blob: b1e755bfdd3d4e74bc1a35aab8f774955ecbac8d [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller (mueller@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2008, 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/)
* Copyright (C) 2014 Samsung Electronics. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef ElementTraversal_h
#define ElementTraversal_h
#include "core/dom/Element.h"
#include "core/dom/NodeTraversal.h"
#include "wtf/Allocator.h"
namespace blink {
class HasTagName {
STACK_ALLOCATED();
public:
explicit HasTagName(const QualifiedName& tagName) : m_tagName(tagName) { }
bool operator() (const Element& element) const { return element.hasTagName(m_tagName); }
private:
const QualifiedName m_tagName;
};
// This class is used to traverse the DOM tree. It isn't meant to be
// constructed; instead, callers invoke the static methods, after templating it
// so that ElementType is the type of element they are interested in traversing.
// Traversals can also be predicated on a matcher, which will be used to
// filter the returned elements. A matcher is a callable - an object of a class
// that defines operator(). HasTagName above is an example of a matcher.
//
// For example, a caller could do this:
// Traversal<Element>::firstChild(someNode, HasTagName(HTMLNames::titleTag));
//
// This invocation would return the first child of |someNode| (which has to be a
// ContainerNode) for which HasTagName(HTMLNames::titleTag) returned true, so it
// would return the first child of |someNode| which is a <title> element. If the
// caller needs to traverse a Node this way, it's necessary to first check
// Node::isContainerNode() and then use toContainerNode().
//
// When looking for a specific element type, it is more efficient to do this:
// Traversal<HTMLTitleElement>::firstChild(someNode);
//
// Traversal can also be used to find ancestors and descendants; see the
// documentation in the class body below.
//
// Note that these functions do not traverse into child shadow trees of any
// shadow hosts they encounter. If you need to traverse the shadow DOM, you can
// manually traverse the shadow trees using a second Traversal, or use
// FlatTreeTraversal.
//
// ElementTraversal is a specialized version of Traversal<Element>.
template <class ElementType>
class Traversal {
STATIC_ONLY(Traversal);
public:
using TraversalNodeType = ElementType;
// First or last ElementType child of the node.
static ElementType* firstChild(const ContainerNode& current) { return firstChildTemplate(current); }
static ElementType* firstChild(const Node& current) { return firstChildTemplate(current); }
template <class MatchFunc>
static ElementType* firstChild(const ContainerNode&, MatchFunc);
static ElementType* lastChild(const ContainerNode& current) { return lastChildTemplate(current); }
static ElementType* lastChild(const Node& current) { return lastChildTemplate(current); }
template <class MatchFunc>
static ElementType* lastChild(const ContainerNode&, MatchFunc);
// First ElementType ancestor of the node.
static ElementType* firstAncestor(const Node& current);
static ElementType* firstAncestorOrSelf(Node& current) { return firstAncestorOrSelfTemplate(current); }
static ElementType* firstAncestorOrSelf(Element& current) { return firstAncestorOrSelfTemplate(current); }
static const ElementType* firstAncestorOrSelf(const Node& current) { return firstAncestorOrSelfTemplate(const_cast<Node&>(current)); }
static const ElementType* firstAncestorOrSelf(const Element& current) { return firstAncestorOrSelfTemplate(const_cast<Element&>(current)); }
// First or last ElementType descendant of the node.
// For Elements firstWithin() is always the same as firstChild().
static ElementType* firstWithin(const ContainerNode& current) { return firstWithinTemplate(current); }
static ElementType* firstWithin(const Node& current) { return firstWithinTemplate(current); }
template <typename MatchFunc>
static ElementType* firstWithin(const ContainerNode&, MatchFunc);
static ElementType* lastWithin(const ContainerNode& current) { return lastWithinTemplate(current); }
static ElementType* lastWithin(const Node& current) { return lastWithinTemplate(current); }
template <class MatchFunc>
static ElementType* lastWithin(const ContainerNode&, MatchFunc);
// Pre-order traversal skipping non-element nodes.
static ElementType* next(const ContainerNode& current) { return nextTemplate(current); }
static ElementType* next(const Node& current) { return nextTemplate(current); }
static ElementType* next(const ContainerNode& current, const Node* stayWithin) { return nextTemplate(current, stayWithin); }
static ElementType* next(const Node& current, const Node* stayWithin) { return nextTemplate(current, stayWithin); }
template <class MatchFunc>
static ElementType* next(const ContainerNode& current, const Node* stayWithin, MatchFunc);
static ElementType* previous(const Node&);
static ElementType* previous(const Node&, const Node* stayWithin);
template <class MatchFunc>
static ElementType* previous(const ContainerNode& current, const Node* stayWithin, MatchFunc);
// Like next, but skips children.
static ElementType* nextSkippingChildren(const Node&);
static ElementType* nextSkippingChildren(const Node&, const Node* stayWithin);
// Pre-order traversal including the pseudo-elements.
static ElementType* previousIncludingPseudo(const Node&, const Node* stayWithin = 0);
static ElementType* nextIncludingPseudo(const Node&, const Node* stayWithin = 0);
static ElementType* nextIncludingPseudoSkippingChildren(const Node&, const Node* stayWithin = 0);
// Utility function to traverse only the element and pseudo-element siblings of a node.
static ElementType* pseudoAwarePreviousSibling(const Node&);
// Previous / Next sibling.
static ElementType* previousSibling(const Node&);
template <class MatchFunc>
static ElementType* previousSibling(const Node&, MatchFunc);
static ElementType* nextSibling(const Node&);
template <class MatchFunc>
static ElementType* nextSibling(const Node&, MatchFunc);
static TraversalRange<TraversalChildrenIterator<Traversal<ElementType>>> childrenOf(const Node&);
static TraversalRange<TraversalDescendantIterator<Traversal<ElementType>>> descendantsOf(const Node&);
static TraversalRange<TraversalInclusiveDescendantIterator<Traversal<ElementType>>> inclusiveDescendantsOf(const ElementType&);
static TraversalRange<TraversalNextIterator<Traversal<ElementType>>> startsAt(const ElementType*);
static TraversalRange<TraversalNextIterator<Traversal<ElementType>>> startsAfter(const Node&);
private:
template <class NodeType>
static ElementType* firstChildTemplate(NodeType&);
template <class NodeType>
static ElementType* lastChildTemplate(NodeType&);
template <class NodeType>
static ElementType* firstAncestorOrSelfTemplate(NodeType&);
template <class NodeType>
static ElementType* firstWithinTemplate(NodeType&);
template <class NodeType>
static ElementType* lastWithinTemplate(NodeType&);
template <class NodeType>
static ElementType* nextTemplate(NodeType&);
template <class NodeType>
static ElementType* nextTemplate(NodeType&, const Node* stayWithin);
};
typedef Traversal<Element> ElementTraversal;
template <class ElementType>
inline TraversalRange<TraversalChildrenIterator<Traversal<ElementType>>> Traversal<ElementType>::childrenOf(const Node& start)
{
return TraversalRange<TraversalChildrenIterator<Traversal<ElementType>>>(&start);
};
template <class ElementType>
inline TraversalRange<TraversalDescendantIterator<Traversal<ElementType>>> Traversal<ElementType>::descendantsOf(const Node& root)
{
return TraversalRange<TraversalDescendantIterator<Traversal<ElementType>>>(&root);
};
template <class ElementType>
inline TraversalRange<TraversalInclusiveDescendantIterator<Traversal<ElementType>>> Traversal<ElementType>::inclusiveDescendantsOf(const ElementType& root)
{
return TraversalRange<TraversalInclusiveDescendantIterator<Traversal<ElementType>>>(&root);
};
template <class ElementType>
inline TraversalRange<TraversalNextIterator<Traversal<ElementType>>> Traversal<ElementType>::startsAt(const ElementType* start)
{
return TraversalRange<TraversalNextIterator<Traversal<ElementType>>>(start);
};
template <class ElementType>
inline TraversalRange<TraversalNextIterator<Traversal<ElementType>>> Traversal<ElementType>::startsAfter(const Node& start)
{
return startsAt(Traversal<ElementType>::next(start));
};
// Specialized for pure Element to exploit the fact that Elements parent is always either another Element or the root.
template <>
template <class NodeType>
inline Element* Traversal<Element>::firstWithinTemplate(NodeType& current)
{
return firstChildTemplate(current);
}
template <>
template <class NodeType>
inline Element* Traversal<Element>::nextTemplate(NodeType& current)
{
Node* node = NodeTraversal::next(current);
while (node && !node->isElementNode())
node = NodeTraversal::nextSkippingChildren(*node);
return toElement(node);
}
template <>
template <class NodeType>
inline Element* Traversal<Element>::nextTemplate(NodeType& current, const Node* stayWithin)
{
Node* node = NodeTraversal::next(current, stayWithin);
while (node && !node->isElementNode())
node = NodeTraversal::nextSkippingChildren(*node, stayWithin);
return toElement(node);
}
// Generic versions.
template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::firstChildTemplate(NodeType& current)
{
Node* node = current.firstChild();
while (node && !isElementOfType<const ElementType>(*node))
node = node->nextSibling();
return toElement<ElementType>(node);
}
template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::firstChild(const ContainerNode& current, MatchFunc isMatch)
{
ElementType* element = Traversal<ElementType>::firstChild(current);
while (element && !isMatch(*element))
element = Traversal<ElementType>::nextSibling(*element);
return element;
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::firstAncestor(const Node& current)
{
ContainerNode* ancestor = current.parentNode();
while (ancestor && !isElementOfType<const ElementType>(*ancestor))
ancestor = ancestor->parentNode();
return toElement<ElementType>(ancestor);
}
template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::firstAncestorOrSelfTemplate(NodeType& current)
{
if (isElementOfType<const ElementType>(current))
return &toElement<ElementType>(current);
return firstAncestor(current);
}
template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::lastChildTemplate(NodeType& current)
{
Node* node = current.lastChild();
while (node && !isElementOfType<const ElementType>(*node))
node = node->previousSibling();
return toElement<ElementType>(node);
}
template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::lastChild(const ContainerNode& current, MatchFunc isMatch)
{
ElementType* element = Traversal<ElementType>::lastChild(current);
while (element && !isMatch(*element))
element = Traversal<ElementType>::previousSibling(*element);
return element;
}
template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::firstWithinTemplate(NodeType& current)
{
Node* node = current.firstChild();
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::next(*node, &current);
return toElement<ElementType>(node);
}
template <class ElementType>
template <typename MatchFunc>
inline ElementType* Traversal<ElementType>::firstWithin(const ContainerNode& current, MatchFunc isMatch)
{
ElementType* element = Traversal<ElementType>::firstWithin(current);
while (element && !isMatch(*element))
element = Traversal<ElementType>::next(*element, &current, isMatch);
return element;
}
template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::lastWithinTemplate(NodeType& current)
{
Node* node = NodeTraversal::lastWithin(current);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::previous(*node, &current);
return toElement<ElementType>(node);
}
template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::lastWithin(const ContainerNode& current, MatchFunc isMatch)
{
ElementType* element = Traversal<ElementType>::lastWithin(current);
while (element && !isMatch(*element))
element = Traversal<ElementType>::previous(*element, &current, isMatch);
return element;
}
template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::nextTemplate(NodeType& current)
{
Node* node = NodeTraversal::next(current);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::next(*node);
return toElement<ElementType>(node);
}
template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::nextTemplate(NodeType& current, const Node* stayWithin)
{
Node* node = NodeTraversal::next(current, stayWithin);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::next(*node, stayWithin);
return toElement<ElementType>(node);
}
template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::next(const ContainerNode& current, const Node* stayWithin, MatchFunc isMatch)
{
ElementType* element = Traversal<ElementType>::next(current, stayWithin);
while (element && !isMatch(*element))
element = Traversal<ElementType>::next(*element, stayWithin);
return element;
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::previous(const Node& current)
{
Node* node = NodeTraversal::previous(current);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::previous(*node);
return toElement<ElementType>(node);
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::previous(const Node& current, const Node* stayWithin)
{
Node* node = NodeTraversal::previous(current, stayWithin);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::previous(*node, stayWithin);
return toElement<ElementType>(node);
}
template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::previous(const ContainerNode& current, const Node* stayWithin, MatchFunc isMatch)
{
ElementType* element = Traversal<ElementType>::previous(current, stayWithin);
while (element && !isMatch(*element))
element = Traversal<ElementType>::previous(*element, stayWithin);
return element;
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::nextSkippingChildren(const Node& current)
{
Node* node = NodeTraversal::nextSkippingChildren(current);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::nextSkippingChildren(*node);
return toElement<ElementType>(node);
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::nextSkippingChildren(const Node& current, const Node* stayWithin)
{
Node* node = NodeTraversal::nextSkippingChildren(current, stayWithin);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::nextSkippingChildren(*node, stayWithin);
return toElement<ElementType>(node);
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::previousIncludingPseudo(const Node& current, const Node* stayWithin)
{
Node* node = NodeTraversal::previousIncludingPseudo(current, stayWithin);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::previousIncludingPseudo(*node, stayWithin);
return toElement<ElementType>(node);
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::nextIncludingPseudo(const Node& current, const Node* stayWithin)
{
Node* node = NodeTraversal::nextIncludingPseudo(current, stayWithin);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::nextIncludingPseudo(*node, stayWithin);
return toElement<ElementType>(node);
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::nextIncludingPseudoSkippingChildren(const Node& current, const Node* stayWithin)
{
Node* node = NodeTraversal::nextIncludingPseudoSkippingChildren(current, stayWithin);
while (node && !isElementOfType<const ElementType>(*node))
node = NodeTraversal::nextIncludingPseudoSkippingChildren(*node, stayWithin);
return toElement<ElementType>(node);
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::pseudoAwarePreviousSibling(const Node& current)
{
Node* node = current.pseudoAwarePreviousSibling();
while (node && !isElementOfType<const ElementType>(*node))
node = node->pseudoAwarePreviousSibling();
return toElement<ElementType>(node);
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::previousSibling(const Node& current)
{
Node* node = current.previousSibling();
while (node && !isElementOfType<const ElementType>(*node))
node = node->previousSibling();
return toElement<ElementType>(node);
}
template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::previousSibling(const Node& current, MatchFunc isMatch)
{
ElementType* element = Traversal<ElementType>::previousSibling(current);
while (element && !isMatch(*element))
element = Traversal<ElementType>::previousSibling(*element);
return element;
}
template <class ElementType>
inline ElementType* Traversal<ElementType>::nextSibling(const Node& current)
{
Node* node = current.nextSibling();
while (node && !isElementOfType<const ElementType>(*node))
node = node->nextSibling();
return toElement<ElementType>(node);
}
template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::nextSibling(const Node& current, MatchFunc isMatch)
{
ElementType* element = Traversal<ElementType>::nextSibling(current);
while (element && !isMatch(*element))
element = Traversal<ElementType>::nextSibling(*element);
return element;
}
} // namespace blink
#endif