blob: 9062ab430104a64f258d5c7ecd56523a4e4bfe5d [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller (mueller@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008, 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/)
* Copyright (C) 2014 Samsung Electronics. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef NodeTraversal_h
#define NodeTraversal_h
#include "core/CoreExport.h"
#include "core/dom/ContainerNode.h"
#include "core/dom/Node.h"
#include "wtf/Allocator.h"
namespace blink {
template <class Iterator> class TraversalRange;
template <class TraversalNext> class TraversalChildrenIterator;
template <class TraversalNext> class TraversalDescendantIterator;
template <class TraversalNext> class TraversalInclusiveDescendantIterator;
template <class TraversalNext> class TraversalNextIterator;
class NodeTraversal {
STATIC_ONLY(NodeTraversal);
public:
using TraversalNodeType = Node;
// Does a pre-order traversal of the tree to find the next node after this one.
// This uses the same order that tags appear in the source file. If the stayWithin
// argument is non-null, the traversal will stop once the specified node is reached.
// This can be used to restrict traversal to a particular sub-tree.
static Node* next(const Node& current) { return traverseNextTemplate(current); }
static Node* next(const ContainerNode& current) { return traverseNextTemplate(current); }
static Node* next(const Node& current, const Node* stayWithin) { return traverseNextTemplate(current, stayWithin); }
static Node* next(const ContainerNode& current, const Node* stayWithin) { return traverseNextTemplate(current, stayWithin); }
// Like next, but skips children and starts with the next sibling.
static Node* nextSkippingChildren(const Node&);
static Node* nextSkippingChildren(const Node&, const Node* stayWithin);
static Node* firstWithin(const Node& current) { return current.firstChild(); }
static Node* lastWithin(const ContainerNode&);
static Node& lastWithinOrSelf(Node&);
// Does a reverse pre-order traversal to find the node that comes before the current one in document order
static Node* previous(const Node&, const Node* stayWithin = 0);
// Like previous, but skips children and starts with the next sibling.
static Node* previousSkippingChildren(const Node&, const Node* stayWithin = 0);
// Like next, but visits parents after their children.
static Node* nextPostOrder(const Node&, const Node* stayWithin = 0);
// Like previous, but visits parents before their children.
static Node* previousPostOrder(const Node&, const Node* stayWithin = 0);
// Pre-order traversal including the pseudo-elements.
static Node* previousIncludingPseudo(const Node&, const Node* stayWithin = 0);
static Node* nextIncludingPseudo(const Node&, const Node* stayWithin = 0);
static Node* nextIncludingPseudoSkippingChildren(const Node&, const Node* stayWithin = 0);
CORE_EXPORT static Node* nextAncestorSibling(const Node&);
CORE_EXPORT static Node* nextAncestorSibling(const Node&, const Node* stayWithin);
static Node& highestAncestorOrSelf(Node&);
// Children traversal.
static Node* childAt(const Node& parent, unsigned index) { return childAtTemplate(parent, index); }
static Node* childAt(const ContainerNode& parent, unsigned index) { return childAtTemplate(parent, index); }
// These functions are provided for matching with |FlatTreeTraversal|.
static bool hasChildren(const Node& parent) { return firstChild(parent); }
static bool isDescendantOf(const Node& node, const Node& other) { return node.isDescendantOf(&other); }
static Node* firstChild(const Node& parent) { return parent.firstChild(); }
static Node* lastChild(const Node& parent) { return parent.lastChild(); }
static Node* nextSibling(const Node& node) { return node.nextSibling(); }
static Node* previousSibling(const Node& node) { return node.previousSibling(); }
static ContainerNode* parent(const Node& node) { return node.parentNode(); }
static Node* commonAncestor(const Node& nodeA, const Node& nodeB);
static unsigned index(const Node& node) { return node.nodeIndex(); }
static unsigned countChildren(const Node& parent) { return parent.countChildren(); }
static ContainerNode* parentOrShadowHostNode(const Node& node) { return node.parentOrShadowHostNode(); }
static TraversalRange<TraversalChildrenIterator<NodeTraversal>> childrenOf(const Node&);
static TraversalRange<TraversalDescendantIterator<NodeTraversal>> descendantsOf(const Node&);
static TraversalRange<TraversalInclusiveDescendantIterator<NodeTraversal>> inclusiveDescendantsOf(const Node&);
static TraversalRange<TraversalNextIterator<NodeTraversal>> startsAt(const Node*);
static TraversalRange<TraversalNextIterator<NodeTraversal>> startsAfter(const Node&);
private:
template <class NodeType>
static Node* traverseNextTemplate(NodeType&);
template <class NodeType>
static Node* traverseNextTemplate(NodeType&, const Node* stayWithin);
template <class NodeType>
static Node* childAtTemplate(NodeType&, unsigned);
};
template <class Iterator>
class TraversalRange {
STACK_ALLOCATED();
public:
using StartNodeType = typename Iterator::StartNodeType;
explicit TraversalRange(const StartNodeType* start) : m_start(start) { }
Iterator begin() { return Iterator(m_start); }
Iterator end() { return Iterator::end(); }
private:
RawPtrWillBeMember<const StartNodeType> m_start;
};
template <class TraversalNext>
class TraversalIteratorBase {
STACK_ALLOCATED();
public:
using NodeType = typename TraversalNext::TraversalNodeType;
NodeType& operator*() { return *m_current; }
bool operator!=(const TraversalIteratorBase& rval) const { return m_current != rval.m_current ; }
protected:
explicit TraversalIteratorBase(NodeType* current) : m_current(current) { }
RawPtrWillBeMember<NodeType> m_current;
};
template <class TraversalNext>
class TraversalChildrenIterator : public TraversalIteratorBase<TraversalNext> {
STACK_ALLOCATED();
public:
using StartNodeType = Node;
using TraversalIteratorBase<TraversalNext>::m_current;
explicit TraversalChildrenIterator(const StartNodeType* start) : TraversalIteratorBase<TraversalNext>(TraversalNext::firstWithin(*start)) { }
void operator++() { m_current = TraversalNext::nextSibling(*m_current); }
static TraversalChildrenIterator end() { return TraversalChildrenIterator(); }
private:
TraversalChildrenIterator() : TraversalIteratorBase<TraversalNext>(nullptr) { }
};
template <class TraversalNext>
class TraversalNextIterator : public TraversalIteratorBase<TraversalNext> {
STACK_ALLOCATED();
public:
using StartNodeType = typename TraversalNext::TraversalNodeType;
using TraversalIteratorBase<TraversalNext>::m_current;
explicit TraversalNextIterator(const StartNodeType* start) : TraversalIteratorBase<TraversalNext>(const_cast<StartNodeType*>(start)) { }
void operator++() { m_current = TraversalNext::next(*m_current); }
static TraversalNextIterator end() { return TraversalNextIterator(nullptr); }
};
template <class TraversalNext>
class TraversalDescendantIterator : public TraversalIteratorBase<TraversalNext> {
STACK_ALLOCATED();
public:
using StartNodeType = Node;
using TraversalIteratorBase<TraversalNext>::m_current;
explicit TraversalDescendantIterator(const StartNodeType* start) : TraversalIteratorBase<TraversalNext>(TraversalNext::firstWithin(*start)), m_root(start) { }
void operator++() { m_current = TraversalNext::next(*m_current, m_root); }
static TraversalDescendantIterator end() { return TraversalDescendantIterator(); }
private:
TraversalDescendantIterator() : TraversalIteratorBase<TraversalNext>(nullptr), m_root(nullptr) { }
RawPtrWillBeMember<const Node> m_root;
};
template <class TraversalNext>
class TraversalInclusiveDescendantIterator : public TraversalIteratorBase<TraversalNext> {
STACK_ALLOCATED();
public:
using StartNodeType = typename TraversalNext::TraversalNodeType;
using NodeType = typename TraversalNext::TraversalNodeType;
using TraversalIteratorBase<TraversalNext>::m_current;
explicit TraversalInclusiveDescendantIterator(const StartNodeType* start) : TraversalIteratorBase<TraversalNext>(const_cast<NodeType*>(start)), m_root(start) { }
void operator++() { m_current = TraversalNext::next(*m_current, m_root); }
static TraversalInclusiveDescendantIterator end() { return TraversalInclusiveDescendantIterator(nullptr); }
private:
RawPtrWillBeMember<const StartNodeType> m_root;
};
inline TraversalRange<TraversalChildrenIterator<NodeTraversal>> NodeTraversal::childrenOf(const Node& parent)
{
return TraversalRange<TraversalChildrenIterator<NodeTraversal>>(&parent);
}
inline TraversalRange<TraversalDescendantIterator<NodeTraversal>> NodeTraversal::descendantsOf(const Node& root)
{
return TraversalRange<TraversalDescendantIterator<NodeTraversal>>(&root);
}
inline TraversalRange<TraversalInclusiveDescendantIterator<NodeTraversal>> NodeTraversal::inclusiveDescendantsOf(const Node& root)
{
return TraversalRange<TraversalInclusiveDescendantIterator<NodeTraversal>>(&root);
}
inline TraversalRange<TraversalNextIterator<NodeTraversal>> NodeTraversal::startsAt(const Node* start)
{
return TraversalRange<TraversalNextIterator<NodeTraversal>>(start);
};
inline TraversalRange<TraversalNextIterator<NodeTraversal>> NodeTraversal::startsAfter(const Node& start)
{
return startsAt(NodeTraversal::next(start));
};
template <class NodeType>
inline Node* NodeTraversal::traverseNextTemplate(NodeType& current)
{
if (current.hasChildren())
return current.firstChild();
if (current.nextSibling())
return current.nextSibling();
return nextAncestorSibling(current);
}
template <class NodeType>
inline Node* NodeTraversal::traverseNextTemplate(NodeType& current, const Node* stayWithin)
{
if (current.hasChildren())
return current.firstChild();
if (current == stayWithin)
return 0;
if (current.nextSibling())
return current.nextSibling();
return nextAncestorSibling(current, stayWithin);
}
inline Node* NodeTraversal::nextSkippingChildren(const Node& current)
{
if (current.nextSibling())
return current.nextSibling();
return nextAncestorSibling(current);
}
inline Node* NodeTraversal::nextSkippingChildren(const Node& current, const Node* stayWithin)
{
if (current == stayWithin)
return 0;
if (current.nextSibling())
return current.nextSibling();
return nextAncestorSibling(current, stayWithin);
}
inline Node& NodeTraversal::highestAncestorOrSelf(Node& current)
{
Node* highest = &current;
while (highest->parentNode())
highest = highest->parentNode();
return *highest;
}
template <class NodeType>
inline Node* NodeTraversal::childAtTemplate(NodeType& parent, unsigned index)
{
Node* child = parent.firstChild();
while (child && index--)
child = child->nextSibling();
return child;
}
} // namespace blink
#endif