// Just return if allocation top is already known.
if ((flags & RESULT_CONTAINS_TOP) != 0) {
// No use of scratch if allocation top is provided.
DCHECK(!scratch.is_valid());
#ifdef DEBUG
// Assert that result actually contains top on entry.
Operand top_operand = ExternalOperand(allocation_top);
cmpp(result, top_operand);
Check(equal, kUnexpectedAllocationTop);
#endif
return;
}
// Move address of new object to result. Use scratch register if available,
// and keep address in scratch until call to UpdateAllocationTopHelper.
if (scratch.is_valid()) {
LoadAddress(scratch, allocation_top);
movp(result, Operand(scratch, 0));
} else {
Load(result, allocation_top);
}
}
void MacroAssembler::MakeSureDoubleAlignedHelper(Register result,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
if (kPointerSize == kDoubleSize) {
if (FLAG_debug_code) {
testl(result, Immediate(kDoubleAlignmentMask));
Check(zero, kAllocationIsNotDoubleAligned);
}
} else {
// Align the next allocation. Storing the filler map without checking top
// is safe in new-space because the limit of the heap is aligned there.
DCHECK(kPointerSize * 2 == kDoubleSize);
DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
// Make sure scratch is not clobbered by this function as it might be
// used in UpdateAllocationTopHelper later.
DCHECK(!scratch.is(kScratchRegister));
Label aligned;
testl(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
cmpp(result, ExternalOperand(allocation_limit));
j(above_equal, gc_required);
}
LoadRoot(kScratchRegister, Heap::kOnePointerFillerMapRootIndex);
movp(Operand(result, 0), kScratchRegister);
addp(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
}
void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
Register scratch,
AllocationFlags flags) {
if (emit_debug_code()) {
testp(result_end, Immediate(kObjectAlignmentMask));
Check(zero, kUnalignedAllocationInNewSpace);
}
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
// Update new top.
if (scratch.is_valid()) {
// Scratch already contains address of allocation top.
movp(Operand(scratch, 0), result_end);
} else {
Store(allocation_top, result_end);
}
}
void MacroAssembler::Allocate(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
movl(result, Immediate(0x7091));
if (result_end.is_valid()) {
movl(result_end, Immediate(0x7191));
}
if (scratch.is_valid()) {
movl(scratch, Immediate(0x7291));
}
}
jmp(gc_required);
return;
}
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
if ((flags & DOUBLE_ALIGNMENT) != 0) {
MakeSureDoubleAlignedHelper(result, scratch, gc_required, flags);
}
// Calculate new top and bail out if new space is exhausted.
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
Register top_reg = result_end.is_valid() ? result_end : result;
if (!top_reg.is(result)) {
movp(top_reg, result);
}
addp(top_reg, Immediate(object_size));
j(carry, gc_required);
Operand limit_operand = ExternalOperand(allocation_limit);
cmpp(top_reg, limit_operand);
j(above, gc_required);
// Update allocation top.
UpdateAllocationTopHelper(top_reg, scratch, flags);
bool tag_result = (flags & TAG_OBJECT) != 0;
if (top_reg.is(result)) {
if (tag_result) {
subp(result, Immediate(object_size - kHeapObjectTag));
} else {
subp(result, Immediate(object_size));
}
} else if (tag_result) {
// Tag the result if requested.
DCHECK(kHeapObjectTag == 1);
incp(result);
}
}
void MacroAssembler::Allocate(int header_size,
ScaleFactor element_size,
Register element_count,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
DCHECK((flags & SIZE_IN_WORDS) == 0);
leap(result_end, Operand(element_count, element_size, header_size));
Allocate(result_end, result, result_end, scratch, gc_required, flags);
}
void MacroAssembler::Allocate(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
DCHECK((flags & SIZE_IN_WORDS) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
movl(result, Immediate(0x7091));
movl(result_end, Immediate(0x7191));
if (scratch.is_valid()) {
movl(scratch, Immediate(0x7291));
}
// object_size is left unchanged by this function.
}
jmp(gc_required);
return;
}
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
if ((flags & DOUBLE_ALIGNMENT) != 0) {
MakeSureDoubleAlignedHelper(result, scratch, gc_required, flags);
}
// Calculate new top and bail out if new space is exhausted.
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
if (!object_size.is(result_end)) {
movp(result_end, object_size);
}
addp(result_end, result);
j(carry, gc_required);
Operand limit_operand = ExternalOperand(allocation_limit);
cmpp(result_end, limit_operand);
j(above, gc_required);
// Update allocation top.
UpdateAllocationTopHelper(result_end, scratch, flags);
// Tag the result if requested.
if ((flags & TAG_OBJECT) != 0) {
addp(result, Immediate(kHeapObjectTag));
}
}
void MacroAssembler::UndoAllocationInNewSpace(Register object) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Make sure the object has no tag before resetting top.
andp(object, Immediate(~kHeapObjectTagMask));
Operand top_operand = ExternalOperand(new_space_allocation_top);
#ifdef DEBUG
cmpp(object, top_operand);
Check(below, kUndoAllocationOfNonAllocatedMemory);
#endif
movp(top_operand, object);
}
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch,
Label* gc_required,
MutableMode mode) {
// Allocate heap number in new space.
Allocate(HeapNumber::kSize, result, scratch, no_reg, gc_required, TAG_OBJECT);
Heap::RootListIndex map_index = mode == MUTABLE
? Heap::kMutableHeapNumberMapRootIndex
: Heap::kHeapNumberMapRootIndex;
// Set the map.
LoadRoot(kScratchRegister, map_index);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
const int kHeaderAlignment = SeqTwoByteString::kHeaderSize &
kObjectAlignmentMask;
DCHECK(kShortSize == 2);
// scratch1 = length * 2 + kObjectAlignmentMask.
leap(scratch1, Operand(length, length, times_1, kObjectAlignmentMask +
kHeaderAlignment));
andp(scratch1, Immediate(~kObjectAlignmentMask));
if (kHeaderAlignment > 0) {
subp(scratch1, Immediate(kHeaderAlignment));
}
// Allocate two byte string in new space.
Allocate(SeqTwoByteString::kHeaderSize,
times_1,
scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
LoadRoot(kScratchRegister, Heap::kStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
Integer32ToSmi(scratch1, length);
movp(FieldOperand(result, String::kLengthOffset), scratch1);
movp(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
const int kHeaderAlignment = SeqOneByteString::kHeaderSize &
kObjectAlignmentMask;
movl(scratch1, length);
DCHECK(kCharSize == 1);
addp(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment));
andp(scratch1, Immediate(~kObjectAlignmentMask));
if (kHeaderAlignment > 0) {
subp(scratch1, Immediate(kHeaderAlignment));
}
// Allocate one-byte string in new space.
Allocate(SeqOneByteString::kHeaderSize,
times_1,
scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
LoadRoot(kScratchRegister, Heap::kOneByteStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
Integer32ToSmi(scratch1, length);
movp(FieldOperand(result, String::kLengthOffset), scratch1);
movp(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateOneByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kConsOneByteStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kSlicedStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateOneByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kSlicedOneByteStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
// Copy memory, byte-by-byte, from source to destination. Not optimized for
// long or aligned copies. The contents of scratch and length are destroyed.
// Destination is incremented by length, source, length and scratch are
// clobbered.
// A simpler loop is faster on small copies, but slower on large ones.
// The cld() instruction must have been emitted, to set the direction flag(),
// before calling this function.
void MacroAssembler::CopyBytes(Register destination,
Register source,
Register length,
int min_length,
Register scratch) {
DCHECK(min_length >= 0);
if (emit_debug_code()) {
cmpl(length, Immediate(min_length));
Assert(greater_equal, kInvalidMinLength);
}
Label short_loop, len8, len16, len24, done, short_string;
const int kLongStringLimit = 4 * kPointerSize;
if (min_length <= kLongStringLimit) {
cmpl(length, Immediate(kPointerSize));
j(below, &short_string, Label::kNear);
}
DCHECK(source.is(rsi));
DCHECK(destination.is(rdi));
DCHECK(length.is(rcx));
if (min_length <= kLongStringLimit) {
cmpl(length, Immediate(2 * kPointerSize));
j(below_equal, &len8, Label::kNear);
cmpl(length, Immediate(3 * kPointerSize));
j(below_equal, &len16, Label::kNear);
cmpl(length, Immediate(4 * kPointerSize));
j(below_equal, &len24, Label::kNear);
}
// Because source is 8-byte aligned in our uses of this function,
// we keep source aligned for the rep movs operation by copying the odd bytes
// at the end of the ranges.
movp(scratch, length);
shrl(length, Immediate(kPointerSizeLog2));
repmovsp();
// Move remaining bytes of length.
andl(scratch, Immediate(kPointerSize - 1));
movp(length, Operand(source, scratch, times_1, -kPointerSize));
movp(Operand(destination, scratch, times_1, -kPointerSize), length);
addp(destination, scratch);
if (min_length <= kLongStringLimit) {
jmp(&done, Label::kNear);
bind(&len24);
movp(scratch, Operand(source, 2 * kPointerSize));
movp(Operand(destination, 2 * kPointerSize), scratch);
bind(&len16);
movp(scratch, Operand(source, kPointerSize));
movp(Operand(destination, kPointerSize), scratch);
bind(&len8);
movp(scratch, Operand(source, 0));
movp(Operand(destination, 0), scratch);
// Move remaining bytes of length.
movp(scratch, Operand(source, length, times_1, -kPointerSize));
movp(Operand(destination, length, times_1, -kPointerSize), scratch);
addp(destination, length);
jmp(&done, Label::kNear);
bind(&short_string);
if (min_length == 0) {
testl(length, length);
j(zero, &done, Label::kNear);
}
bind(&short_loop);
movb(scratch, Operand(source, 0));
movb(Operand(destination, 0), scratch);
incp(source);
incp(destination);
decl(length);
j(not_zero, &short_loop);
}
bind(&done);
}
void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
Register end_offset,
Register filler) {
Label loop, entry;
jmp(&entry);
bind(&loop);
movp(Operand(start_offset, 0), filler);
addp(start_offset, Immediate(kPointerSize));
bind(&entry);
cmpp(start_offset, end_offset);
j(less, &loop);
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
movp(dst, Operand(rsi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
movp(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in rsi).
movp(dst, rsi);
}
// We should not have found a with context by walking the context
// chain (i.e., the static scope chain and runtime context chain do
// not agree). A variable occurring in such a scope should have
// slot type LOOKUP and not CONTEXT.
if (emit_debug_code()) {
CompareRoot(FieldOperand(dst, HeapObject::kMapOffset),
Heap::kWithContextMapRootIndex);
Check(not_equal, kVariableResolvedToWithContext);
}
}
void MacroAssembler::LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match) {
// Load the global or builtins object from the current context.
movp(scratch,
Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
movp(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
// Check that the function's map is the same as the expected cached map.
movp(scratch, Operand(scratch,
Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
int offset = expected_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
cmpp(map_in_out, FieldOperand(scratch, offset));
j(not_equal, no_map_match);
// Use the transitioned cached map.
offset = transitioned_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
movp(map_in_out, FieldOperand(scratch, offset));
}
#ifdef _WIN64
static const int kRegisterPassedArguments = 4;
#else
static const int kRegisterPassedArguments = 6;
#endif
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the global or builtins object from the current context.
movp(function,
Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
// Load the native context from the global or builtins object.
movp(function, FieldOperand(function, GlobalObject::kNativeContextOffset));
// Load the function from the native context.
movp(function, Operand(function, Context::SlotOffset(index)));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map) {
// Load the initial map. The global functions all have initial maps.
movp(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
jmp(&ok);
bind(&fail);
Abort(kGlobalFunctionsMustHaveInitialMap);
bind(&ok);
}
}
int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) {
// On Windows 64 stack slots are reserved by the caller for all arguments
// including the ones passed in registers, and space is always allocated for
// the four register arguments even if the function takes fewer than four
// arguments.
// On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers
// and the caller does not reserve stack slots for them.
DCHECK(num_arguments >= 0);
#ifdef _WIN64
const int kMinimumStackSlots = kRegisterPassedArguments;
if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots;
return num_arguments;
#else
if (num_arguments < kRegisterPassedArguments) return 0;
return num_arguments - kRegisterPassedArguments;
#endif
}
void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
Register index,
Register value,
uint32_t encoding_mask) {
Label is_object;
JumpIfNotSmi(string, &is_object);
Abort(kNonObject);
bind(&is_object);
Push(value);
movp(value, FieldOperand(string, HeapObject::kMapOffset));
movzxbp(value, FieldOperand(value, Map::kInstanceTypeOffset));
andb(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
cmpp(value, Immediate(encoding_mask));
Pop(value);
Check(equal, kUnexpectedStringType);
// The index is assumed to be untagged coming in, tag it to compare with the
// string length without using a temp register, it is restored at the end of
// this function.
Integer32ToSmi(index, index);
SmiCompare(index, FieldOperand(string, String::kLengthOffset));
Check(less, kIndexIsTooLarge);
SmiCompare(index, Smi::FromInt(0));
Check(greater_equal, kIndexIsNegative);
// Restore the index
SmiToInteger32(index, index);
}
void MacroAssembler::PrepareCallCFunction(int num_arguments) {
int frame_alignment = base::OS::ActivationFrameAlignment();
DCHECK(frame_alignment != 0);
DCHECK(num_arguments >= 0);
// Make stack end at alignment and allocate space for arguments and old rsp.
movp(kScratchRegister, rsp);
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
int argument_slots_on_stack =
ArgumentStackSlotsForCFunctionCall(num_arguments);
subp(rsp, Immediate((argument_slots_on_stack + 1) * kRegisterSize));
andp(rsp, Immediate(-frame_alignment));
movp(Operand(rsp, argument_slots_on_stack * kRegisterSize), kScratchRegister);
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
LoadAddress(rax, function);
CallCFunction(rax, num_arguments);
}
void MacroAssembler::CallCFunction(Register function, int num_arguments) {
DCHECK(has_frame());
// Check stack alignment.
if (emit_debug_code()) {
CheckStackAlignment();
}
call(function);
DCHECK(base::OS::ActivationFrameAlignment() != 0);
DCHECK(num_arguments >= 0);
int argument_slots_on_stack =
ArgumentStackSlotsForCFunctionCall(num_arguments);
movp(rsp, Operand(rsp, argument_slots_on_stack * kRegisterSize));
}
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6,
Register reg7,
Register reg8) {
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
reg7.is_valid() + reg8.is_valid();
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
if (reg7.is_valid()) regs |= reg7.bit();
if (reg8.is_valid()) regs |= reg8.bit();
int n_of_non_aliasing_regs = NumRegs(regs);
return n_of_valid_regs != n_of_non_aliasing_regs;
}
#endif
CodePatcher::CodePatcher(byte* address, int size)
: address_(address),
size_(size),
masm_(NULL, address, size + Assembler::kGap) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
CpuFeatures::FlushICache(address_, size_);
// Check that the code was patched as expected.
DCHECK(masm_.pc_ == address_ + size_);
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void MacroAssembler::CheckPageFlag(
Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met,
Label::Distance condition_met_distance) {
DCHECK(cc == zero || cc == not_zero);
if (scratch.is(object)) {
andp(scratch, Immediate(~Page::kPageAlignmentMask));
} else {
movp(scratch, Immediate(~Page::kPageAlignmentMask));
andp(scratch, object);
}
if (mask < (1 << kBitsPerByte)) {
testb(Operand(scratch, MemoryChunk::kFlagsOffset),
Immediate(static_cast<uint8_t>(mask)));
} else {
testl(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
}
j(cc, condition_met, condition_met_distance);
}
void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
Register scratch,
Label* if_deprecated) {
if (map->CanBeDeprecated()) {
Move(scratch, map);
movl(scratch, FieldOperand(scratch, Map::kBitField3Offset));
andl(scratch, Immediate(Map::Deprecated::kMask));
j(not_zero, if_deprecated);
}
}
void MacroAssembler::JumpIfBlack(Register object,
Register bitmap_scratch,
Register mask_scratch,
Label* on_black,
Label::Distance on_black_distance) {
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, rcx));
GetMarkBits(object, bitmap_scratch, mask_scratch);
DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
// The mask_scratch register contains a 1 at the position of the first bit
// and a 0 at all other positions, including the position of the second bit.
movp(rcx, mask_scratch);
// Make rcx into a mask that covers both marking bits using the operation
// rcx = mask | (mask << 1).
leap(rcx, Operand(mask_scratch, mask_scratch, times_2, 0));
// Note that we are using a 4-byte aligned 8-byte load.
andp(rcx, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
cmpp(mask_scratch, rcx);
j(equal, on_black, on_black_distance);
}
// Detect some, but not all, common pointer-free objects. This is used by the
// incremental write barrier which doesn't care about oddballs (they are always
// marked black immediately so this code is not hit).
void MacroAssembler::JumpIfDataObject(
Register value,
Register scratch,
Label* not_data_object,
Label::Distance not_data_object_distance) {
Label is_data_object;
movp(scratch, FieldOperand(value, HeapObject::kMapOffset));
CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
j(equal, &is_data_object, Label::kNear);
DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
testb(FieldOperand(scratch, Map::kInstanceTypeOffset),
Immediate(kIsIndirectStringMask | kIsNotStringMask));
j(not_zero, not_data_object, not_data_object_distance);
bind(&is_data_object);
}
void MacroAssembler::GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg) {
DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, rcx));
movp(bitmap_reg, addr_reg);
// Sign extended 32 bit immediate.
andp(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
movp(rcx, addr_reg);
int shift =
Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
shrl(rcx, Immediate(shift));
andp(rcx,
Immediate((Page::kPageAlignmentMask >> shift) &
~(Bitmap::kBytesPerCell - 1)));
addp(bitmap_reg, rcx);
movp(rcx, addr_reg);
shrl(rcx, Immediate(kPointerSizeLog2));
andp(rcx, Immediate((1 << Bitmap::kBitsPerCellLog2) - 1));
movl(mask_reg, Immediate(1));
shlp_cl(mask_reg);
}
void MacroAssembler::EnsureNotWhite(
Register value,
Register bitmap_scratch,
Register mask_scratch,
Label* value_is_white_and_not_data,
Label::Distance distance) {
DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, rcx));
GetMarkBits(value, bitmap_scratch, mask_scratch);
// If the value is black or grey we don't need to do anything.
DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
Label done;
// Since both black and grey have a 1 in the first position and white does
// not have a 1 there we only need to check one bit.
testp(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
j(not_zero, &done, Label::kNear);
if (emit_debug_code()) {
// Check for impossible bit pattern.
Label ok;
Push(mask_scratch);
// shl. May overflow making the check conservative.
addp(mask_scratch, mask_scratch);
testp(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
j(zero, &ok, Label::kNear);
int3();
bind(&ok);
Pop(mask_scratch);
}
// Value is white. We check whether it is data that doesn't need scanning.
// Currently only checks for HeapNumber and non-cons strings.
Register map = rcx; // Holds map while checking type.
Register length = rcx; // Holds length of object after checking type.
Label not_heap_number;
Label is_data_object;
// Check for heap-number
movp(map, FieldOperand(value, HeapObject::kMapOffset));
CompareRoot(map, Heap::kHeapNumberMapRootIndex);
j(not_equal, &not_heap_number, Label::kNear);
movp(length, Immediate(HeapNumber::kSize));
jmp(&is_data_object, Label::kNear);
bind(&not_heap_number);
// Check for strings.
DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
Register instance_type = rcx;
movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
testb(instance_type, Immediate(kIsIndirectStringMask | kIsNotStringMask));
j(not_zero, value_is_white_and_not_data);
// It's a non-indirect (non-cons and non-slice) string.
// If it's external, the length is just ExternalString::kSize.
// Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
Label not_external;
// External strings are the only ones with the kExternalStringTag bit
// set.
DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
testb(instance_type, Immediate(kExternalStringTag));
j(zero, &not_external, Label::kNear);
movp(length, Immediate(ExternalString::kSize));
jmp(&is_data_object, Label::kNear);
bind(&not_external);
// Sequential string, either Latin1 or UC16.
DCHECK(kOneByteStringTag == 0x04);
andp(length, Immediate(kStringEncodingMask));
xorp(length, Immediate(kStringEncodingMask));
addp(length, Immediate(0x04));
// Value now either 4 (if Latin1) or 8 (if UC16), i.e. char-size shifted by 2.
imulp(length, FieldOperand(value, String::kLengthOffset));
shrp(length, Immediate(2 + kSmiTagSize + kSmiShiftSize));
addp(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
andp(length, Immediate(~kObjectAlignmentMask));
bind(&is_data_object);
// Value is a data object, and it is white. Mark it black. Since we know
// that the object is white we can make it black by flipping one bit.
orp(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
andp(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
addl(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset), length);
bind(&done);
}
void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
Label next, start;
Register empty_fixed_array_value = r8;
LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
movp(rcx, rax);
// Check if the enum length field is properly initialized, indicating that
// there is an enum cache.
movp(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
EnumLength(rdx, rbx);
Cmp(rdx, Smi::FromInt(kInvalidEnumCacheSentinel));
j(equal, call_runtime);
jmp(&start);
bind(&next);
movp(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
// For all objects but the receiver, check that the cache is empty.
EnumLength(rdx, rbx);
Cmp(rdx, Smi::FromInt(0));
j(not_equal, call_runtime);
bind(&start);
// Check that there are no elements. Register rcx contains the current JS
// object we've reached through the prototype chain.
Label no_elements;
cmpp(empty_fixed_array_value,
FieldOperand(rcx, JSObject::kElementsOffset));
j(equal, &no_elements);
// Second chance, the object may be using the empty slow element dictionary.
LoadRoot(kScratchRegister, Heap::kEmptySlowElementDictionaryRootIndex);
cmpp(kScratchRegister, FieldOperand(rcx, JSObject::kElementsOffset));
j(not_equal, call_runtime);
bind(&no_elements);
movp(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
cmpp(rcx, null_value);
j(not_equal, &next);
}
void MacroAssembler::TestJSArrayForAllocationMemento(
Register receiver_reg,
Register scratch_reg,
Label* no_memento_found) {
ExternalReference new_space_start =
ExternalReference::new_space_start(isolate());
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
leap(scratch_reg, Operand(receiver_reg,
JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
Move(kScratchRegister, new_space_start);
cmpp(scratch_reg, kScratchRegister);
j(less, no_memento_found);
cmpp(scratch_reg, ExternalOperand(new_space_allocation_top));
j(greater, no_memento_found);
CompareRoot(MemOperand(scratch_reg, -AllocationMemento::kSize),
Heap::kAllocationMementoMapRootIndex);
}
void MacroAssembler::JumpIfDictionaryInPrototypeChain(
Register object,
Register scratch0,
Register scratch1,
Label* found) {
DCHECK(!(scratch0.is(kScratchRegister) && scratch1.is(kScratchRegister)));
DCHECK(!scratch1.is(scratch0));
Register current = scratch0;
Label loop_again;
movp(current, object);
// Loop based on the map going up the prototype chain.
bind(&loop_again);
movp(current, FieldOperand(current, HeapObject::kMapOffset));
movp(scratch1, FieldOperand(current, Map::kBitField2Offset));
DecodeField<Map::ElementsKindBits>(scratch1);
cmpp(scratch1, Immediate(DICTIONARY_ELEMENTS));
j(equal, found);
movp(current, FieldOperand(current, Map::kPrototypeOffset));
CompareRoot(current, Heap::kNullValueRootIndex);
j(not_equal, &loop_again);
}
void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
DCHECK(!dividend.is(rax));
DCHECK(!dividend.is(rdx));
base::MagicNumbersForDivision<uint32_t> mag =
base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
movl(rax, Immediate(mag.multiplier));
imull(dividend);
bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
if (divisor > 0 && neg) addl(rdx, dividend);
if (divisor < 0 && !neg && mag.multiplier > 0) subl(rdx, dividend);
if (mag.shift > 0) sarl(rdx, Immediate(mag.shift));
movl(rax, dividend);
shrl(rax, Immediate(31));
addl(rdx, rax);
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64