blob: eba265905a03a8ea5808601c343bcb8ae5e6c0c6 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <utility>
#include "src/v8.h"
#include "src/compilation-cache.h"
#include "src/deoptimizer.h"
#include "src/execution.h"
#include "src/factory.h"
#include "src/global-handles.h"
#include "src/ic/ic.h"
#include "src/macro-assembler.h"
#include "src/snapshot/snapshot.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
using v8::Just;
static void CheckMap(Map* map, int type, int instance_size) {
CHECK(map->IsHeapObject());
#ifdef DEBUG
CHECK(CcTest::heap()->Contains(map));
#endif
CHECK_EQ(CcTest::heap()->meta_map(), map->map());
CHECK_EQ(type, map->instance_type());
CHECK_EQ(instance_size, map->instance_size());
}
TEST(HeapMaps) {
CcTest::InitializeVM();
Heap* heap = CcTest::heap();
CheckMap(heap->meta_map(), MAP_TYPE, Map::kSize);
CheckMap(heap->heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize);
CheckMap(heap->float32x4_map(), FLOAT32X4_TYPE, Float32x4::kSize);
CheckMap(heap->fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel);
CheckMap(heap->string_map(), STRING_TYPE, kVariableSizeSentinel);
}
static void CheckOddball(Isolate* isolate, Object* obj, const char* string) {
CHECK(obj->IsOddball());
Handle<Object> handle(obj, isolate);
Object* print_string =
*Execution::ToString(isolate, handle).ToHandleChecked();
CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string)));
}
static void CheckSmi(Isolate* isolate, int value, const char* string) {
Handle<Object> handle(Smi::FromInt(value), isolate);
Object* print_string =
*Execution::ToString(isolate, handle).ToHandleChecked();
CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string)));
}
static void CheckNumber(Isolate* isolate, double value, const char* string) {
Handle<Object> number = isolate->factory()->NewNumber(value);
CHECK(number->IsNumber());
Handle<Object> print_string =
Execution::ToString(isolate, number).ToHandleChecked();
CHECK(String::cast(*print_string)->IsUtf8EqualTo(CStrVector(string)));
}
static void CheckFindCodeObject(Isolate* isolate) {
// Test FindCodeObject
#define __ assm.
Assembler assm(isolate, NULL, 0);
__ nop(); // supported on all architectures
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
CHECK(code->IsCode());
HeapObject* obj = HeapObject::cast(*code);
Address obj_addr = obj->address();
for (int i = 0; i < obj->Size(); i += kPointerSize) {
Object* found = isolate->FindCodeObject(obj_addr + i);
CHECK_EQ(*code, found);
}
Handle<Code> copy = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
HeapObject* obj_copy = HeapObject::cast(*copy);
Object* not_right = isolate->FindCodeObject(obj_copy->address() +
obj_copy->Size() / 2);
CHECK(not_right != *code);
}
TEST(HandleNull) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope outer_scope(isolate);
LocalContext context;
Handle<Object> n(reinterpret_cast<Object*>(NULL), isolate);
CHECK(!n.is_null());
}
TEST(HeapObjects) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
HandleScope sc(isolate);
Handle<Object> value = factory->NewNumber(1.000123);
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(1.000123, value->Number());
value = factory->NewNumber(1.0);
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(1.0, value->Number());
value = factory->NewNumberFromInt(1024);
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(1024.0, value->Number());
value = factory->NewNumberFromInt(Smi::kMinValue);
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(Smi::kMinValue, Handle<Smi>::cast(value)->value());
value = factory->NewNumberFromInt(Smi::kMaxValue);
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(Smi::kMaxValue, Handle<Smi>::cast(value)->value());
#if !defined(V8_TARGET_ARCH_64_BIT)
// TODO(lrn): We need a NumberFromIntptr function in order to test this.
value = factory->NewNumberFromInt(Smi::kMinValue - 1);
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(Smi::kMinValue - 1), value->Number());
#endif
value = factory->NewNumberFromUint(static_cast<uint32_t>(Smi::kMaxValue) + 1);
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(Smi::kMaxValue) + 1),
value->Number());
value = factory->NewNumberFromUint(static_cast<uint32_t>(1) << 31);
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(1) << 31),
value->Number());
// nan oddball checks
CHECK(factory->nan_value()->IsNumber());
CHECK(std::isnan(factory->nan_value()->Number()));
Handle<String> s = factory->NewStringFromStaticChars("fisk hest ");
CHECK(s->IsString());
CHECK_EQ(10, s->length());
Handle<String> object_string = Handle<String>::cast(factory->Object_string());
Handle<GlobalObject> global(CcTest::i_isolate()->context()->global_object());
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, object_string));
// Check ToString for oddballs
CheckOddball(isolate, heap->true_value(), "true");
CheckOddball(isolate, heap->false_value(), "false");
CheckOddball(isolate, heap->null_value(), "null");
CheckOddball(isolate, heap->undefined_value(), "undefined");
// Check ToString for Smis
CheckSmi(isolate, 0, "0");
CheckSmi(isolate, 42, "42");
CheckSmi(isolate, -42, "-42");
// Check ToString for Numbers
CheckNumber(isolate, 1.1, "1.1");
CheckFindCodeObject(isolate);
}
template <typename T, typename LANE_TYPE, int LANES>
static void CheckSimdLanes(T* value) {
// Get the original values, and check that all lanes can be set to new values
// without disturbing the other lanes.
LANE_TYPE lane_values[LANES];
for (int i = 0; i < LANES; i++) {
lane_values[i] = value->get_lane(i);
}
for (int i = 0; i < LANES; i++) {
lane_values[i] += 1;
value->set_lane(i, lane_values[i]);
for (int j = 0; j < LANES; j++) {
CHECK_EQ(lane_values[j], value->get_lane(j));
}
}
}
TEST(SimdObjects) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope sc(isolate);
Handle<Float32x4> value = factory->NewFloat32x4(1, 2, 3, 4);
CHECK(value->IsFloat32x4());
CHECK(value->BooleanValue()); // SIMD values map to true.
CHECK_EQ(value->get_lane(0), 1);
CHECK_EQ(value->get_lane(1), 2);
CHECK_EQ(value->get_lane(2), 3);
CHECK_EQ(value->get_lane(3), 4);
CheckSimdLanes<Float32x4, float, 4>(*value);
// Check all lanes, and special lane values.
value->set_lane(0, 0);
CHECK_EQ(0, value->get_lane(0));
value->set_lane(1, -0.0);
CHECK_EQ(-0.0, value->get_lane(1));
CHECK(std::signbit(value->get_lane(1))); // Sign bit is preserved.
float quiet_NaN = std::numeric_limits<float>::quiet_NaN();
float signaling_NaN = std::numeric_limits<float>::signaling_NaN();
value->set_lane(2, quiet_NaN);
CHECK(std::isnan(value->get_lane(2)));
value->set_lane(3, signaling_NaN);
CHECK(std::isnan(value->get_lane(3)));
// Check SIMD value printing.
{
value = factory->NewFloat32x4(1, 2, 3, 4);
std::ostringstream os;
value->Float32x4Print(os);
CHECK_EQ("1, 2, 3, 4", os.str());
}
{
value = factory->NewFloat32x4(0, -0.0, quiet_NaN, signaling_NaN);
std::ostringstream os;
value->Float32x4Print(os);
// Value printing doesn't preserve signed zeroes.
CHECK_EQ("0, 0, NaN, NaN", os.str());
}
}
TEST(Tagging) {
CcTest::InitializeVM();
int request = 24;
CHECK_EQ(request, static_cast<int>(OBJECT_POINTER_ALIGN(request)));
CHECK(Smi::FromInt(42)->IsSmi());
CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi());
CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi());
}
TEST(GarbageCollection) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
HandleScope sc(isolate);
// Check GC.
heap->CollectGarbage(NEW_SPACE);
Handle<GlobalObject> global(CcTest::i_isolate()->context()->global_object());
Handle<String> name = factory->InternalizeUtf8String("theFunction");
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<String> prop_namex = factory->InternalizeUtf8String("theSlotx");
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
Handle<Smi> twenty_four(Smi::FromInt(24), isolate);
{
HandleScope inner_scope(isolate);
// Allocate a function and keep it in global object's property.
Handle<JSFunction> function = factory->NewFunction(name);
JSReceiver::SetProperty(global, name, function, SLOPPY).Check();
// Allocate an object. Unrooted after leaving the scope.
Handle<JSObject> obj = factory->NewJSObject(function);
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
JSReceiver::SetProperty(obj, prop_namex, twenty_four, SLOPPY).Check();
CHECK_EQ(Smi::FromInt(23),
*Object::GetProperty(obj, prop_name).ToHandleChecked());
CHECK_EQ(Smi::FromInt(24),
*Object::GetProperty(obj, prop_namex).ToHandleChecked());
}
heap->CollectGarbage(NEW_SPACE);
// Function should be alive.
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, name));
// Check function is retained.
Handle<Object> func_value =
Object::GetProperty(global, name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
{
HandleScope inner_scope(isolate);
// Allocate another object, make it reachable from global.
Handle<JSObject> obj = factory->NewJSObject(function);
JSReceiver::SetProperty(global, obj_name, obj, SLOPPY).Check();
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
}
// After gc, it should survive.
heap->CollectGarbage(NEW_SPACE);
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, obj_name));
Handle<Object> obj =
Object::GetProperty(global, obj_name).ToHandleChecked();
CHECK(obj->IsJSObject());
CHECK_EQ(Smi::FromInt(23),
*Object::GetProperty(obj, prop_name).ToHandleChecked());
}
static void VerifyStringAllocation(Isolate* isolate, const char* string) {
HandleScope scope(isolate);
Handle<String> s = isolate->factory()->NewStringFromUtf8(
CStrVector(string)).ToHandleChecked();
CHECK_EQ(StrLength(string), s->length());
for (int index = 0; index < s->length(); index++) {
CHECK_EQ(static_cast<uint16_t>(string[index]), s->Get(index));
}
}
TEST(String) {
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
VerifyStringAllocation(isolate, "a");
VerifyStringAllocation(isolate, "ab");
VerifyStringAllocation(isolate, "abc");
VerifyStringAllocation(isolate, "abcd");
VerifyStringAllocation(isolate, "fiskerdrengen er paa havet");
}
TEST(LocalHandles) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* name = "Kasper the spunky";
Handle<String> string = factory->NewStringFromAsciiChecked(name);
CHECK_EQ(StrLength(name), string->length());
}
TEST(GlobalHandles) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
Handle<Object> h1;
Handle<Object> h2;
Handle<Object> h3;
Handle<Object> h4;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
Handle<Object> u = factory->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
h3 = global_handles->Create(*i);
h4 = global_handles->Create(*u);
}
// after gc, it should survive
heap->CollectGarbage(NEW_SPACE);
CHECK((*h1)->IsString());
CHECK((*h2)->IsHeapNumber());
CHECK((*h3)->IsString());
CHECK((*h4)->IsHeapNumber());
CHECK_EQ(*h3, *h1);
GlobalHandles::Destroy(h1.location());
GlobalHandles::Destroy(h3.location());
CHECK_EQ(*h4, *h2);
GlobalHandles::Destroy(h2.location());
GlobalHandles::Destroy(h4.location());
}
static bool WeakPointerCleared = false;
static void TestWeakGlobalHandleCallback(
const v8::WeakCallbackData<v8::Value, void>& data) {
std::pair<v8::Persistent<v8::Value>*, int>* p =
reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
data.GetParameter());
if (p->second == 1234) WeakPointerCleared = true;
p->first->Reset();
}
TEST(WeakGlobalHandlesScavenge) {
i::FLAG_stress_compaction = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
WeakPointerCleared = false;
Handle<Object> h1;
Handle<Object> h2;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
Handle<Object> u = factory->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
}
std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234);
GlobalHandles::MakeWeak(h2.location(),
reinterpret_cast<void*>(&handle_and_id),
&TestWeakGlobalHandleCallback);
// Scavenge treats weak pointers as normal roots.
heap->CollectGarbage(NEW_SPACE);
CHECK((*h1)->IsString());
CHECK((*h2)->IsHeapNumber());
CHECK(!WeakPointerCleared);
CHECK(!global_handles->IsNearDeath(h2.location()));
CHECK(!global_handles->IsNearDeath(h1.location()));
GlobalHandles::Destroy(h1.location());
GlobalHandles::Destroy(h2.location());
}
TEST(WeakGlobalHandlesMark) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
WeakPointerCleared = false;
Handle<Object> h1;
Handle<Object> h2;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
Handle<Object> u = factory->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
}
// Make sure the objects are promoted.
heap->CollectGarbage(OLD_SPACE);
heap->CollectGarbage(NEW_SPACE);
CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2));
std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234);
GlobalHandles::MakeWeak(h2.location(),
reinterpret_cast<void*>(&handle_and_id),
&TestWeakGlobalHandleCallback);
CHECK(!GlobalHandles::IsNearDeath(h1.location()));
CHECK(!GlobalHandles::IsNearDeath(h2.location()));
// Incremental marking potentially marked handles before they turned weak.
heap->CollectAllGarbage();
CHECK((*h1)->IsString());
CHECK(WeakPointerCleared);
CHECK(!GlobalHandles::IsNearDeath(h1.location()));
GlobalHandles::Destroy(h1.location());
}
TEST(DeleteWeakGlobalHandle) {
i::FLAG_stress_compaction = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
WeakPointerCleared = false;
Handle<Object> h;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
h = global_handles->Create(*i);
}
std::pair<Handle<Object>*, int> handle_and_id(&h, 1234);
GlobalHandles::MakeWeak(h.location(),
reinterpret_cast<void*>(&handle_and_id),
&TestWeakGlobalHandleCallback);
// Scanvenge does not recognize weak reference.
heap->CollectGarbage(NEW_SPACE);
CHECK(!WeakPointerCleared);
// Mark-compact treats weak reference properly.
heap->CollectGarbage(OLD_SPACE);
CHECK(WeakPointerCleared);
}
static const char* not_so_random_string_table[] = {
"abstract",
"boolean",
"break",
"byte",
"case",
"catch",
"char",
"class",
"const",
"continue",
"debugger",
"default",
"delete",
"do",
"double",
"else",
"enum",
"export",
"extends",
"false",
"final",
"finally",
"float",
"for",
"function",
"goto",
"if",
"implements",
"import",
"in",
"instanceof",
"int",
"interface",
"long",
"native",
"new",
"null",
"package",
"private",
"protected",
"public",
"return",
"short",
"static",
"super",
"switch",
"synchronized",
"this",
"throw",
"throws",
"transient",
"true",
"try",
"typeof",
"var",
"void",
"volatile",
"while",
"with",
0
};
static void CheckInternalizedStrings(const char** strings) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
for (const char* string = *strings; *strings != 0; string = *strings++) {
HandleScope scope(isolate);
Handle<String> a =
isolate->factory()->InternalizeUtf8String(CStrVector(string));
// InternalizeUtf8String may return a failure if a GC is needed.
CHECK(a->IsInternalizedString());
Handle<String> b = factory->InternalizeUtf8String(string);
CHECK_EQ(*b, *a);
CHECK(b->IsUtf8EqualTo(CStrVector(string)));
b = isolate->factory()->InternalizeUtf8String(CStrVector(string));
CHECK_EQ(*b, *a);
CHECK(b->IsUtf8EqualTo(CStrVector(string)));
}
}
TEST(StringTable) {
CcTest::InitializeVM();
v8::HandleScope sc(CcTest::isolate());
CheckInternalizedStrings(not_so_random_string_table);
CheckInternalizedStrings(not_so_random_string_table);
}
TEST(FunctionAllocation) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> name = factory->InternalizeUtf8String("theFunction");
Handle<JSFunction> function = factory->NewFunction(name);
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
Handle<Smi> twenty_four(Smi::FromInt(24), isolate);
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<JSObject> obj = factory->NewJSObject(function);
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
CHECK_EQ(Smi::FromInt(23),
*Object::GetProperty(obj, prop_name).ToHandleChecked());
// Check that we can add properties to function objects.
JSReceiver::SetProperty(function, prop_name, twenty_four, SLOPPY).Check();
CHECK_EQ(Smi::FromInt(24),
*Object::GetProperty(function, prop_name).ToHandleChecked());
}
TEST(ObjectProperties) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> object_string(String::cast(CcTest::heap()->Object_string()));
Handle<Object> object = Object::GetProperty(
CcTest::i_isolate()->global_object(), object_string).ToHandleChecked();
Handle<JSFunction> constructor = Handle<JSFunction>::cast(object);
Handle<JSObject> obj = factory->NewJSObject(constructor);
Handle<String> first = factory->InternalizeUtf8String("first");
Handle<String> second = factory->InternalizeUtf8String("second");
Handle<Smi> one(Smi::FromInt(1), isolate);
Handle<Smi> two(Smi::FromInt(2), isolate);
// check for empty
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
// add first
JSReceiver::SetProperty(obj, first, one, SLOPPY).Check();
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
// delete first
JSReceiver::DeleteProperty(obj, first, SLOPPY).Check();
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
// add first and then second
JSReceiver::SetProperty(obj, first, one, SLOPPY).Check();
JSReceiver::SetProperty(obj, second, two, SLOPPY).Check();
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
// delete first and then second
JSReceiver::DeleteProperty(obj, first, SLOPPY).Check();
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
JSReceiver::DeleteProperty(obj, second, SLOPPY).Check();
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second));
// add first and then second
JSReceiver::SetProperty(obj, first, one, SLOPPY).Check();
JSReceiver::SetProperty(obj, second, two, SLOPPY).Check();
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
// delete second and then first
JSReceiver::DeleteProperty(obj, second, SLOPPY).Check();
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
JSReceiver::DeleteProperty(obj, first, SLOPPY).Check();
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second));
// check string and internalized string match
const char* string1 = "fisk";
Handle<String> s1 = factory->NewStringFromAsciiChecked(string1);
JSReceiver::SetProperty(obj, s1, one, SLOPPY).Check();
Handle<String> s1_string = factory->InternalizeUtf8String(string1);
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s1_string));
// check internalized string and string match
const char* string2 = "fugl";
Handle<String> s2_string = factory->InternalizeUtf8String(string2);
JSReceiver::SetProperty(obj, s2_string, one, SLOPPY).Check();
Handle<String> s2 = factory->NewStringFromAsciiChecked(string2);
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s2));
}
TEST(JSObjectMaps) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> name = factory->InternalizeUtf8String("theFunction");
Handle<JSFunction> function = factory->NewFunction(name);
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<JSObject> obj = factory->NewJSObject(function);
Handle<Map> initial_map(function->initial_map());
// Set a propery
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
CHECK_EQ(Smi::FromInt(23),
*Object::GetProperty(obj, prop_name).ToHandleChecked());
// Check the map has changed
CHECK(*initial_map != obj->map());
}
TEST(JSArray) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> name = factory->InternalizeUtf8String("Array");
Handle<Object> fun_obj = Object::GetProperty(
CcTest::i_isolate()->global_object(), name).ToHandleChecked();
Handle<JSFunction> function = Handle<JSFunction>::cast(fun_obj);
// Allocate the object.
Handle<Object> element;
Handle<JSObject> object = factory->NewJSObject(function);
Handle<JSArray> array = Handle<JSArray>::cast(object);
// We just initialized the VM, no heap allocation failure yet.
JSArray::Initialize(array, 0);
// Set array length to 0.
JSArray::SetLength(array, 0);
CHECK_EQ(Smi::FromInt(0), array->length());
// Must be in fast mode.
CHECK(array->HasFastSmiOrObjectElements());
// array[length] = name.
JSReceiver::SetElement(isolate, array, 0, name, SLOPPY).Check();
CHECK_EQ(Smi::FromInt(1), array->length());
element = i::Object::GetElement(isolate, array, 0).ToHandleChecked();
CHECK_EQ(*element, *name);
// Set array length with larger than smi value.
JSArray::SetLength(array, static_cast<uint32_t>(Smi::kMaxValue) + 1);
uint32_t int_length = 0;
CHECK(array->length()->ToArrayIndex(&int_length));
CHECK_EQ(static_cast<uint32_t>(Smi::kMaxValue) + 1, int_length);
CHECK(array->HasDictionaryElements()); // Must be in slow mode.
// array[length] = name.
JSReceiver::SetElement(isolate, array, int_length, name, SLOPPY).Check();
uint32_t new_int_length = 0;
CHECK(array->length()->ToArrayIndex(&new_int_length));
CHECK_EQ(static_cast<double>(int_length), new_int_length - 1);
element = Object::GetElement(isolate, array, int_length).ToHandleChecked();
CHECK_EQ(*element, *name);
element = Object::GetElement(isolate, array, 0).ToHandleChecked();
CHECK_EQ(*element, *name);
}
TEST(JSObjectCopy) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> object_string(String::cast(CcTest::heap()->Object_string()));
Handle<Object> object = Object::GetProperty(
CcTest::i_isolate()->global_object(), object_string).ToHandleChecked();
Handle<JSFunction> constructor = Handle<JSFunction>::cast(object);
Handle<JSObject> obj = factory->NewJSObject(constructor);
Handle<String> first = factory->InternalizeUtf8String("first");
Handle<String> second = factory->InternalizeUtf8String("second");
Handle<Smi> one(Smi::FromInt(1), isolate);
Handle<Smi> two(Smi::FromInt(2), isolate);
JSReceiver::SetProperty(obj, first, one, SLOPPY).Check();
JSReceiver::SetProperty(obj, second, two, SLOPPY).Check();
JSReceiver::SetElement(isolate, obj, 0, first, SLOPPY).Check();
JSReceiver::SetElement(isolate, obj, 1, second, SLOPPY).Check();
// Make the clone.
Handle<Object> value1, value2;
Handle<JSObject> clone = factory->CopyJSObject(obj);
CHECK(!clone.is_identical_to(obj));
value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked();
value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked();
value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetProperty(obj, first).ToHandleChecked();
value2 = Object::GetProperty(clone, first).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetProperty(obj, second).ToHandleChecked();
value2 = Object::GetProperty(clone, second).ToHandleChecked();
CHECK_EQ(*value1, *value2);
// Flip the values.
JSReceiver::SetProperty(clone, first, two, SLOPPY).Check();
JSReceiver::SetProperty(clone, second, one, SLOPPY).Check();
JSReceiver::SetElement(isolate, clone, 0, second, SLOPPY).Check();
JSReceiver::SetElement(isolate, clone, 1, first, SLOPPY).Check();
value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked();
value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked();
value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetProperty(obj, second).ToHandleChecked();
value2 = Object::GetProperty(clone, first).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetProperty(obj, first).ToHandleChecked();
value2 = Object::GetProperty(clone, second).ToHandleChecked();
CHECK_EQ(*value1, *value2);
}
TEST(StringAllocation) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 };
for (int length = 0; length < 100; length++) {
v8::HandleScope scope(CcTest::isolate());
char* non_one_byte = NewArray<char>(3 * length + 1);
char* one_byte = NewArray<char>(length + 1);
non_one_byte[3 * length] = 0;
one_byte[length] = 0;
for (int i = 0; i < length; i++) {
one_byte[i] = 'a';
non_one_byte[3 * i] = chars[0];
non_one_byte[3 * i + 1] = chars[1];
non_one_byte[3 * i + 2] = chars[2];
}
Handle<String> non_one_byte_sym = factory->InternalizeUtf8String(
Vector<const char>(non_one_byte, 3 * length));
CHECK_EQ(length, non_one_byte_sym->length());
Handle<String> one_byte_sym =
factory->InternalizeOneByteString(OneByteVector(one_byte, length));
CHECK_EQ(length, one_byte_sym->length());
Handle<String> non_one_byte_str =
factory->NewStringFromUtf8(Vector<const char>(non_one_byte, 3 * length))
.ToHandleChecked();
non_one_byte_str->Hash();
CHECK_EQ(length, non_one_byte_str->length());
Handle<String> one_byte_str =
factory->NewStringFromUtf8(Vector<const char>(one_byte, length))
.ToHandleChecked();
one_byte_str->Hash();
CHECK_EQ(length, one_byte_str->length());
DeleteArray(non_one_byte);
DeleteArray(one_byte);
}
}
static int ObjectsFoundInHeap(Heap* heap, Handle<Object> objs[], int size) {
// Count the number of objects found in the heap.
int found_count = 0;
HeapIterator iterator(heap);
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
for (int i = 0; i < size; i++) {
if (*objs[i] == obj) {
found_count++;
}
}
}
return found_count;
}
TEST(Iteration) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
// Array of objects to scan haep for.
const int objs_count = 6;
Handle<Object> objs[objs_count];
int next_objs_index = 0;
// Allocate a JS array to OLD_SPACE and NEW_SPACE
objs[next_objs_index++] = factory->NewJSArray(10);
objs[next_objs_index++] =
factory->NewJSArray(10, FAST_HOLEY_ELEMENTS, Strength::WEAK, TENURED);
// Allocate a small string to OLD_DATA_SPACE and NEW_SPACE
objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij");
objs[next_objs_index++] =
factory->NewStringFromStaticChars("abcdefghij", TENURED);
// Allocate a large string (for large object space).
int large_size = Page::kMaxRegularHeapObjectSize + 1;
char* str = new char[large_size];
for (int i = 0; i < large_size - 1; ++i) str[i] = 'a';
str[large_size - 1] = '\0';
objs[next_objs_index++] = factory->NewStringFromAsciiChecked(str, TENURED);
delete[] str;
// Add a Map object to look for.
objs[next_objs_index++] = Handle<Map>(HeapObject::cast(*objs[0])->map());
CHECK_EQ(objs_count, next_objs_index);
CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count));
}
static int LenFromSize(int size) {
return (size - FixedArray::kHeaderSize) / kPointerSize;
}
TEST(Regression39128) {
// Test case for crbug.com/39128.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
TestHeap* heap = CcTest::test_heap();
// Increase the chance of 'bump-the-pointer' allocation in old space.
heap->CollectAllGarbage();
v8::HandleScope scope(CcTest::isolate());
// The plan: create JSObject which references objects in new space.
// Then clone this object (forcing it to go into old space) and check
// that region dirty marks are updated correctly.
// Step 1: prepare a map for the object. We add 1 inobject property to it.
// Create a map with single inobject property.
Handle<Map> my_map = Map::Create(CcTest::i_isolate(), 1);
int n_properties = my_map->inobject_properties();
CHECK_GT(n_properties, 0);
int object_size = my_map->instance_size();
// Step 2: allocate a lot of objects so to almost fill new space: we need
// just enough room to allocate JSObject and thus fill the newspace.
int allocation_amount = Min(FixedArray::kMaxSize,
Page::kMaxRegularHeapObjectSize + kPointerSize);
int allocation_len = LenFromSize(allocation_amount);
NewSpace* new_space = heap->new_space();
Address* top_addr = new_space->allocation_top_address();
Address* limit_addr = new_space->allocation_limit_address();
while ((*limit_addr - *top_addr) > allocation_amount) {
CHECK(!heap->always_allocate());
Object* array = heap->AllocateFixedArray(allocation_len).ToObjectChecked();
CHECK(new_space->Contains(array));
}
// Step 3: now allocate fixed array and JSObject to fill the whole new space.
int to_fill = static_cast<int>(*limit_addr - *top_addr - object_size);
int fixed_array_len = LenFromSize(to_fill);
CHECK(fixed_array_len < FixedArray::kMaxLength);
CHECK(!heap->always_allocate());
Object* array = heap->AllocateFixedArray(fixed_array_len).ToObjectChecked();
CHECK(new_space->Contains(array));
Object* object = heap->AllocateJSObjectFromMap(*my_map).ToObjectChecked();
CHECK(new_space->Contains(object));
JSObject* jsobject = JSObject::cast(object);
CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length());
CHECK_EQ(0, jsobject->properties()->length());
// Create a reference to object in new space in jsobject.
FieldIndex index = FieldIndex::ForInObjectOffset(
JSObject::kHeaderSize - kPointerSize);
jsobject->FastPropertyAtPut(index, array);
CHECK_EQ(0, static_cast<int>(*limit_addr - *top_addr));
// Step 4: clone jsobject, but force always allocate first to create a clone
// in old pointer space.
Address old_space_top = heap->old_space()->top();
AlwaysAllocateScope aa_scope(isolate);
Object* clone_obj = heap->CopyJSObject(jsobject).ToObjectChecked();
JSObject* clone = JSObject::cast(clone_obj);
if (clone->address() != old_space_top) {
// Alas, got allocated from free list, we cannot do checks.
return;
}
CHECK(heap->old_space()->Contains(clone->address()));
}
UNINITIALIZED_TEST(TestCodeFlushing) {
// If we do not flush code this test is invalid.
if (!FLAG_flush_code) return;
i::FLAG_allow_natives_syntax = true;
i::FLAG_optimize_for_size = false;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
isolate->Enter();
Factory* factory = i_isolate->factory();
{
v8::HandleScope scope(isolate);
v8::Context::New(isolate)->Enter();
const char* source =
"function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
// This compile will add the code to the compilation cache.
{
v8::HandleScope scope(isolate);
CompileRun(source);
}
// Check function is compiled.
Handle<Object> func_value = Object::GetProperty(i_isolate->global_object(),
foo_name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
CHECK(function->shared()->is_compiled());
// The code will survive at least two GCs.
i_isolate->heap()->CollectAllGarbage();
i_isolate->heap()->CollectAllGarbage();
CHECK(function->shared()->is_compiled());
// Simulate several GCs that use full marking.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
i_isolate->heap()->CollectAllGarbage();
}
// foo should no longer be in the compilation cache
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
CHECK(!function->is_compiled() || function->IsOptimized());
// Call foo to get it recompiled.
CompileRun("foo()");
CHECK(function->shared()->is_compiled());
CHECK(function->is_compiled());
}
isolate->Exit();
isolate->Dispose();
}
TEST(TestCodeFlushingPreAged) {
// If we do not flush code this test is invalid.
if (!FLAG_flush_code) return;
i::FLAG_allow_natives_syntax = true;
i::FLAG_optimize_for_size = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* source = "function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
// Compile foo, but don't run it.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun(source);
}
// Check function is compiled.
Handle<Object> func_value =
Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
CHECK(function->shared()->is_compiled());
// The code has been run so will survive at least one GC.
CcTest::heap()->CollectAllGarbage();
CHECK(function->shared()->is_compiled());
// The code was only run once, so it should be pre-aged and collected on the
// next GC.
CcTest::heap()->CollectAllGarbage();
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
// Execute the function again twice, and ensure it is reset to the young age.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun("foo();"
"foo();");
}
// The code will survive at least two GC now that it is young again.
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
CHECK(function->shared()->is_compiled());
// Simulate several GCs that use full marking.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
CcTest::heap()->CollectAllGarbage();
}
// foo should no longer be in the compilation cache
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
CHECK(!function->is_compiled() || function->IsOptimized());
// Call foo to get it recompiled.
CompileRun("foo()");
CHECK(function->shared()->is_compiled());
CHECK(function->is_compiled());
}
TEST(TestCodeFlushingIncremental) {
// If we do not flush code this test is invalid.
if (!FLAG_flush_code) return;
i::FLAG_allow_natives_syntax = true;
i::FLAG_optimize_for_size = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* source = "function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
// This compile will add the code to the compilation cache.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun(source);
}
// Check function is compiled.
Handle<Object> func_value =
Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
CHECK(function->shared()->is_compiled());
// The code will survive at least two GCs.
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
CHECK(function->shared()->is_compiled());
// Simulate several GCs that use incremental marking.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
}
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
CHECK(!function->is_compiled() || function->IsOptimized());
// This compile will compile the function again.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun("foo();");
}
// Simulate several GCs that use incremental marking but make sure
// the loop breaks once the function is enqueued as a candidate.
for (int i = 0; i < kAgingThreshold; i++) {
SimulateIncrementalMarking(CcTest::heap());
if (!function->next_function_link()->IsUndefined()) break;
CcTest::heap()->CollectAllGarbage();
}
// Force optimization while incremental marking is active and while
// the function is enqueued as a candidate.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun("%OptimizeFunctionOnNextCall(foo); foo();");
}
// Simulate one final GC to make sure the candidate queue is sane.
CcTest::heap()->CollectAllGarbage();
CHECK(function->shared()->is_compiled() || !function->IsOptimized());
CHECK(function->is_compiled() || !function->IsOptimized());
}
TEST(TestCodeFlushingIncrementalScavenge) {
// If we do not flush code this test is invalid.
if (!FLAG_flush_code) return;
i::FLAG_allow_natives_syntax = true;
i::FLAG_optimize_for_size = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* source = "var foo = function() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo();"
"var bar = function() {"
" var x = 23;"
"};"
"bar();";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
Handle<String> bar_name = factory->InternalizeUtf8String("bar");
// Perfrom one initial GC to enable code flushing.
CcTest::heap()->CollectAllGarbage();
// This compile will add the code to the compilation cache.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun(source);
}
// Check functions are compiled.
Handle<Object> func_value =
Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
CHECK(function->shared()->is_compiled());
Handle<Object> func_value2 =
Object::GetProperty(isolate->global_object(), bar_name).ToHandleChecked();
CHECK(func_value2->IsJSFunction());
Handle<JSFunction> function2 = Handle<JSFunction>::cast(func_value2);
CHECK(function2->shared()->is_compiled());
// Clear references to functions so that one of them can die.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun("foo = 0; bar = 0;");
}
// Bump the code age so that flushing is triggered while the function
// object is still located in new-space.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
function->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
function2->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
// Simulate incremental marking so that the functions are enqueued as
// code flushing candidates. Then kill one of the functions. Finally
// perform a scavenge while incremental marking is still running.
SimulateIncrementalMarking(CcTest::heap());
*function2.location() = NULL;
CcTest::heap()->CollectGarbage(NEW_SPACE, "test scavenge while marking");
// Simulate one final GC to make sure the candidate queue is sane.
CcTest::heap()->CollectAllGarbage();
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
CHECK(!function->is_compiled() || function->IsOptimized());
}
TEST(TestCodeFlushingIncrementalAbort) {
// If we do not flush code this test is invalid.
if (!FLAG_flush_code) return;
i::FLAG_allow_natives_syntax = true;
i::FLAG_optimize_for_size = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
v8::HandleScope scope(CcTest::isolate());
const char* source = "function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
// This compile will add the code to the compilation cache.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun(source);
}
// Check function is compiled.
Handle<Object> func_value =
Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
CHECK(function->shared()->is_compiled());
// The code will survive at least two GCs.
heap->CollectAllGarbage();
heap->CollectAllGarbage();
CHECK(function->shared()->is_compiled());
// Bump the code age so that flushing is triggered.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
function->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
// Simulate incremental marking so that the function is enqueued as
// code flushing candidate.
SimulateIncrementalMarking(heap);
// Enable the debugger and add a breakpoint while incremental marking
// is running so that incremental marking aborts and code flushing is
// disabled.
int position = 0;
Handle<Object> breakpoint_object(Smi::FromInt(0), isolate);
EnableDebugger();
isolate->debug()->SetBreakPoint(function, breakpoint_object, &position);
isolate->debug()->ClearAllBreakPoints();
DisableDebugger();
// Force optimization now that code flushing is disabled.
{ v8::HandleScope scope(CcTest::isolate());
CompileRun("%OptimizeFunctionOnNextCall(foo); foo();");
}
// Simulate one final GC to make sure the candidate queue is sane.
heap->CollectAllGarbage();
CHECK(function->shared()->is_compiled() || !function->IsOptimized());
CHECK(function->is_compiled() || !function->IsOptimized());
}
TEST(CompilationCacheCachingBehavior) {
// If we do not flush code, or have the compilation cache turned off, this
// test is invalid.
if (!FLAG_flush_code || !FLAG_compilation_cache) {
return;
}
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
CompilationCache* compilation_cache = isolate->compilation_cache();
LanguageMode language_mode =
construct_language_mode(FLAG_use_strict, FLAG_use_strong);
v8::HandleScope scope(CcTest::isolate());
const char* raw_source =
"function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> source = factory->InternalizeUtf8String(raw_source);
Handle<Context> native_context = isolate->native_context();
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(raw_source);
}
// On first compilation, only a hash is inserted in the code cache. We can't
// find that value.
MaybeHandle<SharedFunctionInfo> info = compilation_cache->LookupScript(
source, Handle<Object>(), 0, 0,
v8::ScriptOriginOptions(false, true, false), native_context,
language_mode);
CHECK(info.is_null());
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(raw_source);
}
// On second compilation, the hash is replaced by a real cache entry mapping
// the source to the shared function info containing the code.
info = compilation_cache->LookupScript(
source, Handle<Object>(), 0, 0,
v8::ScriptOriginOptions(false, true, false), native_context,
language_mode);
CHECK(!info.is_null());
heap->CollectAllGarbage();
// On second compilation, the hash is replaced by a real cache entry mapping
// the source to the shared function info containing the code.
info = compilation_cache->LookupScript(
source, Handle<Object>(), 0, 0,
v8::ScriptOriginOptions(false, true, false), native_context,
language_mode);
CHECK(!info.is_null());
while (!info.ToHandleChecked()->code()->IsOld()) {
info.ToHandleChecked()->code()->MakeOlder(NO_MARKING_PARITY);
}
heap->CollectAllGarbage();
// Ensure code aging cleared the entry from the cache.
info = compilation_cache->LookupScript(
source, Handle<Object>(), 0, 0,
v8::ScriptOriginOptions(false, true, false), native_context,
language_mode);
CHECK(info.is_null());
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(raw_source);
}
// On first compilation, only a hash is inserted in the code cache. We can't
// find that value.
info = compilation_cache->LookupScript(
source, Handle<Object>(), 0, 0,
v8::ScriptOriginOptions(false, true, false), native_context,
language_mode);
CHECK(info.is_null());
for (int i = 0; i < CompilationCacheTable::kHashGenerations; i++) {
compilation_cache->MarkCompactPrologue();
}
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(raw_source);
}
// If we aged the cache before caching the script, ensure that we didn't cache
// on next compilation.
info = compilation_cache->LookupScript(
source, Handle<Object>(), 0, 0,
v8::ScriptOriginOptions(false, true, false), native_context,
language_mode);
CHECK(info.is_null());
}
static void OptimizeEmptyFunction(const char* name) {
HandleScope scope(CcTest::i_isolate());
EmbeddedVector<char, 256> source;
SNPrintF(source,
"function %s() { return 0; }"
"%s(); %s();"
"%%OptimizeFunctionOnNextCall(%s);"
"%s();",
name, name, name, name, name);
CompileRun(source.start());
}
// Count the number of native contexts in the weak list of native contexts.
int CountNativeContexts() {
int count = 0;
Object* object = CcTest::heap()->native_contexts_list();
while (!object->IsUndefined()) {
count++;
object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK);
}
// Subtract one to compensate for the code stub context that is always present
return count - 1;
}
// Count the number of user functions in the weak list of optimized
// functions attached to a native context.
static int CountOptimizedUserFunctions(v8::Handle<v8::Context> context) {
int count = 0;
Handle<Context> icontext = v8::Utils::OpenHandle(*context);
Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST);
while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) {
count++;
object = JSFunction::cast(object)->next_function_link();
}
return count;
}
TEST(TestInternalWeakLists) {
FLAG_always_opt = false;
FLAG_allow_natives_syntax = true;
v8::V8::Initialize();
// Some flags turn Scavenge collections into Mark-sweep collections
// and hence are incompatible with this test case.
if (FLAG_gc_global || FLAG_stress_compaction) return;
FLAG_retain_maps_for_n_gc = 0;
static const int kNumTestContexts = 10;
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
v8::Handle<v8::Context> ctx[kNumTestContexts];
if (!isolate->use_crankshaft()) return;
CHECK_EQ(0, CountNativeContexts());
// Create a number of global contests which gets linked together.
for (int i = 0; i < kNumTestContexts; i++) {
ctx[i] = v8::Context::New(CcTest::isolate());
// Collect garbage that might have been created by one of the
// installed extensions.
isolate->compilation_cache()->Clear();
heap->CollectAllGarbage();
CHECK_EQ(i + 1, CountNativeContexts());
ctx[i]->Enter();
// Create a handle scope so no function objects get stuck in the outer
// handle scope.
HandleScope scope(isolate);
CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i]));
OptimizeEmptyFunction("f1");
CHECK_EQ(1, CountOptimizedUserFunctions(ctx[i]));
OptimizeEmptyFunction("f2");
CHECK_EQ(2, CountOptimizedUserFunctions(ctx[i]));
OptimizeEmptyFunction("f3");
CHECK_EQ(3, CountOptimizedUserFunctions(ctx[i]));
OptimizeEmptyFunction("f4");
CHECK_EQ(4, CountOptimizedUserFunctions(ctx[i]));
OptimizeEmptyFunction("f5");
CHECK_EQ(5, CountOptimizedUserFunctions(ctx[i]));
// Remove function f1, and
CompileRun("f1=null");
// Scavenge treats these references as strong.
for (int j = 0; j < 10; j++) {
CcTest::heap()->CollectGarbage(NEW_SPACE);
CHECK_EQ(5, CountOptimizedUserFunctions(ctx[i]));
}
// Mark compact handles the weak references.
isolate->compilation_cache()->Clear();
heap->CollectAllGarbage();
CHECK_EQ(4, CountOptimizedUserFunctions(ctx[i]));
// Get rid of f3 and f5 in the same way.
CompileRun("f3=null");
for (int j = 0; j < 10; j++) {
CcTest::heap()->CollectGarbage(NEW_SPACE);
CHECK_EQ(4, CountOptimizedUserFunctions(ctx[i]));
}
CcTest::heap()->CollectAllGarbage();
CHECK_EQ(3, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f5=null");
for (int j = 0; j < 10; j++) {
CcTest::heap()->CollectGarbage(NEW_SPACE);
CHECK_EQ(3, CountOptimizedUserFunctions(ctx[i]));
}
CcTest::heap()->CollectAllGarbage();
CHECK_EQ(2, CountOptimizedUserFunctions(ctx[i]));
ctx[i]->Exit();
}
// Force compilation cache cleanup.
CcTest::heap()->NotifyContextDisposed(true);
CcTest::heap()->CollectAllGarbage();
// Dispose the native contexts one by one.
for (int i = 0; i < kNumTestContexts; i++) {
// TODO(dcarney): is there a better way to do this?
i::Object** unsafe = reinterpret_cast<i::Object**>(*ctx[i]);
*unsafe = CcTest::heap()->undefined_value();
ctx[i].Clear();
// Scavenge treats these references as strong.
for (int j = 0; j < 10; j++) {
CcTest::heap()->CollectGarbage(i::NEW_SPACE);
CHECK_EQ(kNumTestContexts - i, CountNativeContexts());
}
// Mark compact handles the weak references.
CcTest::heap()->CollectAllGarbage();
CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts());
}
CHECK_EQ(0, CountNativeContexts());
}
// Count the number of native contexts in the weak list of native contexts
// causing a GC after the specified number of elements.
static int CountNativeContextsWithGC(Isolate* isolate, int n) {
Heap* heap = isolate->heap();
int count = 0;
Handle<Object> object(heap->native_contexts_list(), isolate);
while (!object->IsUndefined()) {
count++;
if (count == n) heap->CollectAllGarbage();
object =
Handle<Object>(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK),
isolate);
}
// Subtract one to compensate for the code stub context that is always present
return count - 1;
}
// Count the number of user functions in the weak list of optimized
// functions attached to a native context causing a GC after the
// specified number of elements.
static int CountOptimizedUserFunctionsWithGC(v8::Handle<v8::Context> context,
int n) {
int count = 0;
Handle<Context> icontext = v8::Utils::OpenHandle(*context);
Isolate* isolate = icontext->GetIsolate();
Handle<Object> object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST),
isolate);
while (object->IsJSFunction() &&
!Handle<JSFunction>::cast(object)->IsBuiltin()) {
count++;
if (count == n) isolate->heap()->CollectAllGarbage();
object = Handle<Object>(
Object::cast(JSFunction::cast(*object)->next_function_link()),
isolate);
}
return count;
}
TEST(TestInternalWeakListsTraverseWithGC) {
FLAG_always_opt = false;
FLAG_allow_natives_syntax = true;
v8::V8::Initialize();
static const int kNumTestContexts = 10;
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
v8::Handle<v8::Context> ctx[kNumTestContexts];
if (!isolate->use_crankshaft()) return;
CHECK_EQ(0, CountNativeContexts());
// Create an number of contexts and check the length of the weak list both
// with and without GCs while iterating the list.
for (int i = 0; i < kNumTestContexts; i++) {
ctx[i] = v8::Context::New(CcTest::isolate());
CHECK_EQ(i + 1, CountNativeContexts());
CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1));
}
ctx[0]->Enter();
// Compile a number of functions the length of the weak list of optimized
// functions both with and without GCs while iterating the list.
CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0]));
OptimizeEmptyFunction("f1");
CHECK_EQ(1, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(1, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
OptimizeEmptyFunction("f2");
CHECK_EQ(2, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(2, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
OptimizeEmptyFunction("f3");
CHECK_EQ(3, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(3, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
OptimizeEmptyFunction("f4");
CHECK_EQ(4, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(4, CountOptimizedUserFunctionsWithGC(ctx[0], 2));
OptimizeEmptyFunction("f5");
CHECK_EQ(5, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(5, CountOptimizedUserFunctionsWithGC(ctx[0], 4));
ctx[0]->Exit();
}
TEST(TestSizeOfRegExpCode) {
if (!FLAG_regexp_optimization) return;
v8::V8::Initialize();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
LocalContext context;
// Adjust source below and this check to match
// RegExpImple::kRegExpTooLargeToOptimize.
DCHECK_EQ(i::RegExpImpl::kRegExpTooLargeToOptimize, 20 * KB);
// Compile a regexp that is much larger if we are using regexp optimizations.
CompileRun(
"var reg_exp_source = '(?:a|bc|def|ghij|klmno|pqrstu)';"
"var half_size_reg_exp;"
"while (reg_exp_source.length < 20 * 1024) {"
" half_size_reg_exp = reg_exp_source;"
" reg_exp_source = reg_exp_source + reg_exp_source;"
"}"
// Flatten string.
"reg_exp_source.match(/f/);");
// Get initial heap size after several full GCs, which will stabilize
// the heap size and return with sweeping finished completely.
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
int initial_size = static_cast<int>(CcTest::heap()->SizeOfObjects());
CompileRun("'foo'.match(reg_exp_source);");
CcTest::heap()->CollectAllGarbage();
int size_with_regexp = static_cast<int>(CcTest::heap()->SizeOfObjects());
CompileRun("'foo'.match(half_size_reg_exp);");
CcTest::heap()->CollectAllGarbage();
int size_with_optimized_regexp =
static_cast<int>(CcTest::heap()->SizeOfObjects());
int size_of_regexp_code = size_with_regexp - initial_size;
// On some platforms the debug-code flag causes huge amounts of regexp code
// to be emitted, breaking this test.
if (!FLAG_debug_code) {
CHECK_LE(size_of_regexp_code, 1 * MB);
}
// Small regexp is half the size, but compiles to more than twice the code
// due to the optimization steps.
CHECK_GE(size_with_optimized_regexp,
size_with_regexp + size_of_regexp_code * 2);
}
TEST(TestSizeOfObjects) {
v8::V8::Initialize();
// Get initial heap size after several full GCs, which will stabilize
// the heap size and return with sweeping finished completely.
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
CcTest::heap()->CollectAllGarbage();
MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
int initial_size = static_cast<int>(CcTest::heap()->SizeOfObjects());
{
// Allocate objects on several different old-space pages so that
// concurrent sweeper threads will be busy sweeping the old space on
// subsequent GC runs.
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
int filler_size = static_cast<int>(FixedArray::SizeFor(8192));
for (int i = 1; i <= 100; i++) {
CcTest::test_heap()->AllocateFixedArray(8192, TENURED).ToObjectChecked();
CHECK_EQ(initial_size + i * filler_size,
static_cast<int>(CcTest::heap()->SizeOfObjects()));
}
}
// The heap size should go back to initial size after a full GC, even
// though sweeping didn't finish yet.
CcTest::heap()->CollectAllGarbage();
// Normally sweeping would not be complete here, but no guarantees.
CHECK_EQ(initial_size, static_cast<int>(CcTest::heap()->SizeOfObjects()));
// Waiting for sweeper threads should not change heap size.
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
CHECK_EQ(initial_size, static_cast<int>(CcTest::heap()->SizeOfObjects()));
}
TEST(TestAlignmentCalculations) {
// Maximum fill amounts are consistent.
int maximum_double_misalignment = kDoubleSize - kPointerSize;
int maximum_simd128_misalignment = kSimd128Size - kPointerSize;
int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned);
CHECK_EQ(0, max_word_fill);
int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned);
CHECK_EQ(maximum_double_misalignment, max_double_fill);
int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned);
CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill);
int max_simd128_unaligned_fill =
Heap::GetMaximumFillToAlign(kSimd128Unaligned);
CHECK_EQ(maximum_simd128_misalignment, max_simd128_unaligned_fill);
Address base = reinterpret_cast<Address>(NULL);
int fill = 0;
// Word alignment never requires fill.
fill = Heap::GetFillToAlign(base, kWordAligned);
CHECK_EQ(0, fill);
fill = Heap::GetFillToAlign(base + kPointerSize, kWordAligned);
CHECK_EQ(0, fill);
// No fill is required when address is double aligned.
fill = Heap::GetFillToAlign(base, kDoubleAligned);
CHECK_EQ(0, fill);
// Fill is required if address is not double aligned.
fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleAligned);
CHECK_EQ(maximum_double_misalignment, fill);
// kDoubleUnaligned has the opposite fill amounts.
fill = Heap::GetFillToAlign(base, kDoubleUnaligned);
CHECK_EQ(maximum_double_misalignment, fill);
fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleUnaligned);
CHECK_EQ(0, fill);
// 128 bit SIMD types have 2 or 4 possible alignments, depending on platform.
fill = Heap::GetFillToAlign(base, kSimd128Unaligned);
CHECK_EQ((3 * kPointerSize) & kSimd128AlignmentMask, fill);
fill = Heap::GetFillToAlign(base + kPointerSize, kSimd128Unaligned);
CHECK_EQ((2 * kPointerSize) & kSimd128AlignmentMask, fill);
fill = Heap::GetFillToAlign(base + 2 * kPointerSize, kSimd128Unaligned);
CHECK_EQ(kPointerSize, fill);
fill = Heap::GetFillToAlign(base + 3 * kPointerSize, kSimd128Unaligned);
CHECK_EQ(0, fill);
}
static HeapObject* NewSpaceAllocateAligned(int size,
AllocationAlignment alignment) {
Heap* heap = CcTest::heap();
AllocationResult allocation =
heap->new_space()->AllocateRawAligned(size, alignment);
HeapObject* obj = NULL;
allocation.To(&obj);
heap->CreateFillerObjectAt(obj->address(), size);
return obj;
}
// Get new space allocation into the desired alignment.
static Address AlignNewSpace(AllocationAlignment alignment, int offset) {
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
int fill = Heap::GetFillToAlign(*top_addr, alignment);
if (fill) {
NewSpaceAllocateAligned(fill + offset, kWordAligned);
}
return *top_addr;
}
TEST(TestAlignedAllocation) {
// Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
const intptr_t double_misalignment = kDoubleSize - kPointerSize;
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
Address start;
HeapObject* obj;
HeapObject* filler;
if (double_misalignment) {
// Allocate a pointer sized object that must be double aligned at an
// aligned address.
start = AlignNewSpace(kDoubleAligned, 0);
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
// There is no filler.
CHECK_EQ(kPointerSize, *top_addr - start);
// Allocate a second pointer sized object that must be double aligned at an
// unaligned address.
start = AlignNewSpace(kDoubleAligned, kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == kPointerSize);
CHECK_EQ(kPointerSize + double_misalignment, *top_addr - start);
// Similarly for kDoubleUnaligned.
start = AlignNewSpace(kDoubleUnaligned, 0);
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
CHECK_EQ(kPointerSize, *top_addr - start);
start = AlignNewSpace(kDoubleUnaligned, kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == kPointerSize);
CHECK_EQ(kPointerSize + double_misalignment, *top_addr - start);
}
// Now test SIMD alignment. There are 2 or 4 possible alignments, depending
// on platform.
start = AlignNewSpace(kSimd128Unaligned, 0);
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is no filler.
CHECK_EQ(kPointerSize, *top_addr - start);
start = AlignNewSpace(kSimd128Unaligned, kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == kSimd128Size - kPointerSize);
CHECK_EQ(kPointerSize + kSimd128Size - kPointerSize, *top_addr - start);
if (double_misalignment) {
// Test the 2 other alignments possible on 32 bit platforms.
start = AlignNewSpace(kSimd128Unaligned, 2 * kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == 2 * kPointerSize);
CHECK_EQ(kPointerSize + 2 * kPointerSize, *top_addr - start);
start = AlignNewSpace(kSimd128Unaligned, 3 * kPointerSize);
obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler->IsFiller() &&
filler->Size() == kPointerSize);
CHECK_EQ(kPointerSize + kPointerSize, *top_addr - start);
}
}
static HeapObject* OldSpaceAllocateAligned(int size,
AllocationAlignment alignment) {
Heap* heap = CcTest::heap();
AllocationResult allocation =
heap->old_space()->AllocateRawAligned(size, alignment);
HeapObject* obj = NULL;
allocation.To(&obj);
heap->CreateFillerObjectAt(obj->address(), size);
return obj;
}
// Get old space allocation into the desired alignment.
static Address AlignOldSpace(AllocationAlignment alignment, int offset) {
Address* top_addr = CcTest::heap()->old_space()->allocation_top_address();
int fill = Heap::GetFillToAlign(*top_addr, alignment);
int allocation = fill + offset;
if (allocation) {
OldSpaceAllocateAligned(allocation, kWordAligned);
}
Address top = *top_addr;
// Now force the remaining allocation onto the free list.
CcTest::heap()->old_space()->EmptyAllocationInfo();
return top;
}
// Test the case where allocation must be done from the free list, so filler
// may precede or follow the object.
TEST(TestAlignedOverAllocation) {
// Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
const intptr_t double_misalignment = kDoubleSize - kPointerSize;
Address start;
HeapObject* obj;
HeapObject* filler1;
HeapObject* filler2;
if (double_misalignment) {
start = AlignOldSpace(kDoubleAligned, 0);
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
// The object is aligned, and a filler object is created after.
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
filler1 = HeapObject::FromAddress(start + kPointerSize);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
// Try the opposite alignment case.
start = AlignOldSpace(kDoubleAligned, kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment));
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1);
CHECK(filler1->IsFiller());
CHECK(filler1->Size() == kPointerSize);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
// Similarly for kDoubleUnaligned.
start = AlignOldSpace(kDoubleUnaligned, 0);
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
// The object is aligned, and a filler object is created after.
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
filler1 = HeapObject::FromAddress(start + kPointerSize);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
// Try the opposite alignment case.
start = AlignOldSpace(kDoubleUnaligned, kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize));
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
}
// Now test SIMD alignment. There are 2 or 4 possible alignments, depending
// on platform.
start = AlignOldSpace(kSimd128Unaligned, 0);
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object after the object.
filler1 = HeapObject::FromAddress(start + kPointerSize);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kSimd128Size - kPointerSize);
start = AlignOldSpace(kSimd128Unaligned, kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There is a filler object before the object.
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kSimd128Size - kPointerSize);
if (double_misalignment) {
// Test the 2 other alignments possible on 32 bit platforms.
start = AlignOldSpace(kSimd128Unaligned, 2 * kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There are filler objects before and after the object.
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == 2 * kPointerSize);
filler2 = HeapObject::FromAddress(start + 3 * kPointerSize);
CHECK(obj != filler2 && filler2->IsFiller() &&
filler2->Size() == kPointerSize);
start = AlignOldSpace(kSimd128Unaligned, 3 * kPointerSize);
obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned);
CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize));
// There are filler objects before and after the object.
filler1 = HeapObject::FromAddress(start);
CHECK(obj != filler1 && filler1->IsFiller() &&
filler1->Size() == kPointerSize);
filler2 = HeapObject::FromAddress(start + 2 * kPointerSize);
CHECK(obj != filler2 && filler2->IsFiller() &&
filler2->Size() == 2 * kPointerSize);
}
}
TEST(TestSizeOfObjectsVsHeapIteratorPrecision) {
CcTest::InitializeVM();
HeapIterator iterator(CcTest::heap());
intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects();
intptr_t size_of_objects_2 = 0;
for (HeapObject* obj = iterator.next();
obj != NULL;
obj = iterator.next()) {
if (!obj->IsFreeSpace()) {
size_of_objects_2 += obj->Size();
}
}
// Delta must be within 5% of the larger result.
// TODO(gc): Tighten this up by distinguishing between byte
// arrays that are real and those that merely mark free space
// on the heap.
if (size_of_objects_1 > size_of_objects_2) {
intptr_t delta = size_of_objects_1 - size_of_objects_2;
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "
"Iterator: %" V8_PTR_PREFIX "d, "
"delta: %" V8_PTR_PREFIX "d\n",
size_of_objects_1, size_of_objects_2, delta);
CHECK_GT(size_of_objects_1 / 20, delta);
} else {
intptr_t delta = size_of_objects_2 - size_of_objects_1;
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "
"Iterator: %" V8_PTR_PREFIX "d, "
"delta: %" V8_PTR_PREFIX "d\n",
size_of_objects_1, size_of_objects_2, delta);
CHECK_GT(size_of_objects_2 / 20, delta);
}
}
static void FillUpNewSpace(NewSpace* new_space) {
// Fill up new space to the point that it is completely full. Make sure
// that the scavenger does not undo the filling.
Heap* heap = new_space->heap();
Isolate* isolate = heap->isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
AlwaysAllocateScope always_allocate(isolate);
intptr_t available = new_space->Capacity() - new_space->Size();
intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1;
for (intptr_t i = 0; i < number_of_fillers; i++) {
CHECK(heap->InNewSpace(*factory->NewFixedArray(32, NOT_TENURED)));
}
}
TEST(GrowAndShrinkNewSpace) {
CcTest::InitializeVM();
Heap* heap = CcTest::heap();
NewSpace* new_space = heap->new_space();
if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() ||
heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) {
// The max size cannot exceed the reserved size, since semispaces must be
// always within the reserved space. We can't test new space growing and
// shrinking if the reserved size is the same as the minimum (initial) size.
return;
}
// Explicitly growing should double the space capacity.
intptr_t old_capacity, new_capacity;
old_capacity = new_space->TotalCapacity();
new_space->Grow();
new_capacity = new_space->TotalCapacity();
CHECK(2 * old_capacity == new_capacity);
old_capacity = new_space->TotalCapacity();
FillUpNewSpace(new_space);
new_capacity = new_space->TotalCapacity();
CHECK(old_capacity == new_capacity);
// Explicitly shrinking should not affect space capacity.
old_capacity = new_space->TotalCapacity();
new_space->Shrink();
new_capacity = new_space->TotalCapacity();
CHECK(old_capacity == new_capacity);
// Let the scavenger empty the new space.
heap->CollectGarbage(NEW_SPACE);
CHECK_LE(new_space->Size(), old_capacity);
// Explicitly shrinking should halve the space capacity.
old_capacity = new_space->TotalCapacity();
new_space->Shrink();
new_capacity = new_space->TotalCapacity();
CHECK(old_capacity == 2 * new_capacity);
// Consecutive shrinking should not affect space capacity.
old_capacity = new_space->TotalCapacity();
new_space->Shrink();
new_space->Shrink();
new_space->Shrink();
new_capacity = new_space->TotalCapacity();
CHECK(old_capacity == new_capacity);
}
TEST(CollectingAllAvailableGarbageShrinksNewSpace) {
CcTest::InitializeVM();
Heap* heap = CcTest::heap();
if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() ||
heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) {
// The max size cannot exceed the reserved size, since semispaces must be
// always within the reserved space. We can't test new space growing and
// shrinking if the reserved size is the same as the minimum (initial) size.
return;
}
v8::HandleScope scope(CcTest::isolate());
NewSpace* new_space = heap->new_space();
intptr_t old_capacity, new_capacity;
old_capacity = new_space->TotalCapacity();
new_space->Grow();
new_capacity = new_space->TotalCapacity();
CHECK(2 * old_capacity == new_capacity);
FillUpNewSpace(new_space);
heap->CollectAllAvailableGarbage();
new_capacity = new_space->TotalCapacity();
CHECK(old_capacity == new_capacity);
}
static int NumberOfGlobalObjects() {
int count = 0;
HeapIterator iterator(CcTest::heap());
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
if (obj->IsGlobalObject()) count++;
}
// Subtract two to compensate for the two global objects (not global
// JSObjects, of which there would only be one) that are part of the code stub
// context, which is always present.
return count - 2;
}
// Test that we don't embed maps from foreign contexts into
// optimized code.
TEST(LeakNativeContextViaMap) {
i::FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(4, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = {x: 42}");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
ctx2->Enter();
ctx2->Global()->Set(v8_str("o"), v);
v8::Local<v8::Value> res = CompileRun(
"function f() { return o.x; }"
"for (var i = 0; i < 10; ++i) f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(42, res->Int32Value());
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0));
ctx2->Exit();
v8::Local<v8::Context>::New(isolate, ctx1)->Exit();
ctx1p.Reset();
isolate->ContextDisposedNotification();
}
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
ctx2p.Reset();
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
// Test that we don't embed functions from foreign contexts into
// optimized code.
TEST(LeakNativeContextViaFunction) {
i::FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(4, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = function() { return 42; }");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
ctx2->Enter();
ctx2->Global()->Set(v8_str("o"), v);
v8::Local<v8::Value> res = CompileRun(
"function f(x) { return x(); }"
"for (var i = 0; i < 10; ++i) f(o);"
"%OptimizeFunctionOnNextCall(f);"
"f(o);");
CHECK_EQ(42, res->Int32Value());
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0));
ctx2->Exit();
ctx1->Exit();
ctx1p.Reset();
isolate->ContextDisposedNotification();
}
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
ctx2p.Reset();
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
TEST(LeakNativeContextViaMapKeyed) {
i::FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(4, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = [42, 43]");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
ctx2->Enter();
ctx2->Global()->Set(v8_str("o"), v);
v8::Local<v8::Value> res = CompileRun(
"function f() { return o[0]; }"
"for (var i = 0; i < 10; ++i) f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(42, res->Int32Value());
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0));
ctx2->Exit();
ctx1->Exit();
ctx1p.Reset();
isolate->ContextDisposedNotification();
}
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
ctx2p.Reset();
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
TEST(LeakNativeContextViaMapProto) {
i::FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(4, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = { y: 42}");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v = ctx1->Global()->Get(v8_str("v"));
ctx2->Enter();
ctx2->Global()->Set(v8_str("o"), v);
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var p = {x: 42};"
" p.__proto__ = o;"
" return p.x;"
"}"
"for (var i = 0; i < 10; ++i) f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(42, res->Int32Value());
ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0));
ctx2->Exit();
ctx1->Exit();
ctx1p.Reset();
isolate->ContextDisposedNotification();
}
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
ctx2p.Reset();
CcTest::heap()->CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
TEST(InstanceOfStubWriteBarrier) {
i::FLAG_allow_natives_syntax = true;
#ifdef VERIFY_HEAP
i::FLAG_verify_heap = true;
#endif
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft()) return;
if (i::FLAG_force_marking_deque_overflows) return;
v8::HandleScope outer_scope(CcTest::isolate());
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function foo () { }"
"function mkbar () { return new (new Function(\"\")) (); }"
"function f (x) { return (x instanceof foo); }"
"function g () { f(mkbar()); }"
"f(new foo()); f(new foo());"
"%OptimizeFunctionOnNextCall(f);"
"f(new foo()); g();");
}
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
marking->Abort();
marking->Start(Heap::kNoGCFlags);
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
CHECK(f->IsOptimized());
while (!Marking::IsBlack(Marking::MarkBitFrom(f->code())) &&
!marking->IsStopped()) {
// Discard any pending GC requests otherwise we will get GC when we enter
// code below.
marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
}
CHECK(marking->IsMarking());
{
v8::HandleScope scope(CcTest::isolate());
v8::Handle<v8::Object> global = CcTest::global();
v8::Handle<v8::Function> g =
v8::Handle<v8::Function>::Cast(global->Get(v8_str("g")));
g->Call(global, 0, NULL);
}
CcTest::heap()->incremental_marking()->set_should_hurry(true);
CcTest::heap()->CollectGarbage(OLD_SPACE);
}
static int NumberOfProtoTransitions(Map* map) {
return TransitionArray::NumberOfPrototypeTransitions(
TransitionArray::GetPrototypeTransitions(map));
}
TEST(PrototypeTransitionClearing) {
if (FLAG_never_compact) return;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
CompileRun("var base = {};");
Handle<JSObject> baseObject =
v8::Utils::OpenHandle(
*v8::Handle<v8::Object>::Cast(
CcTest::global()->Get(v8_str("base"))));
int initialTransitions = NumberOfProtoTransitions(baseObject->map());
CompileRun(
"var live = [];"
"for (var i = 0; i < 10; i++) {"
" var object = {};"
" var prototype = {};"
" object.__proto__ = prototype;"
" if (i >= 3) live.push(object, prototype);"
"}");
// Verify that only dead prototype transitions are cleared.
CHECK_EQ(initialTransitions + 10,
NumberOfProtoTransitions(baseObject->map()));
CcTest::heap()->CollectAllGarbage();
const int transitions = 10 - 3;
CHECK_EQ(initialTransitions + transitions,
NumberOfProtoTransitions(baseObject->map()));
// Verify that prototype transitions array was compacted.
FixedArray* trans =
TransitionArray::GetPrototypeTransitions(baseObject->map());
for (int i = initialTransitions; i < initialTransitions + transitions; i++) {
int j = TransitionArray::kProtoTransitionHeaderSize + i;
CHECK(trans->get(j)->IsWeakCell());
CHECK(WeakCell::cast(trans->get(j))->value()->IsMap());
}
// Make sure next prototype is placed on an old-space evacuation candidate.
Handle<JSObject> prototype;
PagedSpace* space = CcTest::heap()->old_space();
{
AlwaysAllocateScope always_allocate(isolate);
SimulateFullSpace(space);
prototype = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS,
Strength::WEAK, TENURED);
}
// Add a prototype on an evacuation candidate and verify that transition
// clearing correctly records slots in prototype transition array.
i::FLAG_always_compact = true;
Handle<Map> map(baseObject->map());
CHECK(!space->LastPage()->Contains(
TransitionArray::GetPrototypeTransitions(*map)->address()));
CHECK(space->LastPage()->Contains(prototype->address()));
}
TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
#ifdef VERIFY_HEAP
i::FLAG_verify_heap = true;
#endif
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft()) return;
v8::HandleScope outer_scope(CcTest::isolate());
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function f () {"
" var s = 0;"
" for (var i = 0; i < 100; i++) s += i;"
" return s;"
"}"
"f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
}
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
CHECK(f->IsOptimized());
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
marking->Abort();
marking->Start(Heap::kNoGCFlags);
// The following calls will increment CcTest::heap()->global_ic_age().
CcTest::isolate()->ContextDisposedNotification();
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age());
CHECK_EQ(0, f->shared()->opt_count());
CHECK_EQ(0, f->shared()->code()->profiler_ticks());
}
TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
#ifdef VERIFY_HEAP
i::FLAG_verify_heap = true;
#endif
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft()) return;
v8::HandleScope outer_scope(CcTest::isolate());
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function f () {"
" var s = 0;"
" for (var i = 0; i < 100; i++) s += i;"
" return s;"
"}"
"f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
}
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
CHECK(f->IsOptimized());
CcTest::heap()->incremental_marking()->Abort();
// The following two calls will increment CcTest::heap()->global_ic_age().
CcTest::isolate()->ContextDisposedNotification();
CcTest::heap()->CollectAllGarbage();
CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age());
CHECK_EQ(0, f->shared()->opt_count());
CHECK_EQ(0, f->shared()->code()->profiler_ticks());
}
TEST(IdleNotificationFinishMarking) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
SimulateFullSpace(CcTest::heap()->old_space());
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
marking->Abort();
marking->Start(Heap::kNoGCFlags);
CHECK_EQ(CcTest::heap()->gc_count(), 0);
// TODO(hpayer): We cannot write proper unit test right now for heap.
// The ideal test would call kMaxIdleMarkingDelayCounter to test the
// marking delay counter.
// Perform a huge incremental marking step but don't complete marking.
intptr_t bytes_processed = 0;
do {
bytes_processed =
marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD,
IncrementalMarking::FORCE_MARKING,
IncrementalMarking::DO_NOT_FORCE_COMPLETION);
CHECK(!marking->IsIdleMarkingDelayCounterLimitReached());
} while (bytes_processed);
// The next invocations of incremental marking are not going to complete
// marking
// since the completion threshold is not reached
for (size_t i = 0; i < IncrementalMarking::kMaxIdleMarkingDelayCounter - 2;
i++) {
marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD,
IncrementalMarking::FORCE_MARKING,
IncrementalMarking::DO_NOT_FORCE_COMPLETION);
CHECK(!marking->IsIdleMarkingDelayCounterLimitReached());
}
marking->SetWeakClosureWasOverApproximatedForTesting(true);
// The next idle notification has to finish incremental marking.
const double kLongIdleTime = 1000.0;
CcTest::isolate()->IdleNotificationDeadline(
(v8::base::TimeTicks::HighResolutionNow().ToInternalValue() /
static_cast<double>(v8::base::Time::kMicrosecondsPerSecond)) +
kLongIdleTime);
CHECK_EQ(CcTest::heap()->gc_count(), 1);
}
// Test that HAllocateObject will always return an object in new-space.
TEST(OptimizedAllocationAlwaysInNewSpace) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
SimulateFullSpace(CcTest::heap()->new_space());
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
v8::Local<v8::Value> res = CompileRun(
"function c(x) {"
" this.x = x;"
" for (var i = 0; i < 32; i++) {"
" this['x' + i] = x;"
" }"
"}"
"function f(x) { return new c(x); };"
"f(1); f(2); f(3);"
"%OptimizeFunctionOnNextCall(f);"
"f(4);");
CHECK_EQ(
4, res.As<v8::Object>()->GetRealNamedProperty(v8_str("x"))->Int32Value());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InNewSpace(*o));
}
TEST(OptimizedPretenuringAllocationFolding) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(
source,
"var number_elements = %d;"
"var elements = new Array();"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [[{}], [1.1]];"
" }"
" return elements[number_elements-1]"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
AllocationSite::kPretenureMinimumCreated);
v8::Local<v8::Value> res = CompileRun(source.start());
v8::Local<v8::Value> int_array = v8::Object::Cast(*res)->Get(v8_str("0"));
Handle<JSObject> int_array_handle =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array));
v8::Local<v8::Value> double_array = v8::Object::Cast(*res)->Get(v8_str("1"));
Handle<JSObject> double_array_handle =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array));
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK(CcTest::heap()->InOldSpace(*int_array_handle));
CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements()));
CHECK(CcTest::heap()->InOldSpace(*double_array_handle));
CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements()));
}
TEST(OptimizedPretenuringObjectArrayLiterals) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(
source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [{}, {}, {}];"
" }"
" return elements[number_elements - 1];"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
AllocationSite::kPretenureMinimumCreated);
v8::Local<v8::Value> res = CompileRun(source.start());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(o->elements()));
CHECK(CcTest::heap()->InOldSpace(*o));
}
TEST(OptimizedPretenuringMixedInObjectProperties) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(
source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};"
" }"
" return elements[number_elements - 1];"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
AllocationSite::kPretenureMinimumCreated);
v8::Local<v8::Value> res = CompileRun(source.start());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(*o));
FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0);
FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1);
CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx1)));
if (!o->IsUnboxedDoubleField(idx2)) {
CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx2)));
} else {
CHECK_EQ(1.1, o->RawFastDoublePropertyAt(idx2));
}
JSObject* inner_object =
reinterpret_cast<JSObject*>(o->RawFastPropertyAt(idx1));
CHECK(CcTest::heap()->InOldSpace(inner_object));
if (!inner_object->IsUnboxedDoubleField(idx1)) {
CHECK(CcTest::heap()->InOldSpace(inner_object->RawFastPropertyAt(idx1)));
} else {
CHECK_EQ(2.2, inner_object->RawFastDoublePropertyAt(idx1));
}
CHECK(CcTest::heap()->InOldSpace(inner_object->RawFastPropertyAt(idx2)));
}
TEST(OptimizedPretenuringDoubleArrayProperties) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(
source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = {a: 1.1, b: 2.2};"
" }"
" return elements[i - 1];"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
AllocationSite::kPretenureMinimumCreated);
v8::Local<v8::Value> res = CompileRun(source.start());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK(CcTest::heap()->InOldSpace(o->properties()));
}
TEST(OptimizedPretenuringdoubleArrayLiterals) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(
source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [1.1, 2.2, 3.3];"
" }"
" return elements[number_elements - 1];"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
AllocationSite::kPretenureMinimumCreated);
v8::Local<v8::Value> res = CompileRun(source.start());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(o->elements()));
CHECK(CcTest::heap()->InOldSpace(*o));
}
TEST(OptimizedPretenuringNestedMixedArrayLiterals) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(
source,
"var number_elements = 100;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [[{}, {}, {}], [1.1, 2.2, 3.3]];"
" }"
" return elements[number_elements - 1];"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();");
v8::Local<v8::Value> res = CompileRun(source.start());
v8::Local<v8::Value> int_array = v8::Object::Cast(*res)->Get(v8_str("0"));
Handle<JSObject> int_array_handle =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array));
v8::Local<v8::Value> double_array = v8::Object::Cast(*res)->Get(v8_str("1"));
Handle<JSObject> double_array_handle =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array));
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK(CcTest::heap()->InOldSpace(*int_array_handle));
CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements()));
CHECK(CcTest::heap()->InOldSpace(*double_array_handle));
CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements()));
}
TEST(OptimizedPretenuringNestedObjectLiterals) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(
source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [[{}, {}, {}],[{}, {}, {}]];"
" }"
" return elements[number_elements - 1];"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
AllocationSite::kPretenureMinimumCreated);
v8::Local<v8::Value> res = CompileRun(source.start());
v8::Local<v8::Value> int_array_1 = v8::Object::Cast(*res)->Get(v8_str("0"));
Handle<JSObject> int_array_handle_1 =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array_1));
v8::Local<v8::Value> int_array_2 = v8::Object::Cast(*res)->Get(v8_str("1"));
Handle<JSObject> int_array_handle_2 =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(int_array_2));
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK(CcTest::heap()->InOldSpace(*int_array_handle_1));
CHECK(CcTest::heap()->InOldSpace(int_array_handle_1->elements()));
CHECK(CcTest::heap()->InOldSpace(*int_array_handle_2));
CHECK(CcTest::heap()->InOldSpace(int_array_handle_2->elements()));
}
TEST(OptimizedPretenuringNestedDoubleLiterals) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(
source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [[1.1, 1.2, 1.3],[2.1, 2.2, 2.3]];"
" }"
" return elements[number_elements - 1];"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
AllocationSite::kPretenureMinimumCreated);
v8::Local<v8::Value> res = CompileRun(source.start());
v8::Local<v8::Value> double_array_1 =
v8::Object::Cast(*res)->Get(v8_str("0"));
Handle<JSObject> double_array_handle_1 =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array_1));
v8::Local<v8::Value> double_array_2 =
v8::Object::Cast(*res)->Get(v8_str("1"));
Handle<JSObject> double_array_handle_2 =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(double_array_2));
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK(CcTest::heap()->InOldSpace(*double_array_handle_1));
CHECK(CcTest::heap()->InOldSpace(double_array_handle_1->elements()));
CHECK(CcTest::heap()->InOldSpace(*double_array_handle_2));
CHECK(CcTest::heap()->InOldSpace(double_array_handle_2->elements()));
}
// Make sure pretenuring feedback is gathered for constructed objects as well
// as for literals.
TEST(OptimizedPretenuringConstructorCalls) {
if (!i::FLAG_pretenuring_call_new) {
// FLAG_pretenuring_call_new needs to be synced with the snapshot.
return;
}
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
// Call new is doing slack tracking for the first
// JSFunction::kGenerousAllocationCount allocations, and we can't find
// mementos during that time.
i::SNPrintF(
source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function foo() {"
" this.a = 3;"
" this.b = {};"
"}"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = new foo();"
" }"
" return elements[number_elements - 1];"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
AllocationSite::kPretenureMinimumCreated +
JSFunction::kGenerousAllocationCount);
v8::Local<v8::Value> res = CompileRun(source.start());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(*o));
}
TEST(OptimizedPretenuringCallNew) {
if (!i::FLAG_pretenuring_call_new) {
// FLAG_pretenuring_call_new needs to be synced with the snapshot.
return;
}
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
// Call new is doing slack tracking for the first
// JSFunction::kGenerousAllocationCount allocations, and we can't find
// mementos during that time.
i::SNPrintF(
source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function g() { this.a = 0; }"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = new g();"
" }"
" return elements[number_elements - 1];"
"};"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
AllocationSite::kPretenureMinimumCreated +
JSFunction::kGenerousAllocationCount);
v8::Local<v8::Value> res = CompileRun(source.start());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(*o));
}
// Test regular array literals allocation.
TEST(OptimizedAllocationArrayLiterals) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return;
if (i::FLAG_gc_global || i::FLAG_stress_compaction) return;
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = new Array(1, 2, 3);"
" numbers[0] = 3.14;"
" return numbers;"
"};"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(static_cast<int>(3.14),
v8::Object::Cast(*res)->Get(v8_str("0"))->Int32Value());
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InNewSpace(o->elements()));
}
static int CountMapTransitions(Map* map) {
return TransitionArray::NumberOfTransitions(map->raw_transitions());
}
// Test that map transitions are cleared and maps are collected with
// incremental marking as well.
TEST(Regress1465) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
i::FLAG_trace_incremental_marking = true;
i::FLAG_retain_maps_for_n_gc = 0;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
static const int transitions_count = 256;
CompileRun("function F() {}");
{
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
for (int i = 0; i < transitions_count; i++) {
EmbeddedVector<char, 64> buffer;
SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i);
CompileRun(buffer.start());
}
CompileRun("var root = new F;");
}
Handle<JSObject> root =
v8::Utils::OpenHandle(
*v8::Handle<v8::Object>::Cast(
CcTest::global()->Get(v8_str("root"))));
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(root->map());
CompileRun("%DebugPrint(root);");
CHECK_EQ(transitions_count, transitions_before);
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after = CountMapTransitions(root->map());
CompileRun("%DebugPrint(root);");
CHECK_EQ(1, transitions_after);
}
#ifdef DEBUG
static void AddTransitions(int transitions_count) {
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
for (int i = 0; i < transitions_count; i++) {
EmbeddedVector<char, 64> buffer;
SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i);
CompileRun(buffer.start());
}
}
static Handle<JSObject> GetByName(const char* name) {
return v8::Utils::OpenHandle(
*v8::Handle<v8::Object>::Cast(
CcTest::global()->Get(v8_str(name))));
}
static void AddPropertyTo(
int gc_count, Handle<JSObject> object, const char* property_name) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Handle<String> prop_name = factory->InternalizeUtf8String(property_name);
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
i::FLAG_gc_interval = gc_count;
i::FLAG_gc_global = true;
i::FLAG_retain_maps_for_n_gc = 0;
CcTest::heap()->set_allocation_timeout(gc_count);
JSReceiver::SetProperty(object, prop_name, twenty_three, SLOPPY).Check();
}
TEST(TransitionArrayShrinksDuringAllocToZero) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
static const int transitions_count = 10;
CompileRun("function F() { }");
AddTransitions(transitions_count);
CompileRun("var root = new F;");
Handle<JSObject> root = GetByName("root");
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(root->map());
CHECK_EQ(transitions_count, transitions_before);
// Get rid of o
CompileRun("o = new F;"
"root = new F");
root = GetByName("root");
AddPropertyTo(2, root, "funny");
CcTest::heap()->CollectGarbage(NEW_SPACE);
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after = CountMapTransitions(
Map::cast(root->map()->GetBackPointer()));
CHECK_EQ(1, transitions_after);
}
TEST(TransitionArrayShrinksDuringAllocToOne) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
static const int transitions_count = 10;
CompileRun("function F() {}");
AddTransitions(transitions_count);
CompileRun("var root = new F;");
Handle<JSObject> root = GetByName("root");
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(root->map());
CHECK_EQ(transitions_count, transitions_before);
root = GetByName("root");
AddPropertyTo(2, root, "funny");
CcTest::heap()->CollectGarbage(NEW_SPACE);
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after = CountMapTransitions(
Map::cast(root->map()->GetBackPointer()));
CHECK_EQ(2, transitions_after);
}
TEST(TransitionArrayShrinksDuringAllocToOnePropertyFound) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
static const int transitions_count = 10;
CompileRun("function F() {}");
AddTransitions(transitions_count);
CompileRun("var root = new F;");
Handle<JSObject> root = GetByName("root");
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(root->map());
CHECK_EQ(transitions_count, transitions_before);
root = GetByName("root");
AddPropertyTo(0, root, "prop9");
CcTest::i_isolate()->heap()->CollectGarbage(OLD_SPACE);
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after = CountMapTransitions(
Map::cast(root->map()->GetBackPointer()));
CHECK_EQ(1, transitions_after);
}
TEST(TransitionArraySimpleToFull) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
static const int transitions_count = 1;
CompileRun("function F() {}");
AddTransitions(transitions_count);
CompileRun("var root = new F;");
Handle<JSObject> root = GetByName("root");
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(root->map());
CHECK_EQ(transitions_count, transitions_before);
CompileRun("o = new F;"
"root = new F");
root = GetByName("root");
DCHECK(TransitionArray::IsSimpleTransition(root->map()->raw_transitions()));
AddPropertyTo(2, root, "happy");
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after = CountMapTransitions(
Map::cast(root->map()->GetBackPointer()));
CHECK_EQ(1, transitions_after);
}
#endif // DEBUG
TEST(Regress2143a) {
i::FLAG_incremental_marking = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
// Prepare a map transition from the root object together with a yet
// untransitioned root object.
CompileRun("var root = new Object;"
"root.foo = 0;"
"root = new Object;");
SimulateIncrementalMarking(CcTest::heap());
// Compile a StoreIC that performs the prepared map transition. This
// will restart incremental marking and should make sure the root is
// marked grey again.
CompileRun("function f(o) {"
" o.foo = 0;"
"}"
"f(new Object);"
"f(root);");
// This bug only triggers with aggressive IC clearing.
CcTest::heap()->AgeInlineCaches();
// Explicitly request GC to perform final marking step and sweeping.
CcTest::heap()->CollectAllGarbage();
Handle<JSObject> root =
v8::Utils::OpenHandle(
*v8::Handle<v8::Object>::Cast(
CcTest::global()->Get(v8_str("root"))));
// The root object should be in a sane state.
CHECK(root->IsJSObject());
CHECK(root->map()->IsMap());
}
TEST(Regress2143b) {
i::FLAG_incremental_marking = true;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
// Prepare a map transition from the root object together with a yet
// untransitioned root object.
CompileRun("var root = new Object;"
"root.foo = 0;"
"root = new Object;");
SimulateIncrementalMarking(CcTest::heap());
// Compile an optimized LStoreNamedField that performs the prepared
// map transition. This will restart incremental marking and should
// make sure the root is marked grey again.
CompileRun("function f(o) {"
" o.foo = 0;"
"}"
"f(new Object);"
"f(new Object);"
"%OptimizeFunctionOnNextCall(f);"
"f(root);"
"%DeoptimizeFunction(f);");
// This bug only triggers with aggressive IC clearing.
CcTest::heap()->AgeInlineCaches();
// Explicitly request GC to perform final marking step and sweeping.
CcTest::heap()->CollectAllGarbage();
Handle<JSObject> root =
v8::Utils::OpenHandle(
*v8::Handle<v8::Object>::Cast(
CcTest::global()->Get(v8_str("root"))));
// The root object should be in a sane state.
CHECK(root->IsJSObject());
CHECK(root->map()->IsMap());
}
TEST(ReleaseOverReservedPages) {
if (FLAG_never_compact) return;
i::FLAG_trace_gc = true;
// The optimizer can allocate stuff, messing up the test.
i::FLAG_crankshaft = false;
i::FLAG_always_opt = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
v8::HandleScope scope(CcTest::isolate());
static const int number_of_test_pages = 20;
// Prepare many pages with low live-bytes count.
PagedSpace* old_space = heap->old_space();
CHECK_EQ(1, old_space->CountTotalPages());
for (int i = 0; i < number_of_test_pages; i++) {
AlwaysAllocateScope always_allocate(isolate);
SimulateFullSpace(old_space);
factory->NewFixedArray(1, TENURED);
}
CHECK_EQ(number_of_test_pages + 1, old_space->CountTotalPages());
// Triggering one GC will cause a lot of garbage to be discovered but
// even spread across all allocated pages.
heap->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask,
"triggered for preparation");
CHECK_GE(number_of_test_pages + 1, old_space->CountTotalPages());
// Triggering subsequent GCs should cause at least half of the pages
// to be released to the OS after at most two cycles.
heap->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask,
"triggered by test 1");
CHECK_GE(number_of_test_pages + 1, old_space->CountTotalPages());
heap->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask,
"triggered by test 2");
CHECK_GE(number_of_test_pages + 1, old_space->CountTotalPages() * 2);
// Triggering a last-resort GC should cause all pages to be released to the
// OS so that other processes can seize the memory. If we get a failure here
// where there are 2 pages left instead of 1, then we should increase the
// size of the first page a little in SizeOfFirstPage in spaces.cc. The
// first page should be small in order to reduce memory used when the VM
// boots, but if the 20 small arrays don't fit on the first page then that's
// an indication that it is too small.
heap->CollectAllAvailableGarbage("triggered really hard");
CHECK_EQ(1, old_space->CountTotalPages());
}
static int forced_gc_counter = 0;
void MockUseCounterCallback(v8::Isolate* isolate,
v8::Isolate::UseCounterFeature feature) {
isolate->GetCallingContext();
if (feature == v8::Isolate::kForcedGC) {
forced_gc_counter++;
}
}
TEST(CountForcedGC) {
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
isolate->SetUseCounterCallback(MockUseCounterCallback);
forced_gc_counter = 0;
const char* source = "gc();";
CompileRun(source);
CHECK_GT(forced_gc_counter, 0);
}
TEST(Regress2237) {
i::FLAG_stress_compaction = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
Handle<String> slice(CcTest::heap()->empty_string());
{
// Generate a parent that lives in new-space.
v8::HandleScope inner_scope(CcTest::isolate());
const char* c = "This text is long enough to trigger sliced strings.";
Handle<String> s = factory->NewStringFromAsciiChecked(c);
CHECK(s->IsSeqOneByteString());
CHECK(CcTest::heap()->InNewSpace(*s));
// Generate a sliced string that is based on the above parent and
// lives in old-space.
SimulateFullSpace(CcTest::heap()->new_space());
AlwaysAllocateScope always_allocate(isolate);
Handle<String> t = factory->NewProperSubString(s, 5, 35);
CHECK(t->IsSlicedString());
CHECK(!CcTest::heap()->InNewSpace(*t));
*slice.location() = *t.location();
}
CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString());
CcTest::heap()->CollectAllGarbage();
CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString());
}
#ifdef OBJECT_PRINT
TEST(PrintSharedFunctionInfo) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
const char* source = "f = function() { return 987654321; }\n"
"g = function() { return 123456789; }\n";
CompileRun(source);
Handle<JSFunction> g =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("g"))));
OFStream os(stdout);
g->shared()->Print(os);
os << std::endl;
}
#endif // OBJECT_PRINT
TEST(IncrementalMarkingPreservesMonomorphicCallIC) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> fun1, fun2;
{
LocalContext env;
CompileRun("function fun() {};");
fun1 = env->Global()->Get(v8_str("fun"));
}
{
LocalContext env;
CompileRun("function fun() {};");
fun2 = env->Global()->Get(v8_str("fun"));
}
// Prepare function f that contains type feedback for closures
// originating from two different native contexts.
CcTest::global()->Set(v8_str("fun1"), fun1);
CcTest::global()->Set(v8_str("fun2"), fun2);
CompileRun("function f(a, b) { a(); b(); } f(fun1, fun2);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
Handle<TypeFeedbackVector> feedback_vector(f->shared()->feedback_vector());
int expected_slots = 2;
CHECK_EQ(expected_slots, feedback_vector->ICSlots());
int slot1 = 0;
int slot2 = 1;
CHECK(feedback_vector->Get(FeedbackVectorICSlot(slot1))->IsWeakCell());
CHECK(feedback_vector->Get(FeedbackVectorICSlot(slot2))->IsWeakCell());
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
CHECK(!WeakCell::cast(feedback_vector->Get(FeedbackVectorICSlot(slot1)))
->cleared());
CHECK(!WeakCell::cast(feedback_vector->Get(FeedbackVectorICSlot(slot2)))
->cleared());
}
static Code* FindFirstIC(Code* code, Code::Kind kind) {
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
RelocInfo::ModeMask(RelocInfo::CONSTRUCT_CALL) |
RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID);
for (RelocIterator it(code, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Code* target = Code::GetCodeFromTargetAddress(info->target_address());
if (target->is_inline_cache_stub() && target->kind() == kind) {
return target;
}
}
return NULL;
}
static void CheckVectorIC(Handle<JSFunction> f, int ic_slot_index,
InlineCacheState desired_state) {
Handle<TypeFeedbackVector> vector =
Handle<TypeFeedbackVector>(f->shared()->feedback_vector());
FeedbackVectorICSlot slot(ic_slot_index);
LoadICNexus nexus(vector, slot);
CHECK(nexus.StateFromFeedback() == desired_state);
}
static void CheckVectorICCleared(Handle<JSFunction> f, int ic_slot_index) {
Handle<TypeFeedbackVector> vector =
Handle<TypeFeedbackVector>(f->shared()->feedback_vector());
FeedbackVectorICSlot slot(ic_slot_index);
LoadICNexus nexus(vector, slot);
CHECK(IC::IsCleared(&nexus));
}
TEST(IncrementalMarkingPreservesMonomorphicConstructor) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
// Prepare function f that contains a monomorphic IC for object
// originating from the same native context.
CompileRun(
"function fun() { this.x = 1; };"
"function f(o) { return new o(); } f(fun); f(fun);");
Handle<JSFunction> f = v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
Handle<TypeFeedbackVector> vector(f->shared()->feedback_vector());
CHECK(vector->Get(FeedbackVectorSlot(0))->IsWeakCell());
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
CHECK(vector->Get(FeedbackVectorSlot(0))->IsWeakCell());
}
TEST(IncrementalMarkingClearsMonomorphicConstructor) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> fun1;
{
LocalContext env;
CompileRun("function fun() { this.x = 1; };");
fun1 = env->Global()->Get(v8_str("fun"));
}
// Prepare function f that contains a monomorphic constructor for object
// originating from a different native context.
CcTest::global()->Set(v8_str("fun1"), fun1);
CompileRun(
"function fun() { this.x = 1; };"
"function f(o) { return new o(); } f(fun1); f(fun1);");
Handle<JSFunction> f = v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
Handle<TypeFeedbackVector> vector(f->shared()->feedback_vector());
CHECK(vector->Get(FeedbackVectorSlot(0))->IsWeakCell());
// Fire context dispose notification.
CcTest::isolate()->ContextDisposedNotification();
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
CHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(isolate),
vector->Get(FeedbackVectorSlot(0)));
}
TEST(IncrementalMarkingPreservesMonomorphicIC) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
// Prepare function f that contains a monomorphic IC for object
// originating from the same native context.
CompileRun("function fun() { this.x = 1; }; var obj = new fun();"
"function f(o) { return o.x; } f(obj); f(obj);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CheckVectorIC(f, 0, MONOMORPHIC);
CHECK(ic_before->ic_state() == DEFAULT);
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CheckVectorIC(f, 0, MONOMORPHIC);
CHECK(ic_after->ic_state() == DEFAULT);
}
TEST(IncrementalMarkingClearsMonomorphicIC) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> obj1;
{
LocalContext env;
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
obj1 = env->Global()->Get(v8_str("obj"));
}
// Prepare function f that contains a monomorphic IC for object
// originating from a different native context.
CcTest::global()->Set(v8_str("obj1"), obj1);
CompileRun("function f(o) { return o.x; } f(obj1); f(obj1);");
Handle<JSFunction> f = v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CheckVectorIC(f, 0, MONOMORPHIC);
CHECK(ic_before->ic_state() == DEFAULT);
// Fire context dispose notification.
CcTest::isolate()->ContextDisposedNotification();
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CheckVectorICCleared(f, 0);
CHECK(ic_after->ic_state() == DEFAULT);
}
TEST(IncrementalMarkingPreservesPolymorphicIC) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> obj1, obj2;
{
LocalContext env;
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
obj1 = env->Global()->Get(v8_str("obj"));
}
{
LocalContext env;
CompileRun("function fun() { this.x = 2; }; var obj = new fun();");
obj2 = env->Global()->Get(v8_str("obj"));
}
// Prepare function f that contains a polymorphic IC for objects
// originating from two different native contexts.
CcTest::global()->Set(v8_str("obj1"), obj1);
CcTest::global()->Set(v8_str("obj2"), obj2);
CompileRun("function f(o) { return o.x; } f(obj1); f(obj1); f(obj2);");
Handle<JSFunction> f = v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CheckVectorIC(f, 0, POLYMORPHIC);
CHECK(ic_before->ic_state() == DEFAULT);
// Fire context dispose notification.
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CheckVectorIC(f, 0, POLYMORPHIC);
CHECK(ic_after->ic_state() == DEFAULT);
}
TEST(IncrementalMarkingClearsPolymorphicIC) {
if (i::FLAG_always_opt) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> obj1, obj2;
{
LocalContext env;
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
obj1 = env->Global()->Get(v8_str("obj"));
}
{
LocalContext env;
CompileRun("function fun() { this.x = 2; }; var obj = new fun();");
obj2 = env->Global()->Get(v8_str("obj"));
}
// Prepare function f that contains a polymorphic IC for objects
// originating from two different native contexts.
CcTest::global()->Set(v8_str("obj1"), obj1);
CcTest::global()->Set(v8_str("obj2"), obj2);
CompileRun("function f(o) { return o.x; } f(obj1); f(obj1); f(obj2);");
Handle<JSFunction> f = v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(CcTest::global()->Get(v8_str("f"))));
Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC);
CheckVectorIC(f, 0, POLYMORPHIC);
CHECK(ic_before->ic_state() == DEFAULT);
// Fire context dispose notification.
CcTest::isolate()->ContextDisposedNotification();
SimulateIncrementalMarking(CcTest::heap());
CcTest::heap()->CollectAllGarbage();
CheckVectorICCleared(f, 0);
CHECK(ic_before->ic_state() == DEFAULT);
}
class SourceResource : public v8::String::ExternalOneByteStringResource {
public:
explicit SourceResource(const char* data)
: data_(data), length_(strlen(data)) { }
virtual void Dispose() {
i::DeleteArray(data_);
data_ = NULL;
}
const char* data() const { return data_; }
size_t length() const { return length_; }
bool IsDisposed() { return data_ == NULL; }
private:
const char* data_;
size_t length_;
};
void ReleaseStackTraceDataTest(v8::Isolate* isolate, const char* source,
const char* accessor) {
// Test that the data retained by the Error.stack accessor is released
// after the first time the accessor is fired. We use external string
// to check whether the data is being released since the external string
// resource's callback is fired when the external string is GC'ed.
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
v8::HandleScope scope(isolate);
SourceResource* resource = new SourceResource(i::StrDup(source));
{
v8::HandleScope scope(isolate);
v8::Handle<v8::String> source_string =
v8::String::NewExternal(isolate, resource);
i_isolate->heap()->CollectAllAvailableGarbage();
v8::Script::Compile(source_string)->Run();
CHECK(!resource->IsDisposed());
}
// i_isolate->heap()->CollectAllAvailableGarbage();
CHECK(!resource->IsDisposed());
CompileRun(accessor);
i_isolate->heap()->CollectAllAvailableGarbage();
// External source has been released.
CHECK(resource->IsDisposed());
delete resource;
}
UNINITIALIZED_TEST(ReleaseStackTraceData) {
if (i::FLAG_always_opt) {
// TODO(ulan): Remove this once the memory leak via code_next_link is fixed.
// See: https://codereview.chromium.org/181833004/
return;
}
FLAG_use_ic = false; // ICs retain objects.
FLAG_concurrent_recompilation = false;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
static const char* source1 = "var error = null; "
/* Normal Error */ "try { "
" throw new Error(); "
"} catch (e) { "
" error = e; "
"} ";
static const char* source2 = "var error = null; "
/* Stack overflow */ "try { "
" (function f() { f(); })(); "
"} catch (e) { "
" error = e; "
"} ";
static const char* source3 = "var error = null; "
/* Normal Error */ "try { "
/* as prototype */ " throw new Error(); "
"} catch (e) { "
" error = {}; "
" error.__proto__ = e; "
"} ";
static const char* source4 = "var error = null; "
/* Stack overflow */ "try { "
/* as prototype */ " (function f() { f(); })(); "
"} catch (e) { "
" error = {}; "
" error.__proto__ = e; "
"} ";
static const char* getter = "error.stack";
static const char* setter = "error.stack = 0";
ReleaseStackTraceDataTest(isolate, source1, setter);
ReleaseStackTraceDataTest(isolate, source2, setter);
// We do not test source3 and source4 with setter, since the setter is
// supposed to (untypically) write to the receiver, not the holder. This is
// to emulate the behavior of a data property.
ReleaseStackTraceDataTest(isolate, source1, getter);
ReleaseStackTraceDataTest(isolate, source2, getter);
ReleaseStackTraceDataTest(isolate, source3, getter);
ReleaseStackTraceDataTest(isolate, source4, getter);
}
isolate->Dispose();
}
TEST(Regress159140) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage();
// Prepare several closures that are all eligible for code flushing
// because all reachable ones are not optimized. Make sure that the
// optimized code object is directly reachable through a handle so
// that it is marked black during incremental marking.
Handle<Code> code;
{
HandleScope inner_scope(isolate);
CompileRun("function h(x) {}"
"function mkClosure() {"
" return function(x) { return x + 1; };"
"}"
"var f = mkClosure();"
"var g = mkClosure();"
"f(1); f(2);"
"g(1); g(2);"
"h(1); h(2);"
"%OptimizeFunctionOnNextCall(f); f(3);"
"%OptimizeFunctionOnNextCall(h); h(3);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
CompileRun("f = null;");
Handle<JSFunction> g =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("g"))));
CHECK(g->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
g->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
code = inner_scope.CloseAndEscape(Handle<Code>(f->code()));
}
// Simulate incremental marking so that the functions are enqueued as
// code flushing candidates. Then optimize one function. Finally
// finish the GC to complete code flushing.
SimulateIncrementalMarking(heap);
CompileRun("%OptimizeFunctionOnNextCall(g); g(3);");
heap->CollectAllGarbage();
// Unoptimized code is missing and the deoptimizer will go ballistic.
CompileRun("g('bozo');");
}
TEST(Regress165495) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage();
// Prepare an optimized closure that the optimized code map will get
// populated. Then age the unoptimized code to trigger code flushing
// but make sure the optimized code is unreachable.
{
HandleScope inner_scope(isolate);
CompileRun("function mkClosure() {"
" return function(x) { return x + 1; };"
"}"
"var f = mkClosure();"
"f(1); f(2);"
"%OptimizeFunctionOnNextCall(f); f(3);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
CompileRun("f = null;");
}
// Simulate incremental marking so that unoptimized code is flushed
// even though it still is cached in the optimized code map.
SimulateIncrementalMarking(heap);
heap->CollectAllGarbage();
// Make a new closure that will get code installed from the code map.
// Unoptimized code is missing and the deoptimizer will go ballistic.
CompileRun("var g = mkClosure(); g('bozo');");
}
TEST(Regress169209) {
i::FLAG_stress_compaction = false;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage();
// Prepare a shared function info eligible for code flushing for which
// the unoptimized code will be replaced during optimization.
Handle<SharedFunctionInfo> shared1;
{
HandleScope inner_scope(isolate);
CompileRun("function f() { return 'foobar'; }"
"function g(x) { if (x) f(); }"
"f();"
"g(false);"
"g(false);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
shared1 = inner_scope.CloseAndEscape(handle(f->shared(), isolate));
}
// Prepare a shared function info eligible for code flushing that will
// represent the dangling tail of the candidate list.
Handle<SharedFunctionInfo> shared2;
{
HandleScope inner_scope(isolate);
CompileRun("function flushMe() { return 0; }"
"flushMe(1);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("flushMe"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
shared2 = inner_scope.CloseAndEscape(handle(f->shared(), isolate));
}
// Simulate incremental marking and collect code flushing candidates.
SimulateIncrementalMarking(heap);
CHECK(shared1->code()->gc_metadata() != NULL);
// Optimize function and make sure the unoptimized code is replaced.
#ifdef DEBUG
FLAG_stop_at = "f";
#endif
CompileRun("%OptimizeFunctionOnNextCall(g);"
"g(false);");
// Finish garbage collection cycle.
heap->CollectAllGarbage();
CHECK(shared1->code()->gc_metadata() == NULL);
}
TEST(Regress169928) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_crankshaft = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
// Some flags turn Scavenge collections into Mark-sweep collections
// and hence are incompatible with this test case.
if (FLAG_gc_global || FLAG_stress_compaction) return;
// Prepare the environment
CompileRun("function fastliteralcase(literal, value) {"
" literal[0] = value;"
" return literal;"
"}"
"function get_standard_literal() {"
" var literal = [1, 2, 3];"
" return literal;"
"}"
"obj = fastliteralcase(get_standard_literal(), 1);"
"obj = fastliteralcase(get_standard_literal(), 1.5);"
"obj = fastliteralcase(get_standard_literal(), 2);");
// prepare the heap
v8::Local<v8::String> mote_code_string =
v8_str("fastliteralcase(mote, 2.5);");
v8::Local<v8::String> array_name = v8_str("mote");
CcTest::global()->Set(array_name, v8::Int32::New(CcTest::isolate(), 0));
// First make sure we flip spaces
CcTest::heap()->CollectGarbage(NEW_SPACE);
// Allocate the object.
Handle<FixedArray> array_data = factory->NewFixedArray(2, NOT_TENURED);
array_data->set(0, Smi::FromInt(1));
array_data->set(1, Smi::FromInt(2));
AllocateAllButNBytes(CcTest::heap()->new_space(),
JSArray::kSize + AllocationMemento::kSize +
kPointerSize);
Handle<JSArray> array =
factory->NewJSArrayWithElements(array_data, FAST_SMI_ELEMENTS);
CHECK_EQ(Smi::FromInt(2), array->length());
CHECK(array->HasFastSmiOrObjectElements());
// We need filler the size of AllocationMemento object, plus an extra
// fill pointer value.
HeapObject* obj = NULL;
AllocationResult allocation =
CcTest::heap()->new_space()->AllocateRawUnaligned(
AllocationMemento::kSize + kPointerSize);
CHECK(allocation.To(&obj));
Address addr_obj = obj->address();
CcTest::heap()->CreateFillerObjectAt(
addr_obj, AllocationMemento::kSize + kPointerSize);
// Give the array a name, making sure not to allocate strings.
v8::Handle<v8::Object> array_obj = v8::Utils::ToLocal(array);
CcTest::global()->Set(array_name, array_obj);
// This should crash with a protection violation if we are running a build
// with the bug.
AlwaysAllocateScope aa_scope(isolate);
v8::Script::Compile(mote_code_string)->Run();
}
TEST(Regress168801) {
if (i::FLAG_never_compact) return;
i::FLAG_always_compact = true;
i::FLAG_cache_optimized_code = false;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage();
// Ensure the code ends up on an evacuation candidate.
SimulateFullSpace(heap->code_space());
// Prepare an unoptimized function that is eligible for code flushing.
Handle<JSFunction> function;
{
HandleScope inner_scope(isolate);
CompileRun("function mkClosure() {"
" return function(x) { return x + 1; };"
"}"
"var f = mkClosure();"
"f(1); f(2);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
function = inner_scope.CloseAndEscape(handle(*f, isolate));
}
// Simulate incremental marking so that unoptimized function is enqueued as a
// candidate for code flushing. The shared function info however will not be
// explicitly enqueued.
SimulateIncrementalMarking(heap);
// Now optimize the function so that it is taken off the candidate list.
{
HandleScope inner_scope(isolate);
CompileRun("%OptimizeFunctionOnNextCall(f); f(3);");
}
// This cycle will bust the heap and subsequent cycles will go ballistic.
heap->CollectAllGarbage();
heap->CollectAllGarbage();
}
TEST(Regress173458) {
if (i::FLAG_never_compact) return;
i::FLAG_always_compact = true;
i::FLAG_cache_optimized_code = false;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Perform one initial GC to enable code flushing.
heap->CollectAllGarbage();
// Ensure the code ends up on an evacuation candidate.
SimulateFullSpace(heap->code_space());
// Prepare an unoptimized function that is eligible for code flushing.
Handle<JSFunction> function;
{
HandleScope inner_scope(isolate);
CompileRun("function mkClosure() {"
" return function(x) { return x + 1; };"
"}"
"var f = mkClosure();"
"f(1); f(2);");
Handle<JSFunction> f =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("f"))));
CHECK(f->is_compiled());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
f->shared()->code()->MakeOlder(static_cast<MarkingParity>(i % 2));
}
function = inner_scope.CloseAndEscape(handle(*f, isolate));
}
// Simulate incremental marking so that unoptimized function is enqueued as a
// candidate for code flushing. The shared function info however will not be
// explicitly enqueued.
SimulateIncrementalMarking(heap);
// Now enable the debugger which in turn will disable code flushing.
CHECK(isolate->debug()->Load());
// This cycle will bust the heap and subsequent cycles will go ballistic.
heap->CollectAllGarbage();
heap->CollectAllGarbage();
}
class DummyVisitor : public ObjectVisitor {
public:
void VisitPointers(Object** start, Object** end) { }
};
TEST(DeferredHandles) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
v8::HandleScope scope(reinterpret_cast<v8::Isolate*>(isolate));
HandleScopeData* data = isolate->handle_scope_data();
Handle<Object> init(heap->empty_string(), isolate);
while (data->next < data->limit) {
Handle<Object> obj(heap->empty_string(), isolate);
}
// An entire block of handles has been filled.
// Next handle would require a new block.
DCHECK(data->next == data->limit);
DeferredHandleScope deferred(isolate);
DummyVisitor visitor;
isolate->handle_scope_implementer()->Iterate(&visitor);
delete deferred.Detach();
}
TEST(IncrementalMarkingStepMakesBigProgressWithLargeObjects) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
CompileRun("function f(n) {"
" var a = new Array(n);"
" for (var i = 0; i < n; i += 100) a[i] = i;"
"};"
"f(10 * 1024 * 1024);");
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
if (marking->IsStopped()) marking->Start(Heap::kNoGCFlags);
// This big step should be sufficient to mark the whole array.
marking->Step(100 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
DCHECK(marking->IsComplete() ||
marking->IsReadyToOverApproximateWeakClosure());
}
TEST(DisableInlineAllocation) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
CompileRun("function test() {"
" var x = [];"
" for (var i = 0; i < 10; i++) {"
" x[i] = [ {}, [1,2,3], [1,x,3] ];"
" }"
"}"
"function run() {"
" %OptimizeFunctionOnNextCall(test);"
" test();"
" %DeoptimizeFunction(test);"
"}");
// Warm-up with inline allocation enabled.
CompileRun("test(); test(); run();");
// Run test with inline allocation disabled.
CcTest::heap()->DisableInlineAllocation();
CompileRun("run()");
// Run test with inline allocation re-enabled.
CcTest::heap()->EnableInlineAllocation();
CompileRun("run()");
}
static int AllocationSitesCount(Heap* heap) {
int count = 0;
for (Object* site = heap->allocation_sites_list();
!(site->IsUndefined());
site = AllocationSite::cast(site)->weak_next()) {
count++;
}
return count;
}
TEST(EnsureAllocationSiteDependentCodesProcessed) {
if (i::FLAG_always_opt || !i::FLAG_crankshaft) return;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
GlobalHandles* global_handles = isolate->global_handles();
if (!isolate->use_crankshaft()) return;
// The allocation site at the head of the list is ours.
Handle<AllocationSite> site;
{
LocalContext context;
v8::HandleScope scope(context->GetIsolate());
int count = AllocationSitesCount(heap);
CompileRun("var bar = function() { return (new Array()); };"
"var a = bar();"
"bar();"
"bar();");
// One allocation site should have been created.
int new_count = AllocationSitesCount(heap);
CHECK_EQ(new_count, (count + 1));
site = Handle<AllocationSite>::cast(
global_handles->Create(
AllocationSite::cast(heap->allocation_sites_list())));
CompileRun("%OptimizeFunctionOnNextCall(bar); bar();");
DependentCode::GroupStartIndexes starts(site->dependent_code());
CHECK_GE(starts.number_of_entries(), 1);
int index = starts.at(DependentCode::kAllocationSiteTransitionChangedGroup);
CHECK(site->dependent_code()->object_at(index)->IsWeakCell());
Code* function_bar = Code::cast(
WeakCell::cast(site->dependent_code()->object_at(index))->value());
Handle<JSFunction> bar_handle =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("bar"))));
CHECK_EQ(bar_handle->code(), function_bar);
}
// Now make sure that a gc should get rid of the function, even though we
// still have the allocation site alive.
for (int i = 0; i < 4; i++) {
heap->CollectAllGarbage();
}
// The site still exists because of our global handle, but the code is no
// longer referred to by dependent_code().
DependentCode::GroupStartIndexes starts(site->dependent_code());
int index = starts.at(DependentCode::kAllocationSiteTransitionChangedGroup);
CHECK(site->dependent_code()->object_at(index)->IsWeakCell() &&
WeakCell::cast(site->dependent_code()->object_at(index))->cleared());
}
TEST(CellsInOptimizedCodeAreWeak) {
if (i::FLAG_always_opt || !i::FLAG_crankshaft) return;
i::FLAG_weak_embedded_objects_in_optimized_code = true;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_crankshaft()) return;
HandleScope outer_scope(heap->isolate());
Handle<Code> code;
{
LocalContext context;
HandleScope scope(heap->isolate());
CompileRun("bar = (function() {"
" function bar() {"
" return foo(1);"
" };"
" var foo = function(x) { with (x) { return 1 + x; } };"
" bar(foo);"
" bar(foo);"
" bar(foo);"
" %OptimizeFunctionOnNextCall(bar);"
" bar(foo);"
" return bar;})();");
Handle<JSFunction> bar =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("bar"))));
code = scope.CloseAndEscape(Handle<Code>(bar->code()));
}
// Now make sure that a gc should get rid of the function
for (int i = 0; i < 4; i++) {
heap->CollectAllGarbage();
}
DCHECK(code->marked_for_deoptimization());
}
TEST(ObjectsInOptimizedCodeAreWeak) {
if (i::FLAG_always_opt || !i::FLAG_crankshaft) return;
i::FLAG_weak_embedded_objects_in_optimized_code = true;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_crankshaft()) return;
HandleScope outer_scope(heap->isolate());
Handle<Code> code;
{
LocalContext context;
HandleScope scope(heap->isolate());
CompileRun("function bar() {"
" return foo(1);"
"};"
"function foo(x) { with (x) { return 1 + x; } };"
"bar();"
"bar();"
"bar();"
"%OptimizeFunctionOnNextCall(bar);"
"bar();");
Handle<JSFunction> bar =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("bar"))));
code = scope.CloseAndEscape(Handle<Code>(bar->code()));
}
// Now make sure that a gc should get rid of the function
for (int i = 0; i < 4; i++) {
heap->CollectAllGarbage();
}
DCHECK(code->marked_for_deoptimization());
}
TEST(NoWeakHashTableLeakWithIncrementalMarking) {
if (i::FLAG_always_opt || !i::FLAG_crankshaft) return;
if (!i::FLAG_incremental_marking) return;
i::FLAG_weak_embedded_objects_in_optimized_code = true;
i::FLAG_allow_natives_syntax = true;
i::FLAG_compilation_cache = false;
i::FLAG_retain_maps_for_n_gc = 0;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
// Do not run for no-snap builds.
if (!i::Snapshot::HaveASnapshotToStartFrom(isolate)) return;
v8::internal::Heap* heap = CcTest::heap();
// Get a clean slate regarding optimized functions on the heap.
i::Deoptimizer::DeoptimizeAll(isolate);
heap->CollectAllGarbage();
if (!isolate->use_crankshaft()) return;
HandleScope outer_scope(heap->isolate());
for (int i = 0; i < 3; i++) {
SimulateIncrementalMarking(heap);
{
LocalContext context;
HandleScope scope(heap->isolate());
EmbeddedVector<char, 256> source;
SNPrintF(source,
"function bar%d() {"
" return foo%d(1);"
"};"
"function foo%d(x) { with (x) { return 1 + x; } };"
"bar%d();"
"bar%d();"
"bar%d();"
"%%OptimizeFunctionOnNextCall(bar%d);"
"bar%d();",
i, i, i, i, i, i, i, i);
CompileRun(source.start());
}
heap->CollectAllGarbage();
}
int elements = 0;
if (heap->weak_object_to_code_table()->IsHashTable()) {
WeakHashTable* t = WeakHashTable::cast(heap->weak_object_to_code_table());
elements = t->NumberOfElements();
}
CHECK_EQ(0, elements);
}
static Handle<JSFunction> OptimizeDummyFunction(const char* name) {
EmbeddedVector<char, 256> source;
SNPrintF(source,
"function %s() { return 0; }"
"%s(); %s();"
"%%OptimizeFunctionOnNextCall(%s);"
"%s();", name, name, name, name, name);
CompileRun(source.start());
Handle<JSFunction> fun =
v8::Utils::OpenHandle(
*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str(name))));
return fun;
}
static int GetCodeChainLength(Code* code) {
int result = 0;
while (code->next_code_link()->IsCode()) {
result++;
code = Code::cast(code->next_code_link());
}
return result;
}
TEST(NextCodeLinkIsWeak) {
i::FLAG_always_opt = false;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_crankshaft()) return;
HandleScope outer_scope(heap->isolate());
Handle<Code> code;
heap->CollectAllAvailableGarbage();
int code_chain_length_before, code_chain_length_after;
{
HandleScope scope(heap->isolate());
Handle<JSFunction> mortal = OptimizeDummyFunction("mortal");
Handle<JSFunction> immortal = OptimizeDummyFunction("immortal");
CHECK_EQ(immortal->code()->next_code_link(), mortal->code());
code_chain_length_before = GetCodeChainLength(immortal->code());
// Keep the immortal code and let the mortal code die.
code = scope.CloseAndEscape(Handle<Code>(immortal->code()));
CompileRun("mortal = null; immortal = null;");
}
heap->CollectAllAvailableGarbage();
// Now mortal code should be dead.
code_chain_length_after = GetCodeChainLength(*code);
CHECK_EQ(code_chain_length_before - 1, code_chain_length_after);
}
static Handle<Code> DummyOptimizedCode(Isolate* isolate) {
i::byte buffer[i::Assembler::kMinimalBufferSize];
MacroAssembler masm(isolate, buffer, sizeof(buffer));
CodeDesc desc;
masm.Push(isolate->factory()->undefined_value());
masm.Drop(1);
masm.GetCode(&desc);
Handle<Object> undefined(isolate->heap()->undefined_value(), isolate);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::OPTIMIZED_FUNCTION), undefined);
CHECK(code->IsCode());
return code;
}
TEST(NextCodeLinkIsWeak2) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_crankshaft()) return;
HandleScope outer_scope(heap->isolate());
heap->CollectAllAvailableGarbage();
Handle<Context> context(Context::cast(heap->native_contexts_list()), isolate);
Handle<Code> new_head;
Handle<Object> old_head(context->get(Context::OPTIMIZED_CODE_LIST), isolate);
{
HandleScope scope(heap->isolate());
Handle<Code> immortal = DummyOptimizedCode(isolate);
Handle<Code> mortal = DummyOptimizedCode(isolate);
mortal->set_next_code_link(*old_head);
immortal->set_next_code_link(*mortal);
context->set(Context::OPTIMIZED_CODE_LIST, *immortal);
new_head = scope.CloseAndEscape(immortal);
}
heap->CollectAllAvailableGarbage();
// Now mortal code should be dead.
CHECK_EQ(*old_head, new_head->next_code_link());
}
static bool weak_ic_cleared = false;
static void ClearWeakIC(
const v8::WeakCallbackInfo<v8::Persistent<v8::Object>>& data) {
printf("clear weak is called\n");
weak_ic_cleared = true;
data.GetParameter()->Reset();
}
TEST(WeakFunctionInConstructor) {
if (i::FLAG_always_opt) return;
i::FLAG_stress_compaction = false;
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
CompileRun(
"function createObj(obj) {"
" return new obj();"
"}");
Handle<JSFunction> createObj =
v8::Utils::OpenHandle(*v8::Handle<v8::Function>::Cast(
CcTest::global()->Get(v8_str("createObj"))));
v8::Persistent<v8::Object> garbage;
{
v8::HandleScope scope(isolate);
const char* source =
" (function() {"
" function hat() { this.x = 5; }"
" createObj(hat);"
" createObj(hat);"
" return hat;"
" })();";
garbage.Reset(isolate, CompileRun(source)->ToObject(isolate));
}
weak_ic_cleared = false;
garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter);
Heap* heap = CcTest::i_isolate()->heap();
heap->CollectAllGarbage();
CHECK(weak_ic_cleared);
// We've determined the constructor in createObj has had it's weak cell
// cleared. Now, verify that one additional call with a new function
// allows monomorphicity.
Handle<TypeFeedbackVector> feedback_vector = Handle<TypeFeedbackVector>(
createObj->shared()->feedback_vector(), CcTest::i_isolate());
for (int i = 0; i < 20; i++) {
Object* slot_value = feedback_vector->Get(FeedbackVectorSlot(0));
CHECK(slot_value->IsWeakCell());
if (WeakCell::cast(slot_value)->cleared()) break;
heap->CollectAllGarbage();
}
Object* slot_value = feedback_vector->Get(FeedbackVectorSlot(0));
CHECK(slot_value->IsWeakCell() && WeakCell::cast(slot_value)->cleared());
CompileRun(
"function coat() { this.x = 6; }"
"createObj(coat);");
slot_value = feedback_vector->Get(FeedbackVectorSlot(0));
CHECK(slot_value->IsWeakCell() && !WeakCell::cast(slot_value)->cleared());
}
// Checks that the value returned by execution of the source is weak.
void CheckWeakness(const char* source) {
i::FLAG_stress_compaction = false;
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
v8::Persistent<v8::Object> garbage;
{
v8::HandleScope scope(isolate);
garbage.Reset(isolate, CompileRun(source)->ToObject(isolate));
}
weak_ic_cleared = false;
garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter);
Heap* heap = CcTest::i_isolate()->heap();
heap->CollectAllGarbage();
CHECK(weak_ic_cleared);
}
// Each of the following "weak IC" tests creates an IC that embeds a map with
// the prototype pointing to _proto_ and checks that the _proto_ dies on GC.
TEST(WeakMapInMonomorphicLoadIC) {
CheckWeakness("function loadIC(obj) {"
" return obj.name;"
"}"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" loadIC(obj);"
" loadIC(obj);"
" loadIC(obj);"
" return proto;"
" })();");
}
TEST(WeakMapInPolymorphicLoadIC) {
CheckWeakness(
"function loadIC(obj) {"
" return obj.name;"
"}"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" loadIC(obj);"
" loadIC(obj);"
" loadIC(obj);"
" var poly = Object.create(proto);"
" poly.x = true;"
" loadIC(poly);"
" return proto;"
" })();");
}
TEST(WeakMapInMonomorphicKeyedLoadIC) {
CheckWeakness("function keyedLoadIC(obj, field) {"
" return obj[field];"
"}"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" keyedLoadIC(obj, 'name');"
" keyedLoadIC(obj, 'name');"
" keyedLoadIC(obj, 'name');"
" return proto;"
" })();");
}
TEST(WeakMapInPolymorphicKeyedLoadIC) {
CheckWeakness(
"function keyedLoadIC(obj, field) {"
" return obj[field];"
"}"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" keyedLoadIC(obj, 'name');"
" keyedLoadIC(obj, 'name');"
" keyedLoadIC(obj, 'name');"
" var poly = Object.create(proto);"
" poly.x = true;"
" keyedLoadIC(poly, 'name');"
" return proto;"
" })();");
}
TEST(WeakMapInMonomorphicStoreIC) {
CheckWeakness("function storeIC(obj, value) {"
" obj.name = value;"
"}"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" storeIC(obj, 'x');"
" storeIC(obj, 'x');"
" storeIC(obj, 'x');"
" return proto;"
" })();");
}
TEST(WeakMapInPolymorphicStoreIC) {
CheckWeakness(
"function storeIC(obj, value) {"
" obj.name = value;"
"}"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" storeIC(obj, 'x');"
" storeIC(obj, 'x');"
" storeIC(obj, 'x');"
" var poly = Object.create(proto);"
" poly.x = true;"
" storeIC(poly, 'x');"
" return proto;"
" })();");
}
TEST(WeakMapInMonomorphicKeyedStoreIC) {
CheckWeakness("function keyedStoreIC(obj, field, value) {"
" obj[field] = value;"
"}"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" keyedStoreIC(obj, 'x');"
" keyedStoreIC(obj, 'x');"
" keyedStoreIC(obj, 'x');"
" return proto;"
" })();");
}
TEST(WeakMapInPolymorphicKeyedStoreIC) {
CheckWeakness(
"function keyedStoreIC(obj, field, value) {"
" obj[field] = value;"
"}"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" keyedStoreIC(obj, 'x');"
" keyedStoreIC(obj, 'x');"
" keyedStoreIC(obj, 'x');"
" var poly = Object.create(proto);"
" poly.x = true;"
" keyedStoreIC(poly, 'x');"
" return proto;"
" })();");
}
TEST(WeakMapInMonomorphicCompareNilIC) {
CheckWeakness("function compareNilIC(obj) {"
" return obj == null;"
"}"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" compareNilIC(obj);"
" compareNilIC(obj);"
" compareNilIC(obj);"
" return proto;"
" })();");
}
Handle<JSFunction> GetFunctionByName(Isolate* isolate, const char* name) {
Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
Handle<Object> obj =
Object::GetProperty(isolate->global_object(), str).ToHandleChecked();
return Handle<JSFunction>::cast(obj);
}
void CheckIC(Code* code, Code::Kind kind, SharedFunctionInfo* shared,
int ic_slot, InlineCacheState state) {
if (kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC ||
kind == Code::CALL_IC) {
TypeFeedbackVector* vector = shared->feedback_vector();
FeedbackVectorICSlot slot(ic_slot);
if (kind == Code::LOAD_IC) {
LoadICNexus nexus(vector, slot);
CHECK_EQ(nexus.StateFromFeedback(), state);
} else if (kind == Code::KEYED_LOAD_IC) {
KeyedLoadICNexus nexus(vector, slot);
CHECK_EQ(nexus.StateFromFeedback(), state);
} else if (kind == Code::CALL_IC) {
CallICNexus nexus(vector, slot);
CHECK_EQ(nexus.StateFromFeedback(), state);
}
} else {
Code* ic = FindFirstIC(code, kind);
CHECK(ic->is_inline_cache_stub());
CHECK(ic->ic_state() == state);
}
}
TEST(MonomorphicStaysMonomorphicAfterGC) {
if (FLAG_always_opt) return;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function loadIC(obj) {"
" return obj.name;"
"}"
"function testIC() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" loadIC(obj);"
" loadIC(obj);"
" loadIC(obj);"
" return proto;"
"};");
Handle<JSFunction> loadIC = GetFunctionByName(isolate, "loadIC");
{
v8::HandleScope scope(CcTest::isolate());
CompileRun("(testIC())");
}
heap->CollectAllGarbage();
CheckIC(loadIC->code(), Code::LOAD_IC, loadIC->shared(), 0, MONOMORPHIC);
{
v8::HandleScope scope(CcTest::isolate());
CompileRun("(testIC())");
}
CheckIC(loadIC->code(), Code::LOAD_IC, loadIC->shared(), 0, MONOMORPHIC);
}
TEST(PolymorphicStaysPolymorphicAfterGC) {
if (FLAG_always_opt) return;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function loadIC(obj) {"
" return obj.name;"
"}"
"function testIC() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" loadIC(obj);"
" loadIC(obj);"
" loadIC(obj);"
" var poly = Object.create(proto);"
" poly.x = true;"
" loadIC(poly);"
" return proto;"
"};");
Handle<JSFunction> loadIC = GetFunctionByName(isolate, "loadIC");
{
v8::HandleScope scope(CcTest::isolate());
CompileRun("(testIC())");
}
heap->CollectAllGarbage();
CheckIC(loadIC->code(), Code::LOAD_IC, loadIC->shared(), 0, POLYMORPHIC);
{
v8::HandleScope scope(CcTest::isolate());
CompileRun("(testIC())");
}
CheckIC(loadIC->code(), Code::LOAD_IC, loadIC->shared(), 0, POLYMORPHIC);
}
TEST(WeakCell) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
v8::internal::Factory* factory = isolate->factory();
HandleScope outer_scope(isolate);
Handle<WeakCell> weak_cell1;
{
HandleScope inner_scope(isolate);
Handle<HeapObject> value = factory->NewFixedArray(1, NOT_TENURED);
weak_cell1 = inner_scope.CloseAndEscape(factory->NewWeakCell(value));
}
Handle<FixedArray> survivor = factory->NewFixedArray(1, NOT_TENURED);
Handle<WeakCell> weak_cell2;
{
HandleScope inner_scope(isolate);
weak_cell2 = inner_scope.CloseAndEscape(factory->NewWeakCell(survivor));
}
CHECK(weak_cell1->value()->IsFixedArray());
CHECK_EQ(*survivor, weak_cell2->value());
heap->CollectGarbage(NEW_SPACE);
CHECK(weak_cell1->value()->IsFixedArray());
CHECK_EQ(*survivor, weak_cell2->value());
heap->CollectGarbage(NEW_SPACE);
CHECK(weak_cell1->value()->IsFixedArray());
CHECK_EQ(*survivor, weak_cell2->value());
heap->CollectAllAvailableGarbage();
CHECK(weak_cell1->cleared());
CHECK_EQ(*survivor, weak_cell2->value());
}
TEST(WeakCellsWithIncrementalMarking) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
v8::internal::Factory* factory = isolate->factory();
const int N = 16;
HandleScope outer_scope(isolate);
Handle<FixedArray> survivor = factory->NewFixedArray(1, NOT_TENURED);
Handle<WeakCell> weak_cells[N];
for (int i = 0; i < N; i++) {
HandleScope inner_scope(isolate);
Handle<HeapObject> value =
i == 0 ? survivor : factory->NewFixedArray(1, NOT_TENURED);
Handle<WeakCell> weak_cell = factory->NewWeakCell(value);
CHECK(weak_cell->value()->IsFixedArray());
IncrementalMarking* marking = heap->incremental_marking();
if (marking->IsStopped()) marking->Start(Heap::kNoGCFlags);
marking->Step(128, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
heap->CollectGarbage(NEW_SPACE);
CHECK(weak_cell->value()->IsFixedArray());
weak_cells[i] = inner_scope.CloseAndEscape(weak_cell);
}
heap->CollectAllGarbage();
CHECK_EQ(*survivor, weak_cells[0]->value());
for (int i = 1; i < N; i++) {
CHECK(weak_cells[i]->cleared());
}
}
#ifdef DEBUG
TEST(AddInstructionChangesNewSpacePromotion) {
i::FLAG_allow_natives_syntax = true;
i::FLAG_expose_gc = true;
i::FLAG_stress_compaction = true;
i::FLAG_gc_interval = 1000;
CcTest::InitializeVM();
if (!i::FLAG_allocation_site_pretenuring) return;
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
CompileRun(
"function add(a, b) {"
" return a + b;"
"}"
"add(1, 2);"
"add(\"a\", \"b\");"
"var oldSpaceObject;"
"gc();"
"function crash(x) {"
" var object = {a: null, b: null};"
" var result = add(1.5, x | 0);"
" object.a = result;"
" oldSpaceObject = object;"
" return object;"
"}"
"crash(1);"
"crash(1);"
"%OptimizeFunctionOnNextCall(crash);"
"crash(1);");
v8::Handle<v8::Object> global = CcTest::global();
v8::Handle<v8::Function> g =
v8::Handle<v8::Function>::Cast(global->Get(v8_str("crash")));
v8::Handle<v8::Value> args1[] = { v8_num(1) };
heap->DisableInlineAllocation();
heap->set_allocation_timeout(1);
g->Call(global, 1, args1);
heap->CollectAllGarbage();
}
void OnFatalErrorExpectOOM(const char* location, const char* message) {
// Exit with 0 if the location matches our expectation.
exit(strcmp(location, "CALL_AND_RETRY_LAST"));
}
TEST(CEntryStubOOM) {
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::V8::SetFatalErrorHandler(OnFatalErrorExpectOOM);
v8::Handle<v8::Value> result = CompileRun(
"%SetFlags('--gc-interval=1');"
"var a = [];"
"a.__proto__ = [];"
"a.unshift(1)");
CHECK(result->IsNumber());
}
#endif // DEBUG
static void InterruptCallback357137(v8::Isolate* isolate, void* data) { }
static void RequestInterrupt(const v8::FunctionCallbackInfo<v8::Value>& args) {
CcTest::isolate()->RequestInterrupt(&InterruptCallback357137, NULL);
}
TEST(Regress357137) {
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope hscope(isolate);
v8::Handle<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
global->Set(v8::String::NewFromUtf8(isolate, "interrupt"),
v8::FunctionTemplate::New(isolate, RequestInterrupt));
v8::Local<v8::Context> context = v8::Context::New(isolate, NULL, global);
DCHECK(!context.IsEmpty());
v8::Context::Scope cscope(context);
v8::Local<v8::Value> result = CompileRun(
"var locals = '';"
"for (var i = 0; i < 512; i++) locals += 'var v' + i + '= 42;';"
"eval('function f() {' + locals + 'return function() { return v0; }; }');"
"interrupt();" // This triggers a fake stack overflow in f.
"f()()");
CHECK_EQ(42.0, result->ToNumber(isolate)->Value());
}
TEST(ArrayShiftSweeping) {
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
v8::Local<v8::Value> result = CompileRun(
"var array = new Array(40000);"
"var tmp = new Array(100000);"
"array[0] = 10;"
"gc();"
"gc();"
"array.shift();"
"array;");
Handle<JSObject> o =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(result));
CHECK(heap->InOldSpace(o->elements()));
CHECK(heap->InOldSpace(*o));
Page* page = Page::FromAddress(o->elements()->address());
CHECK(page->parallel_sweeping() <= MemoryChunk::SWEEPING_FINALIZE ||
Marking::IsBlack(Marking::MarkBitFrom(o->elements())));
}
UNINITIALIZED_TEST(PromotionQueue) {
i::FLAG_expose_gc = true;
i::FLAG_max_semi_space_size = 2 * (Page::kPageSize / MB);
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Heap* heap = i_isolate->heap();
NewSpace* new_space = heap->new_space();
// In this test we will try to overwrite the promotion queue which is at the
// end of to-space. To actually make that possible, we need at least two
// semi-space pages and take advantage of fragmentation.
// (1) Grow semi-space to two pages.
// (2) Create a few small long living objects and call the scavenger to
// move them to the other semi-space.
// (3) Create a huge object, i.e., remainder of first semi-space page and
// create another huge object which should be of maximum allocatable memory
// size of the second semi-space page.
// (4) Call the scavenger again.
// What will happen is: the scavenger will promote the objects created in
// (2) and will create promotion queue entries at the end of the second
// semi-space page during the next scavenge when it promotes the objects to
// the old generation. The first allocation of (3) will fill up the first
// semi-space page. The second allocation in (3) will not fit into the
// first semi-space page, but it will overwrite the promotion queue which
// are in the second semi-space page. If the right guards are in place, the
// promotion queue will be evacuated in that case.
// Grow the semi-space to two pages to make semi-space copy overwrite the
// promotion queue, which will be at the end of the second page.
intptr_t old_capacity = new_space->TotalCapacity();
// If we are in a low memory config, we can't grow to two pages and we can't
// run this test. This also means the issue we are testing cannot arise, as
// there is no fragmentation.
if (new_space->IsAtMaximumCapacity()) return;
new_space->Grow();
CHECK(new_space->IsAtMaximumCapacity());
CHECK(2 * old_capacity == new_space->TotalCapacity());
// Call the scavenger two times to get an empty new space
heap->CollectGarbage(NEW_SPACE);
heap->CollectGarbage(NEW_SPACE);
// First create a few objects which will survive a scavenge, and will get
// promoted to the old generation later on. These objects will create
// promotion queue entries at the end of the second semi-space page.
const int number_handles = 12;
Handle<FixedArray> handles[number_handles];
for (int i = 0; i < number_handles; i++) {
handles[i] = i_isolate->factory()->NewFixedArray(1, NOT_TENURED);
}
heap->CollectGarbage(NEW_SPACE);
// Create the first huge object which will exactly fit the first semi-space
// page.
int new_linear_size =
static_cast<int>(*heap->new_space()->allocation_limit_address() -
*heap->new_space()->allocation_top_address());
int length = new_linear_size / kPointerSize - FixedArray::kHeaderSize;
Handle<FixedArray> first =
i_isolate->factory()->NewFixedArray(length, NOT_TENURED);
CHECK(heap->InNewSpace(*first));
// Create the second huge object of maximum allocatable second semi-space
// page size.
new_linear_size =
static_cast<int>(*heap->new_space()->allocation_limit_address() -
*heap->new_space()->allocation_top_address());
length = Page::kMaxRegularHeapObjectSize / kPointerSize -
FixedArray::kHeaderSize;
Handle<FixedArray> second =
i_isolate->factory()->NewFixedArray(length, NOT_TENURED);
CHECK(heap->InNewSpace(*second));
// This scavenge will corrupt memory if the promotion queue is not
// evacuated.
heap->CollectGarbage(NEW_SPACE);
}
isolate->Dispose();
}
TEST(Regress388880) {
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
Handle<Map> map1 = Map::Create(isolate, 1);
Handle<Map> map2 =
Map::CopyWithField(map1, factory->NewStringFromStaticChars("foo"),
HeapType::Any(isolate), NONE, Representation::Tagged(),
OMIT_TRANSITION).ToHandleChecked();
int desired_offset = Page::kPageSize - map1->instance_size();
// Allocate fixed array in old pointer space so, that object allocated
// afterwards would end at the end of the page.
{
SimulateFullSpace(heap->old_space());
int padding_size = desired_offset - Page::kObjectStartOffset;
int padding_array_length =
(padding_size - FixedArray::kHeaderSize) / kPointerSize;
Handle<FixedArray> temp2 =
factory->NewFixedArray(padding_array_length, TENURED);
Page* page = Page::FromAddress(temp2->address());
CHECK_EQ(Page::kObjectStartOffset, page->Offset(temp2->address()));
}
Handle<JSObject> o = factory->NewJSObjectFromMap(map1, TENURED);
o->set_properties(*factory->empty_fixed_array());
// Ensure that the object allocated where we need it.
Page* page = Page::FromAddress(o->address());
CHECK_EQ(desired_offset, page->Offset(o->address()));
// Now we have an object right at the end of the page.
// Enable incremental marking to trigger actions in Heap::AdjustLiveBytes()
// that would cause crash.
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
marking->Abort();
marking->Start(Heap::kNoGCFlags);
CHECK(marking->IsMarking());
// Now everything is set up for crashing in JSObject::MigrateFastToFast()
// when it calls heap->AdjustLiveBytes(...).
JSObject::MigrateToMap(o, map2);
}
TEST(Regress3631) {
i::FLAG_expose_gc = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
v8::Local<v8::Value> result = CompileRun(
"var weak_map = new WeakMap();"
"var future_keys = [];"
"for (var i = 0; i < 50; i++) {"
" var key = {'k' : i + 0.1};"
" weak_map.set(key, 1);"
" future_keys.push({'x' : i + 0.2});"
"}"
"weak_map");
if (marking->IsStopped()) {
marking->Start(Heap::kNoGCFlags);
}
// Incrementally mark the backing store.
Handle<JSObject> obj =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(result));
Handle<JSWeakCollection> weak_map(reinterpret_cast<JSWeakCollection*>(*obj));
while (!Marking::IsBlack(
Marking::MarkBitFrom(HeapObject::cast(weak_map->table()))) &&
!marking->IsStopped()) {
marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD);
}
// Stash the backing store in a handle.
Handle<Object> save(weak_map->table(), isolate);
// The following line will update the backing store.
CompileRun(
"for (var i = 0; i < 50; i++) {"
" weak_map.set(future_keys[i], i);"
"}");
heap->incremental_marking()->set_should_hurry(true);
heap->CollectGarbage(OLD_SPACE);
}
TEST(Regress442710) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
HandleScope sc(isolate);
Handle<GlobalObject> global(CcTest::i_isolate()->context()->global_object());
Handle<JSArray> array = factory->NewJSArray(2);
Handle<String> name = factory->InternalizeUtf8String("testArray");
JSReceiver::SetProperty(global, name, array, SLOPPY).Check();
CompileRun("testArray[0] = 1; testArray[1] = 2; testArray.shift();");
heap->CollectGarbage(OLD_SPACE);
}
TEST(NumberStringCacheSize) {
// Test that the number-string cache has not been resized in the snapshot.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
if (!isolate->snapshot_available()) return;
Heap* heap = isolate->heap();
CHECK_EQ(TestHeap::kInitialNumberStringCacheSize * 2,
heap->number_string_cache()->length());
}
TEST(Regress3877) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
CompileRun("function cls() { this.x = 10; }");
Handle<WeakCell> weak_prototype;
{
HandleScope inner_scope(isolate);
v8::Local<v8::Value> result = CompileRun("cls.prototype");
Handle<JSObject> proto =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(result));
weak_prototype = inner_scope.CloseAndEscape(factory->NewWeakCell(proto));
}
CHECK(!weak_prototype->cleared());
CompileRun(
"var a = { };"
"a.x = new cls();"
"cls.prototype = null;");
for (int i = 0; i < 4; i++) {
heap->CollectAllGarbage();
}
// The map of a.x keeps prototype alive
CHECK(!weak_prototype->cleared());
// Change the map of a.x and make the previous map garbage collectable.
CompileRun("a.x.__proto__ = {};");
for (int i = 0; i < 4; i++) {
heap->CollectAllGarbage();
}
CHECK(weak_prototype->cleared());
}
Handle<WeakCell> AddRetainedMap(Isolate* isolate, Heap* heap) {
HandleScope inner_scope(isolate);
Handle<Map> map = Map::Create(isolate, 1);
v8::Local<v8::Value> result =
CompileRun("(function () { return {x : 10}; })();");
Handle<JSObject> proto =
v8::Utils::OpenHandle(*v8::Handle<v8::Object>::Cast(result));
Map::SetPrototype(map, proto);
heap->AddRetainedMap(map);
return inner_scope.CloseAndEscape(Map::WeakCellForMap(map));
}
void CheckMapRetainingFor(int n) {
FLAG_retain_maps_for_n_gc = n;
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Handle<WeakCell> weak_cell = AddRetainedMap(isolate, heap);
CHECK(!weak_cell->cleared());
for (int i = 0; i < n; i++) {
heap->CollectGarbage(OLD_SPACE);
}
CHECK(!weak_cell->cleared());
heap->CollectGarbage(OLD_SPACE);
CHECK(weak_cell->cleared());
}
TEST(MapRetaining) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
CheckMapRetainingFor(FLAG_retain_maps_for_n_gc);
CheckMapRetainingFor(0);
CheckMapRetainingFor(1);
CheckMapRetainingFor(7);
}
TEST(RegressArrayListGC) {
FLAG_retain_maps_for_n_gc = 1;
FLAG_incremental_marking = 0;
FLAG_gc_global = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
AddRetainedMap(isolate, heap);
Handle<Map> map = Map::Create(isolate, 1);
heap->CollectGarbage(OLD_SPACE);
// Force GC in old space on next addition of retained map.
Map::WeakCellForMap(map);
SimulateFullSpace(CcTest::heap()->new_space());
for (int i = 0; i < 10; i++) {
heap->AddRetainedMap(map);
}
heap->CollectGarbage(OLD_SPACE);
}
#ifdef DEBUG
TEST(PathTracer) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> result = CompileRun("'abc'");
Handle<Object> o = v8::Utils::OpenHandle(*result);
CcTest::i_isolate()->heap()->TracePathToObject(*o);
}
#endif // DEBUG
TEST(WritableVsImmortalRoots) {
for (int i = 0; i < Heap::kStrongRootListLength; ++i) {
Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(i);
bool writable = Heap::RootCanBeWrittenAfterInitialization(root_index);
bool immortal = Heap::RootIsImmortalImmovable(root_index);
// A root value can be writable, immortal, or neither, but not both.
CHECK(!immortal || !writable);
}
}
static void TestRightTrimFixedTypedArray(i::ExternalArrayType type,
int initial_length,
int elements_to_trim) {
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
Handle<FixedTypedArrayBase> array =
factory->NewFixedTypedArray(initial_length, type, true);
int old_size = array->size();
heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(*array,
elements_to_trim);
// Check that free space filler is at the right place and did not smash the
// array header.
CHECK(array->IsFixedArrayBase());
CHECK_EQ(initial_length - elements_to_trim, array->length());
int new_size = array->size();
if (new_size != old_size) {
// Free space filler should be created in this case.
Address next_obj_address = array->address() + array->size();
CHECK(HeapObject::FromAddress(next_obj_address)->IsFiller());
}
heap->CollectAllAvailableGarbage();
}
TEST(Regress472513) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
// The combination of type/initial_length/elements_to_trim triggered
// typed array header smashing with free space filler (crbug/472513).
// 64-bit cases.
TestRightTrimFixedTypedArray(i::kExternalUint8Array, 32, 6);
TestRightTrimFixedTypedArray(i::kExternalUint8Array, 32 - 7, 6);
TestRightTrimFixedTypedArray(i::kExternalUint16Array, 16, 6);
TestRightTrimFixedTypedArray(i::kExternalUint16Array, 16 - 3, 6);
TestRightTrimFixedTypedArray(i::kExternalUint32Array, 8, 6);
TestRightTrimFixedTypedArray(i::kExternalUint32Array, 8 - 1, 6);
// 32-bit cases.
TestRightTrimFixedTypedArray(i::kExternalUint8Array, 16, 3);
TestRightTrimFixedTypedArray(i::kExternalUint8Array, 16 - 3, 3);
TestRightTrimFixedTypedArray(i::kExternalUint16Array, 8, 3);
TestRightTrimFixedTypedArray(i::kExternalUint16Array, 8 - 1, 3);
TestRightTrimFixedTypedArray(i::kExternalUint32Array, 4, 3);
}
TEST(WeakFixedArray) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Handle<HeapNumber> number = CcTest::i_isolate()->factory()->NewHeapNumber(1);
Handle<WeakFixedArray> array = WeakFixedArray::Add(Handle<Object>(), number);
array->Remove(number);
array->Compact();
WeakFixedArray::Add(array, number);
}
TEST(PreprocessStackTrace) {
// Do not automatically trigger early GC.
FLAG_gc_interval = -1;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::TryCatch try_catch(CcTest::isolate());
CompileRun("throw new Error();");
CHECK(try_catch.HasCaught());
Isolate* isolate = CcTest::i_isolate();
Handle<Object> exception = v8::Utils::OpenHandle(*try_catch.Exception());
Handle<Name> key = isolate->factory()->stack_trace_symbol();
Handle<Object> stack_trace =
JSObject::GetProperty(exception, key).ToHandleChecked();
Handle<Object> code =
Object::GetElement(isolate, stack_trace, 3).ToHandleChecked();
CHECK(code->IsCode());
isolate->heap()->CollectAllAvailableGarbage("stack trace preprocessing");
Handle<Object> pos =
Object::GetElement(isolate, stack_trace, 3).ToHandleChecked();
CHECK(pos->IsSmi());
Handle<JSArray> stack_trace_array = Handle<JSArray>::cast(stack_trace);
int array_length = Smi::cast(stack_trace_array->length())->value();
for (int i = 0; i < array_length; i++) {
Handle<Object> element =
Object::GetElement(isolate, stack_trace, i).ToHandleChecked();
CHECK(!element->IsCode());
}
}
static bool utils_has_been_collected = false;
static void UtilsHasBeenCollected(
const v8::WeakCallbackInfo<v8::Persistent<v8::Object>>& data) {
utils_has_been_collected = true;
data.GetParameter()->Reset();
}
TEST(BootstrappingExports) {
FLAG_expose_natives_as = "natives";
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
if (Snapshot::HaveASnapshotToStartFrom(CcTest::i_isolate())) return;
utils_has_been_collected = false;
v8::Persistent<v8::Object> utils;
{
v8::HandleScope scope(isolate);
v8::Handle<v8::Object> natives =
CcTest::global()->Get(v8_str("natives"))->ToObject(isolate);
utils.Reset(isolate, natives->Get(v8_str("utils"))->ToObject(isolate));
natives->Delete(v8_str("utils"));
}
utils.SetWeak(&utils, UtilsHasBeenCollected,
v8::WeakCallbackType::kParameter);
CcTest::heap()->CollectAllAvailableGarbage("fire weak callbacks");
CHECK(utils_has_been_collected);
}
TEST(Regress1878) {
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
v8::Local<v8::Function> constructor =
v8::Utils::ToLocal(CcTest::i_isolate()->internal_array_function());
CcTest::global()->Set(v8_str("InternalArray"), constructor);
v8::TryCatch try_catch(isolate);
CompileRun(
"var a = Array();"
"for (var i = 0; i < 1000; i++) {"
" var ai = new InternalArray(10000);"
" if (%HaveSameMap(ai, a)) throw Error();"
" if (!%HasFastObjectElements(ai)) throw Error();"
"}"
"for (var i = 0; i < 1000; i++) {"
" var ai = new InternalArray(10000);"
" if (%HaveSameMap(ai, a)) throw Error();"
" if (!%HasFastObjectElements(ai)) throw Error();"
"}");
CHECK(!try_catch.HasCaught());
}
void AllocateInSpace(Isolate* isolate, size_t bytes, AllocationSpace space) {
CHECK(bytes >= FixedArray::kHeaderSize);
CHECK(bytes % kPointerSize == 0);
Factory* factory = isolate->factory();
HandleScope scope(isolate);
AlwaysAllocateScope always_allocate(isolate);
int elements =
static_cast<int>((bytes - FixedArray::kHeaderSize) / kPointerSize);
Handle<FixedArray> array = factory->NewFixedArray(
elements, space == NEW_SPACE ? NOT_TENURED : TENURED);
CHECK((space == NEW_SPACE) == isolate->heap()->InNewSpace(*array));
CHECK_EQ(bytes, static_cast<size_t>(array->Size()));
}
TEST(NewSpaceAllocationCounter) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
size_t counter1 = heap->NewSpaceAllocationCounter();
heap->CollectGarbage(NEW_SPACE);
const size_t kSize = 1024;
AllocateInSpace(isolate, kSize, NEW_SPACE);
size_t counter2 = heap->NewSpaceAllocationCounter();
CHECK_EQ(kSize, counter2 - counter1);
heap->CollectGarbage(NEW_SPACE);
size_t counter3 = heap->NewSpaceAllocationCounter();
CHECK_EQ(0U, counter3 - counter2);
// Test counter overflow.
size_t max_counter = -1;
heap->set_new_space_allocation_counter(max_counter - 10 * kSize);
size_t start = heap->NewSpaceAllocationCounter();
for (int i = 0; i < 20; i++) {
AllocateInSpace(isolate, kSize, NEW_SPACE);
size_t counter = heap->NewSpaceAllocationCounter();
CHECK_EQ(kSize, counter - start);
start = counter;
}
}
TEST(OldSpaceAllocationCounter) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
size_t counter1 = heap->OldGenerationAllocationCounter();
heap->CollectGarbage(NEW_SPACE);
heap->CollectGarbage(NEW_SPACE);
const size_t kSize = 1024;
AllocateInSpace(isolate, kSize, OLD_SPACE);
size_t counter2 = heap->OldGenerationAllocationCounter();
// TODO(ulan): replace all CHECK_LE with CHECK_EQ after v8:4148 is fixed.
CHECK_LE(kSize, counter2 - counter1);
heap->CollectGarbage(NEW_SPACE);
size_t counter3 = heap->OldGenerationAllocationCounter();
CHECK_EQ(0u, counter3 - counter2);
AllocateInSpace(isolate, kSize, OLD_SPACE);
heap->CollectGarbage(OLD_SPACE);
size_t counter4 = heap->OldGenerationAllocationCounter();
CHECK_LE(kSize, counter4 - counter3);
// Test counter overflow.
size_t max_counter = -1;
heap->set_old_generation_allocation_counter(max_counter - 10 * kSize);
size_t start = heap->OldGenerationAllocationCounter();
for (int i = 0; i < 20; i++) {
AllocateInSpace(isolate, kSize, OLD_SPACE);
size_t counter = heap->OldGenerationAllocationCounter();
CHECK_LE(kSize, counter - start);
start = counter;
}
}
TEST(NewSpaceAllocationThroughput) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
GCTracer* tracer = heap->tracer();
int time1 = 100;
size_t counter1 = 1000;
tracer->SampleAllocation(time1, counter1, 0);
int time2 = 200;
size_t counter2 = 2000;
tracer->SampleAllocation(time2, counter2, 0);
size_t throughput =
tracer->NewSpaceAllocationThroughputInBytesPerMillisecond();
CHECK_EQ((counter2 - counter1) / (time2 - time1), throughput);
int time3 = 1000;
size_t counter3 = 30000;
tracer->SampleAllocation(time3, counter3, 0);
throughput = tracer->NewSpaceAllocationThroughputInBytesPerMillisecond();
CHECK_EQ((counter3 - counter1) / (time3 - time1), throughput);
}
TEST(NewSpaceAllocationThroughput2) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
GCTracer* tracer = heap->tracer();
int time1 = 100;
size_t counter1 = 1000;
tracer->SampleAllocation(time1, counter1, 0);
int time2 = 200;
size_t counter2 = 2000;
tracer->SampleAllocation(time2, counter2, 0);
size_t throughput =
tracer->NewSpaceAllocationThroughputInBytesPerMillisecond(100);
CHECK_EQ((counter2 - counter1) / (time2 - time1), throughput);
int time3 = 1000;
size_t counter3 = 30000;
tracer->SampleAllocation(time3, counter3, 0);
throughput = tracer->NewSpaceAllocationThroughputInBytesPerMillisecond(100);
CHECK_EQ((counter3 - counter1) / (time3 - time1), throughput);
}
static void CheckLeak(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = CcTest::i_isolate();
Object* message =
*reinterpret_cast<Object**>(isolate->pending_message_obj_address());
CHECK(message->IsTheHole());
}
TEST(MessageObjectLeak) {
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
v8::Handle<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
global->Set(v8::String::NewFromUtf8(isolate, "check"),
v8::FunctionTemplate::New(isolate, CheckLeak));
v8::Local<v8::Context> context = v8::Context::New(isolate, NULL, global);
v8::Context::Scope cscope(context);
const char* test =
"try {"
" throw 'message 1';"
"} catch (e) {"
"}"
"check();"
"L: try {"
" throw 'message 2';"
"} finally {"
" break L;"
"}"
"check();";
CompileRun(test);
const char* flag = "--turbo-filter=*";
FlagList::SetFlagsFromString(flag, StrLength(flag));
FLAG_always_opt = true;
FLAG_turbo_try_catch = true;
FLAG_turbo_try_finally = true;
CompileRun(test);
}
static void CheckEqualSharedFunctionInfos(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Handle<Object> obj1 = v8::Utils::OpenHandle(*args[0]);
Handle<Object> obj2 = v8::Utils::OpenHandle(*args[1]);
Handle<JSFunction> fun1 = Handle<JSFunction>::cast(obj1);
Handle<JSFunction> fun2 = Handle<JSFunction>::cast(obj2);
CHECK(fun1->shared() == fun2->shared());
}
static void RemoveCodeAndGC(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = CcTest::i_isolate();
Handle<Object> obj = v8::Utils::OpenHandle(*args[0]);
Handle<JSFunction> fun = Handle<JSFunction>::cast(obj);
fun->ReplaceCode(*isolate->builtins()->CompileLazy());
fun->shared()->ReplaceCode(*isolate->builtins()->CompileLazy());
isolate->heap()->CollectAllAvailableGarbage("remove code and gc");
}
TEST(CanonicalSharedFunctionInfo) {
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
v8::Handle<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
global->Set(isolate, "check", v8::FunctionTemplate::New(
isolate, CheckEqualSharedFunctionInfos));
global->Set(isolate, "remove",
v8::FunctionTemplate::New(isolate, RemoveCodeAndGC));
v8::Local<v8::Context> context = v8::Context::New(isolate, NULL, global);
v8::Context::Scope cscope(context);
CompileRun(
"function f() { return function g() {}; }"
"var g1 = f();"
"remove(f);"
"var g2 = f();"
"check(g1, g2);");
CompileRun(
"function f() { return (function() { return function g() {}; })(); }"
"var g1 = f();"
"remove(f);"
"var g2 = f();"
"check(g1, g2);");
}
TEST(OldGenerationAllocationThroughput) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
GCTracer* tracer = heap->tracer();
int time1 = 100;
size_t counter1 = 1000;
tracer->SampleAllocation(time1, 0, counter1);
int time2 = 200;
size_t counter2 = 2000;
tracer->SampleAllocation(time2, 0, counter2);
size_t throughput =
tracer->OldGenerationAllocationThroughputInBytesPerMillisecond(100);
CHECK_EQ((counter2 - counter1) / (time2 - time1), throughput);
int time3 = 1000;
size_t counter3 = 30000;
tracer->SampleAllocation(time3, 0, counter3);
throughput =
tracer->OldGenerationAllocationThroughputInBytesPerMillisecond(100);
CHECK_EQ((counter3 - counter1) / (time3 - time1), throughput);
}
TEST(AllocationThroughput) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
GCTracer* tracer = heap->tracer();
int time1 = 100;
size_t counter1 = 1000;
tracer->SampleAllocation(time1, counter1, counter1);
int time2 = 200;
size_t counter2 = 2000;
tracer->SampleAllocation(time2, counter2, counter2);
size_t throughput = tracer->AllocationThroughputInBytesPerMillisecond(100);
CHECK_EQ(2 * (counter2 - counter1) / (time2 - time1), throughput);
int time3 = 1000;
size_t counter3 = 30000;
tracer->SampleAllocation(time3, counter3, counter3);
throughput = tracer->AllocationThroughputInBytesPerMillisecond(100);
CHECK_EQ(2 * (counter3 - counter1) / (time3 - time1), throughput);
}
TEST(SlotsBufferObjectSlotsRemoval) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
SlotsBuffer* buffer = new SlotsBuffer(NULL);
void* fake_object[1];
Handle<FixedArray> array = factory->NewFixedArray(2, TENURED);
CHECK(heap->old_space()->Contains(*array));
array->set(0, reinterpret_cast<Object*>(fake_object), SKIP_WRITE_BARRIER);
// Firstly, let's test the regular slots buffer entry.
buffer->Add(HeapObject::RawField(*array, FixedArray::kHeaderSize));
DCHECK(reinterpret_cast<void*>(buffer->Get(0)) ==
HeapObject::RawField(*array, FixedArray::kHeaderSize));
SlotsBuffer::RemoveObjectSlots(CcTest::i_isolate()->heap(), buffer,
array->address(),
array->address() + array->Size());
DCHECK(reinterpret_cast<void*>(buffer->Get(0)) ==
HeapObject::RawField(heap->empty_fixed_array(),
FixedArrayBase::kLengthOffset));
// Secondly, let's test the typed slots buffer entry.
SlotsBuffer::AddTo(NULL, &buffer, SlotsBuffer::EMBEDDED_OBJECT_SLOT,
array->address() + FixedArray::kHeaderSize,
SlotsBuffer::FAIL_ON_OVERFLOW);
DCHECK(reinterpret_cast<void*>(buffer->Get(1)) ==
reinterpret_cast<Object**>(SlotsBuffer::EMBEDDED_OBJECT_SLOT));
DCHECK(reinterpret_cast<void*>(buffer->Get(2)) ==
HeapObject::RawField(*array, FixedArray::kHeaderSize));
SlotsBuffer::RemoveObjectSlots(CcTest::i_isolate()->heap(), buffer,
array->address(),
array->address() + array->Size());
DCHECK(reinterpret_cast<void*>(buffer->Get(1)) ==
HeapObject::RawField(heap->empty_fixed_array(),
FixedArrayBase::kLengthOffset));
DCHECK(reinterpret_cast<void*>(buffer->Get(2)) ==
HeapObject::RawField(heap->empty_fixed_array(),
FixedArrayBase::kLengthOffset));
delete buffer;
}