blob: dbee9e86b5393f67926f76db109e5544bbcff9ec [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
#define V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
#include "src/macro-assembler.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/x64/assembler-x64.h"
namespace v8 {
namespace internal {
#ifndef V8_INTERPRETED_REGEXP
class RegExpMacroAssemblerX64: public NativeRegExpMacroAssembler {
public:
RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone, Mode mode,
int registers_to_save);
virtual ~RegExpMacroAssemblerX64();
virtual int stack_limit_slack();
virtual void AdvanceCurrentPosition(int by);
virtual void AdvanceRegister(int reg, int by);
virtual void Backtrack();
virtual void Bind(Label* label);
virtual void CheckAtStart(Label* on_at_start);
virtual void CheckCharacter(uint32_t c, Label* on_equal);
virtual void CheckCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_equal);
virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(uc16 limit, Label* on_less);
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
virtual void CheckNotAtStart(Label* on_not_at_start);
virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
Label* on_no_match);
virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
virtual void CheckNotCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_not_equal);
virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
uc16 minus,
uc16 mask,
Label* on_not_equal);
virtual void CheckCharacterInRange(uc16 from,
uc16 to,
Label* on_in_range);
virtual void CheckCharacterNotInRange(uc16 from,
uc16 to,
Label* on_not_in_range);
virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
// Checks whether the given offset from the current position is before
// the end of the string.
virtual void CheckPosition(int cp_offset, Label* on_outside_input);
virtual bool CheckSpecialCharacterClass(uc16 type,
Label* on_no_match);
virtual void Fail();
virtual Handle<HeapObject> GetCode(Handle<String> source);
virtual void GoTo(Label* label);
virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
virtual void IfRegisterEqPos(int reg, Label* if_eq);
virtual IrregexpImplementation Implementation();
virtual void LoadCurrentCharacter(int cp_offset,
Label* on_end_of_input,
bool check_bounds = true,
int characters = 1);
virtual void PopCurrentPosition();
virtual void PopRegister(int register_index);
virtual void PushBacktrack(Label* label);
virtual void PushCurrentPosition();
virtual void PushRegister(int register_index,
StackCheckFlag check_stack_limit);
virtual void ReadCurrentPositionFromRegister(int reg);
virtual void ReadStackPointerFromRegister(int reg);
virtual void SetCurrentPositionFromEnd(int by);
virtual void SetRegister(int register_index, int to);
virtual bool Succeed();
virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
virtual void ClearRegisters(int reg_from, int reg_to);
virtual void WriteStackPointerToRegister(int reg);
static Result Match(Handle<Code> regexp,
Handle<String> subject,
int* offsets_vector,
int offsets_vector_length,
int previous_index,
Isolate* isolate);
static Result Execute(Code* code,
String* input,
int start_offset,
const byte* input_start,
const byte* input_end,
int* output,
bool at_start);
// Called from RegExp if the stack-guard is triggered.
// If the code object is relocated, the return address is fixed before
// returning.
static int CheckStackGuardState(Address* return_address,
Code* re_code,
Address re_frame);
private:
// Offsets from rbp of function parameters and stored registers.
static const int kFramePointer = 0;
// Above the frame pointer - function parameters and return address.
static const int kReturn_eip = kFramePointer + kRegisterSize;
static const int kFrameAlign = kReturn_eip + kRegisterSize;
#ifdef _WIN64
// Parameters (first four passed as registers, but with room on stack).
// In Microsoft 64-bit Calling Convention, there is room on the callers
// stack (before the return address) to spill parameter registers. We
// use this space to store the register passed parameters.
static const int kInputString = kFrameAlign;
// StartIndex is passed as 32 bit int.
static const int kStartIndex = kInputString + kRegisterSize;
static const int kInputStart = kStartIndex + kRegisterSize;
static const int kInputEnd = kInputStart + kRegisterSize;
static const int kRegisterOutput = kInputEnd + kRegisterSize;
// For the case of global regular expression, we have room to store at least
// one set of capture results. For the case of non-global regexp, we ignore
// this value. NumOutputRegisters is passed as 32-bit value. The upper
// 32 bit of this 64-bit stack slot may contain garbage.
static const int kNumOutputRegisters = kRegisterOutput + kRegisterSize;
static const int kStackHighEnd = kNumOutputRegisters + kRegisterSize;
// DirectCall is passed as 32 bit int (values 0 or 1).
static const int kDirectCall = kStackHighEnd + kRegisterSize;
static const int kIsolate = kDirectCall + kRegisterSize;
#else
// In AMD64 ABI Calling Convention, the first six integer parameters
// are passed as registers, and caller must allocate space on the stack
// if it wants them stored. We push the parameters after the frame pointer.
static const int kInputString = kFramePointer - kRegisterSize;
static const int kStartIndex = kInputString - kRegisterSize;
static const int kInputStart = kStartIndex - kRegisterSize;
static const int kInputEnd = kInputStart - kRegisterSize;
static const int kRegisterOutput = kInputEnd - kRegisterSize;
// For the case of global regular expression, we have room to store at least
// one set of capture results. For the case of non-global regexp, we ignore
// this value.
static const int kNumOutputRegisters = kRegisterOutput - kRegisterSize;
static const int kStackHighEnd = kFrameAlign;
static const int kDirectCall = kStackHighEnd + kRegisterSize;
static const int kIsolate = kDirectCall + kRegisterSize;
#endif
#ifdef _WIN64
// Microsoft calling convention has three callee-saved registers
// (that we are using). We push these after the frame pointer.
static const int kBackup_rsi = kFramePointer - kRegisterSize;
static const int kBackup_rdi = kBackup_rsi - kRegisterSize;
static const int kBackup_rbx = kBackup_rdi - kRegisterSize;
static const int kLastCalleeSaveRegister = kBackup_rbx;
#else
// AMD64 Calling Convention has only one callee-save register that
// we use. We push this after the frame pointer (and after the
// parameters).
static const int kBackup_rbx = kNumOutputRegisters - kRegisterSize;
static const int kLastCalleeSaveRegister = kBackup_rbx;
#endif
static const int kSuccessfulCaptures = kLastCalleeSaveRegister - kPointerSize;
// When adding local variables remember to push space for them in
// the frame in GetCode.
static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
// First register address. Following registers are below it on the stack.
static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
// Initial size of code buffer.
static const size_t kRegExpCodeSize = 1024;
// Load a number of characters at the given offset from the
// current position, into the current-character register.
void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
// Check whether preemption has been requested.
void CheckPreemption();
// Check whether we are exceeding the stack limit on the backtrack stack.
void CheckStackLimit();
// Generate a call to CheckStackGuardState.
void CallCheckStackGuardState();
// The rbp-relative location of a regexp register.
Operand register_location(int register_index);
// The register containing the current character after LoadCurrentCharacter.
inline Register current_character() { return rdx; }
// The register containing the backtrack stack top. Provides a meaningful
// name to the register.
inline Register backtrack_stackpointer() { return rcx; }
// The registers containing a self pointer to this code's Code object.
inline Register code_object_pointer() { return r8; }
// Byte size of chars in the string to match (decided by the Mode argument)
inline int char_size() { return static_cast<int>(mode_); }
// Equivalent to a conditional branch to the label, unless the label
// is NULL, in which case it is a conditional Backtrack.
void BranchOrBacktrack(Condition condition, Label* to);
void MarkPositionForCodeRelativeFixup() {
code_relative_fixup_positions_.Add(masm_.pc_offset(), zone());
}
void FixupCodeRelativePositions();
// Call and return internally in the generated code in a way that
// is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
inline void SafeCall(Label* to);
inline void SafeCallTarget(Label* label);
inline void SafeReturn();
// Pushes the value of a register on the backtrack stack. Decrements the
// stack pointer (rcx) by a word size and stores the register's value there.
inline void Push(Register source);
// Pushes a value on the backtrack stack. Decrements the stack pointer (rcx)
// by a word size and stores the value there.
inline void Push(Immediate value);
// Pushes the Code object relative offset of a label on the backtrack stack
// (i.e., a backtrack target). Decrements the stack pointer (rcx)
// by a word size and stores the value there.
inline void Push(Label* label);
// Pops a value from the backtrack stack. Reads the word at the stack pointer
// (rcx) and increments it by a word size.
inline void Pop(Register target);
// Drops the top value from the backtrack stack without reading it.
// Increments the stack pointer (rcx) by a word size.
inline void Drop();
inline void ReadPositionFromRegister(Register dst, int reg);
Isolate* isolate() const { return masm_.isolate(); }
MacroAssembler masm_;
MacroAssembler::NoRootArrayScope no_root_array_scope_;
ZoneList<int> code_relative_fixup_positions_;
// Which mode to generate code for (LATIN1 or UC16).
Mode mode_;
// One greater than maximal register index actually used.
int num_registers_;
// Number of registers to output at the end (the saved registers
// are always 0..num_saved_registers_-1)
int num_saved_registers_;
// Labels used internally.
Label entry_label_;
Label start_label_;
Label success_label_;
Label backtrack_label_;
Label exit_label_;
Label check_preempt_label_;
Label stack_overflow_label_;
};
#endif // V8_INTERPRETED_REGEXP
} // namespace internal
} // namespace v8
#endif // V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_