blob: 5bb56e6e722af5b415335642e86992229bc90230 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api.h"
#include <string.h> // For memcpy, strlen.
#ifdef V8_USE_ADDRESS_SANITIZER
#include <sanitizer/asan_interface.h>
#endif // V8_USE_ADDRESS_SANITIZER
#include <cmath> // For isnan.
#include "include/v8-debug.h"
#include "include/v8-profiler.h"
#include "include/v8-testing.h"
#include "src/api-natives.h"
#include "src/assert-scope.h"
#include "src/background-parsing-task.h"
#include "src/base/functional.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/time.h"
#include "src/base/utils/random-number-generator.h"
#include "src/bootstrapper.h"
#include "src/char-predicates-inl.h"
#include "src/code-stubs.h"
#include "src/compiler.h"
#include "src/context-measure.h"
#include "src/contexts.h"
#include "src/conversions-inl.h"
#include "src/counters.h"
#include "src/cpu-profiler.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/execution.h"
#include "src/global-handles.h"
#include "src/heap-profiler.h"
#include "src/heap-snapshot-generator-inl.h"
#include "src/icu_util.h"
#include "src/json-parser.h"
#include "src/messages.h"
#include "src/parser.h"
#include "src/pending-compilation-error-handler.h"
#include "src/profile-generator-inl.h"
#include "src/property.h"
#include "src/property-details.h"
#include "src/prototype.h"
#include "src/runtime/runtime.h"
#include "src/runtime-profiler.h"
#include "src/sampler.h"
#include "src/scanner-character-streams.h"
#include "src/simulator.h"
#include "src/snapshot/natives.h"
#include "src/snapshot/snapshot.h"
#include "src/unicode-inl.h"
#include "src/v8.h"
#include "src/v8threads.h"
#include "src/version.h"
#include "src/vm-state-inl.h"
namespace v8 {
#define LOG_API(isolate, expr) LOG(isolate, ApiEntryCall(expr))
#define ENTER_V8(isolate) i::VMState<v8::OTHER> __state__((isolate))
#define PREPARE_FOR_EXECUTION_GENERIC(isolate, context, function_name, \
bailout_value, HandleScopeClass, \
do_callback) \
if (IsExecutionTerminatingCheck(isolate)) { \
return bailout_value; \
} \
HandleScopeClass handle_scope(isolate); \
CallDepthScope call_depth_scope(isolate, context, do_callback); \
LOG_API(isolate, function_name); \
ENTER_V8(isolate); \
bool has_pending_exception = false
#define PREPARE_FOR_EXECUTION_WITH_CONTEXT( \
context, function_name, bailout_value, HandleScopeClass, do_callback) \
auto isolate = context.IsEmpty() \
? i::Isolate::Current() \
: reinterpret_cast<i::Isolate*>(context->GetIsolate()); \
PREPARE_FOR_EXECUTION_GENERIC(isolate, context, function_name, \
bailout_value, HandleScopeClass, do_callback);
#define PREPARE_FOR_EXECUTION_WITH_ISOLATE(isolate, function_name, T) \
PREPARE_FOR_EXECUTION_GENERIC(isolate, Local<Context>(), function_name, \
MaybeLocal<T>(), InternalEscapableScope, \
false);
#define PREPARE_FOR_EXECUTION(context, function_name, T) \
PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, function_name, MaybeLocal<T>(), \
InternalEscapableScope, false)
#define PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, function_name, T) \
PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, function_name, MaybeLocal<T>(), \
InternalEscapableScope, true)
#define PREPARE_FOR_EXECUTION_PRIMITIVE(context, function_name, T) \
PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, function_name, Nothing<T>(), \
i::HandleScope, false)
#define EXCEPTION_BAILOUT_CHECK_SCOPED(isolate, value) \
do { \
if (has_pending_exception) { \
call_depth_scope.Escape(); \
return value; \
} \
} while (false)
#define RETURN_ON_FAILED_EXECUTION(T) \
EXCEPTION_BAILOUT_CHECK_SCOPED(isolate, MaybeLocal<T>())
#define RETURN_ON_FAILED_EXECUTION_PRIMITIVE(T) \
EXCEPTION_BAILOUT_CHECK_SCOPED(isolate, Nothing<T>())
#define RETURN_TO_LOCAL_UNCHECKED(maybe_local, T) \
return maybe_local.FromMaybe(Local<T>());
#define RETURN_ESCAPED(value) return handle_scope.Escape(value);
namespace {
Local<Context> ContextFromHeapObject(i::Handle<i::Object> obj) {
return reinterpret_cast<v8::Isolate*>(i::HeapObject::cast(*obj)->GetIsolate())
->GetCurrentContext();
}
class InternalEscapableScope : public v8::EscapableHandleScope {
public:
explicit inline InternalEscapableScope(i::Isolate* isolate)
: v8::EscapableHandleScope(reinterpret_cast<v8::Isolate*>(isolate)) {}
};
class CallDepthScope {
public:
explicit CallDepthScope(i::Isolate* isolate, Local<Context> context,
bool do_callback)
: isolate_(isolate),
context_(context),
escaped_(false),
do_callback_(do_callback) {
// TODO(dcarney): remove this when blink stops crashing.
DCHECK(!isolate_->external_caught_exception());
isolate_->handle_scope_implementer()->IncrementCallDepth();
if (!context_.IsEmpty()) context_->Enter();
}
~CallDepthScope() {
if (!context_.IsEmpty()) context_->Exit();
if (!escaped_) isolate_->handle_scope_implementer()->DecrementCallDepth();
if (do_callback_) isolate_->FireCallCompletedCallback();
}
void Escape() {
DCHECK(!escaped_);
escaped_ = true;
auto handle_scope_implementer = isolate_->handle_scope_implementer();
handle_scope_implementer->DecrementCallDepth();
bool call_depth_is_zero = handle_scope_implementer->CallDepthIsZero();
isolate_->OptionalRescheduleException(call_depth_is_zero);
}
private:
i::Isolate* const isolate_;
Local<Context> context_;
bool escaped_;
bool do_callback_;
};
} // namespace
static ScriptOrigin GetScriptOriginForScript(i::Isolate* isolate,
i::Handle<i::Script> script) {
i::Handle<i::Object> scriptName(i::Script::GetNameOrSourceURL(script));
i::Handle<i::Object> source_map_url(script->source_mapping_url(), isolate);
v8::Isolate* v8_isolate =
reinterpret_cast<v8::Isolate*>(script->GetIsolate());
ScriptOriginOptions options(script->origin_options());
v8::ScriptOrigin origin(
Utils::ToLocal(scriptName),
v8::Integer::New(v8_isolate, script->line_offset()->value()),
v8::Integer::New(v8_isolate, script->column_offset()->value()),
v8::Boolean::New(v8_isolate, options.IsSharedCrossOrigin()),
v8::Integer::New(v8_isolate, script->id()->value()),
v8::Boolean::New(v8_isolate, options.IsEmbedderDebugScript()),
Utils::ToLocal(source_map_url),
v8::Boolean::New(v8_isolate, options.IsOpaque()));
return origin;
}
// --- E x c e p t i o n B e h a v i o r ---
void i::FatalProcessOutOfMemory(const char* location) {
i::V8::FatalProcessOutOfMemory(location, false);
}
// When V8 cannot allocated memory FatalProcessOutOfMemory is called.
// The default fatal error handler is called and execution is stopped.
void i::V8::FatalProcessOutOfMemory(const char* location, bool take_snapshot) {
i::Isolate* isolate = i::Isolate::Current();
char last_few_messages[Heap::kTraceRingBufferSize + 1];
char js_stacktrace[Heap::kStacktraceBufferSize + 1];
memset(last_few_messages, 0, Heap::kTraceRingBufferSize + 1);
memset(js_stacktrace, 0, Heap::kStacktraceBufferSize + 1);
i::HeapStats heap_stats;
int start_marker;
heap_stats.start_marker = &start_marker;
int new_space_size;
heap_stats.new_space_size = &new_space_size;
int new_space_capacity;
heap_stats.new_space_capacity = &new_space_capacity;
intptr_t old_space_size;
heap_stats.old_space_size = &old_space_size;
intptr_t old_space_capacity;
heap_stats.old_space_capacity = &old_space_capacity;
intptr_t code_space_size;
heap_stats.code_space_size = &code_space_size;
intptr_t code_space_capacity;
heap_stats.code_space_capacity = &code_space_capacity;
intptr_t map_space_size;
heap_stats.map_space_size = &map_space_size;
intptr_t map_space_capacity;
heap_stats.map_space_capacity = &map_space_capacity;
intptr_t lo_space_size;
heap_stats.lo_space_size = &lo_space_size;
int global_handle_count;
heap_stats.global_handle_count = &global_handle_count;
int weak_global_handle_count;
heap_stats.weak_global_handle_count = &weak_global_handle_count;
int pending_global_handle_count;
heap_stats.pending_global_handle_count = &pending_global_handle_count;
int near_death_global_handle_count;
heap_stats.near_death_global_handle_count = &near_death_global_handle_count;
int free_global_handle_count;
heap_stats.free_global_handle_count = &free_global_handle_count;
intptr_t memory_allocator_size;
heap_stats.memory_allocator_size = &memory_allocator_size;
intptr_t memory_allocator_capacity;
heap_stats.memory_allocator_capacity = &memory_allocator_capacity;
int objects_per_type[LAST_TYPE + 1] = {0};
heap_stats.objects_per_type = objects_per_type;
int size_per_type[LAST_TYPE + 1] = {0};
heap_stats.size_per_type = size_per_type;
int os_error;
heap_stats.os_error = &os_error;
heap_stats.last_few_messages = last_few_messages;
heap_stats.js_stacktrace = js_stacktrace;
int end_marker;
heap_stats.end_marker = &end_marker;
if (isolate->heap()->HasBeenSetUp()) {
// BUG(1718): Don't use the take_snapshot since we don't support
// HeapIterator here without doing a special GC.
isolate->heap()->RecordStats(&heap_stats, false);
char* first_newline = strchr(last_few_messages, '\n');
if (first_newline == NULL || first_newline[1] == '\0')
first_newline = last_few_messages;
PrintF("\n<--- Last few GCs --->\n%s\n", first_newline);
PrintF("\n<--- JS stacktrace --->\n%s\n", js_stacktrace);
}
Utils::ApiCheck(false, location, "Allocation failed - process out of memory");
// If the fatal error handler returns, we stop execution.
FATAL("API fatal error handler returned after process out of memory");
}
void Utils::ReportApiFailure(const char* location, const char* message) {
i::Isolate* isolate = i::Isolate::Current();
FatalErrorCallback callback = isolate->exception_behavior();
if (callback == NULL) {
base::OS::PrintError("\n#\n# Fatal error in %s\n# %s\n#\n\n", location,
message);
base::OS::Abort();
} else {
callback(location, message);
}
isolate->SignalFatalError();
}
static inline bool IsExecutionTerminatingCheck(i::Isolate* isolate) {
if (isolate->has_scheduled_exception()) {
return isolate->scheduled_exception() ==
isolate->heap()->termination_exception();
}
return false;
}
void V8::SetNativesDataBlob(StartupData* natives_blob) {
i::V8::SetNativesBlob(natives_blob);
}
void V8::SetSnapshotDataBlob(StartupData* snapshot_blob) {
i::V8::SetSnapshotBlob(snapshot_blob);
}
bool RunExtraCode(Isolate* isolate, Local<Context> context,
const char* utf8_source) {
// Run custom script if provided.
base::ElapsedTimer timer;
timer.Start();
TryCatch try_catch(isolate);
Local<String> source_string;
if (!String::NewFromUtf8(isolate, utf8_source, NewStringType::kNormal)
.ToLocal(&source_string)) {
return false;
}
Local<String> resource_name =
String::NewFromUtf8(isolate, "<embedded script>", NewStringType::kNormal)
.ToLocalChecked();
ScriptOrigin origin(resource_name);
ScriptCompiler::Source source(source_string, origin);
Local<Script> script;
if (!ScriptCompiler::Compile(context, &source).ToLocal(&script)) return false;
if (script->Run(context).IsEmpty()) return false;
if (i::FLAG_profile_deserialization) {
i::PrintF("Executing custom snapshot script took %0.3f ms\n",
timer.Elapsed().InMillisecondsF());
}
timer.Stop();
CHECK(!try_catch.HasCaught());
return true;
}
namespace {
class ArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
virtual void* Allocate(size_t length) {
void* data = AllocateUninitialized(length);
return data == NULL ? data : memset(data, 0, length);
}
virtual void* AllocateUninitialized(size_t length) { return malloc(length); }
virtual void Free(void* data, size_t) { free(data); }
};
} // namespace
StartupData V8::CreateSnapshotDataBlob(const char* custom_source) {
i::Isolate* internal_isolate = new i::Isolate(true);
ArrayBufferAllocator allocator;
internal_isolate->set_array_buffer_allocator(&allocator);
Isolate* isolate = reinterpret_cast<Isolate*>(internal_isolate);
StartupData result = {NULL, 0};
{
base::ElapsedTimer timer;
timer.Start();
Isolate::Scope isolate_scope(isolate);
internal_isolate->Init(NULL);
Persistent<Context> context;
i::Snapshot::Metadata metadata;
{
HandleScope handle_scope(isolate);
Local<Context> new_context = Context::New(isolate);
context.Reset(isolate, new_context);
if (custom_source != NULL) {
metadata.set_embeds_script(true);
Context::Scope context_scope(new_context);
if (!RunExtraCode(isolate, new_context, custom_source)) context.Reset();
}
}
if (!context.IsEmpty()) {
// Make sure all builtin scripts are cached.
{
HandleScope scope(isolate);
for (int i = 0; i < i::Natives::GetBuiltinsCount(); i++) {
internal_isolate->bootstrapper()->SourceLookup<i::Natives>(i);
}
}
// If we don't do this then we end up with a stray root pointing at the
// context even after we have disposed of the context.
internal_isolate->heap()->CollectAllAvailableGarbage("mksnapshot");
i::Object* raw_context = *v8::Utils::OpenPersistent(context);
context.Reset();
i::SnapshotByteSink snapshot_sink;
i::StartupSerializer ser(internal_isolate, &snapshot_sink);
ser.SerializeStrongReferences();
i::SnapshotByteSink context_sink;
i::PartialSerializer context_ser(internal_isolate, &ser, &context_sink);
context_ser.Serialize(&raw_context);
ser.SerializeWeakReferencesAndDeferred();
result = i::Snapshot::CreateSnapshotBlob(ser, context_ser, metadata);
}
if (i::FLAG_profile_deserialization) {
i::PrintF("Creating snapshot took %0.3f ms\n",
timer.Elapsed().InMillisecondsF());
}
timer.Stop();
}
isolate->Dispose();
return result;
}
void V8::SetFlagsFromString(const char* str, int length) {
i::FlagList::SetFlagsFromString(str, length);
}
void V8::SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags) {
i::FlagList::SetFlagsFromCommandLine(argc, argv, remove_flags);
}
RegisteredExtension* RegisteredExtension::first_extension_ = NULL;
RegisteredExtension::RegisteredExtension(Extension* extension)
: extension_(extension) { }
void RegisteredExtension::Register(RegisteredExtension* that) {
that->next_ = first_extension_;
first_extension_ = that;
}
void RegisteredExtension::UnregisterAll() {
RegisteredExtension* re = first_extension_;
while (re != NULL) {
RegisteredExtension* next = re->next();
delete re;
re = next;
}
first_extension_ = NULL;
}
void RegisterExtension(Extension* that) {
RegisteredExtension* extension = new RegisteredExtension(that);
RegisteredExtension::Register(extension);
}
Extension::Extension(const char* name,
const char* source,
int dep_count,
const char** deps,
int source_length)
: name_(name),
source_length_(source_length >= 0 ?
source_length :
(source ? static_cast<int>(strlen(source)) : 0)),
source_(source, source_length_),
dep_count_(dep_count),
deps_(deps),
auto_enable_(false) {
CHECK(source != NULL || source_length_ == 0);
}
ResourceConstraints::ResourceConstraints()
: max_semi_space_size_(0),
max_old_space_size_(0),
max_executable_size_(0),
stack_limit_(NULL),
code_range_size_(0) { }
void ResourceConstraints::ConfigureDefaults(uint64_t physical_memory,
uint64_t virtual_memory_limit) {
#if V8_OS_ANDROID
// Android has higher physical memory requirements before raising the maximum
// heap size limits since it has no swap space.
const uint64_t low_limit = 512ul * i::MB;
const uint64_t medium_limit = 1ul * i::GB;
const uint64_t high_limit = 2ul * i::GB;
#else
const uint64_t low_limit = 512ul * i::MB;
const uint64_t medium_limit = 768ul * i::MB;
const uint64_t high_limit = 1ul * i::GB;
#endif
if (physical_memory <= low_limit) {
set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeLowMemoryDevice);
set_max_old_space_size(i::Heap::kMaxOldSpaceSizeLowMemoryDevice);
set_max_executable_size(i::Heap::kMaxExecutableSizeLowMemoryDevice);
} else if (physical_memory <= medium_limit) {
set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeMediumMemoryDevice);
set_max_old_space_size(i::Heap::kMaxOldSpaceSizeMediumMemoryDevice);
set_max_executable_size(i::Heap::kMaxExecutableSizeMediumMemoryDevice);
} else if (physical_memory <= high_limit) {
set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeHighMemoryDevice);
set_max_old_space_size(i::Heap::kMaxOldSpaceSizeHighMemoryDevice);
set_max_executable_size(i::Heap::kMaxExecutableSizeHighMemoryDevice);
} else {
set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeHugeMemoryDevice);
set_max_old_space_size(i::Heap::kMaxOldSpaceSizeHugeMemoryDevice);
set_max_executable_size(i::Heap::kMaxExecutableSizeHugeMemoryDevice);
}
if (virtual_memory_limit > 0 && i::kRequiresCodeRange) {
// Reserve no more than 1/8 of the memory for the code range, but at most
// kMaximalCodeRangeSize.
set_code_range_size(
i::Min(i::kMaximalCodeRangeSize / i::MB,
static_cast<size_t>((virtual_memory_limit >> 3) / i::MB)));
}
}
void SetResourceConstraints(i::Isolate* isolate,
const ResourceConstraints& constraints) {
int semi_space_size = constraints.max_semi_space_size();
int old_space_size = constraints.max_old_space_size();
int max_executable_size = constraints.max_executable_size();
size_t code_range_size = constraints.code_range_size();
if (semi_space_size != 0 || old_space_size != 0 ||
max_executable_size != 0 || code_range_size != 0) {
isolate->heap()->ConfigureHeap(semi_space_size, old_space_size,
max_executable_size, code_range_size);
}
if (constraints.stack_limit() != NULL) {
uintptr_t limit = reinterpret_cast<uintptr_t>(constraints.stack_limit());
isolate->stack_guard()->SetStackLimit(limit);
}
}
i::Object** V8::GlobalizeReference(i::Isolate* isolate, i::Object** obj) {
LOG_API(isolate, "Persistent::New");
i::Handle<i::Object> result = isolate->global_handles()->Create(*obj);
#ifdef VERIFY_HEAP
if (i::FLAG_verify_heap) {
(*obj)->ObjectVerify();
}
#endif // VERIFY_HEAP
return result.location();
}
i::Object** V8::CopyPersistent(i::Object** obj) {
i::Handle<i::Object> result = i::GlobalHandles::CopyGlobal(obj);
#ifdef VERIFY_HEAP
if (i::FLAG_verify_heap) {
(*obj)->ObjectVerify();
}
#endif // VERIFY_HEAP
return result.location();
}
void V8::MakeWeak(i::Object** object, void* parameter,
WeakCallback weak_callback) {
i::GlobalHandles::MakeWeak(object, parameter, weak_callback);
}
void V8::MakeWeak(i::Object** object, void* parameter,
int internal_field_index1, int internal_field_index2,
WeakCallbackInfo<void>::Callback weak_callback) {
WeakCallbackType type = WeakCallbackType::kParameter;
if (internal_field_index1 == 0) {
if (internal_field_index2 == 1) {
type = WeakCallbackType::kInternalFields;
} else {
DCHECK_EQ(internal_field_index2, -1);
type = WeakCallbackType::kInternalFields;
}
} else {
DCHECK_EQ(internal_field_index1, -1);
DCHECK_EQ(internal_field_index2, -1);
}
i::GlobalHandles::MakeWeak(object, parameter, weak_callback, type);
}
void V8::MakeWeak(i::Object** object, void* parameter,
WeakCallbackInfo<void>::Callback weak_callback,
WeakCallbackType type) {
i::GlobalHandles::MakeWeak(object, parameter, weak_callback, type);
}
void* V8::ClearWeak(i::Object** obj) {
return i::GlobalHandles::ClearWeakness(obj);
}
void V8::DisposeGlobal(i::Object** obj) {
i::GlobalHandles::Destroy(obj);
}
void V8::Eternalize(Isolate* v8_isolate, Value* value, int* index) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Object* object = *Utils::OpenHandle(value);
isolate->eternal_handles()->Create(isolate, object, index);
}
Local<Value> V8::GetEternal(Isolate* v8_isolate, int index) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
return Utils::ToLocal(isolate->eternal_handles()->Get(index));
}
void V8::FromJustIsNothing() {
Utils::ApiCheck(false, "v8::FromJust", "Maybe value is Nothing.");
}
void V8::ToLocalEmpty() {
Utils::ApiCheck(false, "v8::ToLocalChecked", "Empty MaybeLocal.");
}
void V8::InternalFieldOutOfBounds(int index) {
Utils::ApiCheck(0 <= index && index < kInternalFieldsInWeakCallback,
"WeakCallbackInfo::GetInternalField",
"Internal field out of bounds.");
}
// --- H a n d l e s ---
HandleScope::HandleScope(Isolate* isolate) {
Initialize(isolate);
}
void HandleScope::Initialize(Isolate* isolate) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
// We do not want to check the correct usage of the Locker class all over the
// place, so we do it only here: Without a HandleScope, an embedder can do
// almost nothing, so it is enough to check in this central place.
// We make an exception if the serializer is enabled, which means that the
// Isolate is exclusively used to create a snapshot.
Utils::ApiCheck(
!v8::Locker::IsActive() ||
internal_isolate->thread_manager()->IsLockedByCurrentThread() ||
internal_isolate->serializer_enabled(),
"HandleScope::HandleScope",
"Entering the V8 API without proper locking in place");
i::HandleScopeData* current = internal_isolate->handle_scope_data();
isolate_ = internal_isolate;
prev_next_ = current->next;
prev_limit_ = current->limit;
current->level++;
}
HandleScope::~HandleScope() {
i::HandleScope::CloseScope(isolate_, prev_next_, prev_limit_);
}
int HandleScope::NumberOfHandles(Isolate* isolate) {
return i::HandleScope::NumberOfHandles(
reinterpret_cast<i::Isolate*>(isolate));
}
i::Object** HandleScope::CreateHandle(i::Isolate* isolate, i::Object* value) {
return i::HandleScope::CreateHandle(isolate, value);
}
i::Object** HandleScope::CreateHandle(i::HeapObject* heap_object,
i::Object* value) {
DCHECK(heap_object->IsHeapObject());
return i::HandleScope::CreateHandle(heap_object->GetIsolate(), value);
}
EscapableHandleScope::EscapableHandleScope(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
escape_slot_ = CreateHandle(isolate, isolate->heap()->the_hole_value());
Initialize(v8_isolate);
}
i::Object** EscapableHandleScope::Escape(i::Object** escape_value) {
i::Heap* heap = reinterpret_cast<i::Isolate*>(GetIsolate())->heap();
Utils::ApiCheck(*escape_slot_ == heap->the_hole_value(),
"EscapeableHandleScope::Escape",
"Escape value set twice");
if (escape_value == NULL) {
*escape_slot_ = heap->undefined_value();
return NULL;
}
*escape_slot_ = *escape_value;
return escape_slot_;
}
SealHandleScope::SealHandleScope(Isolate* isolate) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
isolate_ = internal_isolate;
i::HandleScopeData* current = internal_isolate->handle_scope_data();
prev_limit_ = current->limit;
current->limit = current->next;
prev_level_ = current->level;
current->level = 0;
}
SealHandleScope::~SealHandleScope() {
i::HandleScopeData* current = isolate_->handle_scope_data();
DCHECK_EQ(0, current->level);
current->level = prev_level_;
DCHECK_EQ(current->next, current->limit);
current->limit = prev_limit_;
}
void Context::Enter() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
ENTER_V8(isolate);
i::HandleScopeImplementer* impl = isolate->handle_scope_implementer();
impl->EnterContext(env);
impl->SaveContext(isolate->context());
isolate->set_context(*env);
}
void Context::Exit() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
ENTER_V8(isolate);
i::HandleScopeImplementer* impl = isolate->handle_scope_implementer();
if (!Utils::ApiCheck(impl->LastEnteredContextWas(env),
"v8::Context::Exit()",
"Cannot exit non-entered context")) {
return;
}
impl->LeaveContext();
isolate->set_context(impl->RestoreContext());
}
static void* DecodeSmiToAligned(i::Object* value, const char* location) {
Utils::ApiCheck(value->IsSmi(), location, "Not a Smi");
return reinterpret_cast<void*>(value);
}
static i::Smi* EncodeAlignedAsSmi(void* value, const char* location) {
i::Smi* smi = reinterpret_cast<i::Smi*>(value);
Utils::ApiCheck(smi->IsSmi(), location, "Pointer is not aligned");
return smi;
}
static i::Handle<i::FixedArray> EmbedderDataFor(Context* context,
int index,
bool can_grow,
const char* location) {
i::Handle<i::Context> env = Utils::OpenHandle(context);
i::Isolate* isolate = env->GetIsolate();
bool ok =
Utils::ApiCheck(env->IsNativeContext(),
location,
"Not a native context") &&
Utils::ApiCheck(index >= 0, location, "Negative index");
if (!ok) return i::Handle<i::FixedArray>();
i::Handle<i::FixedArray> data(env->embedder_data());
if (index < data->length()) return data;
if (!Utils::ApiCheck(can_grow, location, "Index too large")) {
return i::Handle<i::FixedArray>();
}
int new_size = i::Max(index, data->length() << 1) + 1;
int grow_by = new_size - data->length();
data = isolate->factory()->CopyFixedArrayAndGrow(data, grow_by);
env->set_embedder_data(*data);
return data;
}
v8::Local<v8::Value> Context::SlowGetEmbedderData(int index) {
const char* location = "v8::Context::GetEmbedderData()";
i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, false, location);
if (data.is_null()) return Local<Value>();
i::Handle<i::Object> result(data->get(index), data->GetIsolate());
return Utils::ToLocal(result);
}
void Context::SetEmbedderData(int index, v8::Local<Value> value) {
const char* location = "v8::Context::SetEmbedderData()";
i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, true, location);
if (data.is_null()) return;
i::Handle<i::Object> val = Utils::OpenHandle(*value);
data->set(index, *val);
DCHECK_EQ(*Utils::OpenHandle(*value),
*Utils::OpenHandle(*GetEmbedderData(index)));
}
void* Context::SlowGetAlignedPointerFromEmbedderData(int index) {
const char* location = "v8::Context::GetAlignedPointerFromEmbedderData()";
i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, false, location);
if (data.is_null()) return NULL;
return DecodeSmiToAligned(data->get(index), location);
}
void Context::SetAlignedPointerInEmbedderData(int index, void* value) {
const char* location = "v8::Context::SetAlignedPointerInEmbedderData()";
i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, true, location);
data->set(index, EncodeAlignedAsSmi(value, location));
DCHECK_EQ(value, GetAlignedPointerFromEmbedderData(index));
}
// --- N e a n d e r ---
// A constructor cannot easily return an error value, therefore it is necessary
// to check for a dead VM with ON_BAILOUT before constructing any Neander
// objects. To remind you about this there is no HandleScope in the
// NeanderObject constructor. When you add one to the site calling the
// constructor you should check that you ensured the VM was not dead first.
NeanderObject::NeanderObject(v8::internal::Isolate* isolate, int size) {
ENTER_V8(isolate);
value_ = isolate->factory()->NewNeanderObject();
i::Handle<i::FixedArray> elements = isolate->factory()->NewFixedArray(size);
value_->set_elements(*elements);
}
int NeanderObject::size() {
return i::FixedArray::cast(value_->elements())->length();
}
NeanderArray::NeanderArray(v8::internal::Isolate* isolate) : obj_(isolate, 2) {
obj_.set(0, i::Smi::FromInt(0));
}
int NeanderArray::length() {
return i::Smi::cast(obj_.get(0))->value();
}
i::Object* NeanderArray::get(int offset) {
DCHECK(0 <= offset);
DCHECK(offset < length());
return obj_.get(offset + 1);
}
// This method cannot easily return an error value, therefore it is necessary
// to check for a dead VM with ON_BAILOUT before calling it. To remind you
// about this there is no HandleScope in this method. When you add one to the
// site calling this method you should check that you ensured the VM was not
// dead first.
void NeanderArray::add(i::Isolate* isolate, i::Handle<i::Object> value) {
int length = this->length();
int size = obj_.size();
if (length == size - 1) {
i::Factory* factory = isolate->factory();
i::Handle<i::FixedArray> new_elms = factory->NewFixedArray(2 * size);
for (int i = 0; i < length; i++)
new_elms->set(i + 1, get(i));
obj_.value()->set_elements(*new_elms);
}
obj_.set(length + 1, *value);
obj_.set(0, i::Smi::FromInt(length + 1));
}
void NeanderArray::set(int index, i::Object* value) {
if (index < 0 || index >= this->length()) return;
obj_.set(index + 1, value);
}
// --- T e m p l a t e ---
static void InitializeTemplate(i::Handle<i::TemplateInfo> that, int type) {
that->set_number_of_properties(0);
that->set_tag(i::Smi::FromInt(type));
}
void Template::Set(v8::Local<Name> name, v8::Local<Data> value,
v8::PropertyAttribute attribute) {
auto templ = Utils::OpenHandle(this);
i::Isolate* isolate = templ->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
// TODO(dcarney): split api to allow values of v8::Value or v8::TemplateInfo.
i::ApiNatives::AddDataProperty(isolate, templ, Utils::OpenHandle(*name),
Utils::OpenHandle(*value),
static_cast<PropertyAttributes>(attribute));
}
void Template::SetAccessorProperty(
v8::Local<v8::Name> name,
v8::Local<FunctionTemplate> getter,
v8::Local<FunctionTemplate> setter,
v8::PropertyAttribute attribute,
v8::AccessControl access_control) {
// TODO(verwaest): Remove |access_control|.
DCHECK_EQ(v8::DEFAULT, access_control);
auto templ = Utils::OpenHandle(this);
auto isolate = templ->GetIsolate();
ENTER_V8(isolate);
DCHECK(!name.IsEmpty());
DCHECK(!getter.IsEmpty() || !setter.IsEmpty());
i::HandleScope scope(isolate);
i::ApiNatives::AddAccessorProperty(
isolate, templ, Utils::OpenHandle(*name),
Utils::OpenHandle(*getter, true), Utils::OpenHandle(*setter, true),
static_cast<PropertyAttributes>(attribute));
}
// --- F u n c t i o n T e m p l a t e ---
static void InitializeFunctionTemplate(
i::Handle<i::FunctionTemplateInfo> info) {
InitializeTemplate(info, Consts::FUNCTION_TEMPLATE);
info->set_flag(0);
}
Local<ObjectTemplate> FunctionTemplate::PrototypeTemplate() {
i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(i_isolate);
i::Handle<i::Object> result(Utils::OpenHandle(this)->prototype_template(),
i_isolate);
if (result->IsUndefined()) {
v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(i_isolate);
result = Utils::OpenHandle(*ObjectTemplate::New(isolate));
Utils::OpenHandle(this)->set_prototype_template(*result);
}
return ToApiHandle<ObjectTemplate>(result);
}
static void EnsureNotInstantiated(i::Handle<i::FunctionTemplateInfo> info,
const char* func) {
Utils::ApiCheck(!info->instantiated(), func,
"FunctionTemplate already instantiated");
}
void FunctionTemplate::Inherit(v8::Local<FunctionTemplate> value) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::Inherit");
i::Isolate* isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_parent_template(*Utils::OpenHandle(*value));
}
static Local<FunctionTemplate> FunctionTemplateNew(
i::Isolate* isolate, FunctionCallback callback, v8::Local<Value> data,
v8::Local<Signature> signature, int length, bool do_not_cache) {
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::FUNCTION_TEMPLATE_INFO_TYPE);
i::Handle<i::FunctionTemplateInfo> obj =
i::Handle<i::FunctionTemplateInfo>::cast(struct_obj);
InitializeFunctionTemplate(obj);
obj->set_do_not_cache(do_not_cache);
int next_serial_number = 0;
if (!do_not_cache) {
next_serial_number = isolate->next_serial_number() + 1;
isolate->set_next_serial_number(next_serial_number);
}
obj->set_serial_number(i::Smi::FromInt(next_serial_number));
if (callback != 0) {
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
Utils::ToLocal(obj)->SetCallHandler(callback, data);
}
obj->set_length(length);
obj->set_undetectable(false);
obj->set_needs_access_check(false);
obj->set_accept_any_receiver(true);
if (!signature.IsEmpty())
obj->set_signature(*Utils::OpenHandle(*signature));
return Utils::ToLocal(obj);
}
Local<FunctionTemplate> FunctionTemplate::New(Isolate* isolate,
FunctionCallback callback,
v8::Local<Value> data,
v8::Local<Signature> signature,
int length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
// Changes to the environment cannot be captured in the snapshot. Expect no
// function templates when the isolate is created for serialization.
DCHECK(!i_isolate->serializer_enabled());
LOG_API(i_isolate, "FunctionTemplate::New");
ENTER_V8(i_isolate);
return FunctionTemplateNew(
i_isolate, callback, data, signature, length, false);
}
Local<Signature> Signature::New(Isolate* isolate,
Local<FunctionTemplate> receiver) {
return Utils::SignatureToLocal(Utils::OpenHandle(*receiver));
}
Local<AccessorSignature> AccessorSignature::New(
Isolate* isolate, Local<FunctionTemplate> receiver) {
return Utils::AccessorSignatureToLocal(Utils::OpenHandle(*receiver));
}
Local<TypeSwitch> TypeSwitch::New(Local<FunctionTemplate> type) {
Local<FunctionTemplate> types[1] = {type};
return TypeSwitch::New(1, types);
}
Local<TypeSwitch> TypeSwitch::New(int argc, Local<FunctionTemplate> types[]) {
i::Isolate* isolate = i::Isolate::Current();
LOG_API(isolate, "TypeSwitch::New");
ENTER_V8(isolate);
i::Handle<i::FixedArray> vector = isolate->factory()->NewFixedArray(argc);
for (int i = 0; i < argc; i++)
vector->set(i, *Utils::OpenHandle(*types[i]));
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::TYPE_SWITCH_INFO_TYPE);
i::Handle<i::TypeSwitchInfo> obj =
i::Handle<i::TypeSwitchInfo>::cast(struct_obj);
obj->set_types(*vector);
return Utils::ToLocal(obj);
}
int TypeSwitch::match(v8::Local<Value> value) {
i::Handle<i::TypeSwitchInfo> info = Utils::OpenHandle(this);
LOG_API(info->GetIsolate(), "TypeSwitch::match");
i::Handle<i::Object> obj = Utils::OpenHandle(*value);
i::FixedArray* types = i::FixedArray::cast(info->types());
for (int i = 0; i < types->length(); i++) {
if (i::FunctionTemplateInfo::cast(types->get(i))->IsTemplateFor(*obj))
return i + 1;
}
return 0;
}
#define SET_FIELD_WRAPPED(obj, setter, cdata) do { \
i::Handle<i::Object> foreign = FromCData(obj->GetIsolate(), cdata); \
(obj)->setter(*foreign); \
} while (false)
void FunctionTemplate::SetCallHandler(FunctionCallback callback,
v8::Local<Value> data) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetCallHandler");
i::Isolate* isolate = info->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE);
i::Handle<i::CallHandlerInfo> obj =
i::Handle<i::CallHandlerInfo>::cast(struct_obj);
SET_FIELD_WRAPPED(obj, set_callback, callback);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
info->set_call_code(*obj);
}
static i::Handle<i::AccessorInfo> SetAccessorInfoProperties(
i::Handle<i::AccessorInfo> obj, v8::Local<Name> name,
v8::AccessControl settings, v8::PropertyAttribute attributes,
v8::Local<AccessorSignature> signature) {
obj->set_name(*Utils::OpenHandle(*name));
if (settings & ALL_CAN_READ) obj->set_all_can_read(true);
if (settings & ALL_CAN_WRITE) obj->set_all_can_write(true);
obj->set_property_attributes(static_cast<PropertyAttributes>(attributes));
if (!signature.IsEmpty()) {
obj->set_expected_receiver_type(*Utils::OpenHandle(*signature));
}
return obj;
}
template <typename Getter, typename Setter>
static i::Handle<i::AccessorInfo> MakeAccessorInfo(
v8::Local<Name> name, Getter getter, Setter setter, v8::Local<Value> data,
v8::AccessControl settings, v8::PropertyAttribute attributes,
v8::Local<AccessorSignature> signature) {
i::Isolate* isolate = Utils::OpenHandle(*name)->GetIsolate();
i::Handle<i::ExecutableAccessorInfo> obj =
isolate->factory()->NewExecutableAccessorInfo();
SET_FIELD_WRAPPED(obj, set_getter, getter);
SET_FIELD_WRAPPED(obj, set_setter, setter);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
return SetAccessorInfoProperties(obj, name, settings, attributes, signature);
}
Local<ObjectTemplate> FunctionTemplate::InstanceTemplate() {
i::Handle<i::FunctionTemplateInfo> handle = Utils::OpenHandle(this, true);
if (!Utils::ApiCheck(!handle.is_null(),
"v8::FunctionTemplate::InstanceTemplate()",
"Reading from empty handle")) {
return Local<ObjectTemplate>();
}
i::Isolate* isolate = handle->GetIsolate();
ENTER_V8(isolate);
if (handle->instance_template()->IsUndefined()) {
Local<ObjectTemplate> templ =
ObjectTemplate::New(isolate, ToApiHandle<FunctionTemplate>(handle));
handle->set_instance_template(*Utils::OpenHandle(*templ));
}
i::Handle<i::ObjectTemplateInfo> result(
i::ObjectTemplateInfo::cast(handle->instance_template()));
return Utils::ToLocal(result);
}
void FunctionTemplate::SetLength(int length) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetLength");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_length(length);
}
void FunctionTemplate::SetClassName(Local<String> name) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetClassName");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_class_name(*Utils::OpenHandle(*name));
}
void FunctionTemplate::SetAcceptAnyReceiver(bool value) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetAcceptAnyReceiver");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_accept_any_receiver(value);
}
void FunctionTemplate::SetHiddenPrototype(bool value) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetHiddenPrototype");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_hidden_prototype(value);
}
void FunctionTemplate::ReadOnlyPrototype() {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::ReadOnlyPrototype");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_read_only_prototype(true);
}
void FunctionTemplate::RemovePrototype() {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::RemovePrototype");
auto isolate = info->GetIsolate();
ENTER_V8(isolate);
info->set_remove_prototype(true);
}
// --- O b j e c t T e m p l a t e ---
Local<ObjectTemplate> ObjectTemplate::New(
Isolate* isolate, v8::Local<FunctionTemplate> constructor) {
return New(reinterpret_cast<i::Isolate*>(isolate), constructor);
}
Local<ObjectTemplate> ObjectTemplate::New() {
return New(i::Isolate::Current(), Local<FunctionTemplate>());
}
Local<ObjectTemplate> ObjectTemplate::New(
i::Isolate* isolate, v8::Local<FunctionTemplate> constructor) {
// Changes to the environment cannot be captured in the snapshot. Expect no
// object templates when the isolate is created for serialization.
DCHECK(!isolate->serializer_enabled());
LOG_API(isolate, "ObjectTemplate::New");
ENTER_V8(isolate);
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::OBJECT_TEMPLATE_INFO_TYPE);
i::Handle<i::ObjectTemplateInfo> obj =
i::Handle<i::ObjectTemplateInfo>::cast(struct_obj);
InitializeTemplate(obj, Consts::OBJECT_TEMPLATE);
if (!constructor.IsEmpty())
obj->set_constructor(*Utils::OpenHandle(*constructor));
obj->set_internal_field_count(i::Smi::FromInt(0));
return Utils::ToLocal(obj);
}
// Ensure that the object template has a constructor. If no
// constructor is available we create one.
static i::Handle<i::FunctionTemplateInfo> EnsureConstructor(
i::Isolate* isolate,
ObjectTemplate* object_template) {
i::Object* obj = Utils::OpenHandle(object_template)->constructor();
if (!obj ->IsUndefined()) {
i::FunctionTemplateInfo* info = i::FunctionTemplateInfo::cast(obj);
return i::Handle<i::FunctionTemplateInfo>(info, isolate);
}
Local<FunctionTemplate> templ =
FunctionTemplate::New(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::FunctionTemplateInfo> constructor = Utils::OpenHandle(*templ);
constructor->set_instance_template(*Utils::OpenHandle(object_template));
Utils::OpenHandle(object_template)->set_constructor(*constructor);
return constructor;
}
static inline i::Handle<i::TemplateInfo> GetTemplateInfo(
i::Isolate* isolate,
Template* template_obj) {
return Utils::OpenHandle(template_obj);
}
// TODO(dcarney): remove this with ObjectTemplate::SetAccessor
static inline i::Handle<i::TemplateInfo> GetTemplateInfo(
i::Isolate* isolate,
ObjectTemplate* object_template) {
EnsureConstructor(isolate, object_template);
return Utils::OpenHandle(object_template);
}
template<typename Getter, typename Setter, typename Data, typename Template>
static bool TemplateSetAccessor(
Template* template_obj,
v8::Local<Name> name,
Getter getter,
Setter setter,
Data data,
AccessControl settings,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature) {
auto isolate = Utils::OpenHandle(template_obj)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto obj = MakeAccessorInfo(name, getter, setter, data, settings, attribute,
signature);
if (obj.is_null()) return false;
auto info = GetTemplateInfo(isolate, template_obj);
i::ApiNatives::AddNativeDataProperty(isolate, info, obj);
return true;
}
void Template::SetNativeDataProperty(v8::Local<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter,
v8::Local<Value> data,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature,
AccessControl settings) {
TemplateSetAccessor(
this, name, getter, setter, data, settings, attribute, signature);
}
void Template::SetNativeDataProperty(v8::Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
v8::Local<Value> data,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature,
AccessControl settings) {
TemplateSetAccessor(
this, name, getter, setter, data, settings, attribute, signature);
}
void ObjectTemplate::SetAccessor(v8::Local<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter,
v8::Local<Value> data, AccessControl settings,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature) {
TemplateSetAccessor(
this, name, getter, setter, data, settings, attribute, signature);
}
void ObjectTemplate::SetAccessor(v8::Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
v8::Local<Value> data, AccessControl settings,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature) {
TemplateSetAccessor(
this, name, getter, setter, data, settings, attribute, signature);
}
template <typename Getter, typename Setter, typename Query, typename Deleter,
typename Enumerator>
static void ObjectTemplateSetNamedPropertyHandler(ObjectTemplate* templ,
Getter getter, Setter setter,
Query query, Deleter remover,
Enumerator enumerator,
Local<Value> data,
PropertyHandlerFlags flags) {
i::Isolate* isolate = Utils::OpenHandle(templ)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, templ);
EnsureNotInstantiated(cons, "ObjectTemplateSetNamedPropertyHandler");
auto obj = i::Handle<i::InterceptorInfo>::cast(
isolate->factory()->NewStruct(i::INTERCEPTOR_INFO_TYPE));
if (getter != 0) SET_FIELD_WRAPPED(obj, set_getter, getter);
if (setter != 0) SET_FIELD_WRAPPED(obj, set_setter, setter);
if (query != 0) SET_FIELD_WRAPPED(obj, set_query, query);
if (remover != 0) SET_FIELD_WRAPPED(obj, set_deleter, remover);
if (enumerator != 0) SET_FIELD_WRAPPED(obj, set_enumerator, enumerator);
obj->set_flags(0);
obj->set_can_intercept_symbols(
!(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kOnlyInterceptStrings)));
obj->set_all_can_read(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kAllCanRead));
obj->set_non_masking(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kNonMasking));
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
cons->set_named_property_handler(*obj);
}
void ObjectTemplate::SetNamedPropertyHandler(
NamedPropertyGetterCallback getter, NamedPropertySetterCallback setter,
NamedPropertyQueryCallback query, NamedPropertyDeleterCallback remover,
NamedPropertyEnumeratorCallback enumerator, Local<Value> data) {
ObjectTemplateSetNamedPropertyHandler(
this, getter, setter, query, remover, enumerator, data,
PropertyHandlerFlags::kOnlyInterceptStrings);
}
void ObjectTemplate::SetHandler(
const NamedPropertyHandlerConfiguration& config) {
ObjectTemplateSetNamedPropertyHandler(
this, config.getter, config.setter, config.query, config.deleter,
config.enumerator, config.data, config.flags);
}
void ObjectTemplate::MarkAsUndetectable() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::MarkAsUndetectable");
cons->set_undetectable(true);
}
void ObjectTemplate::SetAccessCheckCallbacks(
NamedSecurityCallback named_callback,
IndexedSecurityCallback indexed_callback, Local<Value> data) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetAccessCheckCallbacks");
i::Handle<i::Struct> struct_info =
isolate->factory()->NewStruct(i::ACCESS_CHECK_INFO_TYPE);
i::Handle<i::AccessCheckInfo> info =
i::Handle<i::AccessCheckInfo>::cast(struct_info);
SET_FIELD_WRAPPED(info, set_named_callback, named_callback);
SET_FIELD_WRAPPED(info, set_indexed_callback, indexed_callback);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
info->set_data(*Utils::OpenHandle(*data));
cons->set_access_check_info(*info);
cons->set_needs_access_check(true);
}
void ObjectTemplate::SetHandler(
const IndexedPropertyHandlerConfiguration& config) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetHandler");
auto obj = i::Handle<i::InterceptorInfo>::cast(
isolate->factory()->NewStruct(i::INTERCEPTOR_INFO_TYPE));
if (config.getter != 0) SET_FIELD_WRAPPED(obj, set_getter, config.getter);
if (config.setter != 0) SET_FIELD_WRAPPED(obj, set_setter, config.setter);
if (config.query != 0) SET_FIELD_WRAPPED(obj, set_query, config.query);
if (config.deleter != 0) SET_FIELD_WRAPPED(obj, set_deleter, config.deleter);
if (config.enumerator != 0) {
SET_FIELD_WRAPPED(obj, set_enumerator, config.enumerator);
}
obj->set_flags(0);
obj->set_all_can_read(static_cast<int>(config.flags) &
static_cast<int>(PropertyHandlerFlags::kAllCanRead));
v8::Local<v8::Value> data = config.data;
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
cons->set_indexed_property_handler(*obj);
}
void ObjectTemplate::SetCallAsFunctionHandler(FunctionCallback callback,
Local<Value> data) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetCallAsFunctionHandler");
i::Handle<i::Struct> struct_obj =
isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE);
i::Handle<i::CallHandlerInfo> obj =
i::Handle<i::CallHandlerInfo>::cast(struct_obj);
SET_FIELD_WRAPPED(obj, set_callback, callback);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
cons->set_instance_call_handler(*obj);
}
int ObjectTemplate::InternalFieldCount() {
return i::Smi::cast(Utils::OpenHandle(this)->internal_field_count())->value();
}
void ObjectTemplate::SetInternalFieldCount(int value) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
if (!Utils::ApiCheck(i::Smi::IsValid(value),
"v8::ObjectTemplate::SetInternalFieldCount()",
"Invalid internal field count")) {
return;
}
ENTER_V8(isolate);
if (value > 0) {
// The internal field count is set by the constructor function's
// construct code, so we ensure that there is a constructor
// function to do the setting.
EnsureConstructor(isolate, this);
}
Utils::OpenHandle(this)->set_internal_field_count(i::Smi::FromInt(value));
}
// --- S c r i p t s ---
// Internally, UnboundScript is a SharedFunctionInfo, and Script is a
// JSFunction.
ScriptCompiler::CachedData::CachedData(const uint8_t* data_, int length_,
BufferPolicy buffer_policy_)
: data(data_),
length(length_),
rejected(false),
buffer_policy(buffer_policy_) {}
ScriptCompiler::CachedData::~CachedData() {
if (buffer_policy == BufferOwned) {
delete[] data;
}
}
bool ScriptCompiler::ExternalSourceStream::SetBookmark() { return false; }
void ScriptCompiler::ExternalSourceStream::ResetToBookmark() { UNREACHABLE(); }
ScriptCompiler::StreamedSource::StreamedSource(ExternalSourceStream* stream,
Encoding encoding)
: impl_(new i::StreamedSource(stream, encoding)) {}
ScriptCompiler::StreamedSource::~StreamedSource() { delete impl_; }
const ScriptCompiler::CachedData*
ScriptCompiler::StreamedSource::GetCachedData() const {
return impl_->cached_data.get();
}
Local<Script> UnboundScript::BindToCurrentContext() {
i::Handle<i::HeapObject> obj =
i::Handle<i::HeapObject>::cast(Utils::OpenHandle(this));
i::Handle<i::SharedFunctionInfo>
function_info(i::SharedFunctionInfo::cast(*obj), obj->GetIsolate());
i::Isolate* isolate = obj->GetIsolate();
i::ScopeInfo* scope_info = function_info->scope_info();
i::Handle<i::JSReceiver> global(isolate->native_context()->global_object());
for (int i = 0; i < scope_info->StrongModeFreeVariableCount(); ++i) {
i::Handle<i::String> name_string(scope_info->StrongModeFreeVariableName(i));
i::ScriptContextTable::LookupResult result;
i::Handle<i::ScriptContextTable> script_context_table(
isolate->native_context()->script_context_table());
if (!i::ScriptContextTable::Lookup(script_context_table, name_string,
&result)) {
i::Handle<i::Name> name(scope_info->StrongModeFreeVariableName(i));
Maybe<bool> has = i::JSReceiver::HasProperty(global, name);
if (has.IsJust() && !has.FromJust()) {
i::PendingCompilationErrorHandler pending_error_handler_;
pending_error_handler_.ReportMessageAt(
scope_info->StrongModeFreeVariableStartPosition(i),
scope_info->StrongModeFreeVariableEndPosition(i),
i::MessageTemplate::kStrongUnboundGlobal, name_string,
i::kReferenceError);
i::Handle<i::Script> script(i::Script::cast(function_info->script()));
pending_error_handler_.ThrowPendingError(isolate, script);
isolate->ReportPendingMessages();
isolate->OptionalRescheduleException(true);
return Local<Script>();
}
}
}
i::Handle<i::JSFunction> function =
obj->GetIsolate()->factory()->NewFunctionFromSharedFunctionInfo(
function_info, isolate->native_context());
return ToApiHandle<Script>(function);
}
int UnboundScript::GetId() {
i::Handle<i::HeapObject> obj =
i::Handle<i::HeapObject>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, "v8::UnboundScript::GetId");
i::HandleScope scope(isolate);
i::Handle<i::SharedFunctionInfo> function_info(
i::SharedFunctionInfo::cast(*obj));
i::Handle<i::Script> script(i::Script::cast(function_info->script()));
return script->id()->value();
}
int UnboundScript::GetLineNumber(int code_pos) {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, "UnboundScript::GetLineNumber");
if (obj->script()->IsScript()) {
i::Handle<i::Script> script(i::Script::cast(obj->script()));
return i::Script::GetLineNumber(script, code_pos);
} else {
return -1;
}
}
Local<Value> UnboundScript::GetScriptName() {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, "UnboundScript::GetName");
if (obj->script()->IsScript()) {
i::Object* name = i::Script::cast(obj->script())->name();
return Utils::ToLocal(i::Handle<i::Object>(name, isolate));
} else {
return Local<String>();
}
}
Local<Value> UnboundScript::GetSourceURL() {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, "UnboundScript::GetSourceURL");
if (obj->script()->IsScript()) {
i::Object* url = i::Script::cast(obj->script())->source_url();
return Utils::ToLocal(i::Handle<i::Object>(url, isolate));
} else {
return Local<String>();
}
}
Local<Value> UnboundScript::GetSourceMappingURL() {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, "UnboundScript::GetSourceMappingURL");
if (obj->script()->IsScript()) {
i::Object* url = i::Script::cast(obj->script())->source_mapping_url();
return Utils::ToLocal(i::Handle<i::Object>(url, isolate));
} else {
return Local<String>();
}
}
MaybeLocal<Value> Script::Run(Local<Context> context) {
PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, "v8::Script::Run()", Value)
i::AggregatingHistogramTimerScope timer(isolate->counters()->compile_lazy());
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto fun = i::Handle<i::JSFunction>::cast(Utils::OpenHandle(this));
i::Handle<i::Object> receiver(isolate->global_proxy(), isolate);
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(i::Execution::Call(isolate, fun, receiver, 0, NULL),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<Value> Script::Run() {
auto self = Utils::OpenHandle(this, true);
// If execution is terminating, Compile(..)->Run() requires this
// check.
if (self.is_null()) return Local<Value>();
auto context = ContextFromHeapObject(self);
RETURN_TO_LOCAL_UNCHECKED(Run(context), Value);
}
Local<UnboundScript> Script::GetUnboundScript() {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return ToApiHandle<UnboundScript>(
i::Handle<i::SharedFunctionInfo>(i::JSFunction::cast(*obj)->shared()));
}
MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundInternal(
Isolate* v8_isolate, Source* source, CompileOptions options,
bool is_module) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
PREPARE_FOR_EXECUTION_WITH_ISOLATE(
isolate, "v8::ScriptCompiler::CompileUnbound()", UnboundScript);
// Don't try to produce any kind of cache when the debugger is loaded.
if (isolate->debug()->is_loaded() &&
(options == kProduceParserCache || options == kProduceCodeCache)) {
options = kNoCompileOptions;
}
i::ScriptData* script_data = NULL;
if (options == kConsumeParserCache || options == kConsumeCodeCache) {
DCHECK(source->cached_data);
// ScriptData takes care of pointer-aligning the data.
script_data = new i::ScriptData(source->cached_data->data,
source->cached_data->length);
}
i::Handle<i::String> str = Utils::OpenHandle(*(source->source_string));
i::Handle<i::SharedFunctionInfo> result;
{
i::HistogramTimerScope total(isolate->counters()->compile_script(), true);
i::Handle<i::Object> name_obj;
i::Handle<i::Object> source_map_url;
int line_offset = 0;
int column_offset = 0;
if (!source->resource_name.IsEmpty()) {
name_obj = Utils::OpenHandle(*(source->resource_name));
}
if (!source->resource_line_offset.IsEmpty()) {
line_offset = static_cast<int>(source->resource_line_offset->Value());
}
if (!source->resource_column_offset.IsEmpty()) {
column_offset =
static_cast<int>(source->resource_column_offset->Value());
}
if (!source->source_map_url.IsEmpty()) {
source_map_url = Utils::OpenHandle(*(source->source_map_url));
}
result = i::Compiler::CompileScript(
str, name_obj, line_offset, column_offset, source->resource_options,
source_map_url, isolate->native_context(), NULL, &script_data, options,
i::NOT_NATIVES_CODE, is_module);
has_pending_exception = result.is_null();
if (has_pending_exception && script_data != NULL) {
// This case won't happen during normal operation; we have compiled
// successfully and produced cached data, and but the second compilation
// of the same source code fails.
delete script_data;
script_data = NULL;
}
RETURN_ON_FAILED_EXECUTION(UnboundScript);
if ((options == kProduceParserCache || options == kProduceCodeCache) &&
script_data != NULL) {
// script_data now contains the data that was generated. source will
// take the ownership.
source->cached_data = new CachedData(
script_data->data(), script_data->length(), CachedData::BufferOwned);
script_data->ReleaseDataOwnership();
} else if (options == kConsumeParserCache || options == kConsumeCodeCache) {
source->cached_data->rejected = script_data->rejected();
}
delete script_data;
}
RETURN_ESCAPED(ToApiHandle<UnboundScript>(result));
}
MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundScript(
Isolate* v8_isolate, Source* source, CompileOptions options) {
return CompileUnboundInternal(v8_isolate, source, options, false);
}
Local<UnboundScript> ScriptCompiler::CompileUnbound(Isolate* v8_isolate,
Source* source,
CompileOptions options) {
RETURN_TO_LOCAL_UNCHECKED(
CompileUnboundInternal(v8_isolate, source, options, false),
UnboundScript);
}
MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context,
Source* source,
CompileOptions options) {
auto isolate = context->GetIsolate();
auto maybe = CompileUnboundInternal(isolate, source, options, false);
Local<UnboundScript> result;
if (!maybe.ToLocal(&result)) return MaybeLocal<Script>();
v8::Context::Scope scope(context);
return result->BindToCurrentContext();
}
Local<Script> ScriptCompiler::Compile(
Isolate* v8_isolate,
Source* source,
CompileOptions options) {
auto context = v8_isolate->GetCurrentContext();
RETURN_TO_LOCAL_UNCHECKED(Compile(context, source, options), Script);
}
MaybeLocal<Script> ScriptCompiler::CompileModule(Local<Context> context,
Source* source,
CompileOptions options) {
CHECK(i::FLAG_harmony_modules);
auto isolate = context->GetIsolate();
auto maybe = CompileUnboundInternal(isolate, source, options, true);
Local<UnboundScript> generic;
if (!maybe.ToLocal(&generic)) return MaybeLocal<Script>();
v8::Context::Scope scope(context);
return generic->BindToCurrentContext();
}
class IsIdentifierHelper {
public:
IsIdentifierHelper() : is_identifier_(false), first_char_(true) {}
bool Check(i::String* string) {
i::ConsString* cons_string = i::String::VisitFlat(this, string, 0);
if (cons_string == NULL) return is_identifier_;
// We don't support cons strings here.
return false;
}
void VisitOneByteString(const uint8_t* chars, int length) {
for (int i = 0; i < length; ++i) {
if (first_char_) {
first_char_ = false;
is_identifier_ = unicode_cache_.IsIdentifierStart(chars[0]);
} else {
is_identifier_ &= unicode_cache_.IsIdentifierPart(chars[i]);
}
}
}
void VisitTwoByteString(const uint16_t* chars, int length) {
for (int i = 0; i < length; ++i) {
if (first_char_) {
first_char_ = false;
is_identifier_ = unicode_cache_.IsIdentifierStart(chars[0]);
} else {
is_identifier_ &= unicode_cache_.IsIdentifierPart(chars[i]);
}
}
}
private:
bool is_identifier_;
bool first_char_;
i::UnicodeCache unicode_cache_;
DISALLOW_COPY_AND_ASSIGN(IsIdentifierHelper);
};
MaybeLocal<Function> ScriptCompiler::CompileFunctionInContext(
Local<Context> v8_context, Source* source, size_t arguments_count,
Local<String> arguments[], size_t context_extension_count,
Local<Object> context_extensions[]) {
PREPARE_FOR_EXECUTION(
v8_context, "v8::ScriptCompiler::CompileFunctionInContext()", Function);
i::Handle<i::String> source_string;
auto factory = isolate->factory();
if (arguments_count) {
source_string = factory->NewStringFromStaticChars("(function(");
for (size_t i = 0; i < arguments_count; ++i) {
IsIdentifierHelper helper;
if (!helper.Check(*Utils::OpenHandle(*arguments[i]))) {
return Local<Function>();
}
has_pending_exception =
!factory->NewConsString(source_string,
Utils::OpenHandle(*arguments[i]))
.ToHandle(&source_string);
RETURN_ON_FAILED_EXECUTION(Function);
if (i + 1 == arguments_count) continue;
has_pending_exception =
!factory->NewConsString(source_string,
factory->LookupSingleCharacterStringFromCode(
',')).ToHandle(&source_string);
RETURN_ON_FAILED_EXECUTION(Function);
}
auto brackets = factory->NewStringFromStaticChars("){");
has_pending_exception = !factory->NewConsString(source_string, brackets)
.ToHandle(&source_string);
RETURN_ON_FAILED_EXECUTION(Function);
} else {
source_string = factory->NewStringFromStaticChars("(function(){");
}
int scope_position = source_string->length();
has_pending_exception =
!factory->NewConsString(source_string,
Utils::OpenHandle(*source->source_string))
.ToHandle(&source_string);
RETURN_ON_FAILED_EXECUTION(Function);
// Include \n in case the source contains a line end comment.
auto brackets = factory->NewStringFromStaticChars("\n})");
has_pending_exception =
!factory->NewConsString(source_string, brackets).ToHandle(&source_string);
RETURN_ON_FAILED_EXECUTION(Function);
i::Handle<i::Context> context = Utils::OpenHandle(*v8_context);
i::Handle<i::SharedFunctionInfo> outer_info(context->closure()->shared(),
isolate);
for (size_t i = 0; i < context_extension_count; ++i) {
i::Handle<i::JSObject> extension =
Utils::OpenHandle(*context_extensions[i]);
i::Handle<i::JSFunction> closure(context->closure(), isolate);
context = factory->NewWithContext(closure, context, extension);
}
i::Handle<i::Object> name_obj;
int line_offset = 0;
int column_offset = 0;
if (!source->resource_name.IsEmpty()) {
name_obj = Utils::OpenHandle(*(source->resource_name));
}
if (!source->resource_line_offset.IsEmpty()) {
line_offset = static_cast<int>(source->resource_line_offset->Value());
}
if (!source->resource_column_offset.IsEmpty()) {
column_offset = static_cast<int>(source->resource_column_offset->Value());
}
i::Handle<i::JSFunction> fun;
has_pending_exception = !i::Compiler::GetFunctionFromEval(
source_string, outer_info, context, i::SLOPPY,
i::ONLY_SINGLE_FUNCTION_LITERAL, line_offset,
column_offset - scope_position, name_obj,
source->resource_options).ToHandle(&fun);
if (has_pending_exception) {
isolate->ReportPendingMessages();
}
RETURN_ON_FAILED_EXECUTION(Function);
i::Handle<i::Object> result;
has_pending_exception =
!i::Execution::Call(isolate, fun,
Utils::OpenHandle(*v8_context->Global()), 0,
nullptr).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Function);
RETURN_ESCAPED(Utils::ToLocal(i::Handle<i::JSFunction>::cast(result)));
}
Local<Function> ScriptCompiler::CompileFunctionInContext(
Isolate* v8_isolate, Source* source, Local<Context> v8_context,
size_t arguments_count, Local<String> arguments[],
size_t context_extension_count, Local<Object> context_extensions[]) {
RETURN_TO_LOCAL_UNCHECKED(
CompileFunctionInContext(v8_context, source, arguments_count, arguments,
context_extension_count, context_extensions),
Function);
}
ScriptCompiler::ScriptStreamingTask* ScriptCompiler::StartStreamingScript(
Isolate* v8_isolate, StreamedSource* source, CompileOptions options) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
return new i::BackgroundParsingTask(source->impl(), options,
i::FLAG_stack_size, isolate);
}
MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context,
StreamedSource* v8_source,
Local<String> full_source_string,
const ScriptOrigin& origin) {
PREPARE_FOR_EXECUTION(context, "v8::ScriptCompiler::Compile()", Script);
i::StreamedSource* source = v8_source->impl();
i::Handle<i::String> str = Utils::OpenHandle(*(full_source_string));
i::Handle<i::Script> script = isolate->factory()->NewScript(str);
if (!origin.ResourceName().IsEmpty()) {
script->set_name(*Utils::OpenHandle(*(origin.ResourceName())));
}
if (!origin.ResourceLineOffset().IsEmpty()) {
script->set_line_offset(i::Smi::FromInt(
static_cast<int>(origin.ResourceLineOffset()->Value())));
}
if (!origin.ResourceColumnOffset().IsEmpty()) {
script->set_column_offset(i::Smi::FromInt(
static_cast<int>(origin.ResourceColumnOffset()->Value())));
}
script->set_origin_options(origin.Options());
if (!origin.SourceMapUrl().IsEmpty()) {
script->set_source_mapping_url(
*Utils::OpenHandle(*(origin.SourceMapUrl())));
}
source->info->set_script(script);
source->info->set_context(isolate->native_context());
// Do the parsing tasks which need to be done on the main thread. This will
// also handle parse errors.
source->parser->Internalize(isolate, script,
source->info->function() == nullptr);
source->parser->HandleSourceURLComments(isolate, script);
i::Handle<i::SharedFunctionInfo> result;
if (source->info->function() != nullptr) {
// Parsing has succeeded.
result = i::Compiler::CompileStreamedScript(script, source->info.get(),
str->length());
}
has_pending_exception = result.is_null();
if (has_pending_exception) isolate->ReportPendingMessages();
RETURN_ON_FAILED_EXECUTION(Script);
source->info->clear_script(); // because script goes out of scope.
Local<UnboundScript> generic = ToApiHandle<UnboundScript>(result);
if (generic.IsEmpty()) return Local<Script>();
Local<Script> bound = generic->BindToCurrentContext();
if (bound.IsEmpty()) return Local<Script>();
RETURN_ESCAPED(bound);
}
Local<Script> ScriptCompiler::Compile(Isolate* v8_isolate,
StreamedSource* v8_source,
Local<String> full_source_string,
const ScriptOrigin& origin) {
auto context = v8_isolate->GetCurrentContext();
RETURN_TO_LOCAL_UNCHECKED(
Compile(context, v8_source, full_source_string, origin), Script);
}
uint32_t ScriptCompiler::CachedDataVersionTag() {
return static_cast<uint32_t>(base::hash_combine(
internal::Version::Hash(), internal::FlagList::Hash(),
static_cast<uint32_t>(internal::CpuFeatures::SupportedFeatures())));
}
MaybeLocal<Script> Script::Compile(Local<Context> context, Local<String> source,
ScriptOrigin* origin) {
if (origin) {
ScriptCompiler::Source script_source(source, *origin);
return ScriptCompiler::Compile(context, &script_source);
}
ScriptCompiler::Source script_source(source);
return ScriptCompiler::Compile(context, &script_source);
}
Local<Script> Script::Compile(v8::Local<String> source,
v8::ScriptOrigin* origin) {
auto str = Utils::OpenHandle(*source);
auto context = ContextFromHeapObject(str);
RETURN_TO_LOCAL_UNCHECKED(Compile(context, source, origin), Script);
}
Local<Script> Script::Compile(v8::Local<String> source,
v8::Local<String> file_name) {
auto str = Utils::OpenHandle(*source);
auto context = ContextFromHeapObject(str);
ScriptOrigin origin(file_name);
return Compile(context, source, &origin).FromMaybe(Local<Script>());
}
// --- E x c e p t i o n s ---
v8::TryCatch::TryCatch()
: isolate_(i::Isolate::Current()),
next_(isolate_->try_catch_handler()),
is_verbose_(false),
can_continue_(true),
capture_message_(true),
rethrow_(false),
has_terminated_(false) {
ResetInternal();
// Special handling for simulators which have a separate JS stack.
js_stack_comparable_address_ =
reinterpret_cast<void*>(v8::internal::SimulatorStack::RegisterCTryCatch(
v8::internal::GetCurrentStackPosition()));
isolate_->RegisterTryCatchHandler(this);
}
v8::TryCatch::TryCatch(v8::Isolate* isolate)
: isolate_(reinterpret_cast<i::Isolate*>(isolate)),
next_(isolate_->try_catch_handler()),
is_verbose_(false),
can_continue_(true),
capture_message_(true),
rethrow_(false),
has_terminated_(false) {
ResetInternal();
// Special handling for simulators which have a separate JS stack.
js_stack_comparable_address_ =
reinterpret_cast<void*>(v8::internal::SimulatorStack::RegisterCTryCatch(
v8::internal::GetCurrentStackPosition()));
isolate_->RegisterTryCatchHandler(this);
}
v8::TryCatch::~TryCatch() {
if (rethrow_) {
v8::Isolate* isolate = reinterpret_cast<Isolate*>(isolate_);
v8::HandleScope scope(isolate);
v8::Local<v8::Value> exc = v8::Local<v8::Value>::New(isolate, Exception());
if (HasCaught() && capture_message_) {
// If an exception was caught and rethrow_ is indicated, the saved
// message, script, and location need to be restored to Isolate TLS
// for reuse. capture_message_ needs to be disabled so that Throw()
// does not create a new message.
isolate_->thread_local_top()->rethrowing_message_ = true;
isolate_->RestorePendingMessageFromTryCatch(this);
}
isolate_->UnregisterTryCatchHandler(this);
v8::internal::SimulatorStack::UnregisterCTryCatch();
reinterpret_cast<Isolate*>(isolate_)->ThrowException(exc);
DCHECK(!isolate_->thread_local_top()->rethrowing_message_);
} else {
if (HasCaught() && isolate_->has_scheduled_exception()) {
// If an exception was caught but is still scheduled because no API call
// promoted it, then it is canceled to prevent it from being propagated.
// Note that this will not cancel termination exceptions.
isolate_->CancelScheduledExceptionFromTryCatch(this);
}
isolate_->UnregisterTryCatchHandler(this);
v8::internal::SimulatorStack::UnregisterCTryCatch();
}
}
bool v8::TryCatch::HasCaught() const {
return !reinterpret_cast<i::Object*>(exception_)->IsTheHole();
}
bool v8::TryCatch::CanContinue() const {
return can_continue_;
}
bool v8::TryCatch::HasTerminated() const {
return has_terminated_;
}
v8::Local<v8::Value> v8::TryCatch::ReThrow() {
if (!HasCaught()) return v8::Local<v8::Value>();
rethrow_ = true;
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate_));
}
v8::Local<Value> v8::TryCatch::Exception() const {
if (HasCaught()) {
// Check for out of memory exception.
i::Object* exception = reinterpret_cast<i::Object*>(exception_);
return v8::Utils::ToLocal(i::Handle<i::Object>(exception, isolate_));
} else {
return v8::Local<Value>();
}
}
MaybeLocal<Value> v8::TryCatch::StackTrace(Local<Context> context) const {
if (!HasCaught()) return v8::Local<Value>();
i::Object* raw_obj = reinterpret_cast<i::Object*>(exception_);
if (!raw_obj->IsJSObject()) return v8::Local<Value>();
PREPARE_FOR_EXECUTION(context, "v8::TryCatch::StackTrace", Value);
i::Handle<i::JSObject> obj(i::JSObject::cast(raw_obj), isolate_);
i::Handle<i::String> name = isolate->factory()->stack_string();
Maybe<bool> maybe = i::JSReceiver::HasProperty(obj, name);
has_pending_exception = !maybe.IsJust();
RETURN_ON_FAILED_EXECUTION(Value);
if (!maybe.FromJust()) return v8::Local<Value>();
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(i::Object::GetProperty(obj, name), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
v8::Local<Value> v8::TryCatch::StackTrace() const {
auto context = reinterpret_cast<v8::Isolate*>(isolate_)->GetCurrentContext();
RETURN_TO_LOCAL_UNCHECKED(StackTrace(context), Value);
}
v8::Local<v8::Message> v8::TryCatch::Message() const {
i::Object* message = reinterpret_cast<i::Object*>(message_obj_);
DCHECK(message->IsJSMessageObject() || message->IsTheHole());
if (HasCaught() && !message->IsTheHole()) {
return v8::Utils::MessageToLocal(i::Handle<i::Object>(message, isolate_));
} else {
return v8::Local<v8::Message>();
}
}
void v8::TryCatch::Reset() {
if (!rethrow_ && HasCaught() && isolate_->has_scheduled_exception()) {
// If an exception was caught but is still scheduled because no API call
// promoted it, then it is canceled to prevent it from being propagated.
// Note that this will not cancel termination exceptions.
isolate_->CancelScheduledExceptionFromTryCatch(this);
}
ResetInternal();
}
void v8::TryCatch::ResetInternal() {
i::Object* the_hole = isolate_->heap()->the_hole_value();
exception_ = the_hole;
message_obj_ = the_hole;
}
void v8::TryCatch::SetVerbose(bool value) {
is_verbose_ = value;
}
void v8::TryCatch::SetCaptureMessage(bool value) {
capture_message_ = value;
}
// --- M e s s a g e ---
Local<String> Message::Get() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::String> raw_result = i::MessageHandler::GetMessage(isolate, obj);
Local<String> result = Utils::ToLocal(raw_result);
return scope.Escape(result);
}
ScriptOrigin Message::GetScriptOrigin() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
auto message = i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this));
auto script_wraper = i::Handle<i::Object>(message->script(), isolate);
auto script_value = i::Handle<i::JSValue>::cast(script_wraper);
i::Handle<i::Script> script(i::Script::cast(script_value->value()));
return GetScriptOriginForScript(isolate, script);
}
v8::Local<Value> Message::GetScriptResourceName() const {
return GetScriptOrigin().ResourceName();
}
v8::Local<v8::StackTrace> Message::GetStackTrace() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
auto message = i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this));
i::Handle<i::Object> stackFramesObj(message->stack_frames(), isolate);
if (!stackFramesObj->IsJSArray()) return v8::Local<v8::StackTrace>();
auto stackTrace = i::Handle<i::JSArray>::cast(stackFramesObj);
return scope.Escape(Utils::StackTraceToLocal(stackTrace));
}
MUST_USE_RESULT static i::MaybeHandle<i::Object> CallV8HeapFunction(
i::Isolate* isolate, const char* name, i::Handle<i::Object> recv, int argc,
i::Handle<i::Object> argv[]) {
i::Handle<i::Object> object_fun =
i::Object::GetProperty(
isolate, isolate->js_builtins_object(), name).ToHandleChecked();
i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(object_fun);
return i::Execution::Call(isolate, fun, recv, argc, argv);
}
MUST_USE_RESULT static i::MaybeHandle<i::Object> CallV8HeapFunction(
i::Isolate* isolate, const char* name, i::Handle<i::Object> data) {
i::Handle<i::Object> argv[] = { data };
return CallV8HeapFunction(isolate, name, isolate->js_builtins_object(),
arraysize(argv), argv);
}
Maybe<int> Message::GetLineNumber(Local<Context> context) const {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Message::GetLineNumber()", int);
i::Handle<i::Object> result;
has_pending_exception =
!CallV8HeapFunction(isolate, "$messageGetLineNumber",
Utils::OpenHandle(this)).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int);
return Just(static_cast<int>(result->Number()));
}
int Message::GetLineNumber() const {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return GetLineNumber(context).FromMaybe(0);
}
int Message::GetStartPosition() const {
auto self = Utils::OpenHandle(this);
return self->start_position();
}
int Message::GetEndPosition() const {
auto self = Utils::OpenHandle(this);
return self->end_position();
}
Maybe<int> Message::GetStartColumn(Local<Context> context) const {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Message::GetStartColumn()",
int);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> start_col_obj;
has_pending_exception =
!CallV8HeapFunction(isolate, "$messageGetPositionInLine", self)
.ToHandle(&start_col_obj);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int);
return Just(static_cast<int>(start_col_obj->Number()));
}
int Message::GetStartColumn() const {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
const int default_value = kNoColumnInfo;
return GetStartColumn(context).FromMaybe(default_value);
}
Maybe<int> Message::GetEndColumn(Local<Context> context) const {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Message::GetEndColumn()", int);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> start_col_obj;
has_pending_exception =
!CallV8HeapFunction(isolate, "$messageGetPositionInLine", self)
.ToHandle(&start_col_obj);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int);
int start = self->start_position();
int end = self->end_position();
return Just(static_cast<int>(start_col_obj->Number()) + (end - start));
}
int Message::GetEndColumn() const {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
const int default_value = kNoColumnInfo;
return GetEndColumn(context).FromMaybe(default_value);
}
bool Message::IsSharedCrossOrigin() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
auto self = Utils::OpenHandle(this);
auto script = i::Handle<i::JSValue>::cast(
i::Handle<i::Object>(self->script(), isolate));
return i::Script::cast(script->value())
->origin_options()
.IsSharedCrossOrigin();
}
bool Message::IsOpaque() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
auto self = Utils::OpenHandle(this);
auto script = i::Handle<i::JSValue>::cast(
i::Handle<i::Object>(self->script(), isolate));
return i::Script::cast(script->value())->origin_options().IsOpaque();
}
MaybeLocal<String> Message::GetSourceLine(Local<Context> context) const {
PREPARE_FOR_EXECUTION(context, "v8::Message::GetSourceLine()", String);
i::Handle<i::Object> result;
has_pending_exception =
!CallV8HeapFunction(isolate, "$messageGetSourceLine",
Utils::OpenHandle(this)).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(String);
Local<String> str;
if (result->IsString()) {
str = Utils::ToLocal(i::Handle<i::String>::cast(result));
}
RETURN_ESCAPED(str);
}
Local<String> Message::GetSourceLine() const {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(GetSourceLine(context), String)
}
void Message::PrintCurrentStackTrace(Isolate* isolate, FILE* out) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8(i_isolate);
i_isolate->PrintCurrentStackTrace(out);
}
// --- S t a c k T r a c e ---
Local<StackFrame> StackTrace::GetFrame(uint32_t index) const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
auto self = Utils::OpenHandle(this);
auto obj = i::Object::GetElement(isolate, self, index).ToHandleChecked();
auto jsobj = i::Handle<i::JSObject>::cast(obj);
return scope.Escape(Utils::StackFrameToLocal(jsobj));
}
int StackTrace::GetFrameCount() const {
return i::Smi::cast(Utils::OpenHandle(this)->length())->value();
}
Local<Array> StackTrace::AsArray() {
return Utils::ToLocal(Utils::OpenHandle(this));
}
Local<StackTrace> StackTrace::CurrentStackTrace(
Isolate* isolate,
int frame_limit,
StackTraceOptions options) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8(i_isolate);
// TODO(dcarney): remove when ScriptDebugServer is fixed.
options = static_cast<StackTraceOptions>(
static_cast<int>(options) | kExposeFramesAcrossSecurityOrigins);
i::Handle<i::JSArray> stackTrace =
i_isolate->CaptureCurrentStackTrace(frame_limit, options);
return Utils::StackTraceToLocal(stackTrace);
}
// --- S t a c k F r a m e ---
static int getIntProperty(const StackFrame* f, const char* propertyName,
int defaultValue) {
i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(f);
i::Handle<i::Object> obj =
i::Object::GetProperty(isolate, self, propertyName).ToHandleChecked();
return obj->IsSmi() ? i::Smi::cast(*obj)->value() : defaultValue;
}
int StackFrame::GetLineNumber() const {
return getIntProperty(this, "lineNumber", Message::kNoLineNumberInfo);
}
int StackFrame::GetColumn() const {
return getIntProperty(this, "column", Message::kNoColumnInfo);
}
int StackFrame::GetScriptId() const {
return getIntProperty(this, "scriptId", Message::kNoScriptIdInfo);
}
static Local<String> getStringProperty(const StackFrame* f,
const char* propertyName) {
i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate();
ENTER_V8(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::JSObject> self = Utils::OpenHandle(f);
i::Handle<i::Object> obj =
i::Object::GetProperty(isolate, self, propertyName).ToHandleChecked();
return obj->IsString()
? scope.Escape(Local<String>::Cast(Utils::ToLocal(obj)))
: Local<String>();
}
Local<String> StackFrame::GetScriptName() const {
return getStringProperty(this, "scriptName");
}
Local<String> StackFrame::GetScriptNameOrSourceURL() const {
return getStringProperty(this, "scriptNameOrSourceURL");
}
Local<String> StackFrame::GetFunctionName() const {
return getStringProperty(this, "functionName");
}
static bool getBoolProperty(const StackFrame* f, const char* propertyName) {
i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(f);
i::Handle<i::Object> obj =
i::Object::GetProperty(isolate, self, propertyName).ToHandleChecked();
return obj->IsTrue();
}
bool StackFrame::IsEval() const { return getBoolProperty(this, "isEval"); }
bool StackFrame::IsConstructor() const {
return getBoolProperty(this, "isConstructor");
}
// --- N a t i v e W e a k M a p ---
Local<NativeWeakMap> NativeWeakMap::New(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8(isolate);
i::Handle<i::JSWeakMap> weakmap = isolate->factory()->NewJSWeakMap();
i::Runtime::WeakCollectionInitialize(isolate, weakmap);
return Utils::NativeWeakMapToLocal(weakmap);
}
void NativeWeakMap::Set(Local<Value> v8_key, Local<Value> v8_value) {
i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this);
i::Isolate* isolate = weak_collection->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> key = Utils::OpenHandle(*v8_key);
i::Handle<i::Object> value = Utils::OpenHandle(*v8_value);
if (!key->IsJSReceiver() && !key->IsSymbol()) {
DCHECK(false);
return;
}
i::Handle<i::ObjectHashTable> table(
i::ObjectHashTable::cast(weak_collection->table()));
if (!table->IsKey(*key)) {
DCHECK(false);
return;
}
int32_t hash = i::Object::GetOrCreateHash(isolate, key)->value();
i::Runtime::WeakCollectionSet(weak_collection, key, value, hash);
}
Local<Value> NativeWeakMap::Get(Local<Value> v8_key) {
i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this);
i::Isolate* isolate = weak_collection->GetIsolate();
ENTER_V8(isolate);
i::Handle<i::Object> key = Utils::OpenHandle(*v8_key);
if (!key->IsJSReceiver() && !key->IsSymbol()) {
DCHECK(false);
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
i::Handle<i::ObjectHashTable> table(
i::ObjectHashTable::cast(weak_collection->table()));
if (!table->IsKey(*key)) {
DCHECK(false);
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
i::Handle<i::Object> lookup(table->Lookup(key), isolate);
if (lookup->IsTheHole())
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
return Utils::ToLocal(lookup);
}
bool NativeWeakMap::Has(Local<Value> v8_key) {
i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this);
i::Isolate* isolate = weak_collection->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> key = Utils::OpenHandle(*v8_key);
if (!key->IsJSReceiver() && !key->IsSymbol()) {
DCHECK(false);
return false;
}
i::Handle<i::ObjectHashTable> table(
i::ObjectHashTable::cast(weak_collection->table()));
if (!table->IsKey(*key)) {
DCHECK(false);
return false;
}
i::Handle<i::Object> lookup(table->Lookup(key), isolate);
return !lookup->IsTheHole();
}
bool NativeWeakMap::Delete(Local<Value> v8_key) {
i::Handle<i::JSWeakMap> weak_collection = Utils::OpenHandle(this);
i::Isolate* isolate = weak_collection->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> key = Utils::OpenHandle(*v8_key);
if (!key->IsJSReceiver() && !key->IsSymbol()) {
DCHECK(false);
return false;
}
i::Handle<i::ObjectHashTable> table(
i::ObjectHashTable::cast(weak_collection->table()));
if (!table->IsKey(*key)) {
DCHECK(false);
return false;
}
return i::Runtime::WeakCollectionDelete(weak_collection, key);
}
// --- J S O N ---
MaybeLocal<Value> JSON::Parse(Isolate* v8_isolate, Local<String> json_string) {
auto isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
PREPARE_FOR_EXECUTION_WITH_ISOLATE(isolate, "JSON::Parse", Value);
i::Handle<i::String> string = Utils::OpenHandle(*json_string);
i::Handle<i::String> source = i::String::Flatten(string);
auto maybe = source->IsSeqOneByteString()
? i::JsonParser<true>::Parse(source)
: i::JsonParser<false>::Parse(source);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(maybe, &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<Value> JSON::Parse(Local<String> json_string) {
auto isolate = reinterpret_cast<v8::Isolate*>(
Utils::OpenHandle(*json_string)->GetIsolate());
RETURN_TO_LOCAL_UNCHECKED(Parse(isolate, json_string), Value);
}
// --- D a t a ---
bool Value::FullIsUndefined() const {
bool result = Utils::OpenHandle(this)->IsUndefined();
DCHECK_EQ(result, QuickIsUndefined());
return result;
}
bool Value::FullIsNull() const {
bool result = Utils::OpenHandle(this)->IsNull();
DCHECK_EQ(result, QuickIsNull());
return result;
}
bool Value::IsTrue() const {
return Utils::OpenHandle(this)->IsTrue();
}
bool Value::IsFalse() const {
return Utils::OpenHandle(this)->IsFalse();
}
bool Value::IsFunction() const {
return Utils::OpenHandle(this)->IsJSFunction();
}
bool Value::IsName() const {
return Utils::OpenHandle(this)->IsName();
}
bool Value::FullIsString() const {
bool result = Utils::OpenHandle(this)->IsString();
DCHECK_EQ(result, QuickIsString());
return result;
}
bool Value::IsSymbol() const {
return Utils::OpenHandle(this)->IsSymbol();
}
bool Value::IsArray() const {
return Utils::OpenHandle(this)->IsJSArray();
}
bool Value::IsArrayBuffer() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsJSArrayBuffer() && !i::JSArrayBuffer::cast(*obj)->is_shared();
}
bool Value::IsArrayBufferView() const {
return Utils::OpenHandle(this)->IsJSArrayBufferView();
}
bool Value::IsTypedArray() const {
return Utils::OpenHandle(this)->IsJSTypedArray();
}
#define VALUE_IS_TYPED_ARRAY(Type, typeName, TYPE, ctype, size) \
bool Value::Is##Type##Array() const { \
i::Handle<i::Object> obj = Utils::OpenHandle(this); \
return obj->IsJSTypedArray() && \
i::JSTypedArray::cast(*obj)->type() == i::kExternal##Type##Array; \
}
TYPED_ARRAYS(VALUE_IS_TYPED_ARRAY)
#undef VALUE_IS_TYPED_ARRAY
bool Value::IsDataView() const {
return Utils::OpenHandle(this)->IsJSDataView();
}
bool Value::IsSharedArrayBuffer() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsJSArrayBuffer() && i::JSArrayBuffer::cast(*obj)->is_shared();
}
bool Value::IsObject() const {
return Utils::OpenHandle(this)->IsJSObject();
}
bool Value::IsNumber() const {
return Utils::OpenHandle(this)->IsNumber();
}
#define VALUE_IS_SPECIFIC_TYPE(Type, Class) \
bool Value::Is##Type() const { \
i::Handle<i::Object> obj = Utils::OpenHandle(this); \
if (!obj->IsHeapObject()) return false; \
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); \
return obj->HasSpecificClassOf(isolate->heap()->Class##_string()); \
}
VALUE_IS_SPECIFIC_TYPE(ArgumentsObject, Arguments)
VALUE_IS_SPECIFIC_TYPE(BooleanObject, Boolean)
VALUE_IS_SPECIFIC_TYPE(NumberObject, Number)
VALUE_IS_SPECIFIC_TYPE(StringObject, String)
VALUE_IS_SPECIFIC_TYPE(SymbolObject, Symbol)
VALUE_IS_SPECIFIC_TYPE(Date, Date)
VALUE_IS_SPECIFIC_TYPE(Map, Map)
VALUE_IS_SPECIFIC_TYPE(Set, Set)
VALUE_IS_SPECIFIC_TYPE(WeakMap, WeakMap)
VALUE_IS_SPECIFIC_TYPE(WeakSet, WeakSet)
#undef VALUE_IS_SPECIFIC_TYPE
bool Value::IsBoolean() const {
return Utils::OpenHandle(this)->IsBoolean();
}
bool Value::IsExternal() const {
return Utils::OpenHandle(this)->IsExternal();
}
bool Value::IsInt32() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return true;
if (obj->IsNumber()) {
return i::IsInt32Double(obj->Number());
}
return false;
}
bool Value::IsUint32() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return i::Smi::cast(*obj)->value() >= 0;
if (obj->IsNumber()) {
double value = obj->Number();
return !i::IsMinusZero(value) &&
value >= 0 &&
value <= i::kMaxUInt32 &&
value == i::FastUI2D(i::FastD2UI(value));
}
return false;
}
static bool CheckConstructor(i::Isolate* isolate,
i::Handle<i::JSObject> obj,
const char* class_name) {
i::Handle<i::Object> constr(obj->map()->GetConstructor(), isolate);
if (!constr->IsJSFunction()) return false;
i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(constr);
return func->shared()->native() && constr.is_identical_to(
i::Object::GetProperty(isolate,
isolate->js_builtins_object(),
class_name).ToHandleChecked());
}
bool Value::IsNativeError() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsJSObject()) {
i::Handle<i::JSObject> js_obj(i::JSObject::cast(*obj));
i::Isolate* isolate = js_obj->GetIsolate();
return CheckConstructor(isolate, js_obj, "$Error") ||
CheckConstructor(isolate, js_obj, "$EvalError") ||
CheckConstructor(isolate, js_obj, "$RangeError") ||
CheckConstructor(isolate, js_obj, "$ReferenceError") ||
CheckConstructor(isolate, js_obj, "$SyntaxError") ||
CheckConstructor(isolate, js_obj, "$TypeError") ||
CheckConstructor(isolate, js_obj, "$URIError");
} else {
return false;
}
}
bool Value::IsRegExp() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsJSRegExp();
}
bool Value::IsGeneratorFunction() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (!obj->IsJSFunction()) return false;
i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(obj);
return func->shared()->is_generator();
}
bool Value::IsGeneratorObject() const {
return Utils::OpenHandle(this)->IsJSGeneratorObject();
}
bool Value::IsMapIterator() const {
return Utils::OpenHandle(this)->IsJSMapIterator();
}
bool Value::IsSetIterator() const {
return Utils::OpenHandle(this)->IsJSSetIterator();
}
MaybeLocal<String> Value::ToString(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsString()) return ToApiHandle<String>(obj);
PREPARE_FOR_EXECUTION(context, "ToString", String);
Local<String> result;
has_pending_exception =
!ToLocal<String>(i::Execution::ToString(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(result);
}
Local<String> Value::ToString(Isolate* isolate) const {
RETURN_TO_LOCAL_UNCHECKED(ToString(isolate->GetCurrentContext()), String);
}
MaybeLocal<String> Value::ToDetailString(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsString()) return ToApiHandle<String>(obj);
PREPARE_FOR_EXECUTION(context, "ToDetailString", String);
Local<String> result;
has_pending_exception =
!ToLocal<String>(i::Execution::ToDetailString(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(result);
}
Local<String> Value::ToDetailString(Isolate* isolate) const {
RETURN_TO_LOCAL_UNCHECKED(ToDetailString(isolate->GetCurrentContext()),
String);
}
MaybeLocal<Object> Value::ToObject(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsJSObject()) return ToApiHandle<Object>(obj);
PREPARE_FOR_EXECUTION(context, "ToObject", Object);
Local<Object> result;
has_pending_exception =
!ToLocal<Object>(i::Execution::ToObject(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
Local<v8::Object> Value::ToObject(Isolate* isolate) const {
RETURN_TO_LOCAL_UNCHECKED(ToObject(isolate->GetCurrentContext()), Object);
}
MaybeLocal<Boolean> Value::ToBoolean(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsBoolean()) return ToApiHandle<Boolean>(obj);
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
auto val = isolate->factory()->ToBoolean(obj->BooleanValue());
return ToApiHandle<Boolean>(val);
}
Local<Boolean> Value::ToBoolean(Isolate* v8_isolate) const {
return ToBoolean(v8_isolate->GetCurrentContext()).ToLocalChecked();
}
MaybeLocal<Number> Value::ToNumber(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return ToApiHandle<Number>(obj);
PREPARE_FOR_EXECUTION(context, "ToNumber", Number);
Local<Number> result;
has_pending_exception =
!ToLocal<Number>(i::Execution::ToNumber(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Number);
RETURN_ESCAPED(result);
}
Local<Number> Value::ToNumber(Isolate* isolate) const {
RETURN_TO_LOCAL_UNCHECKED(ToNumber(isolate->GetCurrentContext()), Number);
}
MaybeLocal<Integer> Value::ToInteger(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return ToApiHandle<Integer>(obj);
PREPARE_FOR_EXECUTION(context, "ToInteger", Integer);
Local<Integer> result;
has_pending_exception =
!ToLocal<Integer>(i::Execution::ToInteger(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Integer);
RETURN_ESCAPED(result);
}
Local<Integer> Value::ToInteger(Isolate* isolate) const {
RETURN_TO_LOCAL_UNCHECKED(ToInteger(isolate->GetCurrentContext()), Integer);
}
MaybeLocal<Int32> Value::ToInt32(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return ToApiHandle<Int32>(obj);
Local<Int32> result;
PREPARE_FOR_EXECUTION(context, "ToInt32", Int32);
has_pending_exception =
!ToLocal<Int32>(i::Execution::ToInt32(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Int32);
RETURN_ESCAPED(result);
}
Local<Int32> Value::ToInt32(Isolate* isolate) const {
RETURN_TO_LOCAL_UNCHECKED(ToInt32(isolate->GetCurrentContext()), Int32);
}
MaybeLocal<Uint32> Value::ToUint32(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return ToApiHandle<Uint32>(obj);
Local<Uint32> result;
PREPARE_FOR_EXECUTION(context, "ToUInt32", Uint32);
has_pending_exception =
!ToLocal<Uint32>(i::Execution::ToUint32(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Uint32);
RETURN_ESCAPED(result);
}
Local<Uint32> Value::ToUint32(Isolate* isolate) const {
RETURN_TO_LOCAL_UNCHECKED(ToUint32(isolate->GetCurrentContext()), Uint32);
}
void i::Internals::CheckInitializedImpl(v8::Isolate* external_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate);
Utils::ApiCheck(isolate != NULL &&
!isolate->IsDead(),
"v8::internal::Internals::CheckInitialized()",
"Isolate is not initialized or V8 has died");
}
void External::CheckCast(v8::Value* that) {
Utils::ApiCheck(Utils::OpenHandle(that)->IsExternal(),
"v8::External::Cast()",
"Could not convert to external");
}
void v8::Object::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSObject(),
"v8::Object::Cast()",
"Could not convert to object");
}
void v8::Function::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSFunction(),
"v8::Function::Cast()",
"Could not convert to function");
}
void v8::Boolean::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsBoolean(),
"v8::Boolean::Cast()",
"Could not convert to boolean");
}
void v8::Name::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsName(),
"v8::Name::Cast()",
"Could not convert to name");
}
void v8::String::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsString(),
"v8::String::Cast()",
"Could not convert to string");
}
void v8::Symbol::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsSymbol(),
"v8::Symbol::Cast()",
"Could not convert to symbol");
}
void v8::Number::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsNumber(),
"v8::Number::Cast()",
"Could not convert to number");
}
void v8::Integer::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsNumber(),
"v8::Integer::Cast()",
"Could not convert to number");
}
void v8::Int32::CheckCast(v8::Value* that) {
Utils::ApiCheck(that->IsInt32(), "v8::Int32::Cast()",
"Could not convert to 32-bit signed integer");
}
void v8::Uint32::CheckCast(v8::Value* that) {
Utils::ApiCheck(that->IsUint32(), "v8::Uint32::Cast()",
"Could not convert to 32-bit unsigned integer");
}
void v8::Array::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSArray(),
"v8::Array::Cast()",
"Could not convert to array");
}
void v8::Map::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSMap(), "v8::Map::Cast()",
"Could not convert to Map");
}
void v8::Set::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSSet(), "v8::Set::Cast()",
"Could not convert to Set");
}
void v8::Promise::CheckCast(Value* that) {
Utils::ApiCheck(that->IsPromise(),
"v8::Promise::Cast()",
"Could not convert to promise");
}
void v8::Promise::Resolver::CheckCast(Value* that) {
Utils::ApiCheck(that->IsPromise(),
"v8::Promise::Resolver::Cast()",
"Could not convert to promise resolver");
}
void v8::ArrayBuffer::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(
obj->IsJSArrayBuffer() && !i::JSArrayBuffer::cast(*obj)->is_shared(),
"v8::ArrayBuffer::Cast()", "Could not convert to ArrayBuffer");
}
void v8::ArrayBufferView::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSArrayBufferView(),
"v8::ArrayBufferView::Cast()",
"Could not convert to ArrayBufferView");
}
void v8::TypedArray::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSTypedArray(),
"v8::TypedArray::Cast()",
"Could not convert to TypedArray");
}
#define CHECK_TYPED_ARRAY_CAST(Type, typeName, TYPE, ctype, size) \
void v8::Type##Array::CheckCast(Value* that) { \
i::Handle<i::Object> obj = Utils::OpenHandle(that); \
Utils::ApiCheck( \
obj->IsJSTypedArray() && \
i::JSTypedArray::cast(*obj)->type() == i::kExternal##Type##Array, \
"v8::" #Type "Array::Cast()", "Could not convert to " #Type "Array"); \
}
TYPED_ARRAYS(CHECK_TYPED_ARRAY_CAST)
#undef CHECK_TYPED_ARRAY_CAST
void v8::DataView::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSDataView(),
"v8::DataView::Cast()",
"Could not convert to DataView");
}
void v8::SharedArrayBuffer::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(
obj->IsJSArrayBuffer() && i::JSArrayBuffer::cast(*obj)->is_shared(),
"v8::SharedArrayBuffer::Cast()",
"Could not convert to SharedArrayBuffer");
}
void v8::Date::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->Date_string()),
"v8::Date::Cast()",
"Could not convert to date");
}
void v8::StringObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->String_string()),
"v8::StringObject::Cast()",
"Could not convert to StringObject");
}
void v8::SymbolObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->Symbol_string()),
"v8::SymbolObject::Cast()",
"Could not convert to SymbolObject");
}
void v8::NumberObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->Number_string()),
"v8::NumberObject::Cast()",
"Could not convert to NumberObject");
}
void v8::BooleanObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
i::Isolate* isolate = NULL;
if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate();
Utils::ApiCheck(isolate != NULL &&
obj->HasSpecificClassOf(isolate->heap()->Boolean_string()),
"v8::BooleanObject::Cast()",
"Could not convert to BooleanObject");
}
void v8::RegExp::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSRegExp(),
"v8::RegExp::Cast()",
"Could not convert to regular expression");
}
Maybe<bool> Value::BooleanValue(Local<Context> context) const {
return Just(Utils::OpenHandle(this)->BooleanValue());
}
bool Value::BooleanValue() const {
return Utils::OpenHandle(this)->BooleanValue();
}
Maybe<double> Value::NumberValue(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return Just(obj->Number());
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "NumberValue", double);
i::Handle<i::Object> num;
has_pending_exception = !i::Execution::ToNumber(isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(double);
return Just(num->Number());
}
double Value::NumberValue() const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return obj->Number();
return NumberValue(ContextFromHeapObject(obj))
.FromMaybe(std::numeric_limits<double>::quiet_NaN());
}
Maybe<int64_t> Value::IntegerValue(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
i::Handle<i::Object> num;
if (obj->IsNumber()) {
num = obj;
} else {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "IntegerValue", int64_t);
has_pending_exception =
!i::Execution::ToInteger(isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int64_t);
}
return Just(num->IsSmi() ? static_cast<int64_t>(i::Smi::cast(*num)->value())
: static_cast<int64_t>(num->Number()));
}
int64_t Value::IntegerValue() const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) {
if (obj->IsSmi()) {
return i::Smi::cast(*obj)->value();
} else {
return static_cast<int64_t>(obj->Number());
}
}
return IntegerValue(ContextFromHeapObject(obj)).FromMaybe(0);
}
Maybe<int32_t> Value::Int32Value(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return Just(NumberToInt32(*obj));
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Int32Value", int32_t);
i::Handle<i::Object> num;
has_pending_exception = !i::Execution::ToInt32(isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int32_t);
return Just(num->IsSmi() ? i::Smi::cast(*num)->value()
: static_cast<int32_t>(num->Number()));
}
int32_t Value::Int32Value() const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return NumberToInt32(*obj);
return Int32Value(ContextFromHeapObject(obj)).FromMaybe(0);
}
Maybe<uint32_t> Value::Uint32Value(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return Just(NumberToUint32(*obj));
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Uint32Value", uint32_t);
i::Handle<i::Object> num;
has_pending_exception = !i::Execution::ToUint32(isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(uint32_t);
return Just(num->IsSmi() ? static_cast<uint32_t>(i::Smi::cast(*num)->value())
: static_cast<uint32_t>(num->Number()));
}
uint32_t Value::Uint32Value() const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return NumberToUint32(*obj);
return Uint32Value(ContextFromHeapObject(obj)).FromMaybe(0);
}
MaybeLocal<Uint32> Value::ToArrayIndex(Local<Context> context) const {
auto self = Utils::OpenHandle(this);
if (self->IsSmi()) {
if (i::Smi::cast(*self)->value() >= 0) return Utils::Uint32ToLocal(self);
return Local<Uint32>();
}
PREPARE_FOR_EXECUTION(context, "ToArrayIndex", Uint32);
i::Handle<i::Object> string_obj;
has_pending_exception =
!i::Execution::ToString(isolate, self).ToHandle(&string_obj);
RETURN_ON_FAILED_EXECUTION(Uint32);
i::Handle<i::String> str = i::Handle<i::String>::cast(string_obj);
uint32_t index;
if (str->AsArrayIndex(&index)) {
i::Handle<i::Object> value;
if (index <= static_cast<uint32_t>(i::Smi::kMaxValue)) {
value = i::Handle<i::Object>(i::Smi::FromInt(index), isolate);
} else {
value = isolate->factory()->NewNumber(index);
}
RETURN_ESCAPED(Utils::Uint32ToLocal(value));
}
return Local<Uint32>();
}
Local<Uint32> Value::ToArrayIndex() const {
auto self = Utils::OpenHandle(this);
if (self->IsSmi()) {
if (i::Smi::cast(*self)->value() >= 0) return Utils::Uint32ToLocal(self);
return Local<Uint32>();
}
auto context = ContextFromHeapObject(self);
RETURN_TO_LOCAL_UNCHECKED(ToArrayIndex(context), Uint32);
}
Maybe<bool> Value::Equals(Local<Context> context, Local<Value> that) const {
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
if (self->IsSmi() && other->IsSmi()) {
return Just(self->Number() == other->Number());
}
if (self->IsJSObject() && other->IsJSObject()) {
return Just(*self == *other);
}
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Value::Equals()", bool);
i::Handle<i::Object> args[] = { other };
i::Handle<i::Object> result;
has_pending_exception =
!CallV8HeapFunction(isolate, "EQUALS", self, arraysize(args), args)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(*result == i::Smi::FromInt(i::EQUAL));
}
bool Value::Equals(Local<Value> that) const {
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
if (self->IsSmi() && other->IsSmi()) {
return self->Number() == other->Number();
}
if (self->IsJSObject() && other->IsJSObject()) {
return *self == *other;
}
auto heap_object = self->IsSmi() ? other : self;
auto context = ContextFromHeapObject(heap_object);
return Equals(context, that).FromMaybe(false);
}
bool Value::StrictEquals(Local<Value> that) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::Object> other = Utils::OpenHandle(*that);
if (obj->IsSmi()) {
return other->IsNumber() && obj->Number() == other->Number();
}
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate();
LOG_API(isolate, "StrictEquals");
// Must check HeapNumber first, since NaN !== NaN.
if (obj->IsHeapNumber()) {
if (!other->IsNumber()) return false;
double x = obj->Number();
double y = other->Number();
// Must check explicitly for NaN:s on Windows, but -0 works fine.
return x == y && !std::isnan(x) && !std::isnan(y);
} else if (*obj == *other) { // Also covers Booleans.
return true;
} else if (obj->IsSmi()) {
return other->IsNumber() && obj->Number() == other->Number();
} else if (obj->IsString()) {
return other->IsString() &&
i::String::Equals(i::Handle<i::String>::cast(obj),
i::Handle<i::String>::cast(other));
} else if (obj->IsUndefined() || obj->IsUndetectableObject()) {
return other->IsUndefined() || other->IsUndetectableObject();
} else {
return false;
}
}
bool Value::SameValue(Local<Value> that) const {
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
return self->SameValue(*other);
}
Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context,
v8::Local<Value> key, v8::Local<Value> value) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Set()", bool);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
auto value_obj = Utils::OpenHandle(*value);
has_pending_exception =
i::Runtime::SetObjectProperty(isolate, self, key_obj, value_obj,
i::SLOPPY).is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
bool v8::Object::Set(v8::Local<Value> key, v8::Local<Value> value) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return Set(context, key, value).FromMaybe(false);
}
Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context, uint32_t index,
v8::Local<Value> value) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Set()", bool);
auto self = Utils::OpenHandle(this);
auto value_obj = Utils::OpenHandle(*value);
has_pending_exception = i::Object::SetElement(isolate, self, index, value_obj,
i::SLOPPY).is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
bool v8::Object::Set(uint32_t index, v8::Local<Value> value) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return Set(context, index, value).FromMaybe(false);
}
Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context,
v8::Local<Name> key,
v8::Local<Value> value) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::CreateDataProperty()",
bool);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
i::LookupIterator it = i::LookupIterator::PropertyOrElement(
isolate, self, key_obj, i::LookupIterator::OWN);
Maybe<bool> result = i::JSObject::CreateDataProperty(&it, value_obj);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context,
uint32_t index,
v8::Local<Value> value) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::CreateDataProperty()",
bool);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
i::LookupIterator it(isolate, self, index, i::LookupIterator::OWN);
Maybe<bool> result = i::JSObject::CreateDataProperty(&it, value_obj);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::DefineOwnProperty(v8::Local<v8::Context> context,
v8::Local<Name> key,
v8::Local<Value> value,
v8::PropertyAttribute attributes) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::DefineOwnProperty()",
bool);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
auto value_obj = Utils::OpenHandle(*value);
if (self->IsAccessCheckNeeded() && !isolate->MayAccess(self)) {
isolate->ReportFailedAccessCheck(self);
return Nothing<bool>();
}
i::Handle<i::FixedArray> desc = isolate->factory()->NewFixedArray(3);
desc->set(0, isolate->heap()->ToBoolean(!(attributes & v8::ReadOnly)));
desc->set(1, isolate->heap()->ToBoolean(!(attributes & v8::DontEnum)));
desc->set(2, isolate->heap()->ToBoolean(!(attributes & v8::DontDelete)));
i::Handle<i::JSArray> desc_array =
isolate->factory()->NewJSArrayWithElements(desc, i::FAST_ELEMENTS, 3);
i::Handle<i::Object> args[] = {self, key_obj, value_obj, desc_array};
i::Handle<i::Object> result;
has_pending_exception =
!CallV8HeapFunction(isolate, "$objectDefineOwnProperty",
isolate->factory()->undefined_value(),
arraysize(args), args).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->BooleanValue());
}
MUST_USE_RESULT
static i::MaybeHandle<i::Object> DefineObjectProperty(
i::Handle<i::JSObject> js_object, i::Handle<i::Object> key,
i::Handle<i::Object> value, PropertyAttributes attrs) {
i::Isolate* isolate = js_object->GetIsolate();
// Check if the given key is an array index.
uint32_t index = 0;
if (key->ToArrayIndex(&index)) {
return i::JSObject::SetOwnElementIgnoreAttributes(js_object, index, value,
attrs);
}
i::Handle<i::Name> name;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, name,
i::Runtime::ToName(isolate, key),
i::MaybeHandle<i::Object>());
return i::JSObject::DefinePropertyOrElementIgnoreAttributes(js_object, name,
value, attrs);
}
Maybe<bool> v8::Object::ForceSet(v8::Local<v8::Context> context,
v8::Local<Value> key, v8::Local<Value> value,
v8::PropertyAttribute attribs) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Set()", bool);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
auto value_obj = Utils::OpenHandle(*value);
has_pending_exception =
DefineObjectProperty(self, key_obj, value_obj,
static_cast<PropertyAttributes>(attribs)).is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
bool v8::Object::ForceSet(v8::Local<Value> key, v8::Local<Value> value,
v8::PropertyAttribute attribs) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
PREPARE_FOR_EXECUTION_GENERIC(isolate, Local<Context>(),
"v8::Object::ForceSet", false, i::HandleScope,
false);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::Object> key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
has_pending_exception =
DefineObjectProperty(self, key_obj, value_obj,
static_cast<PropertyAttributes>(attribs)).is_null();
EXCEPTION_BAILOUT_CHECK_SCOPED(isolate, false);
return true;
}
MaybeLocal<Value> v8::Object::Get(Local<v8::Context> context,
Local<Value> key) {
PREPARE_FOR_EXECUTION(context, "v8::Object::Get()", Value);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> result;
has_pending_exception =
!i::Runtime::GetObjectProperty(isolate, self, key_obj).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(Utils::ToLocal(result));
}
Local<Value> v8::Object::Get(v8::Local<Value> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(Get(context, key), Value);
}
MaybeLocal<Value> v8::Object::Get(Local<Context> context, uint32_t index) {
PREPARE_FOR_EXECUTION(context, "v8::Object::Get()", Value);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
has_pending_exception =
!i::Object::GetElement(isolate, self, index).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(Utils::ToLocal(result));
}
Local<Value> v8::Object::Get(uint32_t index) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(Get(context, index), Value);
}
Maybe<PropertyAttribute> v8::Object::GetPropertyAttributes(
Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(
context, "v8::Object::GetPropertyAttributes()", PropertyAttribute);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
if (!key_obj->IsName()) {
has_pending_exception = !i::Execution::ToString(
isolate, key_obj).ToHandle(&key_obj);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
}
auto key_name = i::Handle<i::Name>::cast(key_obj);
auto result = i::JSReceiver::GetPropertyAttributes(self, key_name);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
if (result.FromJust() == ABSENT) {
return Just(static_cast<PropertyAttribute>(NONE));
}
return Just(static_cast<PropertyAttribute>(result.FromJust()));
}
PropertyAttribute v8::Object::GetPropertyAttributes(v8::Local<Value> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return GetPropertyAttributes(context, key)
.FromMaybe(static_cast<PropertyAttribute>(NONE));
}
MaybeLocal<Value> v8::Object::GetOwnPropertyDescriptor(Local<Context> context,
Local<String> key) {
PREPARE_FOR_EXECUTION(context, "v8::Object::GetOwnPropertyDescriptor()",
Value);
auto obj = Utils::OpenHandle(this);
auto key_name = Utils::OpenHandle(*key);
i::Handle<i::Object> args[] = { obj, key_name };
i::Handle<i::Object> result;
has_pending_exception =
!CallV8HeapFunction(isolate, "$objectGetOwnPropertyDescriptor",
isolate->factory()->undefined_value(),
arraysize(args), args).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(Utils::ToLocal(result));
}
Local<Value> v8::Object::GetOwnPropertyDescriptor(Local<String> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(GetOwnPropertyDescriptor(context, key), Value);
}
Local<Value> v8::Object::GetPrototype() {
auto isolate = Utils::OpenHandle(this)->GetIsolate();
auto self = Utils::OpenHandle(this);
i::PrototypeIterator iter(isolate, self);
return Utils::ToLocal(i::PrototypeIterator::GetCurrent(iter));
}
Maybe<bool> v8::Object::SetPrototype(Local<Context> context,
Local<Value> value) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::SetPrototype()", bool);
auto self = Utils::OpenHandle(this);
auto value_obj = Utils::OpenHandle(*value);
// We do not allow exceptions thrown while setting the prototype
// to propagate outside.
TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate));
auto result = i::JSObject::SetPrototype(self, value_obj, false);
has_pending_exception = result.is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
bool v8::Object::SetPrototype(Local<Value> value) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return SetPrototype(context, value).FromMaybe(false);
}
Local<Object> v8::Object::FindInstanceInPrototypeChain(
v8::Local<FunctionTemplate> tmpl) {
auto isolate = Utils::OpenHandle(this)->GetIsolate();
i::PrototypeIterator iter(isolate, *Utils::OpenHandle(this),
i::PrototypeIterator::START_AT_RECEIVER);
auto tmpl_info = *Utils::OpenHandle(*tmpl);
while (!tmpl_info->IsTemplateFor(iter.GetCurrent())) {
iter.Advance();
if (iter.IsAtEnd()) {
return Local<Object>();
}
}
return Utils::ToLocal(
i::handle(i::JSObject::cast(iter.GetCurrent()), isolate));
}
MaybeLocal<Array> v8::Object::GetPropertyNames(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, "v8::Object::GetPropertyNames()", Array);
auto self = Utils::OpenHandle(this);
i::Handle<i::FixedArray> value;
has_pending_exception = !i::JSReceiver::GetKeys(
self, i::JSReceiver::INCLUDE_PROTOS).ToHandle(&value);
RETURN_ON_FAILED_EXECUTION(Array);
// Because we use caching to speed up enumeration it is important
// to never change the result of the basic enumeration function so
// we clone the result.
auto elms = isolate->factory()->CopyFixedArray(value);
auto result = isolate->factory()->NewJSArrayWithElements(elms);
RETURN_ESCAPED(Utils::ToLocal(result));
}
Local<Array> v8::Object::GetPropertyNames() {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(GetPropertyNames(context), Array);
}
MaybeLocal<Array> v8::Object::GetOwnPropertyNames(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, "v8::Object::GetOwnPropertyNames()", Array);
auto self = Utils::OpenHandle(this);
i::Handle<i::FixedArray> value;
has_pending_exception = !i::JSReceiver::GetKeys(
self, i::JSReceiver::OWN_ONLY).ToHandle(&value);
RETURN_ON_FAILED_EXECUTION(Array);
// Because we use caching to speed up enumeration it is important
// to never change the result of the basic enumeration function so
// we clone the result.
auto elms = isolate->factory()->CopyFixedArray(value);
auto result = isolate->factory()->NewJSArrayWithElements(elms);
RETURN_ESCAPED(Utils::ToLocal(result));
}
Local<Array> v8::Object::GetOwnPropertyNames() {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(GetOwnPropertyNames(context), Array);
}
MaybeLocal<String> v8::Object::ObjectProtoToString(Local<Context> context) {
auto self = Utils::OpenHandle(this);
auto isolate = self->GetIsolate();
auto v8_isolate = reinterpret_cast<v8::Isolate*>(isolate);
i::Handle<i::Object> name(self->class_name(), isolate);
i::Handle<i::Object> tag;
// Native implementation of Object.prototype.toString (v8natives.js):
// var c = %_ClassOf(this);
// if (c === 'Arguments') c = 'Object';
// return "[object " + c + "]";
if (!name->IsString()) {
return v8::String::NewFromUtf8(v8_isolate, "[object ]",
NewStringType::kNormal);
}
auto class_name = i::Handle<i::String>::cast(name);
if (i::String::Equals(class_name, isolate->factory()->Arguments_string())) {
return v8::String::NewFromUtf8(v8_isolate, "[object Object]",
NewStringType::kNormal);
}
if (internal::FLAG_harmony_tostring) {
PREPARE_FOR_EXECUTION(context, "v8::Object::ObjectProtoToString()", String);
auto toStringTag = isolate->factory()->to_string_tag_symbol();
has_pending_exception = !i::Runtime::GetObjectProperty(
isolate, self, toStringTag).ToHandle(&tag);
RETURN_ON_FAILED_EXECUTION(String);
if (tag->IsString()) {
class_name = Utils::OpenHandle(*handle_scope.Escape(
Utils::ToLocal(i::Handle<i::String>::cast(tag))));
}
}
const char* prefix = "[object ";
Local<String> str = Utils::ToLocal(class_name);
const char* postfix = "]";
int prefix_len = i::StrLength(prefix);
int str_len = str->Utf8Length();
int postfix_len = i::StrLength(postfix);
int buf_len = prefix_len + str_len + postfix_len;
i::ScopedVector<char> buf(buf_len);
// Write prefix.
char* ptr = buf.start();
i::MemCopy(ptr, prefix, prefix_len * v8::internal::kCharSize);
ptr += prefix_len;
// Write real content.
str->WriteUtf8(ptr, str_len);
ptr += str_len;
// Write postfix.
i::MemCopy(ptr, postfix, postfix_len * v8::internal::kCharSize);
// Copy the buffer into a heap-allocated string and return it.
return v8::String::NewFromUtf8(v8_isolate, buf.start(),
NewStringType::kNormal, buf_len);
}
Local<String> v8::Object::ObjectProtoToString() {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(ObjectProtoToString(context), String);
}
Local<String> v8::Object::GetConstructorName() {
auto self = Utils::OpenHandle(this);
i::Handle<i::String> name(self->constructor_name());
return Utils::ToLocal(name);
}
Maybe<bool> v8::Object::Delete(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Delete()", bool);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> obj;
has_pending_exception =
!i::Runtime::DeleteObjectProperty(isolate, self, key_obj, i::SLOPPY)
.ToHandle(&obj);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(obj->IsTrue());
}
bool v8::Object::Delete(v8::Local<Value> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return Delete(context, key).FromMaybe(false);
}
Maybe<bool> v8::Object::Has(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Get()", bool);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
Maybe<bool> maybe = Nothing<bool>();
// Check if the given key is an array index.
uint32_t index = 0;
if (key_obj->ToArrayIndex(&index)) {
maybe = i::JSReceiver::HasElement(self, index);
} else {
// Convert the key to a name - possibly by calling back into JavaScript.
i::Handle<i::Name> name;
if (i::Runtime::ToName(isolate, key_obj).ToHandle(&name)) {
maybe = i::JSReceiver::HasProperty(self, name);
}
}
has_pending_exception = maybe.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return maybe;
}
bool v8::Object::Has(v8::Local<Value> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return Has(context, key).FromMaybe(false);
}
Maybe<bool> v8::Object::Delete(Local<Context> context, uint32_t index) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::DeleteProperty()",
bool);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> obj;
has_pending_exception =
!i::JSReceiver::DeleteElement(self, index).ToHandle(&obj);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(obj->IsTrue());
}
bool v8::Object::Delete(uint32_t index) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return Delete(context, index).FromMaybe(false);
}
Maybe<bool> v8::Object::Has(Local<Context> context, uint32_t index) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::Get()", bool);
auto self = Utils::OpenHandle(this);
auto maybe = i::JSReceiver::HasElement(self, index);
has_pending_exception = maybe.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return maybe;
}
bool v8::Object::Has(uint32_t index) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return Has(context, index).FromMaybe(false);
}
template <typename Getter, typename Setter, typename Data>
static Maybe<bool> ObjectSetAccessor(Local<Context> context, Object* obj,
Local<Name> name, Getter getter,
Setter setter, Data data,
AccessControl settings,
PropertyAttribute attributes) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::SetAccessor()", bool);
v8::Local<AccessorSignature> signature;
auto info = MakeAccessorInfo(name, getter, setter, data, settings, attributes,
signature);
if (info.is_null()) return Nothing<bool>();
bool fast = Utils::OpenHandle(obj)->HasFastProperties();
i::Handle<i::Object> result;
has_pending_exception =
!i::JSObject::SetAccessor(Utils::OpenHandle(obj), info).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
if (result->IsUndefined()) return Nothing<bool>();
if (fast) {
i::JSObject::MigrateSlowToFast(Utils::OpenHandle(obj), 0, "APISetAccessor");
}
return Just(true);
}
Maybe<bool> Object::SetAccessor(Local<Context> context, Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
MaybeLocal<Value> data, AccessControl settings,
PropertyAttribute attribute) {
return ObjectSetAccessor(context, this, name, getter, setter,
data.FromMaybe(Local<Value>()), settings, attribute);
}
bool Object::SetAccessor(Local<String> name, AccessorGetterCallback getter,
AccessorSetterCallback setter, v8::Local<Value> data,
AccessControl settings, PropertyAttribute attributes) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return ObjectSetAccessor(context, this, name, getter, setter, data, settings,
attributes).FromMaybe(false);
}
bool Object::SetAccessor(Local<Name> name, AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
v8::Local<Value> data, AccessControl settings,
PropertyAttribute attributes) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return ObjectSetAccessor(context, this, name, getter, setter, data, settings,
attributes).FromMaybe(false);
}
void Object::SetAccessorProperty(Local<Name> name, Local<Function> getter,
Local<Function> setter,
PropertyAttribute attribute,
AccessControl settings) {
// TODO(verwaest): Remove |settings|.
DCHECK_EQ(v8::DEFAULT, settings);
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> getter_i = v8::Utils::OpenHandle(*getter);
i::Handle<i::Object> setter_i = v8::Utils::OpenHandle(*setter, true);
if (setter_i.is_null()) setter_i = isolate->factory()->null_value();
i::JSObject::DefineAccessor(v8::Utils::OpenHandle(this),
v8::Utils::OpenHandle(*name),
getter_i,
setter_i,
static_cast<PropertyAttributes>(attribute));
}
Maybe<bool> v8::Object::HasOwnProperty(Local<Context> context,
Local<Name> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::HasOwnProperty()",
bool);
auto self = Utils::OpenHandle(this);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSReceiver::HasOwnProperty(self, key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
bool v8::Object::HasOwnProperty(Local<String> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return HasOwnProperty(context, key).FromMaybe(false);
}
Maybe<bool> v8::Object::HasRealNamedProperty(Local<Context> context,
Local<Name> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::HasRealNamedProperty()",
bool);
auto self = Utils::OpenHandle(this);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSObject::HasRealNamedProperty(self, key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
bool v8::Object::HasRealNamedProperty(Local<String> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return HasRealNamedProperty(context, key).FromMaybe(false);
}
Maybe<bool> v8::Object::HasRealIndexedProperty(Local<Context> context,
uint32_t index) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context,
"v8::Object::HasRealIndexedProperty()", bool);
auto self = Utils::OpenHandle(this);
auto result = i::JSObject::HasRealElementProperty(self, index);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
bool v8::Object::HasRealIndexedProperty(uint32_t index) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return HasRealIndexedProperty(context, index).FromMaybe(false);
}
Maybe<bool> v8::Object::HasRealNamedCallbackProperty(Local<Context> context,
Local<Name> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(
context, "v8::Object::HasRealNamedCallbackProperty()", bool);
auto self = Utils::OpenHandle(this);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSObject::HasRealNamedCallbackProperty(self, key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
bool v8::Object::HasRealNamedCallbackProperty(Local<String> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return HasRealNamedCallbackProperty(context, key).FromMaybe(false);
}
bool v8::Object::HasNamedLookupInterceptor() {
auto self = Utils::OpenHandle(this);
return self->HasNamedInterceptor();
}
bool v8::Object::HasIndexedLookupInterceptor() {
auto self = Utils::OpenHandle(this);
return self->HasIndexedInterceptor();
}
MaybeLocal<Value> v8::Object::GetRealNamedPropertyInPrototypeChain(
Local<Context> context, Local<Name> key) {
PREPARE_FOR_EXECUTION(
context, "v8::Object::GetRealNamedPropertyInPrototypeChain()", Value);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
i::PrototypeIterator iter(isolate, self);
if (iter.IsAtEnd()) return MaybeLocal<Value>();
auto proto = i::PrototypeIterator::GetCurrent(iter);
i::LookupIterator it = i::LookupIterator::PropertyOrElement(
isolate, self, key_obj, i::Handle<i::JSReceiver>::cast(proto),
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result);
RETURN_ON_FAILED_EXECUTION(Value);
if (!it.IsFound()) return MaybeLocal<Value>();
RETURN_ESCAPED(result);
}
Local<Value> v8::Object::GetRealNamedPropertyInPrototypeChain(
Local<String> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(GetRealNamedPropertyInPrototypeChain(context, key),
Value);
}
Maybe<PropertyAttribute>
v8::Object::GetRealNamedPropertyAttributesInPrototypeChain(
Local<Context> context, Local<Name> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(
context, "v8::Object::GetRealNamedPropertyAttributesInPrototypeChain()",
PropertyAttribute);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
i::PrototypeIterator iter(isolate, self);
if (iter.IsAtEnd()) return Nothing<PropertyAttribute>();
auto proto = i::PrototypeIterator::GetCurrent(iter);
i::LookupIterator it = i::LookupIterator::PropertyOrElement(
isolate, self, key_obj, i::Handle<i::JSReceiver>::cast(proto),
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
auto result = i::JSReceiver::GetPropertyAttributes(&it);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
if (!it.IsFound()) return Nothing<PropertyAttribute>();
if (result.FromJust() == ABSENT) {
return Just(static_cast<PropertyAttribute>(NONE));
}
return Just<PropertyAttribute>(
static_cast<PropertyAttribute>(result.FromJust()));
}
Maybe<PropertyAttribute>
v8::Object::GetRealNamedPropertyAttributesInPrototypeChain(Local<String> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return GetRealNamedPropertyAttributesInPrototypeChain(context, key);
}
MaybeLocal<Value> v8::Object::GetRealNamedProperty(Local<Context> context,
Local<Name> key) {
PREPARE_FOR_EXECUTION(context, "v8::Object::GetRealNamedProperty()", Value);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
i::LookupIterator it = i::LookupIterator::PropertyOrElement(
isolate, self, key_obj,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result);
RETURN_ON_FAILED_EXECUTION(Value);
if (!it.IsFound()) return MaybeLocal<Value>();
RETURN_ESCAPED(result);
}
Local<Value> v8::Object::GetRealNamedProperty(Local<String> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(GetRealNamedProperty(context, key), Value);
}
Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributes(
Local<Context> context, Local<Name> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(
context, "v8::Object::GetRealNamedPropertyAttributes()",
PropertyAttribute);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
i::LookupIterator it = i::LookupIterator::PropertyOrElement(
isolate, self, key_obj,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
auto result = i::JSReceiver::GetPropertyAttributes(&it);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
if (!it.IsFound()) return Nothing<PropertyAttribute>();
if (result.FromJust() == ABSENT) {
return Just(static_cast<PropertyAttribute>(NONE));
}
return Just<PropertyAttribute>(
static_cast<PropertyAttribute>(result.FromJust()));
}
Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributes(
Local<String> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return GetRealNamedPropertyAttributes(context, key);
}
Local<v8::Object> v8::Object::Clone() {
auto self = Utils::OpenHandle(this);
auto isolate = self->GetIsolate();
ENTER_V8(isolate);
auto result = isolate->factory()->CopyJSObject(self);
CHECK(!result.is_null());
return Utils::ToLocal(result);
}
Local<v8::Context> v8::Object::CreationContext() {
auto self = Utils::OpenHandle(this);
auto context = handle(self->GetCreationContext());
return Utils::ToLocal(context);
}
int v8::Object::GetIdentityHash() {
auto isolate = Utils::OpenHandle(this)->GetIsolate();
i::HandleScope scope(isolate);
auto self = Utils::OpenHandle(this);
return i::JSReceiver::GetOrCreateIdentityHash(self)->value();
}
bool v8::Object::SetHiddenValue(v8::Local<v8::String> key,
v8::Local<v8::Value> value) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
if (value.IsEmpty()) return DeleteHiddenValue(key);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::String> key_obj = Utils::OpenHandle(*key);
i::Handle<i::String> key_string =
isolate->factory()->InternalizeString(key_obj);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
i::Handle<i::Object> result =
i::JSObject::SetHiddenProperty(self, key_string, value_obj);
return *result == *self;
}
v8::Local<v8::Value> v8::Object::GetHiddenValue(v8::Local<v8::String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::String> key_obj = Utils::OpenHandle(*key);
i::Handle<i::String> key_string =
isolate->factory()->InternalizeString(key_obj);
i::Handle<i::Object> result(self->GetHiddenProperty(key_string), isolate);
if (result->IsTheHole()) return v8::Local<v8::Value>();
return Utils::ToLocal(result);
}
bool v8::Object::DeleteHiddenValue(v8::Local<v8::String> key) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::JSObject> self = Utils::OpenHandle(this);
i::Handle<i::String> key_obj = Utils::OpenHandle(*key);
i::Handle<i::String> key_string =
isolate->factory()->InternalizeString(key_obj);
i::JSObject::DeleteHiddenProperty(self, key_string);
return true;
}
bool v8::Object::IsCallable() {
auto self = Utils::OpenHandle(this);
return self->IsCallable();
}
MaybeLocal<Value> Object::CallAsFunction(Local<Context> context,
Local<Value> recv, int argc,
Local<Value> argv[]) {
PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, "v8::Object::CallAsFunction()",
Value);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto self = Utils::OpenHandle(this);
auto recv_obj = Utils::OpenHandle(*recv);
STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Object**));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
i::Handle<i::JSFunction> fun;
if (self->IsJSFunction()) {
fun = i::Handle<i::JSFunction>::cast(self);
} else {
i::Handle<i::Object> delegate;
has_pending_exception = !i::Execution::TryGetFunctionDelegate(isolate, self)
.ToHandle(&delegate);
RETURN_ON_FAILED_EXECUTION(Value);
fun = i::Handle<i::JSFunction>::cast(delegate);
recv_obj = self;
}
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(
i::Execution::Call(isolate, fun, recv_obj, argc, args, true),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<v8::Value> Object::CallAsFunction(v8::Local<v8::Value> recv, int argc,
v8::Local<v8::Value> argv[]) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
Local<Value>* argv_cast = reinterpret_cast<Local<Value>*>(argv);
RETURN_TO_LOCAL_UNCHECKED(CallAsFunction(context, recv, argc, argv_cast),
Value);
}
MaybeLocal<Value> Object::CallAsConstructor(Local<Context> context, int argc,
Local<Value> argv[]) {
PREPARE_FOR_EXECUTION_WITH_CALLBACK(context,
"v8::Object::CallAsConstructor()", Value);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto self = Utils::OpenHandle(this);
STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Object**));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
if (self->IsJSFunction()) {
auto fun = i::Handle<i::JSFunction>::cast(self);
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(i::Execution::New(fun, argc, args), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
i::Handle<i::Object> delegate;
has_pending_exception = !i::Execution::TryGetConstructorDelegate(
isolate, self).ToHandle(&delegate);
RETURN_ON_FAILED_EXECUTION(Value);
if (!delegate->IsUndefined()) {
auto fun = i::Handle<i::JSFunction>::cast(delegate);
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(i::Execution::Call(isolate, fun, self, argc, args),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
DCHECK(!delegate->IsUndefined());
RETURN_ESCAPED(result);
}
return MaybeLocal<Value>();
}
Local<v8::Value> Object::CallAsConstructor(int argc,
v8::Local<v8::Value> argv[]) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
Local<Value>* argv_cast = reinterpret_cast<Local<Value>*>(argv);
RETURN_TO_LOCAL_UNCHECKED(CallAsConstructor(context, argc, argv_cast), Value);
}
MaybeLocal<Function> Function::New(Local<Context> context,
FunctionCallback callback, Local<Value> data,
int length) {
i::Isolate* isolate = Utils::OpenHandle(*context)->GetIsolate();
LOG_API(isolate, "Function::New");
ENTER_V8(isolate);
return FunctionTemplateNew(isolate, callback, data, Local<Signature>(),
length, true)->GetFunction(context);
}
Local<Function> Function::New(Isolate* v8_isolate, FunctionCallback callback,
Local<Value> data, int length) {
return Function::New(v8_isolate->GetCurrentContext(), callback, data, length)
.FromMaybe(Local<Function>());
}
Local<v8::Object> Function::NewInstance() const {
return NewInstance(Isolate::GetCurrent()->GetCurrentContext(), 0, NULL)
.FromMaybe(Local<Object>());
}
MaybeLocal<Object> Function::NewInstance(Local<Context> context, int argc,
v8::Local<v8::Value> argv[]) const {
PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, "v8::Function::NewInstance()",
Object);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto self = Utils::OpenHandle(this);
STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Object**));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
Local<Object> result;
has_pending_exception =
!ToLocal<Object>(i::Execution::New(self, argc, args), &result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
Local<v8::Object> Function::NewInstance(int argc,
v8::Local<v8::Value> argv[]) const {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(NewInstance(context, argc, argv), Object);
}
MaybeLocal<v8::Value> Function::Call(Local<Context> context,
v8::Local<v8::Value> recv, int argc,
v8::Local<v8::Value> argv[]) {
PREPARE_FOR_EXECUTION_WITH_CALLBACK(context, "v8::Function::Call()", Value);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv);
STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Object**));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(
i::Execution::Call(isolate, self, recv_obj, argc, args, true),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<v8::Value> Function::Call(v8::Local<v8::Value> recv, int argc,
v8::Local<v8::Value> argv[]) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(Call(context, recv, argc, argv), Value);
}
void Function::SetName(v8::Local<v8::String> name) {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
func->shared()->set_name(*Utils::OpenHandle(*name));
}
Local<Value> Function::GetName() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
return Utils::ToLocal(i::Handle<i::Object>(func->shared()->name(),
func->GetIsolate()));
}
Local<Value> Function::GetInferredName() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
return Utils::ToLocal(i::Handle<i::Object>(func->shared()->inferred_name(),
func->GetIsolate()));
}
Local<Value> Function::GetDisplayName() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8(isolate);
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
i::Handle<i::String> property_name =
isolate->factory()->NewStringFromStaticChars("displayName");
i::Handle<i::Object> value =
i::JSReceiver::GetDataProperty(func, property_name);
if (value->IsString()) {
i::Handle<i::String> name = i::Handle<i::String>::cast(value);
if (name->length() > 0) return Utils::ToLocal(name);
}
return ToApiHandle<Primitive>(isolate->factory()->undefined_value());
}
ScriptOrigin Function::GetScriptOrigin() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (func->shared()->script()->IsScript()) {
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()));
return GetScriptOriginForScript(func->GetIsolate(), script);
}
return v8::ScriptOrigin(Local<Value>());
}
const int Function::kLineOffsetNotFound = -1;
int Function::GetScriptLineNumber() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (func->shared()->script()->IsScript()) {
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()));
return i::Script::GetLineNumber(script, func->shared()->start_position());
}
return kLineOffsetNotFound;
}
int Function::GetScriptColumnNumber() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (func->shared()->script()->IsScript()) {
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()));
return i::Script::GetColumnNumber(script, func->shared()->start_position());
}
return kLineOffsetNotFound;
}
bool Function::IsBuiltin() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
return func->IsBuiltin();
}
int Function::ScriptId() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (!func->shared()->script()->IsScript()) {
return v8::UnboundScript::kNoScriptId;
}
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()));
return script->id()->value();
}
Local<v8::Value> Function::GetBoundFunction() const {
i::Handle<i::JSFunction> func = Utils::OpenHandle(this);
if (!func->shared()->bound()) {
return v8::Undefined(reinterpret_cast<v8::Isolate*>(func->GetIsolate()));
}
i::Handle<i::FixedArray> bound_args = i::Handle<i::FixedArray>(
i::FixedArray::cast(func->function_bindings()));
i::Handle<i::Object> original(
bound_args->get(i::JSFunction::kBoundFunctionIndex),
func->GetIsolate());
return Utils::ToLocal(i::Handle<i::JSFunction>::cast(original));
}
int Name::GetIdentityHash() {
auto self = Utils::OpenHandle(this);
return static_cast<int>(self->Hash());
}
int String::Length() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return str->length();
}
bool String::IsOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return str->HasOnlyOneByteChars();
}
// Helpers for ContainsOnlyOneByteHelper
template<size_t size> struct OneByteMask;
template<> struct OneByteMask<4> {
static const uint32_t value = 0xFF00FF00;
};
template<> struct OneByteMask<8> {
static const uint64_t value = V8_2PART_UINT64_C(0xFF00FF00, FF00FF00);
};
static const uintptr_t kOneByteMask = OneByteMask<sizeof(uintptr_t)>::value;
static const uintptr_t kAlignmentMask = sizeof(uintptr_t) - 1;
static inline bool Unaligned(const uint16_t* chars) {
return reinterpret_cast<const uintptr_t>(chars) & kAlignmentMask;
}
static inline const uint16_t* Align(const uint16_t* chars) {
return reinterpret_cast<uint16_t*>(
reinterpret_cast<uintptr_t>(chars) & ~kAlignmentMask);
}
class ContainsOnlyOneByteHelper {
public:
ContainsOnlyOneByteHelper() : is_one_byte_(true) {}
bool Check(i::String* string) {
i::ConsString* cons_string = i::String::VisitFlat(this, string, 0);
if (cons_string == NULL) return is_one_byte_;
return CheckCons(cons_string);
}
void VisitOneByteString(const uint8_t* chars, int length) {
// Nothing to do.
}
void VisitTwoByteString(const uint16_t* chars, int length) {
// Accumulated bits.
uintptr_t acc = 0;
// Align to uintptr_t.
const uint16_t* end = chars + length;
while (Unaligned(chars) && chars != end) {
acc |= *chars++;
}
// Read word aligned in blocks,
// checking the return value at the end of each block.
const uint16_t* aligned_end = Align(end);
const int increment = sizeof(uintptr_t)/sizeof(uint16_t);
const int inner_loops = 16;
while (chars + inner_loops*increment < aligned_end) {
for (int i = 0; i < inner_loops; i++) {
acc |= *reinterpret_cast<const uintptr_t*>(chars);
chars += increment;
}
// Check for early return.
if ((acc & kOneByteMask) != 0) {
is_one_byte_ = false;
return;
}
}
// Read the rest.
while (chars != end) {
acc |= *chars++;
}
// Check result.
if ((acc & kOneByteMask) != 0) is_one_byte_ = false;
}
private:
bool CheckCons(i::ConsString* cons_string) {
while (true) {
// Check left side if flat.
i::String* left = cons_string->first();
i::ConsString* left_as_cons =
i::String::VisitFlat(this, left, 0);
if (!is_one_byte_) return false;
// Check right side if flat.
i::String* right = cons_string->second();
i::ConsString* right_as_cons =
i::String::VisitFlat(this, right, 0);
if (!is_one_byte_) return false;
// Standard recurse/iterate trick.
if (left_as_cons != NULL && right_as_cons != NULL) {
if (left->length() < right->length()) {
CheckCons(left_as_cons);
cons_string = right_as_cons;
} else {
CheckCons(right_as_cons);
cons_string = left_as_cons;
}
// Check fast return.
if (!is_one_byte_) return false;
continue;
}
// Descend left in place.
if (left_as_cons != NULL) {
cons_string = left_as_cons;
continue;
}
// Descend right in place.
if (right_as_cons != NULL) {
cons_string = right_as_cons;
continue;
}
// Terminate.
break;
}
return is_one_byte_;
}
bool is_one_byte_;
DISALLOW_COPY_AND_ASSIGN(ContainsOnlyOneByteHelper);
};
bool String::ContainsOnlyOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
if (str->HasOnlyOneByteChars()) return true;
ContainsOnlyOneByteHelper helper;
return helper.Check(*str);
}
class Utf8LengthHelper : public i::AllStatic {
public:
enum State {
kEndsWithLeadingSurrogate = 1 << 0,
kStartsWithTrailingSurrogate = 1 << 1,
kLeftmostEdgeIsCalculated = 1 << 2,
kRightmostEdgeIsCalculated = 1 << 3,
kLeftmostEdgeIsSurrogate = 1 << 4,
kRightmostEdgeIsSurrogate = 1 << 5
};
static const uint8_t kInitialState = 0;
static inline bool EndsWithSurrogate(uint8_t state) {
return state & kEndsWithLeadingSurrogate;
}
static inline bool StartsWithSurrogate(uint8_t state) {
return state & kStartsWithTrailingSurrogate;
}
class Visitor {
public:
Visitor() : utf8_length_(0), state_(kInitialState) {}
void VisitOneByteString(const uint8_t* chars, int length) {
int utf8_length = 0;
// Add in length 1 for each non-Latin1 character.
for (int i = 0; i < length; i++) {
utf8_length += *chars++ >> 7;
}
// Add in length 1 for each character.
utf8_length_ = utf8_length + length;
state_ = kInitialState;
}
void VisitTwoByteString(const uint16_t* chars, int length) {
int utf8_length = 0;
int last_character = unibrow::Utf16::kNoPreviousCharacter;
for (int i = 0; i < length; i++) {
uint16_t c = chars[i];
utf8_length += unibrow::Utf8::Length(c, last_character);
last_character = c;
}
utf8_length_ = utf8_length;
uint8_t state = 0;
if (unibrow::Utf16::IsTrailSurrogate(chars[0])) {
state |= kStartsWithTrailingSurrogate;
}
if (unibrow::Utf16::IsLeadSurrogate(chars[length-1])) {
state |= kEndsWithLeadingSurrogate;
}
state_ = state;
}
static i::ConsString* VisitFlat(i::String* string,
int* length,
uint8_t* state) {
Visitor visitor;
i::ConsString* cons_string = i::String::VisitFlat(&visitor, string);
*length = visitor.utf8_length_;
*state = visitor.state_;
return cons_string;
}
private:
int utf8_length_;
uint8_t state_;
DISALLOW_COPY_AND_ASSIGN(Visitor);
};
static inline void MergeLeafLeft(int* length,
uint8_t* state,
uint8_t leaf_state) {
bool edge_surrogate = StartsWithSurrogate(leaf_state);
if (!(*state & kLeftmostEdgeIsCalculated)) {
DCHECK(!(*state & kLeftmostEdgeIsSurrogate));
*state |= kLeftmostEdgeIsCalculated
| (edge_surrogate ? kLeftmostEdgeIsSurrogate : 0);
} else if (EndsWithSurrogate(*state) && edge_surrogate) {
*length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
}
if (EndsWithSurrogate(leaf_state)) {
*state |= kEndsWithLeadingSurrogate;
} else {
*state &= ~kEndsWithLeadingSurrogate;
}
}
static inline void MergeLeafRight(int* length,
uint8_t* state,
uint8_t leaf_state) {
bool edge_surrogate = EndsWithSurrogate(leaf_state);
if (!(*state & kRightmostEdgeIsCalculated)) {
DCHECK(!(*state & kRightmostEdgeIsSurrogate));
*state |= (kRightmostEdgeIsCalculated
| (edge_surrogate ? kRightmostEdgeIsSurrogate : 0));
} else if (edge_surrogate && StartsWithSurrogate(*state)) {
*length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
}
if (StartsWithSurrogate(leaf_state)) {
*state |= kStartsWithTrailingSurrogate;
} else {
*state &= ~kStartsWithTrailingSurrogate;
}
}
static inline void MergeTerminal(int* length,
uint8_t state,
uint8_t* state_out) {
DCHECK((state & kLeftmostEdgeIsCalculated) &&
(state & kRightmostEdgeIsCalculated));
if (EndsWithSurrogate(state) && StartsWithSurrogate(state)) {
*length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
}
*state_out = kInitialState |
(state & kLeftmostEdgeIsSurrogate ? kStartsWithTrailingSurrogate : 0) |
(state & kRightmostEdgeIsSurrogate ? kEndsWithLeadingSurrogate : 0);
}
static int Calculate(i::ConsString* current, uint8_t* state_out) {
using namespace internal;
int total_length = 0;
uint8_t state = kInitialState;
while (true) {
i::String* left = current->first();
i::String* right = current->second();
uint8_t right_leaf_state;
uint8_t left_leaf_state;
int leaf_length;
ConsString* left_as_cons =
Visitor::VisitFlat(left, &leaf_length, &left_leaf_state);
if (left_as_cons == NULL) {
total_length += leaf_length;
MergeLeafLeft(&total_length, &state, left_leaf_state);
}
ConsString* right_as_cons =
Visitor::VisitFlat(right, &leaf_length, &right_leaf_state);
if (right_as_cons == NULL) {
total_length += leaf_length;
MergeLeafRight(&total_length, &state, right_leaf_state);
if (left_as_cons != NULL) {
// 1 Leaf node. Descend in place.
current = left_as_cons;
continue;
} else {
// Terminal node.
MergeTerminal(&total_length, state, state_out);
return total_length;
}
} else if (left_as_cons == NULL) {
// 1 Leaf node. Descend in place.
current = right_as_cons;
continue;
}
// Both strings are ConsStrings.
// Recurse on smallest.
if (left->length() < right->length()) {
total_length += Calculate(left_as_cons, &left_leaf_state);
MergeLeafLeft(&total_length, &state, left_leaf_state);
current = right_as_cons;
} else {
total_length += Calculate(right_as_cons, &right_leaf_state);
MergeLeafRight(&total_length, &state, right_leaf_state);
current = left_as_cons;
}
}
UNREACHABLE();
return 0;
}
static inline int Calculate(i::ConsString* current) {
uint8_t state = kInitialState;
return Calculate(current, &state);
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Utf8LengthHelper);
};
static int Utf8Length(i::String* str, i::Isolate* isolate) {
int length = str->length();
if (length == 0) return 0;
uint8_t state;
i::ConsString* cons_string =
Utf8LengthHelper::Visitor::VisitFlat(str, &length, &state);
if (cons_string == NULL) return length;
return Utf8LengthHelper::Calculate(cons_string);
}
int String::Utf8Length() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
i::Isolate* isolate = str->GetIsolate();
return v8::Utf8Length(*str, isolate);
}
class Utf8WriterVisitor {
public:
Utf8WriterVisitor(
char* buffer,
int capacity,
bool skip_capacity_check,
bool replace_invalid_utf8)
: early_termination_(false),
last_character_(unibrow::Utf16::kNoPreviousCharacter),
buffer_(buffer),
start_(buffer),
capacity_(capacity),
skip_capacity_check_(capacity == -1 || skip_capacity_check),
replace_invalid_utf8_(replace_invalid_utf8),
utf16_chars_read_(0) {
}
static int WriteEndCharacter(uint16_t character,
int last_character,
int remaining,
char* const buffer,
bool replace_invalid_utf8) {
using namespace unibrow;
DCHECK(remaining > 0);
// We can't use a local buffer here because Encode needs to modify
// previous characters in the stream. We know, however, that
// exactly one character will be advanced.
if (Utf16::IsSurrogatePair(last_character, character)) {
int written = Utf8::Encode(buffer,
character,
last_character,
replace_invalid_utf8);
DCHECK(written == 1);
return written;
}
// Use a scratch buffer to check the required characters.
char temp_buffer[Utf8::kMaxEncodedSize];
// Can't encode using last_character as gcc has array bounds issues.
int written = Utf8::Encode(temp_buffer,
character,
Utf16::kNoPreviousCharacter,
replace_invalid_utf8);
// Won't fit.
if (written > remaining) return 0;
// Copy over the character from temp_buffer.
for (int j = 0; j < written; j++) {
buffer[j] = temp_buffer[j];
}
return written;
}
// Visit writes out a group of code units (chars) of a v8::String to the
// internal buffer_. This is done in two phases. The first phase calculates a
// pesimistic estimate (writable_length) on how many code units can be safely
// written without exceeding the buffer capacity and without writing the last
// code unit (it could be a lead surrogate). The estimated number of code
// units is then written out in one go, and the reported byte usage is used
// to correct the estimate. This is repeated until the estimate becomes <= 0
// or all code units have been written out. The second phase writes out code
// units until the buffer capacity is reached, would be exceeded by the next
// unit, or all units have been written out.
template<typename Char>
void Visit(const Char* chars, const int length) {
using namespace unibrow;
DCHECK(!early_termination_);
if (length == 0) return;
// Copy state to stack.
char* buffer = buffer_;
int last_character =
sizeof(Char) == 1 ? Utf16::kNoPreviousCharacter : last_character_;
int i = 0;
// Do a fast loop where there is no exit capacity check.
while (true) {
int fast_length;
if (skip_capacity_check_) {
fast_length = length;
} else {
int remaining_capacity = capacity_ - static_cast<int>(buffer - start_);
// Need enough space to write everything but one character.
STATIC_ASSERT(Utf16::kMaxExtraUtf8BytesForOneUtf16CodeUnit == 3);
int max_size_per_char = sizeof(Char) == 1 ? 2 : 3;
int writable_length =
(remaining_capacity - max_size_per_char)/max_size_per_char;
// Need to drop into slow loop.
if (writable_length <= 0) break;
fast_length = i + writable_length;
if (fast_length > length) fast_length = length;
}
// Write the characters to the stream.
if (sizeof(Char) == 1) {
for (; i < fast_length; i++) {
buffer +=
Utf8::EncodeOneByte(buffer, static_cast<uint8_t>(*chars++));
DCHECK(capacity_ == -1 || (buffer - start_) <= capacity_);
}
} else {
for (; i < fast_length; i++) {
uint16_t character = *chars++;
buffer += Utf8::Encode(buffer,
character,
last_character,
replace_invalid_utf8_);
last_character = character;
DCHECK(capacity_ == -1 || (buffer - start_) <= capacity_);
}
}
// Array is fully written. Exit.
if (fast_length == length) {
// Write state back out to object.
last_character_ = last_character;
buffer_ = buffer;
utf16_chars_read_ += length;
return;
}
}
DCHECK(!skip_capacity_check_);
// Slow loop. Must check capacity on each iteration.
int remaining_capacity = capacity_ - static_cast<int>(buffer - start_);
DCHECK(remaining_capacity >= 0);
for (; i < length && remaining_capacity > 0; i++) {
uint16_t character = *chars++;
// remaining_capacity is <= 3 bytes at this point, so we do not write out
// an umatched lead surrogate.
if (replace_invalid_utf8_ && Utf16::IsLeadSurrogate(character)) {
early_termination_ = true;
break;
}
int written = WriteEndCharacter(character,
last_character,
remaining_capacity,
buffer,
replace_invalid_utf8_);
if (written == 0) {
early_termination_ = true;
break;
}
buffer += written;
remaining_capacity -= written;
last_character = character;
}
// Write state back out to object.
last_character_ = last_character;
buffer_ = buffer;
utf16_chars_read_ += i;
}
inline bool IsDone() {
return early_termination_;
}
inline void VisitOneByteString(const uint8_t* chars, int length) {
Visit(chars, length);
}
inline void VisitTwoByteString(const uint16_t* chars, int length) {
Visit(chars, length);
}
int CompleteWrite(bool write_null, int* utf16_chars_read_out) {
// Write out number of utf16 characters written to the stream.
if (utf16_chars_read_out != NULL) {
*utf16_chars_read_out = utf16_chars_read_;
}
// Only null terminate if all of the string was written and there's space.
if (write_null &&
!early_termination_ &&
(capacity_ == -1 || (buffer_ - start_) < capacity_)) {
*buffer_++ = '\0';
}
return static_cast<int>(buffer_ - start_);
}
private:
bool early_termination_;
int last_character_;
char* buffer_;
char* const start_;
int capacity_;
bool const skip_capacity_check_;
bool const replace_invalid_utf8_;
int utf16_chars_read_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Utf8WriterVisitor);
};
static bool RecursivelySerializeToUtf8(i::String* current,
Utf8WriterVisitor* writer,
int recursion_budget) {
while (!writer->IsDone()) {
i::ConsString* cons_string = i::String::VisitFlat(writer, current);
if (cons_string == NULL) return true; // Leaf node.
if (recursion_budget <= 0) return false;
// Must write the left branch first.
i::String* first = cons_string->first();
bool success = RecursivelySerializeToUtf8(first,
writer,
recursion_budget - 1);
if (!success) return false;
// Inline tail recurse for right branch.
current = cons_string->second();
}
return true;
}
int String::WriteUtf8(char* buffer,
int capacity,
int* nchars_ref,
int options) const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
LOG_API(isolate, "String::WriteUtf8");
ENTER_V8(isolate);
i::Handle<i::String> str = Utils::OpenHandle(this);
if (options & HINT_MANY_WRITES_EXPECTED) {
str = i::String::Flatten(str); // Flatten the string for efficiency.
}
const int string_length = str->length();
bool write_null = !(options & NO_NULL_TERMINATION);
bool replace_invalid_utf8 = (options & REPLACE_INVALID_UTF8);
int max16BitCodeUnitSize = unibrow::Utf8::kMax16BitCodeUnitSize;
// First check if we can just write the string without checking capacity.
if (capacity == -1 || capacity / max16BitCodeUnitSize >= string_length) {
Utf8WriterVisitor writer(buffer, capacity, true, replace_invalid_utf8);
const int kMaxRecursion = 100;
bool success = RecursivelySerializeToUtf8(*str, &writer, kMaxRecursion);
if (success) return writer.CompleteWrite(write_null, nchars_ref);
} else if (capacity >= string_length) {
// First check that the buffer is large enough.
int utf8_bytes = v8::Utf8Length(*str, str->GetIsolate());
if (utf8_bytes <= capacity) {
// one-byte fast path.
if (utf8_bytes == string_length) {
WriteOneByte(reinterpret_cast<uint8_t*>(buffer), 0, capacity, options);
if (nchars_ref != NULL) *nchars_ref = string_length;
if (write_null && (utf8_bytes+1 <= capacity)) {
return string_length + 1;
}
return string_length;
}
if (write_null && (utf8_bytes+1 > capacity)) {
options |= NO_NULL_TERMINATION;
}
// Recurse once without a capacity limit.
// This will get into the first branch above.
// TODO(dcarney) Check max left rec. in Utf8Length and fall through.
return WriteUtf8(buffer, -1, nchars_ref, options);
}
}
// Recursive slow path can potentially be unreasonable slow. Flatten.
str = i::String::Flatten(str);
Utf8WriterVisitor writer(buffer, capacity, false, replace_invalid_utf8);
i::String::VisitFlat(&writer, *str);
return writer.CompleteWrite(write_null, nchars_ref);
}
template<typename CharType>
static inline int WriteHelper(const String* string,
CharType* buffer,
int start,
int length,
int options) {
i::Isolate* isolate = Utils::OpenHandle(string)->GetIsolate();
LOG_API(isolate, "String::Write");
ENTER_V8(isolate);
DCHECK(start >= 0 && length >= -1);
i::Handle<i::String> str = Utils::OpenHandle(string);
if (options & String::HINT_MANY_WRITES_EXPECTED) {
// Flatten the string for efficiency. This applies whether we are
// using StringCharacterStream or Get(i) to access the characters.
str = i::String::Flatten(str);
}
int end = start + length;
if ((length == -1) || (length > str->length() - start) )
end = str->length();
if (end < 0) return 0;
i::String::WriteToFlat(*str, buffer, start, end);
if (!(options & String::NO_NULL_TERMINATION) &&
(length == -1 || end - start < length)) {
buffer[end - start] = '\0';
}
return end - start;
}
int String::WriteOneByte(uint8_t* buffer,
int start,
int length,
int options) const {
return WriteHelper(this, buffer, start, length, options);
}
int String::Write(uint16_t* buffer,
int start,
int length,
int options) const {
return WriteHelper(this, buffer, start, length, options);
}
bool v8::String::IsExternal() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return i::StringShape(*str).IsExternalTwoByte();
}
bool v8::String::IsExternalOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return i::StringShape(*str).IsExternalOneByte();
}
void v8::String::VerifyExternalStringResource(
v8::String::ExternalStringResource* value) const {
i::Handle<i::String> str = Utils::OpenHandle(this);
const v8::String::ExternalStringResource* expected;
if (i::StringShape(*str).IsExternalTwoByte()) {
const void* resource =
i::Handle<i::ExternalTwoByteString>::cast(str)->resource();
expected = reinterpret_cast<const ExternalStringResource*>(resource);
} else {
expected = NULL;
}
CHECK_EQ(expected, value);
}
void v8::String::VerifyExternalStringResourceBase(
v8::String::ExternalStringResourceBase* value, Encoding encoding) const {
i::Handle<i::String> str = Utils::OpenHandle(this);
const v8::String::ExternalStringResourceBase* expected;
Encoding expectedEncoding;
if (i::StringShape(*str).IsExternalOneByte()) {
const void* resource =
i::Handle<i::ExternalOneByteString>::cast(str)->resource();
expected = reinterpret_cast<const ExternalStringResourceBase*>(resource);
expectedEncoding = ONE_BYTE_ENCODING;
} else if (i::StringShape(*str).IsExternalTwoByte()) {
const void* resource =
i::Handle<i::ExternalTwoByteString>::cast(str)->resource();
expected = reinterpret_cast<const ExternalStringResourceBase*>(resource);
expectedEncoding = TWO_BYTE_ENCODING;
} else {
expected = NULL;
expectedEncoding =
str->IsOneByteRepresentation() ? ONE_BYTE_ENCODING : TWO_BYTE_ENCODING;
}
CHECK_EQ(expected, value);
CHECK_EQ(expectedEncoding, encoding);
}
const v8::String::ExternalOneByteStringResource*
v8::String::GetExternalOneByteStringResource() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
if (i::StringShape(*str).IsExternalOneByte()) {
const void* resource =
i::Handle<i::ExternalOneByteString>::cast(str)->resource();
return reinterpret_cast<const ExternalOneByteStringResource*>(resource);
} else {
return NULL;
}
}
Local<Value> Symbol::Name() const {
i::Handle<i::Symbol> sym = Utils::OpenHandle(this);
i::Handle<i::Object> name(sym->name(), sym->GetIsolate());
return Utils::ToLocal(name);
}
double Number::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->Number();
}
bool Boolean::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsTrue();
}
int64_t Integer::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
return i::Smi::cast(*obj)->value();
} else {
return static_cast<int64_t>(obj->Number());
}
}
int32_t Int32::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
return i::Smi::cast(*obj)->value();
} else {
return static_cast<int32_t>(obj->Number());
}
}
uint32_t Uint32::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
return i::Smi::cast(*obj)->value();
} else {
return static_cast<uint32_t>(obj->Number());
}
}
int v8::Object::InternalFieldCount() {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
return obj->GetInternalFieldCount();
}
static bool InternalFieldOK(i::Handle<i::JSObject> obj,
int index,
const char* location) {
return Utils::ApiCheck(index < obj->GetInternalFieldCount(),
location,
"Internal field out of bounds");
}
Local<Value> v8::Object::SlowGetInternalField(int index) {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::GetInternalField()";
if (!InternalFieldOK(obj, index, location)) return Local<Value>();
i::Handle<i::Object> value(obj->GetInternalField(index), obj->GetIsolate());
return Utils::ToLocal(value);
}
void v8::Object::SetInternalField(int index, v8::Local<Value> value) {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::SetInternalField()";
if (!InternalFieldOK(obj, index, location)) return;
i::Handle<i::Object> val = Utils::OpenHandle(*value);
obj->SetInternalField(index, *val);
}
void* v8::Object::SlowGetAlignedPointerFromInternalField(int index) {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::GetAlignedPointerFromInternalField()";
if (!InternalFieldOK(obj, index, location)) return NULL;
return DecodeSmiToAligned(obj->GetInternalField(index), location);
}
void v8::Object::SetAlignedPointerInInternalField(int index, void* value) {
i::Handle<i::JSObject> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::SetAlignedPointerInInternalField()";
if (!InternalFieldOK(obj, index, location)) return;
obj->SetInternalField(index, EncodeAlignedAsSmi(value, location));
DCHECK_EQ(value, GetAlignedPointerFromInternalField(index));
}
static void* ExternalValue(i::Object* obj) {
// Obscure semantics for undefined, but somehow checked in our unit tests...
if (obj->IsUndefined()) return NULL;
i::Object* foreign = i::JSObject::cast(obj)->GetInternalField(0);
return i::Foreign::cast(foreign)->foreign_address();
}
// --- E n v i r o n m e n t ---
void v8::V8::InitializePlatform(Platform* platform) {
i::V8::InitializePlatform(platform);
}
void v8::V8::ShutdownPlatform() {
i::V8::ShutdownPlatform();
}
bool v8::V8::Initialize() {
i::V8::Initialize();
#ifdef V8_USE_EXTERNAL_STARTUP_DATA
i::ReadNatives();
#endif
return true;
}
void v8::V8::SetEntropySource(EntropySource entropy_source) {
base::RandomNumberGenerator::SetEntropySource(entropy_source);
}
void v8::V8::SetReturnAddressLocationResolver(
ReturnAddressLocationResolver return_address_resolver) {
i::V8::SetReturnAddressLocationResolver(return_address_resolver);
}
bool v8::V8::Dispose() {
i::V8::TearDown();
#ifdef V8_USE_EXTERNAL_STARTUP_DATA
i::DisposeNatives();
#endif
return true;
}
HeapStatistics::HeapStatistics(): total_heap_size_(0),
total_heap_size_executable_(0),
total_physical_size_(0),
used_heap_size_(0),
heap_size_limit_(0) { }
HeapSpaceStatistics::HeapSpaceStatistics(): space_name_(0),
space_size_(0),
space_used_size_(0),
space_available_size_(0),
physical_space_size_(0) { }
HeapObjectStatistics::HeapObjectStatistics()
: object_type_(nullptr),
object_sub_type_(nullptr),
object_count_(0),
object_size_(0) {}
bool v8::V8::InitializeICU(const char* icu_data_file) {
return i::InitializeICU(icu_data_file);
}
const char* v8::V8::GetVersion() {
return i::Version::GetVersion();
}
static i::Handle<i::Context> CreateEnvironment(
i::Isolate* isolate, v8::ExtensionConfiguration* extensions,
v8::Local<ObjectTemplate> global_template,
v8::Local<Value> maybe_global_proxy) {
i::Handle<i::Context> env;
// Enter V8 via an ENTER_V8 scope.
{
ENTER_V8(isolate);
v8::Local<ObjectTemplate> proxy_template = global_template;
i::Handle<i::FunctionTemplateInfo> proxy_constructor;
i::Handle<i::FunctionTemplateInfo> global_constructor;
if (!global_template.IsEmpty()) {
// Make sure that the global_template has a constructor.
global_constructor = EnsureConstructor(isolate, *global_template);
// Create a fresh template for the global proxy object.
proxy_template = ObjectTemplate::New(
reinterpret_cast<v8::Isolate*>(isolate));
proxy_constructor = EnsureConstructor(isolate, *proxy_template);
// Set the global template to be the prototype template of
// global proxy template.
proxy_constructor->set_prototype_template(
*Utils::OpenHandle(*global_template));
// Migrate security handlers from global_template to
// proxy_template. Temporarily removing access check
// information from the global template.
if (!global_constructor->access_check_info()->IsUndefined()) {
proxy_constructor->set_access_check_info(
global_constructor->access_check_info());
proxy_constructor->set_needs_access_check(
global_constructor->needs_access_check());
global_constructor->set_needs_access_check(false);
global_constructor->set_access_check_info(
isolate->heap()->undefined_value());
}
}
i::Handle<i::Object> proxy = Utils::OpenHandle(*maybe_global_proxy, true);
i::MaybeHandle<i::JSGlobalProxy> maybe_proxy;
if (!proxy.is_null()) {
maybe_proxy = i::Handle<i::JSGlobalProxy>::cast(proxy);
}
// Create the environment.
env = isolate->bootstrapper()->CreateEnvironment(
maybe_proxy, proxy_template, extensions);
// Restore the access check info on the global template.
if (!global_template.IsEmpty()) {
DCHECK(!global_constructor.is_null());
DCHECK(!proxy_constructor.is_null());
global_constructor->set_access_check_info(
proxy_constructor->access_check_info());
global_constructor->set_needs_access_check(
proxy_constructor->needs_access_check());
}
}
// Leave V8.
return env;
}
Local<Context> v8::Context::New(v8::Isolate* external_isolate,
v8::ExtensionConfiguration* extensions,
v8::Local<ObjectTemplate> global_template,
v8::Local<Value> global_object) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate);
LOG_API(isolate, "Context::New");
i::HandleScope scope(isolate);
ExtensionConfiguration no_extensions;
if (extensions == NULL) extensions = &no_extensions;
i::Handle<i::Context> env =
CreateEnvironment(isolate, extensions, global_template, global_object);
if (env.is_null()) {
if (isolate->has_pending_exception()) {
isolate->OptionalRescheduleException(true);
}
return Local<Context>();
}
return Utils::ToLocal(scope.CloseAndEscape(env));
}
void v8::Context::SetSecurityToken(Local<Value> token) {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Handle<i::Object> token_handle = Utils::OpenHandle(*token);
env->set_security_token(*token_handle);
}
void v8::Context::UseDefaultSecurityToken() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
env->set_security_token(env->global_object());
}
Local<Value> v8::Context::GetSecurityToken() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
i::Object* security_token = env->security_token();
i::Handle<i::Object> token_handle(security_token, isolate);
return Utils::ToLocal(token_handle);
}
v8::Isolate* Context::GetIsolate() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
return reinterpret_cast<Isolate*>(env->GetIsolate());
}
v8::Local<v8::Object> Context::Global() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
i::Handle<i::Object> global(context->global_proxy(), isolate);
// TODO(dcarney): This should always return the global proxy
// but can't presently as calls to GetProtoype will return the wrong result.
if (i::Handle<i::JSGlobalProxy>::cast(
global)->IsDetachedFrom(context->global_object())) {
global = i::Handle<i::Object>(context->global_object(), isolate);
}
return Utils::ToLocal(i::Handle<i::JSObject>::cast(global));
}
void Context::DetachGlobal() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
ENTER_V8(isolate);
isolate->bootstrapper()->DetachGlobal(context);
}
Local<v8::Object> Context::GetExtrasBindingObject() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
i::Handle<i::JSObject> binding(context->extras_binding_object(), isolate);
return Utils::ToLocal(binding);
}
void Context::AllowCodeGenerationFromStrings(bool allow) {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
ENTER_V8(isolate);
context->set_allow_code_gen_from_strings(
allow ? isolate->heap()->true_value() : isolate->heap()->false_value());
}
bool Context::IsCodeGenerationFromStringsAllowed() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
return !context->allow_code_gen_from_strings()->IsFalse();
}
void Context::SetErrorMessageForCodeGenerationFromStrings(Local<String> error) {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Handle<i::String> error_handle = Utils::OpenHandle(*error);
context->set_error_message_for_code_gen_from_strings(*error_handle);
}
size_t Context::EstimatedSize() {
return static_cast<size_t>(
i::ContextMeasure(*Utils::OpenHandle(this)).Size());
}
MaybeLocal<v8::Object> ObjectTemplate::NewInstance(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, "v8::ObjectTemplate::NewInstance()", Object);
auto self = Utils::OpenHandle(this);
Local<Object> result;
has_pending_exception =
!ToLocal<Object>(i::ApiNatives::InstantiateObject(self), &result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
Local<v8::Object> ObjectTemplate::NewInstance() {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(NewInstance(context), Object);
}
MaybeLocal<v8::Function> FunctionTemplate::GetFunction(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, "v8::FunctionTemplate::GetFunction()",
Function);
auto self = Utils::OpenHandle(this);
Local<Function> result;
has_pending_exception =
!ToLocal<Function>(i::ApiNatives::InstantiateFunction(self), &result);
RETURN_ON_FAILED_EXECUTION(Function);
RETURN_ESCAPED(result);
}
Local<v8::Function> FunctionTemplate::GetFunction() {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(GetFunction(context), Function);
}
bool FunctionTemplate::HasInstance(v8::Local<v8::Value> value) {
auto self = Utils::OpenHandle(this);
auto obj = Utils::OpenHandle(*value);
return self->IsTemplateFor(*obj);
}
Local<External> v8::External::New(Isolate* isolate, void* value) {
STATIC_ASSERT(sizeof(value) == sizeof(i::Address));
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "External::New");
ENTER_V8(i_isolate);
i::Handle<i::JSObject> external = i_isolate->factory()->NewExternal(value);
return Utils::ExternalToLocal(external);
}
void* External::Value() const {
return ExternalValue(*Utils::OpenHandle(this));
}
// anonymous namespace for string creation helper functions
namespace {
inline int StringLength(const char* string) {
return i::StrLength(string);
}
inline int StringLength(const uint8_t* string) {
return i::StrLength(reinterpret_cast<const char*>(string));
}
inline int StringLength(const uint16_t* string) {
int length = 0;
while (string[length] != '\0')
length++;
return length;
}
MUST_USE_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
v8::NewStringType type,
i::Vector<const char> string) {
if (type == v8::NewStringType::kInternalized) {
return factory->InternalizeUtf8String(string);
}
return factory->NewStringFromUtf8(string);
}
MUST_USE_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
v8::NewStringType type,
i::Vector<const uint8_t> string) {
if (type == v8::NewStringType::kInternalized) {
return factory->InternalizeOneByteString(string);
}
return factory->NewStringFromOneByte(string);
}
MUST_USE_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
v8::NewStringType type,
i::Vector<const uint16_t> string) {
if (type == v8::NewStringType::kInternalized) {
return factory->InternalizeTwoByteString(string);
}
return factory->NewStringFromTwoByte(string);
}
STATIC_ASSERT(v8::String::kMaxLength == i::String::kMaxLength);
template <typename Char>
inline MaybeLocal<String> NewString(Isolate* v8_isolate, const char* location,
const char* env, const Char* data,
v8::NewStringType type, int length) {
i::Isolate* isolate = reinterpret_cast<internal::Isolate*>(v8_isolate);
if (length == 0) return String::Empty(v8_isolate);
// TODO(dcarney): throw a context free exception.
if (length > i::String::kMaxLength) return MaybeLocal<String>();
ENTER_V8(isolate);
LOG_API(isolate, env);
if (length < 0) length = StringLength(data);
i::Handle<i::String> result =
NewString(isolate->factory(), type, i::Vector<const Char>(data, length))
.ToHandleChecked();
return Utils::ToLocal(result);
}
} // anonymous namespace
Local<String> String::NewFromUtf8(Isolate* isolate,
const char* data,
NewStringType type,
int length) {
RETURN_TO_LOCAL_UNCHECKED(
NewString(isolate, "v8::String::NewFromUtf8()", "String::NewFromUtf8",
data, static_cast<v8::NewStringType>(type), length),
String);
}
MaybeLocal<String> String::NewFromUtf8(Isolate* isolate, const char* data,
v8::NewStringType type, int length) {
return NewString(isolate, "v8::String::NewFromUtf8()", "String::NewFromUtf8",
data, type, length);
}
Local<String> String::NewFromOneByte(Isolate* isolate,
const uint8_t* data,
NewStringType type,
int length) {
RETURN_TO_LOCAL_UNCHECKED(
NewString(isolate, "v8::String::NewFromOneByte()",
"String::NewFromOneByte", data,
static_cast<v8::NewStringType>(type), length),
String);
}
MaybeLocal<String> String::NewFromOneByte(Isolate* isolate, const uint8_t* data,
v8::NewStringType type, int length) {
return NewString(isolate, "v8::String::NewFromOneByte()",
"String::NewFromOneByte", data, type, length);
}
Local<String> String::NewFromTwoByte(Isolate* isolate,
const uint16_t* data,
NewStringType type,
int length) {
RETURN_TO_LOCAL_UNCHECKED(
NewString(isolate, "v8::String::NewFromTwoByte()",
"String::NewFromTwoByte", data,
static_cast<v8::NewStringType>(type), length),
String);
}
MaybeLocal<String> String::NewFromTwoByte(Isolate* isolate,
const uint16_t* data,
v8::NewStringType type, int length) {
return NewString(isolate, "v8::String::NewFromTwoByte()",
"String::NewFromTwoByte", data, type, length);
}
Local<String> v8::String::Concat(Local<String> left, Local<String> right) {
i::Handle<i::String> left_string = Utils::OpenHandle(*left);
i::Isolate* isolate = left_string->GetIsolate();
ENTER_V8(isolate);
LOG_API(isolate, "v8::String::Concat");
i::Handle<i::String> right_string = Utils::OpenHandle(*right);
// If we are steering towards a range error, do not wait for the error to be
// thrown, and return the null handle instead.
if (left_string->length() + right_string->length() > i::String::kMaxLength) {
return Local<String>();
}
i::Handle<i::String> result = isolate->factory()->NewConsString(
left_string, right_string).ToHandleChecked();
return Utils::ToLocal(result);
}
MaybeLocal<String> v8::String::NewExternalTwoByte(
Isolate* isolate, v8::String::ExternalStringResource* resource) {
CHECK(resource && resource->data());
// TODO(dcarney): throw a context free exception.
if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) {
return MaybeLocal<String>();
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8(i_isolate);
LOG_API(i_isolate, "String::NewExternalTwoByte");
i::Handle<i::String> string = i_isolate->factory()
->NewExternalStringFromTwoByte(resource)
.ToHandleChecked();
i_isolate->heap()->external_string_table()->AddString(*string);
return Utils::ToLocal(string);
}
Local<String> v8::String::NewExternal(
Isolate* isolate, v8::String::ExternalStringResource* resource) {
RETURN_TO_LOCAL_UNCHECKED(NewExternalTwoByte(isolate, resource), String);
}
MaybeLocal<String> v8::String::NewExternalOneByte(
Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) {
CHECK(resource && resource->data());
// TODO(dcarney): throw a context free exception.
if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) {
return MaybeLocal<String>();
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8(i_isolate);
LOG_API(i_isolate, "String::NewExternalOneByte");
i::Handle<i::String> string = i_isolate->factory()
->NewExternalStringFromOneByte(resource)
.ToHandleChecked();
i_isolate->heap()->external_string_table()->AddString(*string);
return Utils::ToLocal(string);
}
Local<String> v8::String::NewExternal(
Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) {
RETURN_TO_LOCAL_UNCHECKED(NewExternalOneByte(isolate, resource), String);
}
bool v8::String::MakeExternal(v8::String::ExternalStringResource* resource) {
i::Handle<i::String> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
if (i::StringShape(*obj).IsExternal()) {
return false; // Already an external string.
}
ENTER_V8(isolate);
if (isolate->heap()->IsInGCPostProcessing()) {
return false;
}
CHECK(resource && resource->data());
bool result = obj->MakeExternal(resource);
// Assert that if CanMakeExternal(), then externalizing actually succeeds.
DCHECK(!CanMakeExternal() || result);
if (result) {
DCHECK(obj->IsExternalString());
isolate->heap()->external_string_table()->AddString(*obj);
}
return result;
}
bool v8::String::MakeExternal(
v8::String::ExternalOneByteStringResource* resource) {
i::Handle<i::String> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
if (i::StringShape(*obj).IsExternal()) {
return false; // Already an external string.
}
ENTER_V8(isolate);
if (isolate->heap()->IsInGCPostProcessing()) {
return false;
}
CHECK(resource && resource->data());
bool result = obj->MakeExternal(resource);
// Assert that if CanMakeExternal(), then externalizing actually succeeds.
DCHECK(!CanMakeExternal() || result);
if (result) {
DCHECK(obj->IsExternalString());
isolate->heap()->external_string_table()->AddString(*obj);
}
return result;
}
bool v8::String::CanMakeExternal() {
i::Handle<i::String> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
// Old space strings should be externalized.
if (!isolate->heap()->new_space()->Contains(*obj)) return true;
int size = obj->Size(); // Byte size of the original string.
if (size <= i::ExternalString::kShortSize) return false;
i::StringShape shape(*obj);
return !shape.IsExternal();
}
Isolate* v8::Object::GetIsolate() {
i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate();
return reinterpret_cast<Isolate*>(i_isolate);
}
Local<v8::Object> v8::Object::New(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Object::New");
ENTER_V8(i_isolate);
i::Handle<i::JSObject> obj =
i_isolate->factory()->NewJSObject(i_isolate->object_function());
return Utils::ToLocal(obj);
}
Local<v8::Value> v8::NumberObject::New(Isolate* isolate, double value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "NumberObject::New");
ENTER_V8(i_isolate);
i::Handle<i::Object> number = i_isolate->factory()->NewNumber(value);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, number).ToHandleChecked();
return Utils::ToLocal(obj);
}
double v8::NumberObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj);
i::Isolate* isolate = jsvalue->GetIsolate();
LOG_API(isolate, "NumberObject::NumberValue");
return jsvalue->value()->Number();
}
Local<v8::Value> v8::BooleanObject::New(bool value) {
i::Isolate* isolate = i::Isolate::Current();
LOG_API(isolate, "BooleanObject::New");
ENTER_V8(isolate);
i::Handle<i::Object> boolean(value
? isolate->heap()->true_value()
: isolate->heap()->false_value(),
isolate);
i::Handle<i::Object> obj =
i::Object::ToObject(isolate, boolean).ToHandleChecked();
return Utils::ToLocal(obj);
}
bool v8::BooleanObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj);
i::Isolate* isolate = jsvalue->GetIsolate();
LOG_API(isolate, "BooleanObject::BooleanValue");
return jsvalue->value()->IsTrue();
}
Local<v8::Value> v8::StringObject::New(Local<String> value) {
i::Handle<i::String> string = Utils::OpenHandle(*value);
i::Isolate* isolate = string->GetIsolate();
LOG_API(isolate, "StringObject::New");
ENTER_V8(isolate);
i::Handle<i::Object> obj =
i::Object::ToObject(isolate, string).ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::String> v8::StringObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj);
i::Isolate* isolate = jsvalue->GetIsolate();
LOG_API(isolate, "StringObject::StringValue");
return Utils::ToLocal(
i::Handle<i::String>(i::String::cast(jsvalue->value())));
}
Local<v8::Value> v8::SymbolObject::New(Isolate* isolate, Local<Symbol> value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "SymbolObject::New");
ENTER_V8(i_isolate);
i::Handle<i::Object> obj = i::Object::ToObject(
i_isolate, Utils::OpenHandle(*value)).ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::Symbol> v8::SymbolObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj);
i::Isolate* isolate = jsvalue->GetIsolate();
LOG_API(isolate, "SymbolObject::SymbolValue");
return Utils::ToLocal(
i::Handle<i::Symbol>(i::Symbol::cast(jsvalue->value())));
}
MaybeLocal<v8::Value> v8::Date::New(Local<Context> context, double time) {
if (std::isnan(time)) {
// Introduce only canonical NaN value into the VM, to avoid signaling NaNs.
time = std::numeric_limits<double>::quiet_NaN();
}
PREPARE_FOR_EXECUTION(context, "Date::New", Value);
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(i::Execution::NewDate(isolate, time), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<v8::Value> v8::Date::New(Isolate* isolate, double time) {
auto context = isolate->GetCurrentContext();
RETURN_TO_LOCAL_UNCHECKED(New(context, time), Value);
}
double v8::Date::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSDate> jsdate = i::Handle<i::JSDate>::cast(obj);
i::Isolate* isolate = jsdate->GetIsolate();
LOG_API(isolate, "Date::NumberValue");
return jsdate->value()->Number();
}
void v8::Date::DateTimeConfigurationChangeNotification(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Date::DateTimeConfigurationChangeNotification");
ENTER_V8(i_isolate);
i_isolate->date_cache()->ResetDateCache();
if (!i_isolate->eternal_handles()->Exists(
i::EternalHandles::DATE_CACHE_VERSION)) {
return;
}
i::Handle<i::FixedArray> date_cache_version =
i::Handle<i::FixedArray>::cast(i_isolate->eternal_handles()->GetSingleton(
i::EternalHandles::DATE_CACHE_VERSION));
DCHECK_EQ(1, date_cache_version->length());
CHECK(date_cache_version->get(0)->IsSmi());
date_cache_version->set(
0,
i::Smi::FromInt(i::Smi::cast(date_cache_version->get(0))->value() + 1));
}
static i::Handle<i::String> RegExpFlagsToString(RegExp::Flags flags) {
i::Isolate* isolate = i::Isolate::Current();
uint8_t flags_buf[3];
int num_flags = 0;
if ((flags & RegExp::kGlobal) != 0) flags_buf[num_flags++] = 'g';
if ((flags & RegExp::kMultiline) != 0) flags_buf[num_flags++] = 'm';
if ((flags & RegExp::kIgnoreCase) != 0) flags_buf[num_flags++] = 'i';
DCHECK(num_flags <= static_cast<int>(arraysize(flags_buf)));
return isolate->factory()->InternalizeOneByteString(
i::Vector<const uint8_t>(flags_buf, num_flags));
}
MaybeLocal<v8::RegExp> v8::RegExp::New(Local<Context> context,
Local<String> pattern, Flags flags) {
PREPARE_FOR_EXECUTION(context, "RegExp::New", RegExp);
Local<v8::RegExp> result;
has_pending_exception =
!ToLocal<RegExp>(i::Execution::NewJSRegExp(Utils::OpenHandle(*pattern),
RegExpFlagsToString(flags)),
&result);
RETURN_ON_FAILED_EXECUTION(RegExp);
RETURN_ESCAPED(result);
}
Local<v8::RegExp> v8::RegExp::New(Local<String> pattern, Flags flags) {
auto isolate =
reinterpret_cast<Isolate*>(Utils::OpenHandle(*pattern)->GetIsolate());
auto context = isolate->GetCurrentContext();
RETURN_TO_LOCAL_UNCHECKED(New(context, pattern, flags), RegExp);
}
Local<v8::String> v8::RegExp::GetSource() const {
i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this);
return Utils::ToLocal(i::Handle<i::String>(obj->Pattern()));
}
// Assert that the static flags cast in GetFlags is valid.
#define REGEXP_FLAG_ASSERT_EQ(api_flag, internal_flag) \
STATIC_ASSERT(static_cast<int>(v8::RegExp::api_flag) == \
static_cast<int>(i::JSRegExp::internal_flag))
REGEXP_FLAG_ASSERT_EQ(kNone, NONE);
REGEXP_FLAG_ASSERT_EQ(kGlobal, GLOBAL);
REGEXP_FLAG_ASSERT_EQ(kIgnoreCase, IGNORE_CASE);
REGEXP_FLAG_ASSERT_EQ(kMultiline, MULTILINE);
#undef REGEXP_FLAG_ASSERT_EQ
v8::RegExp::Flags v8::RegExp::GetFlags() const {
i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this);
return static_cast<RegExp::Flags>(obj->GetFlags().value());
}
Local<v8::Array> v8::Array::New(Isolate* isolate, int length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Array::New");
ENTER_V8(i_isolate);
int real_length = length > 0 ? length : 0;
i::Handle<i::JSArray> obj = i_isolate->factory()->NewJSArray(real_length);
i::Handle<i::Object> length_obj =
i_isolate->factory()->NewNumberFromInt(real_length);
obj->set_length(*length_obj);
return Utils::ToLocal(obj);
}
uint32_t v8::Array::Length() const {
i::Handle<i::JSArray> obj = Utils::OpenHandle(this);
i::Object* length = obj->length();
if (length->IsSmi()) {
return i::Smi::cast(length)->value();
} else {
return static_cast<uint32_t>(length->Number());
}
}
MaybeLocal<Object> Array::CloneElementAt(Local<Context> context,
uint32_t index) {
PREPARE_FOR_EXECUTION(context, "v8::Array::CloneElementAt()", Object);
auto self = Utils::OpenHandle(this);
if (!self->HasFastObjectElements()) return Local<Object>();
i::FixedArray* elms = i::FixedArray::cast(self->elements());
i::Object* paragon = elms->get(index);
if (!paragon->IsJSObject()) return Local<Object>();
i::Handle<i::JSObject> paragon_handle(i::JSObject::cast(paragon));
Local<Object> result;
has_pending_exception =
!ToLocal<Object>(isolate->factory()->CopyJSObject(paragon_handle),
&result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
Local<Object> Array::CloneElementAt(uint32_t index) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(CloneElementAt(context, index), Object);
}
Local<v8::Map> v8::Map::New(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Map::New");
ENTER_V8(i_isolate);
i::Handle<i::JSMap> obj = i_isolate->factory()->NewJSMap();
return Utils::ToLocal(obj);
}
size_t v8::Map::Size() const {
i::Handle<i::JSMap> obj = Utils::OpenHandle(this);
return i::OrderedHashMap::cast(obj->table())->NumberOfElements();
}
void Map::Clear() {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
LOG_API(isolate, "Map::Clear");
ENTER_V8(isolate);
i::Runtime::JSMapClear(isolate, self);
}
MaybeLocal<Value> Map::Get(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION(context, "Map::Get", Value);
auto self = Utils::OpenHandle(this);
Local<Value> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!ToLocal<Value>(i::Execution::Call(isolate, isolate->map_get(), self,
arraysize(argv), argv, false),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<Map> Map::Set(Local<Context> context, Local<Value> key,
Local<Value> value) {
PREPARE_FOR_EXECUTION(context, "Map::Set", Map);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key),
Utils::OpenHandle(*value)};
has_pending_exception =
!i::Execution::Call(isolate, isolate->map_set(), self, arraysize(argv),
argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Map);
RETURN_ESCAPED(Local<Map>::Cast(Utils::ToLocal(result)));
}
Maybe<bool> Map::Has(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Map::Has", bool);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::Call(isolate, isolate->map_has(), self, arraysize(argv),
argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->IsTrue());
}
Maybe<bool> Map::Delete(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Map::Delete", bool);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::Call(isolate, isolate->map_delete(), self, arraysize(argv),
argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->IsTrue());
}
Local<Array> Map::AsArray() const {
i::Handle<i::JSMap> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
i::Factory* factory = isolate->factory();
LOG_API(isolate, "Map::AsArray");
ENTER_V8(isolate);
i::Handle<i::OrderedHashMap> table(i::OrderedHashMap::cast(obj->table()));
int size = table->NumberOfElements();
int length = size * 2;
i::Handle<i::FixedArray> result = factory->NewFixedArray(length);
for (int i = 0; i < size; ++i) {
if (table->KeyAt(i)->IsTheHole()) continue;
result->set(i * 2, table->KeyAt(i));
result->set(i * 2 + 1, table->ValueAt(i));
}
i::Handle<i::JSArray> result_array =
factory->NewJSArrayWithElements(result, i::FAST_ELEMENTS, length);
return Utils::ToLocal(result_array);
}
MaybeLocal<Map> Map::FromArray(Local<Context> context, Local<Array> array) {
PREPARE_FOR_EXECUTION(context, "Map::FromArray", Map);
if (array->Length() % 2 != 0) {
return MaybeLocal<Map>();
}
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*array)};
has_pending_exception =
!i::Execution::Call(isolate, isolate->map_from_array(),
isolate->factory()->undefined_value(),
arraysize(argv), argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Map);
RETURN_ESCAPED(Local<Map>::Cast(Utils::ToLocal(result)));
}
Local<v8::Set> v8::Set::New(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Set::New");
ENTER_V8(i_isolate);
i::Handle<i::JSSet> obj = i_isolate->factory()->NewJSSet();
return Utils::ToLocal(obj);
}
size_t v8::Set::Size() const {
i::Handle<i::JSSet> obj = Utils::OpenHandle(this);
return i::OrderedHashSet::cast(obj->table())->NumberOfElements();
}
void Set::Clear() {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
LOG_API(isolate, "Set::Clear");
ENTER_V8(isolate);
i::Runtime::JSSetClear(isolate, self);
}
MaybeLocal<Set> Set::Add(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION(context, "Set::Add", Set);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::Call(isolate, isolate->set_add(), self, arraysize(argv),
argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Set);
RETURN_ESCAPED(Local<Set>::Cast(Utils::ToLocal(result)));
}
Maybe<bool> Set::Has(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Set::Has", bool);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::Call(isolate, isolate->set_has(), self, arraysize(argv),
argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->IsTrue());
}
Maybe<bool> Set::Delete(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Set::Delete", bool);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::Call(isolate, isolate->set_delete(), self, arraysize(argv),
argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->IsTrue());
}
Local<Array> Set::AsArray() const {
i::Handle<i::JSSet> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
i::Factory* factory = isolate->factory();
LOG_API(isolate, "Set::AsArray");
ENTER_V8(isolate);
i::Handle<i::OrderedHashSet> table(i::OrderedHashSet::cast(obj->table()));
int length = table->NumberOfElements();
i::Handle<i::FixedArray> result = factory->NewFixedArray(length);
for (int i = 0; i < length; ++i) {
i::Object* key = table->KeyAt(i);
if (!key->IsTheHole()) {
result->set(i, key);
}
}
i::Handle<i::JSArray> result_array =
factory->NewJSArrayWithElements(result, i::FAST_ELEMENTS, length);
return Utils::ToLocal(result_array);
}
MaybeLocal<Set> Set::FromArray(Local<Context> context, Local<Array> array) {
PREPARE_FOR_EXECUTION(context, "Set::FromArray", Set);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*array)};
has_pending_exception =
!i::Execution::Call(isolate, isolate->set_from_array(),
isolate->factory()->undefined_value(),
arraysize(argv), argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Set);
RETURN_ESCAPED(Local<Set>::Cast(Utils::ToLocal(result)));
}
bool Value::IsPromise() const {
auto self = Utils::OpenHandle(this);
return i::Object::IsPromise(self);
}
MaybeLocal<Promise::Resolver> Promise::Resolver::New(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, "Promise::Resolver::New", Resolver);
i::Handle<i::Object> result;
has_pending_exception = !i::Execution::Call(
isolate,
isolate->promise_create(),
isolate->factory()->undefined_value(),
0, NULL,
false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise::Resolver);
RETURN_ESCAPED(Local<Promise::Resolver>::Cast(Utils::ToLocal(result)));
}
Local<Promise::Resolver> Promise::Resolver::New(Isolate* isolate) {
RETURN_TO_LOCAL_UNCHECKED(New(isolate->GetCurrentContext()),
Promise::Resolver);
}
Local<Promise> Promise::Resolver::GetPromise() {
i::Handle<i::JSObject> promise = Utils::OpenHandle(this);
return Local<Promise>::Cast(Utils::ToLocal(promise));
}
Maybe<bool> Promise::Resolver::Resolve(Local<Context> context,
Local<Value> value) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Promise::Resolver::Resolve", bool);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = {self, Utils::OpenHandle(*value)};
has_pending_exception = i::Execution::Call(
isolate,
isolate->promise_resolve(),
isolate->factory()->undefined_value(),
arraysize(argv), argv,
false).is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
void Promise::Resolver::Resolve(Local<Value> value) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
USE(Resolve(context, value));
}
Maybe<bool> Promise::Resolver::Reject(Local<Context> context,
Local<Value> value) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "Promise::Resolver::Resolve", bool);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = {self, Utils::OpenHandle(*value)};
has_pending_exception = i::Execution::Call(
isolate,
isolate->promise_reject(),
isolate->factory()->undefined_value(),
arraysize(argv), argv,
false).is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
void Promise::Resolver::Reject(Local<Value> value) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
USE(Reject(context, value));
}
MaybeLocal<Promise> Promise::Chain(Local<Context> context,
Local<Function> handler) {
PREPARE_FOR_EXECUTION(context, "Promise::Chain", Promise);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*handler)};
i::Handle<i::Object> result;
has_pending_exception =
!i::Execution::Call(isolate, isolate->promise_chain(), self,
arraysize(argv), argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise);
RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result)));
}
Local<Promise> Promise::Chain(Local<Function> handler) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(Chain(context, handler), Promise);
}
MaybeLocal<Promise> Promise::Catch(Local<Context> context,
Local<Function> handler) {
PREPARE_FOR_EXECUTION(context, "Promise::Catch", Promise);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) };
i::Handle<i::Object> result;
has_pending_exception =
!i::Execution::Call(isolate, isolate->promise_catch(), self,
arraysize(argv), argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise);
RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result)));
}
Local<Promise> Promise::Catch(Local<Function> handler) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(Catch(context, handler), Promise);
}
MaybeLocal<Promise> Promise::Then(Local<Context> context,
Local<Function> handler) {
PREPARE_FOR_EXECUTION(context, "Promise::Then", Promise);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) };
i::Handle<i::Object> result;
has_pending_exception =
!i::Execution::Call(isolate, isolate->promise_then(), self,
arraysize(argv), argv, false).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise);
RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result)));
}
Local<Promise> Promise::Then(Local<Function> handler) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
RETURN_TO_LOCAL_UNCHECKED(Then(context, handler), Promise);
}
bool Promise::HasHandler() {
i::Handle<i::JSObject> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, "Promise::HasRejectHandler");
ENTER_V8(isolate);
i::Handle<i::Symbol> key = isolate->factory()->promise_has_handler_symbol();
return i::JSReceiver::GetDataProperty(promise, key)->IsTrue();
}
bool v8::ArrayBuffer::IsExternal() const {
return Utils::OpenHandle(this)->is_external();
}
bool v8::ArrayBuffer::IsNeuterable() const {
return Utils::OpenHandle(this)->is_neuterable();
}
v8::ArrayBuffer::Contents v8::ArrayBuffer::Externalize() {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
Utils::ApiCheck(!self->is_external(), "v8::ArrayBuffer::Externalize",
"ArrayBuffer already externalized");
self->set_is_external(true);
isolate->heap()->UnregisterArrayBuffer(isolate->heap()->InNewSpace(*self),
self->backing_store());
return GetContents();
}
v8::ArrayBuffer::Contents v8::ArrayBuffer::GetContents() {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
size_t byte_length = static_cast<size_t>(self->byte_length()->Number());
Contents contents;
contents.data_ = self->backing_store();
contents.byte_length_ = byte_length;
return contents;
}
void v8::ArrayBuffer::Neuter() {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
Utils::ApiCheck(obj->is_external(),
"v8::ArrayBuffer::Neuter",
"Only externalized ArrayBuffers can be neutered");
Utils::ApiCheck(obj->is_neuterable(), "v8::ArrayBuffer::Neuter",
"Only neuterable ArrayBuffers can be neutered");
LOG_API(obj->GetIsolate(), "v8::ArrayBuffer::Neuter()");
ENTER_V8(isolate);
i::Runtime::NeuterArrayBuffer(obj);
}
size_t v8::ArrayBuffer::ByteLength() const {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
return static_cast<size_t>(obj->byte_length()->Number());
}
Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "v8::ArrayBuffer::New(size_t)");
ENTER_V8(i_isolate);
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSArrayBuffer(i::SharedFlag::kNotShared);
i::Runtime::SetupArrayBufferAllocatingData(i_isolate, obj, byte_length);
return Utils::ToLocal(obj);
}
Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, void* data,
size_t byte_length,
ArrayBufferCreationMode mode) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "v8::ArrayBuffer::New(void*, size_t)");
ENTER_V8(i_isolate);
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSArrayBuffer(i::SharedFlag::kNotShared);
i::Runtime::SetupArrayBuffer(i_isolate, obj,
mode == ArrayBufferCreationMode::kExternalized,
data, byte_length);
return Utils::ToLocal(obj);
}
Local<ArrayBuffer> v8::ArrayBufferView::Buffer() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
i::Handle<i::JSArrayBuffer> buffer;
if (obj->IsJSDataView()) {
i::Handle<i::JSDataView> data_view(i::JSDataView::cast(*obj));
DCHECK(data_view->buffer()->IsJSArrayBuffer());
buffer = i::handle(i::JSArrayBuffer::cast(data_view->buffer()));
} else {
DCHECK(obj->IsJSTypedArray());
buffer = i::JSTypedArray::cast(*obj)->GetBuffer();
}
return Utils::ToLocal(buffer);
}
size_t v8::ArrayBufferView::CopyContents(void* dest, size_t byte_length) {
i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
size_t byte_offset = i::NumberToSize(isolate, self->byte_offset());
size_t bytes_to_copy =
i::Min(byte_length, i::NumberToSize(isolate, self->byte_length()));
if (bytes_to_copy) {
i::DisallowHeapAllocation no_gc;
i::Handle<i::JSArrayBuffer> buffer(i::JSArrayBuffer::cast(self->buffer()));
const char* source = reinterpret_cast<char*>(buffer->backing_store());
if (source == nullptr) {
DCHECK(self->IsJSTypedArray());
i::Handle<i::JSTypedArray> typed_array(i::JSTypedArray::cast(*self));
i::Handle<i::FixedTypedArrayBase> fixed_array(
i::FixedTypedArrayBase::cast(typed_array->elements()));
source = reinterpret_cast<char*>(fixed_array->DataPtr());
}
memcpy(dest, source + byte_offset, bytes_to_copy);
}
return bytes_to_copy;
}
bool v8::ArrayBufferView::HasBuffer() const {
i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this);
i::Handle<i::JSArrayBuffer> buffer(i::JSArrayBuffer::cast(self->buffer()));
return buffer->backing_store() != nullptr;
}
size_t v8::ArrayBufferView::ByteOffset() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
return static_cast<size_t>(obj->byte_offset()->Number());
}
size_t v8::ArrayBufferView::ByteLength() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
return static_cast<size_t>(obj->byte_length()->Number());
}
size_t v8::TypedArray::Length() {
i::Handle<i::JSTypedArray> obj = Utils::OpenHandle(this);
return static_cast<size_t>(obj->length_value());
}
#define TYPED_ARRAY_NEW(Type, type, TYPE, ctype, size) \
Local<Type##Array> Type##Array::New(Local<ArrayBuffer> array_buffer, \
size_t byte_offset, size_t length) { \
i::Isolate* isolate = Utils::OpenHandle(*array_buffer)->GetIsolate(); \
LOG_API(isolate, \
"v8::" #Type "Array::New(Local<ArrayBuffer>, size_t, size_t)"); \
ENTER_V8(isolate); \
if (!Utils::ApiCheck(length <= static_cast<size_t>(i::Smi::kMaxValue), \
"v8::" #Type \
"Array::New(Local<ArrayBuffer>, size_t, size_t)", \
"length exceeds max allowed value")) { \
return Local<Type##Array>(); \
} \
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); \
i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray( \
i::kExternal##Type##Array, buffer, byte_offset, length); \
return Utils::ToLocal##Type##Array(obj); \
} \
Local<Type##Array> Type##Array::New( \
Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, \
size_t length) { \
CHECK(i::FLAG_harmony_sharedarraybuffer); \
i::Isolate* isolate = \
Utils::OpenHandle(*shared_array_buffer)->GetIsolate(); \
LOG_API(isolate, "v8::" #Type \
"Array::New(Local<SharedArrayBuffer>, size_t, size_t)"); \
ENTER_V8(isolate); \
if (!Utils::ApiCheck( \
length <= static_cast<size_t>(i::Smi::kMaxValue), \
"v8::" #Type \
"Array::New(Local<SharedArrayBuffer>, size_t, size_t)", \
"length exceeds max allowed value")) { \
return Local<Type##Array>(); \
} \
i::Handle<i::JSArrayBuffer> buffer = \
Utils::OpenHandle(*shared_array_buffer); \
i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray( \
i::kExternal##Type##Array, buffer, byte_offset, length); \
return Utils::ToLocal##Type##Array(obj); \
}
TYPED_ARRAYS(TYPED_ARRAY_NEW)
#undef TYPED_ARRAY_NEW
Local<DataView> DataView::New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t byte_length) {
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer);
i::Isolate* isolate = buffer->GetIsolate();
LOG_API(isolate, "v8::DataView::New(Local<ArrayBuffer>, size_t, size_t)");
ENTER_V8(isolate);
i::Handle<i::JSDataView> obj =
isolate->factory()->NewJSDataView(buffer, byte_offset, byte_length);
return Utils::ToLocal(obj);
}
Local<DataView> DataView::New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t byte_length) {
CHECK(i::FLAG_harmony_sharedarraybuffer);
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*shared_array_buffer);
i::Isolate* isolate = buffer->GetIsolate();
LOG_API(isolate,
"v8::DataView::New(Local<SharedArrayBuffer>, size_t, size_t)");
ENTER_V8(isolate);
i::Handle<i::JSDataView> obj =
isolate->factory()->NewJSDataView(buffer, byte_offset, byte_length);
return Utils::ToLocal(obj);
}
bool v8::SharedArrayBuffer::IsExternal() const {
return Utils::OpenHandle(this)->is_external();
}
v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::Externalize() {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
Utils::ApiCheck(!self->is_external(), "v8::SharedArrayBuffer::Externalize",
"SharedArrayBuffer already externalized");
self->set_is_external(true);
isolate->heap()->UnregisterArrayBuffer(isolate->heap()->InNewSpace(*self),
self->backing_store());
return GetContents();
}
v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::GetContents() {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
size_t byte_length = static_cast<size_t>(self->byte_length()->Number());
Contents contents;
contents.data_ = self->backing_store();
contents.byte_length_ = byte_length;
return contents;
}
size_t v8::SharedArrayBuffer::ByteLength() const {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
return static_cast<size_t>(obj->byte_length()->Number());
}
Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(Isolate* isolate,
size_t byte_length) {
CHECK(i::FLAG_harmony_sharedarraybuffer);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "v8::SharedArrayBuffer::New(size_t)");
ENTER_V8(i_isolate);
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSArrayBuffer(i::SharedFlag::kShared);
i::Runtime::SetupArrayBufferAllocatingData(i_isolate, obj, byte_length, true,
i::SharedFlag::kShared);
return Utils::ToLocalShared(obj);
}
Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(
Isolate* isolate, void* data, size_t byte_length,
ArrayBufferCreationMode mode) {
CHECK(i::FLAG_harmony_sharedarraybuffer);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "v8::SharedArrayBuffer::New(void*, size_t)");
ENTER_V8(i_isolate);
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSArrayBuffer(i::SharedFlag::kShared);
i::Runtime::SetupArrayBuffer(i_isolate, obj,
mode == ArrayBufferCreationMode::kExternalized,
data, byte_length, i::SharedFlag::kShared);
return Utils::ToLocalShared(obj);
}
Local<Symbol> v8::Symbol::New(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, "Symbol::New()");
ENTER_V8(i_isolate);
i::Handle<i::Symbol> result = i_isolate->factory()->NewSymbol();
if (!name.IsEmpty()) result->set_name(*Utils::OpenHandle(*name));
return Utils::ToLocal(result);
}
static i::Handle<i::Symbol> SymbolFor(i::Isolate* isolate,
i::Handle<i::String> name,
i::Handle<i::String> part) {
i::Handle<i::JSObject> registry = isolate->GetSymbolRegistry();
i::Handle<i::JSObject> symbols =
i::Handle<i::JSObject>::cast(
i::Object::GetPropertyOrElement(registry, part).ToHandleChecked());
i::Handle<i::Object> symbol =
i::Object::GetPropertyOrElement(symbols, name).ToHandleChecked();
if (!symbol->IsSymbol()) {
DCHECK(symbol->IsUndefined());
symbol = isolate->factory()->NewSymbol();
i::Handle<i::Symbol>::cast(symbol)->set_name(*name);
i::JSObject::SetProperty(symbols, name, symbol, i::STRICT).Assert();
}
return i::Handle<i::Symbol>::cast(symbol);
}
Local<Symbol> v8::Symbol::For(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
i::Handle<i::String> part = i_isolate->factory()->for_string();
return Utils::ToLocal(SymbolFor(i_isolate, i_name, part));
}
Local<Symbol> v8::Symbol::ForApi(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
i::Handle<i::String> part = i_isolate->factory()->for_api_string();
return Utils::ToLocal(SymbolFor(i_isolate, i_name, part));
}
Local<Symbol> v8::Symbol::GetIterator(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
return Utils::ToLocal(i_isolate->factory()->iterator_symbol());
}
Local<Symbol> v8::Symbol::GetUnscopables(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
return Utils::ToLocal(i_isolate->factory()->unscopables_symbol());
}
Local<Symbol> v8::Symbol::GetToStringTag(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
return Utils::ToLocal(i_isolate->factory()->to_string_tag_symbol());
}
Local<Number> v8::Number::New(Isolate* isolate, double value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (std::isnan(value)) {
// Introduce only canonical NaN value into the VM, to avoid signaling NaNs.
value = std::numeric_limits<double>::quiet_NaN();
}
ENTER_V8(internal_isolate);
i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value);
return Utils::NumberToLocal(result);
}
Local<Integer> v8::Integer::New(Isolate* isolate, int32_t value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (i::Smi::IsValid(value)) {
return Utils::IntegerToLocal(i::Handle<i::Object>(i::Smi::FromInt(value),
internal_isolate));
}
ENTER_V8(internal_isolate);
i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value);
return Utils::IntegerToLocal(result);
}
Local<Integer> v8::Integer::NewFromUnsigned(Isolate* isolate, uint32_t value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
bool fits_into_int32_t = (value & (1 << 31)) == 0;
if (fits_into_int32_t) {
return Integer::New(isolate, static_cast<int32_t>(value));
}
ENTER_V8(internal_isolate);
i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value);
return Utils::IntegerToLocal(result);
}
void Isolate::CollectAllGarbage(const char* gc_reason) {
i::Heap* heap = reinterpret_cast<i::Isolate*>(this)->heap();
if (heap->incremental_marking()->IsStopped()) {
if (heap->incremental_marking()->CanBeActivated()) {
heap->StartIncrementalMarking(
i::Heap::kNoGCFlags,
kGCCallbackFlagSynchronousPhantomCallbackProcessing, gc_reason);
} else {
heap->CollectAllGarbage(
i::Heap::kNoGCFlags, gc_reason,
kGCCallbackFlagSynchronousPhantomCallbackProcessing);
}
} else {
// Incremental marking is turned on an has already been started.
// TODO(mlippautz): Compute the time slice for incremental marking based on
// memory pressure.
double deadline = heap->MonotonicallyIncreasingTimeInMs() +
i::FLAG_external_allocation_limit_incremental_time;
heap->AdvanceIncrementalMarking(
0, deadline, i::IncrementalMarking::StepActions(
i::IncrementalMarking::GC_VIA_STACK_GUARD,
i::IncrementalMarking::FORCE_MARKING,
i::IncrementalMarking::FORCE_COMPLETION));
}
}
HeapProfiler* Isolate::GetHeapProfiler() {
i::HeapProfiler* heap_profiler =
reinterpret_cast<i::Isolate*>(this)->heap_profiler();
return reinterpret_cast<HeapProfiler*>(heap_profiler);
}
CpuProfiler* Isolate::GetCpuProfiler() {
i::CpuProfiler* cpu_profiler =
reinterpret_cast<i::Isolate*>(this)->cpu_profiler();
return reinterpret_cast<CpuProfiler*>(cpu_profiler);
}
bool Isolate::InContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->context() != NULL;
}
v8::Local<v8::Context> Isolate::GetCurrentContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Context* context = isolate->context();
if (context == NULL) return Local<Context>();
i::Context* native_context = context->native_context();
if (native_context == NULL) return Local<Context>();
return Utils::ToLocal(i::Handle<i::Context>(native_context));
}
v8::Local<v8::Context> Isolate::GetCallingContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::Object> calling = isolate->GetCallingNativeContext();
if (calling.is_null()) return Local<Context>();
return Utils::ToLocal(i::Handle<i::Context>::cast(calling));
}
v8::Local<v8::Context> Isolate::GetEnteredContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::Object> last =
isolate->handle_scope_implementer()->LastEnteredContext();
if (last.is_null()) return Local<Context>();
return Utils::ToLocal(i::Handle<i::Context>::cast(last));
}
v8::Local<Value> Isolate::ThrowException(v8::Local<v8::Value> value) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8(isolate);
// If we're passed an empty handle, we throw an undefined exception
// to deal more gracefully with out of memory situations.
if (value.IsEmpty()) {
isolate->ScheduleThrow(isolate->heap()->undefined_value());
} else {
isolate->ScheduleThrow(*Utils::OpenHandle(*value));
}
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
void Isolate::SetObjectGroupId(internal::Object** object, UniqueId id) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this);
internal_isolate->global_handles()->SetObjectGroupId(
v8::internal::Handle<v8::internal::Object>(object).location(),
id);
}
void Isolate::SetReferenceFromGroup(UniqueId id, internal::Object** object) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this);
internal_isolate->global_handles()->SetReferenceFromGroup(
id,
v8::internal::Handle<v8::internal::Object>(object).location());
}
void Isolate::SetReference(internal::Object** parent,
internal::Object** child) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this);
i::Object** parent_location =
v8::internal::Handle<v8::internal::Object>(parent).location();
internal_isolate->global_handles()->SetReference(
reinterpret_cast<i::HeapObject**>(parent_location),
v8::internal::Handle<v8::internal::Object>(child).location());
}
void Isolate::AddGCPrologueCallback(GCPrologueCallback callback,
GCType gc_type) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->AddGCPrologueCallback(callback, gc_type);
}
void Isolate::RemoveGCPrologueCallback(GCPrologueCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->RemoveGCPrologueCallback(callback);
}
void Isolate::AddGCEpilogueCallback(GCEpilogueCallback callback,
GCType gc_type) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->AddGCEpilogueCallback(callback, gc_type);
}
void Isolate::RemoveGCEpilogueCallback(GCEpilogueCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->RemoveGCEpilogueCallback(callback);
}
void V8::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) {
i::Isolate* isolate = i::Isolate::Current();
isolate->heap()->AddGCPrologueCallback(
reinterpret_cast<v8::Isolate::GCPrologueCallback>(callback),
gc_type,
false);
}
void V8::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) {
i::Isolate* isolate = i::Isolate::Current();
isolate->heap()->AddGCEpilogueCallback(
reinterpret_cast<v8::Isolate::GCEpilogueCallback>(callback),
gc_type,
false);
}
void Isolate::AddMemoryAllocationCallback(MemoryAllocationCallback callback,
ObjectSpace space,
AllocationAction action) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->memory_allocator()->AddMemoryAllocationCallback(
callback, space, action);
}
void Isolate::RemoveMemoryAllocationCallback(
MemoryAllocationCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->memory_allocator()->RemoveMemoryAllocationCallback(
callback);
}
void Isolate::TerminateExecution() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stack_guard()->RequestTerminateExecution();
}
bool Isolate::IsExecutionTerminating() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return IsExecutionTerminatingCheck(isolate);
}
void Isolate::CancelTerminateExecution() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stack_guard()->ClearTerminateExecution();
isolate->CancelTerminateExecution();
}
void Isolate::RequestInterrupt(InterruptCallback callback, void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->RequestInterrupt(callback, data);
}
void Isolate::RequestGarbageCollectionForTesting(GarbageCollectionType type) {
CHECK(i::FLAG_expose_gc);
if (type == kMinorGarbageCollection) {
reinterpret_cast<i::Isolate*>(this)->heap()->CollectGarbage(
i::NEW_SPACE, "Isolate::RequestGarbageCollection",
kGCCallbackFlagForced);
} else {
DCHECK_EQ(kFullGarbageCollection, type);
reinterpret_cast<i::Isolate*>(this)->heap()->CollectAllGarbage(
i::Heap::kAbortIncrementalMarkingMask,
"Isolate::RequestGarbageCollection", kGCCallbackFlagForced);
}
}
Isolate* Isolate::GetCurrent() {
i::Isolate* isolate = i::Isolate::Current();
return reinterpret_cast<Isolate*>(isolate);
}
Isolate* Isolate::New(const Isolate::CreateParams& params) {
i::Isolate* isolate = new i::Isolate(false);
Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate);
CHECK(params.array_buffer_allocator != NULL);
isolate->set_array_buffer_allocator(params.array_buffer_allocator);
if (params.snapshot_blob != NULL) {
isolate->set_snapshot_blob(params.snapshot_blob);
} else {
isolate->set_snapshot_blob(i::Snapshot::DefaultSnapshotBlob());
}
if (params.entry_hook) {
isolate->set_function_entry_hook(params.entry_hook);
}
if (params.code_event_handler) {
isolate->InitializeLoggingAndCounters();
isolate->logger()->SetCodeEventHandler(kJitCodeEventDefault,
params.code_event_handler);
}
if (params.counter_lookup_callback) {
v8_isolate->SetCounterFunction(params.counter_lookup_callback);
}
if (params.create_histogram_callback) {
v8_isolate->SetCreateHistogramFunction(params.create_histogram_callback);
}
if (params.add_histogram_sample_callback) {
v8_isolate->SetAddHistogramSampleFunction(
params.add_histogram_sample_callback);
}
SetResourceConstraints(isolate, params.constraints);
// TODO(jochen): Once we got rid of Isolate::Current(), we can remove this.
Isolate::Scope isolate_scope(v8_isolate);
if (params.entry_hook || !i::Snapshot::Initialize(isolate)) {
// If the isolate has a function entry hook, it needs to re-build all its
// code stubs with entry hooks embedded, so don't deserialize a snapshot.
if (i::Snapshot::EmbedsScript(isolate)) {
// If the snapshot embeds a script, we cannot initialize the isolate
// without the snapshot as a fallback. This is unlikely to happen though.
V8_Fatal(__FILE__, __LINE__,
"Initializing isolate from custom startup snapshot failed");
}
isolate->Init(NULL);
}
return v8_isolate;
}
void Isolate::Dispose() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (!Utils::ApiCheck(!isolate->IsInUse(),
"v8::Isolate::Dispose()",
"Disposing the isolate that is entered by a thread.")) {
return;
}
isolate->TearDown();
}
void Isolate::Enter() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->Enter();
}
void Isolate::Exit() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->Exit();
}
Isolate::DisallowJavascriptExecutionScope::DisallowJavascriptExecutionScope(
Isolate* isolate,
Isolate::DisallowJavascriptExecutionScope::OnFailure on_failure)
: on_failure_(on_failure) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (on_failure_ == CRASH_ON_FAILURE) {
internal_ = reinterpret_cast<void*>(
new i::DisallowJavascriptExecution(i_isolate));
} else {
DCHECK_EQ(THROW_ON_FAILURE, on_failure);
internal_ = reinterpret_cast<void*>(
new i::ThrowOnJavascriptExecution(i_isolate));
}
}
Isolate::DisallowJavascriptExecutionScope::~DisallowJavascriptExecutionScope() {
if (on_failure_ == CRASH_ON_FAILURE) {
delete reinterpret_cast<i::DisallowJavascriptExecution*>(internal_);
} else {
delete reinterpret_cast<i::ThrowOnJavascriptExecution*>(internal_);
}
}
Isolate::AllowJavascriptExecutionScope::AllowJavascriptExecutionScope(
Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_assert_ = reinterpret_cast<void*>(
new i::AllowJavascriptExecution(i_isolate));
internal_throws_ = reinterpret_cast<void*>(
new i::NoThrowOnJavascriptExecution(i_isolate));
}
Isolate::AllowJavascriptExecutionScope::~AllowJavascriptExecutionScope() {
delete reinterpret_cast<i::AllowJavascriptExecution*>(internal_assert_);
delete reinterpret_cast<i::NoThrowOnJavascriptExecution*>(internal_throws_);
}
Isolate::SuppressMicrotaskExecutionScope::SuppressMicrotaskExecutionScope(
Isolate* isolate)
: isolate_(reinterpret_cast<i::Isolate*>(isolate)) {
isolate_->handle_scope_implementer()->IncrementCallDepth();
}
Isolate::SuppressMicrotaskExecutionScope::~SuppressMicrotaskExecutionScope() {
isolate_->handle_scope_implementer()->DecrementCallDepth();
}
void Isolate::GetHeapStatistics(HeapStatistics* heap_statistics) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = isolate->heap();
heap_statistics->total_heap_size_ = heap->CommittedMemory();
heap_statistics->total_heap_size_executable_ =
heap->CommittedMemoryExecutable();
heap_statistics->total_physical_size_ = heap->CommittedPhysicalMemory();
heap_statistics->total_available_size_ = heap->Available();
heap_statistics->used_heap_size_ = heap->SizeOfObjects();
heap_statistics->heap_size_limit_ = heap->MaxReserved();
}
size_t Isolate::NumberOfHeapSpaces() {
return i::LAST_SPACE - i::FIRST_SPACE + 1;
}
bool Isolate::GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
size_t index) {
if (!space_statistics) return false;
if (!i::Heap::IsValidAllocationSpace(static_cast<i::AllocationSpace>(index)))
return false;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = isolate->heap();
i::Space* space = heap->space(static_cast<int>(index));
space_statistics->space_name_ = heap->GetSpaceName(static_cast<int>(index));
space_statistics->space_size_ = space->CommittedMemory();
space_statistics->space_used_size_ = space->SizeOfObjects();
space_statistics->space_available_size_ = space->Available();
space_statistics->physical_space_size_ = space->CommittedPhysicalMemory();
return true;
}
size_t Isolate::NumberOfTrackedHeapObjectTypes() {
return i::Heap::OBJECT_STATS_COUNT;
}
bool Isolate::GetHeapObjectStatisticsAtLastGC(
HeapObjectStatistics* object_statistics, size_t type_index) {
if (!object_statistics) return false;
if (type_index >= i::Heap::OBJECT_STATS_COUNT) return false;
if (!i::FLAG_track_gc_object_stats) return false;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = isolate->heap();
const char* object_type;
const char* object_sub_type;
size_t object_count = heap->object_count_last_gc(type_index);
size_t object_size = heap->object_size_last_gc(type_index);
if (!heap->GetObjectTypeName(type_index, &object_type, &object_sub_type)) {
// There should be no objects counted when the type is unknown.
DCHECK_EQ(object_count, 0U);
DCHECK_EQ(object_size, 0U);
return false;
}
object_statistics->object_type_ = object_type;
object_statistics->object_sub_type_ = object_sub_type;
object_statistics->object_count_ = object_count;
object_statistics->object_size_ = object_size;
return true;
}
void Isolate::GetStackSample(const RegisterState& state, void** frames,
size_t frames_limit, SampleInfo* sample_info) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::TickSample::GetStackSample(isolate, state, i::TickSample::kSkipCEntryFrame,
frames, frames_limit, sample_info);
}
void Isolate::SetEventLogger(LogEventCallback that) {
// Do not overwrite the event logger if we want to log explicitly.
if (i::FLAG_log_internal_timer_events) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->set_event_logger(that);
}
void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
if (callback == NULL) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->AddCallCompletedCallback(callback);
}
void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->RemoveCallCompletedCallback(callback);
}
void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) {
if (callback == NULL) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetPromiseRejectCallback(callback);
}
void Isolate::RunMicrotasks() {
reinterpret_cast<i::Isolate*>(this)->RunMicrotasks();
}
void Isolate::EnqueueMicrotask(Local<Function> microtask) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->EnqueueMicrotask(Utils::OpenHandle(*microtask));
}
void Isolate::EnqueueMicrotask(MicrotaskCallback microtask, void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::HandleScope scope(isolate);
i::Handle<i::CallHandlerInfo> callback_info =
i::Handle<i::CallHandlerInfo>::cast(
isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE));
SET_FIELD_WRAPPED(callback_info, set_callback, microtask);
SET_FIELD_WRAPPED(callback_info, set_data, data);
isolate->EnqueueMicrotask(callback_info);
}
void Isolate::SetAutorunMicrotasks(bool autorun) {
reinterpret_cast<i::Isolate*>(this)->set_autorun_microtasks(autorun);
}
bool Isolate::WillAutorunMicrotasks() const {
return reinterpret_cast<const i::Isolate*>(this)->autorun_microtasks();
}
void Isolate::SetUseCounterCallback(UseCounterCallback callback) {
reinterpret_cast<i::Isolate*>(this)->SetUseCounterCallback(callback);
}
void Isolate::SetCounterFunction(CounterLookupCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stats_table()->SetCounterFunction(callback);
isolate->InitializeLoggingAndCounters();
isolate->counters()->ResetCounters();
}
void Isolate::SetCreateHistogramFunction(CreateHistogramCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stats_table()->SetCreateHistogramFunction(callback);
isolate->InitializeLoggingAndCounters();
isolate->counters()->ResetHistograms();
}
void Isolate::SetAddHistogramSampleFunction(
AddHistogramSampleCallback callback) {
reinterpret_cast<i::Isolate*>(this)
->stats_table()
->SetAddHistogramSampleFunction(callback);
}
bool Isolate::IdleNotification(int idle_time_in_ms) {
// Returning true tells the caller that it need not
// continue to call IdleNotification.
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (!i::FLAG_use_idle_notification) return true;
return isolate->heap()->IdleNotification(idle_time_in_ms);
}
bool Isolate::IdleNotificationDeadline(double deadline_in_seconds) {
// Returning true tells the caller that it need not
// continue to call IdleNotification.
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (!i::FLAG_use_idle_notification) return true;
return isolate->heap()->IdleNotification(deadline_in_seconds);
}
void Isolate::LowMemoryNotification() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
{
i::HistogramTimerScope idle_notification_scope(
isolate->counters()->gc_low_memory_notification());
isolate->heap()->CollectAllAvailableGarbage("low memory notification");
}
}
int Isolate::ContextDisposedNotification(bool dependant_context) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->heap()->NotifyContextDisposed(dependant_context);
}
void Isolate::SetJitCodeEventHandler(JitCodeEventOptions options,
JitCodeEventHandler event_handler) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
// Ensure that logging is initialized for our isolate.
isolate->InitializeLoggingAndCounters();
isolate->logger()->SetCodeEventHandler(options, event_handler);
}
void Isolate::SetStackLimit(uintptr_t stack_limit) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
CHECK(stack_limit);
isolate->stack_guard()->SetStackLimit(stack_limit);
}
void Isolate::GetCodeRange(void** start, size_t* length_in_bytes) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (isolate->code_range()->valid()) {
*start = isolate->code_range()->start();
*length_in_bytes = isolate->code_range()->size();
} else {
*start = NULL;
*length_in_bytes = 0;
}
}
void Isolate::SetFatalErrorHandler(FatalErrorCallback that) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->set_exception_behavior(that);
}
void Isolate::SetAllowCodeGenerationFromStringsCallback(
AllowCodeGenerationFromStringsCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->set_allow_code_gen_callback(callback);
}
bool Isolate::IsDead() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->IsDead();
}
bool Isolate::AddMessageListener(MessageCallback that, Local<Value> data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
NeanderArray listeners(isolate->factory()->message_listeners());
NeanderObject obj(isolate, 2);
obj.set(0, *isolate->factory()->NewForeign(FUNCTION_ADDR(that)));
obj.set(1, data.IsEmpty() ? isolate->heap()->undefined_value()
: *Utils::OpenHandle(*data));
listeners.add(isolate, obj.value());
return true;
}
void Isolate::RemoveMessageListeners(MessageCallback that) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
NeanderArray listeners(isolate->factory()->message_listeners());
for (int i = 0; i < listeners.length(); i++) {
if (listeners.get(i)->IsUndefined()) continue; // skip deleted ones
NeanderObject listener(i::JSObject::cast(listeners.get(i)));
i::Handle<i::Foreign> callback_obj(i::Foreign::cast(listener.get(0)));
if (callback_obj->foreign_address() == FUNCTION_ADDR(that)) {
listeners.set(i, isolate->heap()->undefined_value());
}
}
}
void Isolate::SetFailedAccessCheckCallbackFunction(
FailedAccessCheckCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetFailedAccessCheckCallback(callback);
}
void Isolate::SetCaptureStackTraceForUncaughtExceptions(
bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
options);
}
void Isolate::VisitExternalResources(ExternalResourceVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->VisitExternalResources(visitor);
}
class VisitorAdapter : public i::ObjectVisitor {
public:
explicit VisitorAdapter(PersistentHandleVisitor* visitor)
: visitor_(visitor) {}
virtual void VisitPointers(i::Object** start, i::Object** end) {
UNREACHABLE();
}
virtual void VisitEmbedderReference(i::Object** p, uint16_t class_id) {
Value* value = ToApi<Value>(i::Handle<i::Object>(p));
visitor_->VisitPersistentHandle(
reinterpret_cast<Persistent<Value>*>(&value), class_id);
}
private:
PersistentHandleVisitor* visitor_;
};
void Isolate::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::DisallowHeapAllocation no_allocation;
VisitorAdapter visitor_adapter(visitor);
isolate->global_handles()->IterateAllRootsWithClassIds(&visitor_adapter);
}
void Isolate::VisitHandlesForPartialDependence(
PersistentHandleVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::DisallowHeapAllocation no_allocation;
VisitorAdapter visitor_adapter(visitor);
isolate->global_handles()->IterateAllRootsInNewSpaceWithClassIds(
&visitor_adapter);
}
String::Utf8Value::Utf8Value(v8::Local<v8::Value> obj)
: str_(NULL), length_(0) {
if (obj.IsEmpty()) return;
i::Isolate* isolate = i::Isolate::Current();
Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
Local<Context> context = v8_isolate->GetCurrentContext();
TryCatch try_catch(v8_isolate);
Local<String> str;
if (!obj->ToString(context).ToLocal(&str)) return;
i::Handle<i::String> i_str = Utils::OpenHandle(*str);
length_ = v8::Utf8Length(*i_str, isolate);
str_ = i::NewArray<char>(length_ + 1);
str->WriteUtf8(str_);
}
String::Utf8Value::~Utf8Value() {
i::DeleteArray(str_);
}
String::Value::Value(v8::Local<v8::Value> obj) : str_(NULL), length_(0) {
if (obj.IsEmpty()) return;
i::Isolate* isolate = i::Isolate::Current();
Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate);
ENTER_V8(isolate);
i::HandleScope scope(isolate);
Local<Context> context = v8_isolate->GetCurrentContext();
TryCatch try_catch(v8_isolate);
Local<String> str;
if (!obj->ToString(context).ToLocal(&str)) return;
length_ = str->Length();
str_ = i::NewArray<uint16_t>(length_ + 1);
str->Write(str_);
}
String::Value::~Value() {
i::DeleteArray(str_);
}
#define DEFINE_ERROR(NAME) \
Local<Value> Exception::NAME(v8::Local<v8::String> raw_message) { \
i::Isolate* isolate = i::Isolate::Current(); \
LOG_API(isolate, #NAME); \
ENTER_V8(isolate); \
i::Object* error; \
{ \
i::HandleScope scope(isolate); \
i::Handle<i::String> message = Utils::OpenHandle(*raw_message); \
error = *isolate->factory()->NewError("$" #NAME, message); \
} \
i::Handle<i::Object> result(error, isolate); \
return Utils::ToLocal(result); \
}
DEFINE_ERROR(RangeError)
DEFINE_ERROR(ReferenceError)
DEFINE_ERROR(SyntaxError)
DEFINE_ERROR(TypeError)
DEFINE_ERROR(Error)
#undef DEFINE_ERROR
Local<Message> Exception::CreateMessage(Local<Value> exception) {
i::Handle<i::Object> obj = Utils::OpenHandle(*exception);
if (!obj->IsHeapObject()) return Local<Message>();
i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
return Utils::MessageToLocal(
scope.CloseAndEscape(isolate->CreateMessage(obj, NULL)));
}
Local<StackTrace> Exception::GetStackTrace(Local<Value> exception) {
i::Handle<i::Object> obj = Utils::OpenHandle(*exception);
if (!obj->IsJSObject()) return Local<StackTrace>();
i::Handle<i::JSObject> js_obj = i::Handle<i::JSObject>::cast(obj);
i::Isolate* isolate = js_obj->GetIsolate();
ENTER_V8(isolate);
return Utils::StackTraceToLocal(isolate->GetDetailedStackTrace(js_obj));
}
// --- D e b u g S u p p o r t ---
bool Debug::SetDebugEventListener(EventCallback that, Local<Value> data) {
i::Isolate* isolate = i::Isolate::Current();
ENTER_V8(isolate);
i::HandleScope scope(isolate);
i::Handle<i::Object> foreign = isolate->factory()->undefined_value();
if (that != NULL) {
foreign = isolate->factory()->NewForeign(FUNCTION_ADDR(that));
}
isolate->debug()->SetEventListener(foreign,
Utils::OpenHandle(*data, true));
return true;
}
void Debug::DebugBreak(Isolate* isolate) {
reinterpret_cast<i::Isolate*>(isolate)->stack_guard()->RequestDebugBreak();
}
void Debug::CancelDebugBreak(Isolate* isolate) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_isolate->stack_guard()->ClearDebugBreak();
}
bool Debug::CheckDebugBreak(Isolate* isolate) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
return internal_isolate->stack_guard()->CheckDebugBreak();
}
void Debug::SetMessageHandler(v8::Debug::MessageHandler handler) {
i::Isolate* isolate = i::Isolate::Current();
ENTER_V8(isolate);
isolate->debug()->SetMessageHandler(handler);
}
void Debug::SendCommand(Isolate* isolate,
const uint16_t* command,
int length,
ClientData* client_data) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_isolate->debug()->EnqueueCommandMessage(
i::Vector<const uint16_t>(command, length), client_data);
}
MaybeLocal<Value> Debug::Call(Local<Context> context,
v8::Local<v8::Function> fun,
v8::Local<v8::Value> data) {
PREPARE_FOR_EXECUTION(context, "v8::Debug::Call()", Value);
i::Handle<i::Object> data_obj;
if (data.IsEmpty()) {
data_obj = isolate->factory()->undefined_value();
} else {
data_obj = Utils::OpenHandle(*data);
}
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(isolate->debug()->Call(Utils::OpenHandle(*fun), data_obj),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<Value> Debug::Call(v8::Local<v8::Function> fun,
v8::Local<v8::Value> data) {
auto context = ContextFromHeapObject(Utils::OpenHandle(*fun));
RETURN_TO_LOCAL_UNCHECKED(Call(context, fun, data), Value);
}
MaybeLocal<Value> Debug::GetMirror(Local<Context> context,
v8::Local<v8::Value> obj) {
PREPARE_FOR_EXECUTION(context, "v8::Debug::GetMirror()", Value);
i::Debug* isolate_debug = isolate->debug();
has_pending_exception = !isolate_debug->Load();
RETURN_ON_FAILED_EXECUTION(Value);
i::Handle<i::JSObject> debug(isolate_debug->debug_context()->global_object());
auto name = isolate->factory()->NewStringFromStaticChars("MakeMirror");
auto fun_obj = i::Object::GetProperty(debug, name).ToHandleChecked();
auto v8_fun = Utils::ToLocal(i::Handle<i::JSFunction>::cast(fun_obj));
const int kArgc = 1;
v8::Local<v8::Value> argv[kArgc] = {obj};
Local<Value> result;
has_pending_exception = !v8_fun->Call(context, Utils::ToLocal(debug), kArgc,
argv).ToLocal(&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<Value> Debug::GetMirror(v8::Local<v8::Value> obj) {
RETURN_TO_LOCAL_UNCHECKED(GetMirror(Local<Context>(), obj), Value);
}
void Debug::ProcessDebugMessages() {
i::Isolate::Current()->debug()->ProcessDebugMessages(true);
}
Local<Context> Debug::GetDebugContext() {
i::Isolate* isolate = i::Isolate::Current();
ENTER_V8(isolate);
return Utils::ToLocal(isolate->debug()->GetDebugContext());
}
void Debug::SetLiveEditEnabled(Isolate* isolate, bool enable) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_isolate->debug()->set_live_edit_enabled(enable);
}
MaybeLocal<Array> Debug::GetInternalProperties(Isolate* v8_isolate,
Local<Value> value) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8(isolate);
i::Handle<i::Object> val = Utils::OpenHandle(*value);
i::Handle<i::JSArray> result;
if (!i::Runtime::GetInternalProperties(isolate, val).ToHandle(&result))
return MaybeLocal<Array>();
return Utils::ToLocal(result);
}
Local<String> CpuProfileNode::GetFunctionName() const {
i::Isolate* isolate = i::Isolate::Current();
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
const i::CodeEntry* entry = node->entry();
i::Handle<i::String> name =
isolate->factory()->InternalizeUtf8String(entry->name());
if (!entry->has_name_prefix()) {
return ToApiHandle<String>(name);
} else {
// We do not expect this to fail. Change this if it does.
i::Handle<i::String> cons = isolate->factory()->NewConsString(
isolate->factory()->InternalizeUtf8String(entry->name_prefix()),
name).ToHandleChecked();
return ToApiHandle<String>(cons);
}
}
int CpuProfileNode::GetScriptId() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
const i::CodeEntry* entry = node->entry();
return entry->script_id();
}
Local<String> CpuProfileNode::GetScriptResourceName() const {
i::Isolate* isolate = i::Isolate::Current();
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String(
node->entry()->resource_name()));
}
int CpuProfileNode::GetLineNumber() const {
return reinterpret_cast<const i::ProfileNode*>(this)->entry()->line_number();
}
int CpuProfileNode::GetColumnNumber() const {
return reinterpret_cast<const i::ProfileNode*>(this)->
entry()->column_number();
}
unsigned int CpuProfileNode::GetHitLineCount() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->GetHitLineCount();
}
bool CpuProfileNode::GetLineTicks(LineTick* entries,
unsigned int length) const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->GetLineTicks(entries, length);
}
const char* CpuProfileNode::GetBailoutReason() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->bailout_reason();
}
unsigned CpuProfileNode::GetHitCount() const {
return reinterpret_cast<const i::ProfileNode*>(this)->self_ticks();
}
unsigned CpuProfileNode::GetCallUid() const {
return reinterpret_cast<const i::ProfileNode*>(this)->function_id();
}
unsigned CpuProfileNode::GetNodeId() const {
return reinterpret_cast<const i::ProfileNode*>(this)->id();
}
int CpuProfileNode::GetChildrenCount() const {
return reinterpret_cast<const i::ProfileNode*>(this)->children()->length();
}
const CpuProfileNode* CpuProfileNode::GetChild(int index) const {
const i::ProfileNode* child =
reinterpret_cast<const i::ProfileNode*>(this)->children()->at(index);
return reinterpret_cast<const CpuProfileNode*>(child);
}
const std::vector<CpuProfileDeoptInfo>& CpuProfileNode::GetDeoptInfos() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->deopt_infos();
}
void CpuProfile::Delete() {
i::Isolate* isolate = i::Isolate::Current();
i::CpuProfiler* profiler = isolate->cpu_profiler();
DCHECK(profiler != NULL);
profiler->DeleteProfile(reinterpret_cast<i::CpuProfile*>(this));
}
Local<String> CpuProfile::GetTitle() const {
i::Isolate* isolate = i::Isolate::Current();
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String(
profile->title()));
}
const CpuProfileNode* CpuProfile::GetTopDownRoot() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return reinterpret_cast<const CpuProfileNode*>(profile->top_down()->root());
}
const CpuProfileNode* CpuProfile::GetSample(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return reinterpret_cast<const CpuProfileNode*>(profile->sample(index));
}
int64_t CpuProfile::GetSampleTimestamp(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return (profile->sample_timestamp(index) - base::TimeTicks())
.InMicroseconds();
}
int64_t CpuProfile::GetStartTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return (profile->start_time() - base::TimeTicks()).InMicroseconds();
}
int64_t CpuProfile::GetEndTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return (profile->end_time() - base::TimeTicks()).InMicroseconds();
}
int CpuProfile::GetSamplesCount() const {
return reinterpret_cast<const i::CpuProfile*>(this)->samples_count();
}
void CpuProfiler::SetSamplingInterval(int us) {
DCHECK(us >= 0);
return reinterpret_cast<i::CpuProfiler*>(this)->set_sampling_interval(
base::TimeDelta::FromMicroseconds(us));
}
void CpuProfiler::StartProfiling(Local<String> title, bool record_samples) {
reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling(
*Utils::OpenHandle(*title), record_samples);
}
CpuProfile* CpuProfiler::StopProfiling(Local<String> title) {
return reinterpret_cast<CpuProfile*>(
reinterpret_cast<i::CpuProfiler*>(this)->StopProfiling(
*Utils::OpenHandle(*title)));
}
void CpuProfiler::SetIdle(bool is_idle) {
i::Isolate* isolate = reinterpret_cast<i::CpuProfiler*>(this)->isolate();
v8::StateTag state = isolate->current_vm_state();
DCHECK(state == v8::EXTERNAL || state == v8::IDLE);
if (isolate->js_entry_sp() != NULL) return;
if (is_idle) {
isolate->set_current_vm_state(v8::IDLE);
} else if (state == v8::IDLE) {
isolate->set_current_vm_state(v8::EXTERNAL);
}
}
static i::HeapGraphEdge* ToInternal(const HeapGraphEdge* edge) {
return const_cast<i::HeapGraphEdge*>(
reinterpret_cast<const i::HeapGraphEdge*>(edge));
}
HeapGraphEdge::Type HeapGraphEdge::GetType() const {
return static_cast<HeapGraphEdge::Type>(ToInternal(this)->type());
}
Local<Value> HeapGraphEdge::GetName() const {
i::Isolate* isolate = i::Isolate::Current();
i::HeapGraphEdge* edge = ToInternal(this);
switch (edge->type()) {
case i::HeapGraphEdge::kContextVariable:
case i::HeapGraphEdge::kInternal:
case i::HeapGraphEdge::kProperty:
case i::HeapGraphEdge::kShortcut:
case i::HeapGraphEdge::kWeak:
return ToApiHandle<String>(
isolate->factory()->InternalizeUtf8String(edge->name()));
case i::HeapGraphEdge::kElement:
case i::HeapGraphEdge::kHidden:
return ToApiHandle<Number>(
isolate->factory()->NewNumberFromInt(edge->index()));
default: UNREACHABLE();
}
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
const HeapGraphNode* HeapGraphEdge::GetFromNode() const {
const i::HeapEntry* from = ToInternal(this)->from();
return reinterpret_cast<const HeapGraphNode*>(from);
}
const HeapGraphNode* HeapGraphEdge::GetToNode() const {
const i::HeapEntry* to = ToInternal(this)->to();
return reinterpret_cast<const HeapGraphNode*>(to);
}
static i::HeapEntry* ToInternal(const HeapGraphNode* entry) {
return const_cast<i::HeapEntry*>(
reinterpret_cast<const i::HeapEntry*>(entry));
}
HeapGraphNode::Type HeapGraphNode::GetType() const {
return static_cast<HeapGraphNode::Type>(ToInternal(this)->type());
}
Local<String> HeapGraphNode::GetName() const {
i::Isolate* isolate = i::Isolate::Current();
return ToApiHandle<String>(
isolate->factory()->InternalizeUtf8String(ToInternal(this)->name()));
}
SnapshotObjectId HeapGraphNode::GetId() const {
return ToInternal(this)->id();
}
size_t HeapGraphNode::GetShallowSize() const {
return ToInternal(this)->self_size();
}
int HeapGraphNode::GetChildrenCount() const {
return ToInternal(this)->children().length();
}
const HeapGraphEdge* HeapGraphNode::GetChild(int index) const {
return reinterpret_cast<const HeapGraphEdge*>(
ToInternal(this)->children()[index]);
}
static i::HeapSnapshot* ToInternal(const HeapSnapshot* snapshot) {
return const_cast<i::HeapSnapshot*>(
reinterpret_cast<const i::HeapSnapshot*>(snapshot));
}
void HeapSnapshot::Delete() {
i::Isolate* isolate = i::Isolate::Current();
if (isolate->heap_profiler()->GetSnapshotsCount() > 1) {
ToInternal(this)->Delete();
} else {
// If this is the last snapshot, clean up all accessory data as well.
isolate->heap_profiler()->DeleteAllSnapshots();
}
}
const HeapGraphNode* HeapSnapshot::GetRoot() const {
return reinterpret_cast<const HeapGraphNode*>(ToInternal(this)->root());
}
const HeapGraphNode* HeapSnapshot::GetNodeById(SnapshotObjectId id) const {
return reinterpret_cast<const HeapGraphNode*>(
ToInternal(this)->GetEntryById(id));
}
int HeapSnapshot::GetNodesCount() const {
return ToInternal(this)->entries().length();
}
const HeapGraphNode* HeapSnapshot::GetNode(int index) const {
return reinterpret_cast<const HeapGraphNode*>(
&ToInternal(this)->entries().at(index));
}
SnapshotObjectId HeapSnapshot::GetMaxSnapshotJSObjectId() const {
return ToInternal(this)->max_snapshot_js_object_id();
}
void HeapSnapshot::Serialize(OutputStream* stream,
HeapSnapshot::SerializationFormat format) const {
Utils::ApiCheck(format == kJSON,
"v8::HeapSnapshot::Serialize",
"Unknown serialization format");
Utils::ApiCheck(stream->GetChunkSize() > 0,
"v8::HeapSnapshot::Serialize",
"Invalid stream chunk size");
i::HeapSnapshotJSONSerializer serializer(ToInternal(this));
serializer.Serialize(stream);
}
// static
STATIC_CONST_MEMBER_DEFINITION const SnapshotObjectId
HeapProfiler::kUnknownObjectId;
int HeapProfiler::GetSnapshotCount() {
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotsCount();
}
const HeapSnapshot* HeapProfiler::GetHeapSnapshot(int index) {
return reinterpret_cast<const HeapSnapshot*>(
reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshot(index));
}
SnapshotObjectId HeapProfiler::GetObjectId(Local<Value> value) {
i::Handle<i::Object> obj = Utils::OpenHandle(*value);
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(obj);
}
Local<Value> HeapProfiler::FindObjectById(SnapshotObjectId id) {
i::Handle<i::Object> obj =
reinterpret_cast<i::HeapProfiler*>(this)->FindHeapObjectById(id);
if (obj.is_null()) return Local<Value>();
return Utils::ToLocal(obj);
}
void HeapProfiler::ClearObjectIds() {
reinterpret_cast<i::HeapProfiler*>(this)->ClearHeapObjectMap();
}
const HeapSnapshot* HeapProfiler::TakeHeapSnapshot(
ActivityControl* control, ObjectNameResolver* resolver) {
return reinterpret_cast<const HeapSnapshot*>(
reinterpret_cast<i::HeapProfiler*>(this)
->TakeSnapshot(control, resolver));
}
void HeapProfiler::StartTrackingHeapObjects(bool track_allocations) {
reinterpret_cast<i::HeapProfiler*>(this)->StartHeapObjectsTracking(
track_allocations);
}
void HeapProfiler::StopTrackingHeapObjects() {
reinterpret_cast<i::HeapProfiler*>(this)->StopHeapObjectsTracking();
}
SnapshotObjectId HeapProfiler::GetHeapStats(OutputStream* stream,
int64_t* timestamp_us) {
i::HeapProfiler* heap_profiler = reinterpret_cast<i::HeapProfiler*>(this);
return heap_profiler->PushHeapObjectsStats(stream, timestamp_us);
}
void HeapProfiler::DeleteAllHeapSnapshots() {
reinterpret_cast<i::HeapProfiler*>(this)->DeleteAllSnapshots();
}
void HeapProfiler::SetWrapperClassInfoProvider(uint16_t class_id,
WrapperInfoCallback callback) {
reinterpret_cast<i::HeapProfiler*>(this)->DefineWrapperClass(class_id,
callback);
}
size_t HeapProfiler::GetProfilerMemorySize() {
return reinterpret_cast<i::HeapProfiler*>(this)->
GetMemorySizeUsedByProfiler();
}
void HeapProfiler::SetRetainedObjectInfo(UniqueId id,
RetainedObjectInfo* info) {
reinterpret_cast<i::HeapProfiler*>(this)->SetRetainedObjectInfo(id, info);
}
v8::Testing::StressType internal::Testing::stress_type_ =
v8::Testing::kStressTypeOpt;
void Testing::SetStressRunType(Testing::StressType type) {
internal::Testing::set_stress_type(type);
}
int Testing::GetStressRuns() {
if (internal::FLAG_stress_runs != 0) return internal::FLAG_stress_runs;
#ifdef DEBUG
// In debug mode the code runs much slower so stressing will only make two
// runs.
return 2;
#else
return 5;
#endif
}
static void SetFlagsFromString(const char* flags) {
V8::SetFlagsFromString(flags, i::StrLength(flags));
}
void Testing::PrepareStressRun(int run) {
static const char* kLazyOptimizations =
"--prepare-always-opt "
"--max-inlined-source-size=999999 "
"--max-inlined-nodes=999999 "
"--max-inlined-nodes-cumulative=999999 "
"--noalways-opt";
static const char* kForcedOptimizations = "--always-opt";
// If deoptimization stressed turn on frequent deoptimization. If no value
// is spefified through --deopt-every-n-times use a default default value.
static const char* kDeoptEvery13Times = "--deopt-every-n-times=13";
if (internal::Testing::stress_type() == Testing::kStressTypeDeopt &&
internal::FLAG_deopt_every_n_times == 0) {
SetFlagsFromString(kDeoptEvery13Times);
}
#ifdef DEBUG
// As stressing in debug mode only make two runs skip the deopt stressing
// here.
if (run == GetStressRuns() - 1) {
SetFlagsFromString(kForcedOptimizations);
} else {
SetFlagsFromString(kLazyOptimizations);
}
#else
if (run == GetStressRuns() - 1) {
SetFlagsFromString(kForcedOptimizations);
} else if (run != GetStressRuns() - 2) {
SetFlagsFromString(kLazyOptimizations);
}
#endif
}
// TODO(svenpanne) Deprecate this.
void Testing::DeoptimizeAll() {
i::Isolate* isolate = i::Isolate::Current();
i::HandleScope scope(isolate);
internal::Deoptimizer::DeoptimizeAll(isolate);
}
namespace internal {
void HandleScopeImplementer::FreeThreadResources() {
Free();
}
char* HandleScopeImplementer::ArchiveThread(char* storage) {
HandleScopeData* current = isolate_->handle_scope_data();
handle_scope_data_ = *current;
MemCopy(storage, this, sizeof(*this));
ResetAfterArchive();
current->Initialize();
return storage + ArchiveSpacePerThread();
}
int HandleScopeImplementer::ArchiveSpacePerThread() {
return sizeof(HandleScopeImplementer);
}
char* HandleScopeImplementer::RestoreThread(char* storage) {
MemCopy(this, storage, sizeof(*this));
*isolate_->handle_scope_data() = handle_scope_data_;
return storage + ArchiveSpacePerThread();
}
void HandleScopeImplementer::IterateThis(ObjectVisitor* v) {
#ifdef DEBUG
bool found_block_before_deferred = false;
#endif
// Iterate over all handles in the blocks except for the last.
for (int i = blocks()->length() - 2; i >= 0; --i) {
Object** block = blocks()->at(i);
if (last_handle_before_deferred_block_ != NULL &&
(last_handle_before_deferred_block_ <= &block[kHandleBlockSize]) &&
(last_handle_before_deferred_block_ >= block)) {
v->VisitPointers(block, last_handle_before_deferred_block_);
DCHECK(!found_block_before_deferred);
#ifdef DEBUG
found_block_before_deferred = true;
#endif
} else {
v->VisitPointers(block, &block[kHandleBlockSize]);
}
}
DCHECK(last_handle_before_deferred_block_ == NULL ||
found_block_before_deferred);
// Iterate over live handles in the last block (if any).
if (!blocks()->is_empty()) {
v->VisitPointers(blocks()->last(), handle_scope_data_.next);
}
List<Context*>* context_lists[2] = { &saved_contexts_, &entered_contexts_};
for (unsigned i = 0; i < arraysize(context_lists); i++) {
if (context_lists[i]->is_empty()) continue;
Object** start = reinterpret_cast<Object**>(&context_lists[i]->first());
v->VisitPointers(start, start + context_lists[i]->length());
}
}
void HandleScopeImplementer::Iterate(ObjectVisitor* v) {
HandleScopeData* current = isolate_->handle_scope_data();
handle_scope_data_ = *current;
IterateThis(v);
}
char* HandleScopeImplementer::Iterate(ObjectVisitor* v, char* storage) {
HandleScopeImplementer* scope_implementer =
reinterpret_cast<HandleScopeImplementer*>(storage);
scope_implementer->IterateThis(v);
return storage + ArchiveSpacePerThread();
}
DeferredHandles* HandleScopeImplementer::Detach(Object** prev_limit) {
DeferredHandles* deferred =
new DeferredHandles(isolate()->handle_scope_data()->next, isolate());
while (!blocks_.is_empty()) {
Object** block_start = blocks_.last();
Object** block_limit = &block_start[kHandleBlockSize];
// We should not need to check for SealHandleScope here. Assert this.
DCHECK(prev_limit == block_limit ||
!(block_start <= prev_limit && prev_limit <= block_limit));
if (prev_limit == block_limit) break;
deferred->blocks_.Add(blocks_.last());
blocks_.RemoveLast();
}
// deferred->blocks_ now contains the blocks installed on the
// HandleScope stack since BeginDeferredScope was called, but in
// reverse order.
DCHECK(prev_limit == NULL || !blocks_.is_empty());
DCHECK(!blocks_.is_empty() && prev_limit != NULL);
DCHECK(last_handle_before_deferred_block_ != NULL);
last_handle_before_deferred_block_ = NULL;
return deferred;
}
void HandleScopeImplementer::BeginDeferredScope() {
DCHECK(last_handle_before_deferred_block_ == NULL);
last_handle_before_deferred_block_ = isolate()->handle_scope_data()->next;
}
DeferredHandles::~DeferredHandles() {
isolate_->UnlinkDeferredHandles(this);
for (int i = 0; i < blocks_.length(); i++) {
#ifdef ENABLE_HANDLE_ZAPPING
HandleScope::ZapRange(blocks_[i], &blocks_[i][kHandleBlockSize]);
#endif
isolate_->handle_scope_implementer()->ReturnBlock(blocks_[i]);
}
}
void DeferredHandles::Iterate(ObjectVisitor* v) {
DCHECK(!blocks_.is_empty());
DCHECK((first_block_limit_ >= blocks_.first()) &&
(first_block_limit_ <= &(blocks_.first())[kHandleBlockSize]));
v->VisitPointers(blocks_.first(), first_block_limit_);
for (int i = 1; i < blocks_.length(); i++) {
v->VisitPointers(blocks_[i], &blocks_[i][kHandleBlockSize]);
}
}
void InvokeAccessorGetterCallback(
v8::Local<v8::Name> property,
const v8::PropertyCallbackInfo<v8::Value>& info,
v8::AccessorNameGetterCallback getter) {
// Leaving JavaScript.
Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate());
Address getter_address = reinterpret_cast<Address>(reinterpret_cast<intptr_t>(
getter));
VMState<EXTERNAL> state(isolate);
ExternalCallbackScope call_scope(isolate, getter_address);
getter(property, info);
}
void InvokeFunctionCallback(const v8::FunctionCallbackInfo<v8::Value>& info,
v8::FunctionCallback callback) {
Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate());
Address callback_address =
reinterpret_cast<Address>(reinterpret_cast<intptr_t>(callback));
VMState<EXTERNAL> state(isolate);
ExternalCallbackScope call_scope(isolate, callback_address);
callback(info);
}
} // namespace internal
} // namespace v8