blob: 17a1633ab73d41c13f9ac9ff2a55822d95ba6449 [file] [log] [blame]
/*
* Copyright (C) 2003, 2009, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2013 Intel Corporation. All rights reserved.
*
* Portions are Copyright (C) 1998 Netscape Communications Corporation.
*
* Other contributors:
* Robert O'Callahan <roc+@cs.cmu.edu>
* David Baron <dbaron@fas.harvard.edu>
* Christian Biesinger <cbiesinger@web.de>
* Randall Jesup <rjesup@wgate.com>
* Roland Mainz <roland.mainz@informatik.med.uni-giessen.de>
* Josh Soref <timeless@mac.com>
* Boris Zbarsky <bzbarsky@mit.edu>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Alternatively, the contents of this file may be used under the terms
* of either the Mozilla Public License Version 1.1, found at
* http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public
* License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html
* (the "GPL"), in which case the provisions of the MPL or the GPL are
* applicable instead of those above. If you wish to allow use of your
* version of this file only under the terms of one of those two
* licenses (the MPL or the GPL) and not to allow others to use your
* version of this file under the LGPL, indicate your decision by
* deletingthe provisions above and replace them with the notice and
* other provisions required by the MPL or the GPL, as the case may be.
* If you do not delete the provisions above, a recipient may use your
* version of this file under any of the LGPL, the MPL or the GPL.
*/
#ifndef PaintLayer_h
#define PaintLayer_h
#include "core/CoreExport.h"
#include "core/layout/LayoutBox.h"
#include "core/paint/PaintLayerClipper.h"
#include "core/paint/PaintLayerFilterInfo.h"
#include "core/paint/PaintLayerFragment.h"
#include "core/paint/PaintLayerReflectionInfo.h"
#include "core/paint/PaintLayerScrollableArea.h"
#include "core/paint/PaintLayerStackingNode.h"
#include "core/paint/PaintLayerStackingNodeIterator.h"
#include "platform/graphics/CompositingReasons.h"
#include "public/platform/WebBlendMode.h"
#include "wtf/Allocator.h"
#include "wtf/OwnPtr.h"
namespace blink {
class CompositedLayerMapping;
class ComputedStyle;
class FilterEffectBuilder;
class FilterOperations;
class HitTestRequest;
class HitTestResult;
class HitTestingTransformState;
class PaintLayerCompositor;
class PaintTiming;
class TransformationMatrix;
enum IncludeSelfOrNot { IncludeSelf, ExcludeSelf };
enum CompositingQueryMode {
CompositingQueriesAreAllowed,
CompositingQueriesAreOnlyAllowedInCertainDocumentLifecyclePhases
};
// FIXME: remove this once the compositing query ASSERTS are no longer hit.
class CORE_EXPORT DisableCompositingQueryAsserts {
STACK_ALLOCATED();
WTF_MAKE_NONCOPYABLE(DisableCompositingQueryAsserts);
public:
DisableCompositingQueryAsserts();
private:
TemporaryChange<CompositingQueryMode> m_disabler;
};
// PaintLayer is an old object that handles lots of unrelated operations.
//
// We want it to die at some point and be replaced by more focused objects,
// which would remove (or at least compartimentalize) a lot of complexity.
// See the STATUS OF PAINTLAYER section below.
//
// The class is central to painting and hit-testing. That's because it handles
// a lot of tasks (we included ones done by associated satellite objects for
// historical reasons):
// - Complex painting operations (opacity, clipping, filters, reflections, ...).
// - hardware acceleration (through PaintLayerCompositor).
// - scrolling (through PaintLayerScrollableArea).
// - some performance optimizations.
//
// The compositing code is also based on PaintLayer. The entry to it is the
// PaintLayerCompositor, which fills |m_compositedLayerMapping| for hardware
// accelerated layers.
//
// TODO(jchaffraix): Expand the documentation about hardware acceleration.
//
//
// ***** SELF-PAINTING LAYER *****
// One important concept about PaintLayer is "self-painting"
// (m_isSelfPaintingLayer).
// PaintLayer started as the implementation of a stacking context. This meant
// that we had to use PaintLayer's painting order (the code is now in
// PaintLayerPainter and PaintLayerStackingNode) instead of the LayoutObject's
// children order. Over the years, as more operations were handled by
// PaintLayer, some LayoutObjects that were not stacking context needed to have
// a PaintLayer for bookkeeping reasons. One such example is the overflow hidden
// case that wanted hardware acceleration and thus had to allocate a PaintLayer
// to get it. However overflow hidden is something LayoutObject can paint
// without a PaintLayer, which includes a lot of painting overhead. Thus the
// self-painting flag was introduced. The flag is a band-aid solution done for
// performance reason only. It just brush over the underlying problem, which is
// that its design doesn't match the system's requirements anymore.
//
// Note that the self-painting flag determines how we paint a LayoutObject:
// - If the flag is true, the LayoutObject is painted through its PaintLayer,
// which is required to apply complex paint operations. The paint order is
// handled by PaintLayerPainter::paintChildren, where we look at children
// PaintLayers.
// - If the flag is false, the LayoutObject is painted like normal children (ie
// as if it didn't have a PaintLayer). The paint order is handled by
// BlockPainter::paintChild that looks at children LayoutObjects.
// This means that the self-painting flag changes the painting order in a subtle
// way, which can potentially have visible consequences. Those bugs are called
// painting inversion as we invert the order of painting for 2 elements
// (painting one wrongly in front of the other).
// See https://crbug.com/370604 for an example.
//
//
// ***** STATUS OF PAINTLAYER *****
// We would like to remove this class in the future. The reasons for the removal
// are:
// - it has been a dumping ground for features for too long.
// - it is the wrong level of abstraction, bearing no correspondence to any CSS
// concept.
//
// Its features need to be migrated to helper objects. This was started with the
// introduction of satellite objects: PaintLayer*. Those helper objects then
// need to be moved to the appropriate LayoutObject class, probably to a rare
// data field to avoid growing all the LayoutObjects.
//
// A good example of this is PaintLayerScrollableArea, which can only happen
// be instanciated for LayoutBoxes. With the current design, it's hard to know
// that by reading the code.
class CORE_EXPORT PaintLayer : public DisplayItemClient {
WTF_MAKE_NONCOPYABLE(PaintLayer);
public:
PaintLayer(LayoutBoxModelObject*, PaintLayerType);
~PaintLayer();
// DisplayItemClient methods
String debugName() const final;
IntRect visualRect() const override;
LayoutBoxModelObject* layoutObject() const { return m_layoutObject; }
LayoutBox* layoutBox() const { return m_layoutObject && m_layoutObject->isBox() ? toLayoutBox(m_layoutObject) : 0; }
PaintLayer* parent() const { return m_parent; }
PaintLayer* previousSibling() const { return m_previous; }
PaintLayer* nextSibling() const { return m_next; }
PaintLayer* firstChild() const { return m_first; }
PaintLayer* lastChild() const { return m_last; }
// TODO(wangxianzhu): Find a better name for it. 'paintContainer' might be good but
// we can't use it for now because it conflicts with PaintInfo::paintContainer.
PaintLayer* compositingContainer() const;
void addChild(PaintLayer* newChild, PaintLayer* beforeChild = 0);
PaintLayer* removeChild(PaintLayer*);
void removeOnlyThisLayer();
void insertOnlyThisLayer();
void styleChanged(StyleDifference, const ComputedStyle* oldStyle);
// FIXME: Many people call this function while it has out-of-date information.
bool isSelfPaintingLayer() const { return m_isSelfPaintingLayer; }
void setLayerType(PaintLayerType layerType) { m_layerType = layerType; }
bool isTransparent() const { return layoutObject()->isTransparent() || layoutObject()->style()->hasBlendMode() || layoutObject()->hasMask(); }
bool isReflection() const { return layoutObject()->isReplica(); }
PaintLayerReflectionInfo* reflectionInfo() { return m_reflectionInfo.get(); }
const PaintLayerReflectionInfo* reflectionInfo() const { return m_reflectionInfo.get(); }
const PaintLayer* root() const
{
const PaintLayer* curr = this;
while (curr->parent())
curr = curr->parent();
return curr;
}
const LayoutPoint& location() const { ASSERT(!m_needsPositionUpdate); return m_location; }
// FIXME: size() should ASSERT(!m_needsPositionUpdate) as well, but that fails in some tests,
// for example, fast/repaint/clipped-relative.html.
const IntSize& size() const { return m_size; }
void setSizeHackForLayoutTreeAsText(const IntSize& size) { m_size = size; }
LayoutRect rect() const { return LayoutRect(location(), LayoutSize(size())); }
bool isRootLayer() const { return m_isRootLayer; }
PaintLayerCompositor* compositor() const;
// Notification from the layoutObject that its content changed (e.g. current frame of image changed).
// Allows updates of layer content without invalidating paint.
void contentChanged(ContentChangeType);
void updateLayerPositionsAfterLayout();
void updateLayerPositionsAfterOverflowScroll(const DoubleSize& scrollDelta);
PaintLayer* enclosingPaginationLayer() const { return m_enclosingPaginationLayer; }
void updateTransformationMatrix();
PaintLayer* renderingContextRoot();
const LayoutSize& offsetForInFlowPosition() const { return m_offsetForInFlowPosition; }
void addBlockSelectionGapsBounds(const LayoutRect&);
void clearBlockSelectionGapsBounds();
void invalidatePaintForBlockSelectionGaps();
IntRect blockSelectionGapsBounds() const;
bool hasBlockSelectionGapBounds() const;
PaintLayerStackingNode* stackingNode() { return m_stackingNode.get(); }
const PaintLayerStackingNode* stackingNode() const { return m_stackingNode.get(); }
bool subtreeIsInvisible() const { return !hasVisibleContent() && !hasVisibleDescendant(); }
// FIXME: hasVisibleContent() should call updateDescendantDependentFlags() if m_visibleContentStatusDirty.
bool hasVisibleContent() const { ASSERT(!m_visibleContentStatusDirty); return m_hasVisibleContent; }
// FIXME: hasVisibleDescendant() should call updateDescendantDependentFlags() if m_visibleDescendantStatusDirty.
bool hasVisibleDescendant() const { ASSERT(!m_visibleDescendantStatusDirty); return m_hasVisibleDescendant; }
void dirtyVisibleContentStatus();
void potentiallyDirtyVisibleContentStatus(EVisibility);
bool hasBoxDecorationsOrBackground() const;
bool hasVisibleBoxDecorations() const;
// True if this layer container layoutObjects that paint.
bool hasNonEmptyChildLayoutObjects() const;
// Will ensure that hasNonCompositiedChild are up to date.
void updateScrollingStateAfterCompositingChange();
bool hasVisibleNonLayerContent() const { return m_hasVisibleNonLayerContent; }
bool hasNonCompositedChild() const { ASSERT(isAllowedToQueryCompositingState()); return m_hasNonCompositedChild; }
// Gets the ancestor layer that serves as the containing block of this layer. This is either
// another out of flow positioned layer, or one that contains paint.
// If |ancestor| is specified, |*skippedAncestor| will be set to true if |ancestor| is found in
// the ancestry chain between this layer and the containing block layer; if not found, it will
// be set to false. Either both |ancestor| and |skippedAncestor| should be nullptr, or none of
// them should.
PaintLayer* containingLayerForOutOfFlowPositioned(const PaintLayer* ancestor = nullptr, bool* skippedAncestor = nullptr) const;
bool isPaintInvalidationContainer() const;
// Do *not* call this method unless you know what you are dooing. You probably want to call enclosingCompositingLayerForPaintInvalidation() instead.
// If includeSelf is true, may return this.
PaintLayer* enclosingLayerWithCompositedLayerMapping(IncludeSelfOrNot) const;
// Returns the enclosing layer root into which this layer paints, inclusive of this one. Note that the enclosing layer may or may not have its own
// GraphicsLayer backing, but is nevertheless the root for a call to the Layer::paint*() methods.
PaintLayer* enclosingLayerForPaintInvalidation() const;
PaintLayer* enclosingLayerForPaintInvalidationCrossingFrameBoundaries() const;
bool hasAncestorWithFilterOutsets() const;
bool canUseConvertToLayerCoords() const
{
// These LayoutObjects have an impact on their layers without the layoutObjects knowing about it.
return !layoutObject()->hasTransformRelatedProperty() && !layoutObject()->isSVGRoot();
}
void convertToLayerCoords(const PaintLayer* ancestorLayer, LayoutPoint&) const;
void convertToLayerCoords(const PaintLayer* ancestorLayer, LayoutRect&) const;
// Does the same as convertToLayerCoords() when not in multicol. For multicol, however,
// convertToLayerCoords() calculates the offset in flow-thread coordinates (what the layout
// engine uses internally), while this method calculates the visual coordinates; i.e. it figures
// out which column the layer starts in and adds in the offset. See
// http://www.chromium.org/developers/design-documents/multi-column-layout for more info.
LayoutPoint visualOffsetFromAncestor(const PaintLayer* ancestorLayer) const;
// The hitTest() method looks for mouse events by walking layers that intersect the point from front to back.
bool hitTest(HitTestResult&);
bool intersectsDamageRect(const LayoutRect& layerBounds, const LayoutRect& damageRect, const LayoutPoint& offsetFromRoot) const;
// Bounding box relative to some ancestor layer. Pass offsetFromRoot if known.
LayoutRect physicalBoundingBox(const LayoutPoint& offsetFromRoot) const;
LayoutRect physicalBoundingBox(const PaintLayer* ancestorLayer) const;
LayoutRect physicalBoundingBoxIncludingReflectionAndStackingChildren(const LayoutPoint& offsetFromRoot) const;
LayoutRect fragmentsBoundingBox(const PaintLayer* ancestorLayer) const;
LayoutRect boundingBoxForCompositingOverlapTest() const;
// If true, this layer's children are included in its bounds for overlap testing.
// We can't rely on the children's positions if this layer has a filter that could have moved the children's pixels around.
bool overlapBoundsIncludeChildren() const { return hasFilter() && layoutObject()->style()->filter().hasFilterThatMovesPixels(); }
// MaybeIncludeTransformForAncestorLayer means that a transform on |ancestorLayer| may be applied to the bounding box,
// in particular if paintsWithTransform() is true.
enum CalculateBoundsOptions {
MaybeIncludeTransformForAncestorLayer,
NeverIncludeTransformForAncestorLayer,
};
LayoutRect boundingBoxForCompositing(const PaintLayer* ancestorLayer = 0, CalculateBoundsOptions = MaybeIncludeTransformForAncestorLayer) const;
LayoutUnit staticInlinePosition() const { return m_staticInlinePosition; }
LayoutUnit staticBlockPosition() const { return m_staticBlockPosition; }
void setStaticInlinePosition(LayoutUnit position) { m_staticInlinePosition = position; }
void setStaticBlockPosition(LayoutUnit position) { m_staticBlockPosition = position; }
LayoutSize subpixelAccumulation() const;
void setSubpixelAccumulation(const LayoutSize&);
bool hasTransformRelatedProperty() const { return layoutObject()->hasTransformRelatedProperty(); }
// Note that this transform has the transform-origin baked in.
TransformationMatrix* transform() const { return m_transform.get(); }
void setTransform(PassOwnPtr<TransformationMatrix> transform) { m_transform = transform; }
void clearTransform() { m_transform.clear(); }
// currentTransform computes a transform which takes accelerated animations into account. The
// resulting transform has transform-origin baked in. If the layer does not have a transform,
// returns the identity matrix.
TransformationMatrix currentTransform() const;
TransformationMatrix renderableTransform(GlobalPaintFlags) const;
// Get the perspective transform, which is applied to transformed sublayers.
// Returns true if the layer has a -webkit-perspective.
// Note that this transform does not have the perspective-origin baked in.
TransformationMatrix perspectiveTransform() const;
FloatPoint perspectiveOrigin() const;
bool preserves3D() const { return layoutObject()->style()->transformStyle3D() == TransformStyle3DPreserve3D; }
bool has3DTransform() const { return m_transform && !m_transform->isAffine(); }
// FIXME: reflections should force transform-style to be flat in the style: https://bugs.webkit.org/show_bug.cgi?id=106959
bool shouldPreserve3D() const { return !layoutObject()->hasReflection() && layoutObject()->style()->transformStyle3D() == TransformStyle3DPreserve3D; }
void filterNeedsPaintInvalidation();
bool hasFilter() const { return layoutObject()->hasFilter(); }
void* operator new(size_t);
// Only safe to call from LayoutBoxModelObject::destroyLayer()
void operator delete(void*);
CompositingState compositingState() const;
// This returns true if our document is in a phase of its lifestyle during which
// compositing state may legally be read.
bool isAllowedToQueryCompositingState() const;
// Don't null check this.
// FIXME: Rename.
CompositedLayerMapping* compositedLayerMapping() const;
GraphicsLayer* graphicsLayerBacking() const;
GraphicsLayer* graphicsLayerBackingForScrolling() const;
// NOTE: If you are using hasCompositedLayerMapping to determine the state of compositing for this layer,
// (and not just to do bookkeeping related to the mapping like, say, allocating or deallocating a mapping),
// then you may have incorrect logic. Use compositingState() instead.
// FIXME: This is identical to null checking compositedLayerMapping(), why not just call that?
bool hasCompositedLayerMapping() const { return m_compositedLayerMapping.get(); }
void ensureCompositedLayerMapping();
void clearCompositedLayerMapping(bool layerBeingDestroyed = false);
CompositedLayerMapping* groupedMapping() const { return m_groupedMapping; }
enum SetGroupMappingOptions {
InvalidateLayerAndRemoveFromMapping,
DoNotInvalidateLayerAndRemoveFromMapping
};
void setGroupedMapping(CompositedLayerMapping*, SetGroupMappingOptions);
bool hasCompositedMask() const;
bool hasCompositedClippingMask() const;
bool needsCompositedScrolling() const { return m_scrollableArea && m_scrollableArea->needsCompositedScrolling(); }
// Computes the position of the given layout object in the space of |paintInvalidationContainer|.
// FIXME: invert the logic to have paint invalidation containers take care of painting objects into them, rather than the reverse.
// This will allow us to clean up this static method messiness.
static LayoutPoint positionFromPaintInvalidationBacking(const LayoutObject*, const LayoutBoxModelObject* paintInvalidationContainer, const PaintInvalidationState* = 0);
static void mapPointToPaintBackingCoordinates(const LayoutBoxModelObject* paintInvalidationContainer, FloatPoint&);
static void mapRectToPaintBackingCoordinates(const LayoutBoxModelObject* paintInvalidationContainer, LayoutRect&);
// Adjusts the given rect (in the coordinate space of the LayoutObject) to the coordinate space of |paintInvalidationContainer|'s GraphicsLayer backing.
static void mapRectToPaintInvalidationBacking(const LayoutObject*, const LayoutBoxModelObject* paintInvalidationContainer, LayoutRect&, const PaintInvalidationState* = 0);
// Computes the bounding paint invalidation rect for |layoutObject|, in the coordinate space of |paintInvalidationContainer|'s GraphicsLayer backing.
// TODO(jchaffraix): |paintInvalidationContainer| should be a reference.
static LayoutRect computePaintInvalidationRect(const LayoutObject&, const PaintLayer* paintInvalidationContainer, const PaintInvalidationState* = 0);
bool paintsWithTransparency(GlobalPaintFlags globalPaintFlags) const
{
return isTransparent() && ((globalPaintFlags & GlobalPaintFlattenCompositingLayers) || compositingState() != PaintsIntoOwnBacking);
}
bool paintsWithTransform(GlobalPaintFlags) const;
// Returns true if background phase is painted opaque in the given rect.
// The query rect is given in local coordinates.
bool backgroundIsKnownToBeOpaqueInRect(const LayoutRect&) const;
bool containsDirtyOverlayScrollbars() const { return m_containsDirtyOverlayScrollbars; }
void setContainsDirtyOverlayScrollbars(bool dirtyScrollbars) { m_containsDirtyOverlayScrollbars = dirtyScrollbars; }
FilterOperations computeFilterOperations(const ComputedStyle&) const;
FilterOperations computeBackdropFilterOperations(const ComputedStyle&) const;
bool paintsWithFilters() const;
bool paintsWithBackdropFilters() const;
FilterEffect* lastFilterEffect() const;
FilterOutsets filterOutsets() const;
PaintLayerFilterInfo* filterInfo() const { return hasFilterInfo() ? PaintLayerFilterInfo::filterInfoForLayer(this) : 0; }
PaintLayerFilterInfo* ensureFilterInfo() { return PaintLayerFilterInfo::createFilterInfoForLayerIfNeeded(this); }
void removeFilterInfoIfNeeded()
{
if (hasFilterInfo())
PaintLayerFilterInfo::removeFilterInfoForLayer(this);
}
bool hasFilterInfo() const { return m_hasFilterInfo; }
void setHasFilterInfo(bool hasFilterInfo) { m_hasFilterInfo = hasFilterInfo; }
void updateFilters(const ComputedStyle* oldStyle, const ComputedStyle& newStyle);
Node* enclosingNode() const;
bool isInTopLayer() const;
bool scrollsWithViewport() const;
bool scrollsWithRespectTo(const PaintLayer*) const;
void addLayerHitTestRects(LayerHitTestRects&) const;
// Compute rects only for this layer
void computeSelfHitTestRects(LayerHitTestRects&) const;
// FIXME: This should probably return a ScrollableArea but a lot of internal methods are mistakenly exposed.
PaintLayerScrollableArea* scrollableArea() const { return m_scrollableArea.get(); }
PaintLayerClipper& clipper() { return m_clipper; }
const PaintLayerClipper& clipper() const { return m_clipper; }
bool scrollsOverflow() const;
CompositingReasons potentialCompositingReasonsFromStyle() const { return m_potentialCompositingReasonsFromStyle; }
void setPotentialCompositingReasonsFromStyle(CompositingReasons reasons) { ASSERT(reasons == (reasons & CompositingReasonComboAllStyleDeterminedReasons)); m_potentialCompositingReasonsFromStyle = reasons; }
bool hasStyleDeterminedDirectCompositingReasons() const { return m_potentialCompositingReasonsFromStyle & CompositingReasonComboAllDirectStyleDeterminedReasons; }
class AncestorDependentCompositingInputs {
DISALLOW_NEW();
public:
AncestorDependentCompositingInputs()
: opacityAncestor(0)
, transformAncestor(0)
, filterAncestor(0)
, clippingContainer(0)
, ancestorScrollingLayer(0)
, nearestFixedPositionLayer(0)
, scrollParent(0)
, clipParent(0)
, hasAncestorWithClipPath(false)
{ }
IntRect clippedAbsoluteBoundingBox;
const PaintLayer* opacityAncestor;
const PaintLayer* transformAncestor;
const PaintLayer* filterAncestor;
const LayoutObject* clippingContainer;
const PaintLayer* ancestorScrollingLayer;
const PaintLayer* nearestFixedPositionLayer;
// A scroll parent is a compositor concept. It's only needed in blink
// because we need to use it as a promotion trigger. A layer has a
// scroll parent if neither its compositor scrolling ancestor, nor any
// other layer scrolled by this ancestor, is a stacking ancestor of this
// layer. Layers with scroll parents must be scrolled with the main
// scrolling layer by the compositor.
const PaintLayer* scrollParent;
// A clip parent is another compositor concept that has leaked into
// blink so that it may be used as a promotion trigger. Layers with clip
// parents escape the clip of a stacking tree ancestor. The compositor
// needs to know about clip parents in order to circumvent its normal
// clipping logic.
const PaintLayer* clipParent;
unsigned hasAncestorWithClipPath : 1;
};
class DescendantDependentCompositingInputs {
DISALLOW_NEW();
public:
DescendantDependentCompositingInputs()
: hasDescendantWithClipPath(false)
, hasNonIsolatedDescendantWithBlendMode(false)
{ }
unsigned hasDescendantWithClipPath : 1;
unsigned hasNonIsolatedDescendantWithBlendMode : 1;
};
void setNeedsCompositingInputsUpdate();
bool childNeedsCompositingInputsUpdate() const { return m_childNeedsCompositingInputsUpdate; }
bool needsCompositingInputsUpdate() const
{
// While we're updating the compositing inputs, these values may differ.
// We should never be asking for this value when that is the case.
ASSERT(m_needsDescendantDependentCompositingInputsUpdate == m_needsAncestorDependentCompositingInputsUpdate);
return m_needsDescendantDependentCompositingInputsUpdate;
}
void updateAncestorDependentCompositingInputs(const AncestorDependentCompositingInputs&);
void updateDescendantDependentCompositingInputs(const DescendantDependentCompositingInputs&);
void didUpdateCompositingInputs();
const AncestorDependentCompositingInputs& ancestorDependentCompositingInputs() const { ASSERT(!m_needsAncestorDependentCompositingInputsUpdate); return m_ancestorDependentCompositingInputs; }
const DescendantDependentCompositingInputs& descendantDependentCompositingInputs() const { ASSERT(!m_needsDescendantDependentCompositingInputsUpdate); return m_descendantDependentCompositingInputs; }
IntRect clippedAbsoluteBoundingBox() const { return ancestorDependentCompositingInputs().clippedAbsoluteBoundingBox; }
const PaintLayer* opacityAncestor() const { return ancestorDependentCompositingInputs().opacityAncestor; }
const PaintLayer* transformAncestor() const { return ancestorDependentCompositingInputs().transformAncestor; }
const PaintLayer* filterAncestor() const { return ancestorDependentCompositingInputs().filterAncestor; }
const LayoutObject* clippingContainer() const { return ancestorDependentCompositingInputs().clippingContainer; }
const PaintLayer* ancestorScrollingLayer() const { return ancestorDependentCompositingInputs().ancestorScrollingLayer; }
const PaintLayer* nearestFixedPositionLayer() const { return ancestorDependentCompositingInputs().nearestFixedPositionLayer; }
PaintLayer* scrollParent() const { return const_cast<PaintLayer*>(ancestorDependentCompositingInputs().scrollParent); }
PaintLayer* clipParent() const { return const_cast<PaintLayer*>(ancestorDependentCompositingInputs().clipParent); }
bool hasAncestorWithClipPath() const { return ancestorDependentCompositingInputs().hasAncestorWithClipPath; }
bool hasDescendantWithClipPath() const { return descendantDependentCompositingInputs().hasDescendantWithClipPath; }
bool hasNonIsolatedDescendantWithBlendMode() const;
bool lostGroupedMapping() const { ASSERT(isAllowedToQueryCompositingState()); return m_lostGroupedMapping; }
void setLostGroupedMapping(bool b) { m_lostGroupedMapping = b; }
CompositingReasons compositingReasons() const { ASSERT(isAllowedToQueryCompositingState()); return m_compositingReasons; }
void setCompositingReasons(CompositingReasons, CompositingReasons mask = CompositingReasonAll);
bool hasCompositingDescendant() const { ASSERT(isAllowedToQueryCompositingState()); return m_hasCompositingDescendant; }
void setHasCompositingDescendant(bool);
bool shouldIsolateCompositedDescendants() const { ASSERT(isAllowedToQueryCompositingState()); return m_shouldIsolateCompositedDescendants; }
void setShouldIsolateCompositedDescendants(bool);
void updateDescendantDependentFlags();
void updateOrRemoveFilterEffectBuilder();
void updateSelfPaintingLayer();
PaintLayer* enclosingTransformedAncestor() const;
LayoutPoint computeOffsetFromTransformedAncestor() const;
void didUpdateNeedsCompositedScrolling();
bool hasSelfPaintingLayerDescendant() const
{
if (m_hasSelfPaintingLayerDescendantDirty)
updateHasSelfPaintingLayerDescendant();
ASSERT(!m_hasSelfPaintingLayerDescendantDirty);
return m_hasSelfPaintingLayerDescendant;
}
LayoutRect paintingExtent(const PaintLayer* rootLayer, const LayoutSize& subPixelAccumulation, GlobalPaintFlags);
void appendSingleFragmentIgnoringPagination(PaintLayerFragments&, const PaintLayer* rootLayer, const LayoutRect& dirtyRect, ClipRectsCacheSlot, OverlayScrollbarSizeRelevancy = IgnoreOverlayScrollbarSize, ShouldRespectOverflowClip = RespectOverflowClip, const LayoutPoint* offsetFromRoot = 0, const LayoutSize& subPixelAccumulation = LayoutSize());
void collectFragments(PaintLayerFragments&, const PaintLayer* rootLayer, const LayoutRect& dirtyRect,
ClipRectsCacheSlot, OverlayScrollbarSizeRelevancy inOverlayScrollbarSizeRelevancy = IgnoreOverlayScrollbarSize,
ShouldRespectOverflowClip = RespectOverflowClip, const LayoutPoint* offsetFromRoot = 0,
const LayoutSize& subPixelAccumulation = LayoutSize(), const LayoutRect* layerBoundingBox = 0);
LayoutPoint layoutBoxLocation() const { return layoutObject()->isBox() ? toLayoutBox(layoutObject())->location() : LayoutPoint(); }
enum TransparencyClipBoxBehavior {
PaintingTransparencyClipBox,
HitTestingTransparencyClipBox
};
enum TransparencyClipBoxMode {
DescendantsOfTransparencyClipBox,
RootOfTransparencyClipBox
};
static LayoutRect transparencyClipBox(const PaintLayer*, const PaintLayer* rootLayer, TransparencyClipBoxBehavior transparencyBehavior,
TransparencyClipBoxMode transparencyMode, const LayoutSize& subPixelAccumulation, GlobalPaintFlags = GlobalPaintNormalPhase);
bool needsRepaint() const { return m_needsRepaint; }
void setNeedsRepaint();
void clearNeedsRepaintRecursively();
IntSize previousScrollOffsetAccumulationForPainting() const { return m_previousScrollOffsetAccumulationForPainting; }
void setPreviousScrollOffsetAccumulationForPainting(const IntSize& s) { m_previousScrollOffsetAccumulationForPainting = s; }
ClipRects* previousPaintingClipRects() const { return m_previousPaintingClipRects.get(); }
void setPreviousPaintingClipRects(ClipRects* clipRects) { m_previousPaintingClipRects = clipRects; }
PaintTiming* paintTiming();
private:
// Bounding box in the coordinates of this layer.
LayoutRect logicalBoundingBox() const;
bool hasOverflowControls() const;
void dirtyAncestorChainHasSelfPaintingLayerDescendantStatus();
// Returns true if the position changed.
bool updateLayerPosition();
void updateLayerPositionRecursive();
void updateLayerPositionsAfterScrollRecursive(const DoubleSize& scrollDelta, bool paintInvalidationContainerWasScrolled);
void setNextSibling(PaintLayer* next) { m_next = next; }
void setPreviousSibling(PaintLayer* prev) { m_previous = prev; }
void setFirstChild(PaintLayer* first) { m_first = first; }
void setLastChild(PaintLayer* last) { m_last = last; }
void updateHasSelfPaintingLayerDescendant() const;
PaintLayer* hitTestLayer(PaintLayer* rootLayer, PaintLayer* containerLayer, HitTestResult&,
const LayoutRect& hitTestRect, const HitTestLocation&, bool appliedTransform,
const HitTestingTransformState* = 0, double* zOffset = 0);
PaintLayer* hitTestLayerByApplyingTransform(PaintLayer* rootLayer, PaintLayer* containerLayer, HitTestResult&,
const LayoutRect& hitTestRect, const HitTestLocation&, const HitTestingTransformState* = 0, double* zOffset = 0,
const LayoutPoint& translationOffset = LayoutPoint());
PaintLayer* hitTestChildren(ChildrenIteration, PaintLayer* rootLayer, HitTestResult&,
const LayoutRect& hitTestRect, const HitTestLocation&,
const HitTestingTransformState*, double* zOffsetForDescendants, double* zOffset,
const HitTestingTransformState* unflattenedTransformState, bool depthSortDescendants);
PassRefPtr<HitTestingTransformState> createLocalTransformState(PaintLayer* rootLayer, PaintLayer* containerLayer,
const LayoutRect& hitTestRect, const HitTestLocation&,
const HitTestingTransformState* containerTransformState,
const LayoutPoint& translationOffset = LayoutPoint()) const;
bool hitTestContents(HitTestResult&, const LayoutRect& layerBounds, const HitTestLocation&, HitTestFilter) const;
bool hitTestContentsForFragments(const PaintLayerFragments&, HitTestResult&, const HitTestLocation&, HitTestFilter, bool& insideClipRect) const;
PaintLayer* hitTestTransformedLayerInFragments(PaintLayer* rootLayer, PaintLayer* containerLayer, HitTestResult&,
const LayoutRect& hitTestRect, const HitTestLocation&, const HitTestingTransformState*, double* zOffset, ClipRectsCacheSlot);
bool childBackgroundIsKnownToBeOpaqueInRect(const LayoutRect&) const;
bool shouldBeSelfPaintingLayer() const;
// FIXME: We should only create the stacking node if needed.
bool requiresStackingNode() const { return true; }
void updateStackingNode();
void updateReflectionInfo(const ComputedStyle*);
FilterEffectBuilder* updateFilterEffectBuilder() const;
// FIXME: We could lazily allocate our ScrollableArea based on style properties ('overflow', ...)
// but for now, we are always allocating it for LayoutBox as it's safer. crbug.com/467721.
bool requiresScrollableArea() const { return layoutBox(); }
void updateScrollableArea();
void dirtyAncestorChainVisibleDescendantStatus();
bool attemptDirectCompositingUpdate(StyleDifference, const ComputedStyle* oldStyle);
void updateTransform(const ComputedStyle* oldStyle, const ComputedStyle& newStyle);
void dirty3DTransformedDescendantStatus();
// Both updates the status, and returns true if descendants of this have 3d.
bool update3DTransformedDescendantStatus();
void updateOrRemoveFilterClients();
void updatePaginationRecursive(bool needsPaginationUpdate = false);
void clearPaginationRecursive();
void blockSelectionGapsBoundsChanged();
void markCompositingContainerChainForNeedsRepaint();
PaintLayerType m_layerType;
// Self-painting layer is an optimization where we avoid the heavy Layer painting
// machinery for a Layer allocated only to handle the overflow clip case.
// FIXME(crbug.com/332791): Self-painting layer should be merged into the overflow-only concept.
unsigned m_isSelfPaintingLayer : 1;
// If have no self-painting descendants, we don't have to walk our children during painting. This can lead to
// significant savings, especially if the tree has lots of non-self-painting layers grouped together (e.g. table cells).
mutable unsigned m_hasSelfPaintingLayerDescendant : 1;
mutable unsigned m_hasSelfPaintingLayerDescendantDirty : 1;
const unsigned m_isRootLayer : 1;
unsigned m_visibleContentStatusDirty : 1;
unsigned m_hasVisibleContent : 1;
unsigned m_visibleDescendantStatusDirty : 1;
unsigned m_hasVisibleDescendant : 1;
unsigned m_hasVisibleNonLayerContent : 1;
#if ENABLE(ASSERT)
unsigned m_needsPositionUpdate : 1;
#endif
unsigned m_3DTransformedDescendantStatusDirty : 1;
// Set on a stacking context layer that has 3D descendants anywhere
// in a preserves3D hierarchy. Hint to do 3D-aware hit testing.
unsigned m_has3DTransformedDescendant : 1;
unsigned m_containsDirtyOverlayScrollbars : 1;
unsigned m_hasFilterInfo : 1;
unsigned m_needsAncestorDependentCompositingInputsUpdate : 1;
unsigned m_needsDescendantDependentCompositingInputsUpdate : 1;
unsigned m_childNeedsCompositingInputsUpdate : 1;
// Used only while determining what layers should be composited. Applies to the tree of z-order lists.
unsigned m_hasCompositingDescendant : 1;
// Applies to the real layout layer tree (i.e., the tree determined by the layer's parent and children and
// as opposed to the tree formed by the z-order and normal flow lists).
unsigned m_hasNonCompositedChild : 1;
// Should be for stacking contexts having unisolated blending descendants.
unsigned m_shouldIsolateCompositedDescendants : 1;
// True if this layout layer just lost its grouped mapping due to the CompositedLayerMapping being destroyed,
// and we don't yet know to what graphics layer this Layer will be assigned.
unsigned m_lostGroupedMapping : 1;
unsigned m_needsRepaint : 1;
LayoutBoxModelObject* m_layoutObject;
PaintLayer* m_parent;
PaintLayer* m_previous;
PaintLayer* m_next;
PaintLayer* m_first;
PaintLayer* m_last;
// Our current relative position offset.
LayoutSize m_offsetForInFlowPosition;
// Our (x,y) coordinates are in our parent layer's coordinate space.
LayoutPoint m_location;
// The layer's size.
//
// If the associated LayoutBoxModelObject is a LayoutBox, it's its border
// box. Otherwise, this is the LayoutInline's lines' bounding box.
IntSize m_size;
// Cached normal flow values for absolute positioned elements with static left/top values.
LayoutUnit m_staticInlinePosition;
LayoutUnit m_staticBlockPosition;
OwnPtr<TransformationMatrix> m_transform;
// Pointer to the enclosing Layer that caused us to be paginated. It is 0 if we are not paginated.
//
// See LayoutMultiColumnFlowThread and
// https://sites.google.com/a/chromium.org/dev/developers/design-documents/multi-column-layout
// for more information about the multicol implementation. It's important to understand the
// difference between flow thread coordinates and visual coordinates when working with multicol
// in Layer, since Layer is one of the few places where we have to worry about the
// visual ones. Internally we try to use flow-thread coordinates whenever possible.
PaintLayer* m_enclosingPaginationLayer;
// These compositing reasons are updated whenever style changes, not while updating compositing layers.
// They should not be used to infer the compositing state of this layer.
CompositingReasons m_potentialCompositingReasonsFromStyle;
// Once computed, indicates all that a layer needs to become composited using the CompositingReasons enum bitfield.
CompositingReasons m_compositingReasons;
DescendantDependentCompositingInputs m_descendantDependentCompositingInputs;
AncestorDependentCompositingInputs m_ancestorDependentCompositingInputs;
IntRect m_blockSelectionGapsBounds;
OwnPtr<CompositedLayerMapping> m_compositedLayerMapping;
OwnPtrWillBePersistent<PaintLayerScrollableArea> m_scrollableArea;
CompositedLayerMapping* m_groupedMapping;
PaintLayerClipper m_clipper; // FIXME: Lazily allocate?
OwnPtr<PaintLayerStackingNode> m_stackingNode;
OwnPtr<PaintLayerReflectionInfo> m_reflectionInfo;
LayoutSize m_subpixelAccumulation; // The accumulated subpixel offset of a composited layer's composited bounds compared to absolute coordinates.
IntSize m_previousScrollOffsetAccumulationForPainting;
RefPtr<ClipRects> m_previousPaintingClipRects;
};
} // namespace blink
#ifndef NDEBUG
// Outside the WebCore namespace for ease of invocation from gdb.
void showLayerTree(const blink::PaintLayer*);
void showLayerTree(const blink::LayoutObject*);
#endif
#endif // Layer_h