blob: 6d8d5ba7514d0107c4911a1cdb3143274038f05f [file] [log] [blame]
/*
* Copyright 2008 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/systeminfo.h"
#if defined(WEBRTC_WIN)
#include <winsock2.h>
#ifndef EXCLUDE_D3D9
#include <d3d9.h>
#endif
#include <intrin.h> // for __cpuid()
#elif defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
#include <ApplicationServices/ApplicationServices.h>
#include <CoreServices/CoreServices.h>
#elif defined(WEBRTC_LINUX)
#include <unistd.h>
#endif
#if defined(WEBRTC_MAC)
#include <sys/sysctl.h>
#endif
#if defined(WEBRTC_WIN)
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/base/win32.h"
#elif defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
#include "webrtc/base/macconversion.h"
#elif defined(WEBRTC_LINUX)
#include "webrtc/base/linux.h"
#endif
#include "webrtc/base/common.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/stringutils.h"
namespace rtc {
// See Also: http://msdn.microsoft.com/en-us/library/ms683194(v=vs.85).aspx
#if defined(WEBRTC_WIN)
typedef BOOL (WINAPI *LPFN_GLPI)(
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION,
PDWORD);
static void GetProcessorInformation(int* physical_cpus, int* cache_size) {
// GetLogicalProcessorInformation() is available on Windows XP SP3 and beyond.
LPFN_GLPI glpi = reinterpret_cast<LPFN_GLPI>(GetProcAddress(
GetModuleHandle(L"kernel32"),
"GetLogicalProcessorInformation"));
if (NULL == glpi) {
return;
}
// Determine buffer size, allocate and get processor information.
// Size can change between calls (unlikely), so a loop is done.
DWORD return_length = 0;
scoped_ptr<SYSTEM_LOGICAL_PROCESSOR_INFORMATION[]> infos;
while (!glpi(infos.get(), &return_length)) {
if (GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
infos.reset(new SYSTEM_LOGICAL_PROCESSOR_INFORMATION[
return_length / sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION)]);
} else {
return;
}
}
*physical_cpus = 0;
*cache_size = 0;
for (size_t i = 0;
i < return_length / sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION); ++i) {
if (infos[i].Relationship == RelationProcessorCore) {
++*physical_cpus;
} else if (infos[i].Relationship == RelationCache) {
int next_cache_size = static_cast<int>(infos[i].Cache.Size);
if (next_cache_size >= *cache_size) {
*cache_size = next_cache_size;
}
}
}
return;
}
#else
// TODO(fbarchard): Use gcc 4.4 provided cpuid intrinsic
// 32 bit fpic requires ebx be preserved
#if (defined(__pic__) || defined(__APPLE__)) && defined(__i386__)
static inline void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile ( // NOLINT
"mov %%ebx, %%edi\n"
"cpuid\n"
"xchg %%edi, %%ebx\n"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(info_type)
); // NOLINT
}
#elif defined(__i386__) || defined(__x86_64__)
static inline void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile ( // NOLINT
"cpuid\n"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(info_type)
); // NOLINT
}
#endif
#endif // WEBRTC_WIN
// Note(fbarchard):
// Family and model are extended family and extended model. 8 bits each.
SystemInfo::SystemInfo()
: physical_cpus_(1), logical_cpus_(1), cache_size_(0),
cpu_family_(0), cpu_model_(0), cpu_stepping_(0),
cpu_speed_(0), memory_(0) {
// Initialize the basic information.
#if defined(__arm__) || defined(_M_ARM)
cpu_arch_ = SI_ARCH_ARM;
#elif defined(__x86_64__) || defined(_M_X64)
cpu_arch_ = SI_ARCH_X64;
#elif defined(__i386__) || defined(_M_IX86)
cpu_arch_ = SI_ARCH_X86;
#else
cpu_arch_ = SI_ARCH_UNKNOWN;
#endif
#if defined(WEBRTC_WIN)
SYSTEM_INFO si;
GetSystemInfo(&si);
logical_cpus_ = si.dwNumberOfProcessors;
GetProcessorInformation(&physical_cpus_, &cache_size_);
if (physical_cpus_ <= 0) {
physical_cpus_ = logical_cpus_;
}
cpu_family_ = si.wProcessorLevel;
cpu_model_ = si.wProcessorRevision >> 8;
cpu_stepping_ = si.wProcessorRevision & 0xFF;
#elif defined(WEBRTC_MAC)
uint32_t sysctl_value;
size_t length = sizeof(sysctl_value);
if (!sysctlbyname("hw.physicalcpu_max", &sysctl_value, &length, NULL, 0)) {
physical_cpus_ = static_cast<int>(sysctl_value);
}
length = sizeof(sysctl_value);
if (!sysctlbyname("hw.logicalcpu_max", &sysctl_value, &length, NULL, 0)) {
logical_cpus_ = static_cast<int>(sysctl_value);
}
uint64_t sysctl_value64;
length = sizeof(sysctl_value64);
if (!sysctlbyname("hw.l3cachesize", &sysctl_value64, &length, NULL, 0)) {
cache_size_ = static_cast<int>(sysctl_value64);
}
if (!cache_size_) {
length = sizeof(sysctl_value64);
if (!sysctlbyname("hw.l2cachesize", &sysctl_value64, &length, NULL, 0)) {
cache_size_ = static_cast<int>(sysctl_value64);
}
}
length = sizeof(sysctl_value);
if (!sysctlbyname("machdep.cpu.family", &sysctl_value, &length, NULL, 0)) {
cpu_family_ = static_cast<int>(sysctl_value);
}
length = sizeof(sysctl_value);
if (!sysctlbyname("machdep.cpu.model", &sysctl_value, &length, NULL, 0)) {
cpu_model_ = static_cast<int>(sysctl_value);
}
length = sizeof(sysctl_value);
if (!sysctlbyname("machdep.cpu.stepping", &sysctl_value, &length, NULL, 0)) {
cpu_stepping_ = static_cast<int>(sysctl_value);
}
#elif defined(__native_client__)
// TODO(ryanpetrie): Implement this via PPAPI when it's available.
#else // WEBRTC_LINUX
ProcCpuInfo proc_info;
if (proc_info.LoadFromSystem()) {
proc_info.GetNumCpus(&logical_cpus_);
proc_info.GetNumPhysicalCpus(&physical_cpus_);
proc_info.GetCpuFamily(&cpu_family_);
#if defined(CPU_X86)
// These values only apply to x86 systems.
proc_info.GetSectionIntValue(0, "model", &cpu_model_);
proc_info.GetSectionIntValue(0, "stepping", &cpu_stepping_);
proc_info.GetSectionIntValue(0, "cpu MHz", &cpu_speed_);
proc_info.GetSectionIntValue(0, "cache size", &cache_size_);
cache_size_ *= 1024;
#endif
}
// ProcCpuInfo reads cpu speed from "cpu MHz" under /proc/cpuinfo.
// But that number is a moving target which can change on-the-fly according to
// many factors including system workload.
// See /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors.
// The one in /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq is more
// accurate. We use it as our cpu speed when it is available.
// cpuinfo_max_freq is measured in KHz and requires conversion to MHz.
int max_freq = rtc::ReadCpuMaxFreq();
if (max_freq > 0) {
cpu_speed_ = max_freq / 1000;
}
#endif
// For L2 CacheSize see also
// http://www.flounder.com/cpuid_explorer2.htm#CPUID(0x800000006)
#ifdef CPU_X86
if (cache_size_ == 0) {
int cpu_info[4];
__cpuid(cpu_info, 0x80000000); // query maximum extended cpuid function.
if (static_cast<uint32>(cpu_info[0]) >= 0x80000006) {
__cpuid(cpu_info, 0x80000006);
cache_size_ = (cpu_info[2] >> 16) * 1024;
}
}
#endif
}
// Return the number of cpu threads available to the system.
int SystemInfo::GetMaxCpus() {
return logical_cpus_;
}
// Return the number of cpu cores available to the system.
int SystemInfo::GetMaxPhysicalCpus() {
return physical_cpus_;
}
// Return the number of cpus available to the process. Since affinity can be
// changed on the fly, do not cache this value.
// Can be affected by heat.
int SystemInfo::GetCurCpus() {
int cur_cpus;
#if defined(WEBRTC_WIN)
DWORD_PTR process_mask, system_mask;
::GetProcessAffinityMask(::GetCurrentProcess(), &process_mask, &system_mask);
for (cur_cpus = 0; process_mask; ++cur_cpus) {
// Sparse-ones algorithm. There are slightly faster methods out there but
// they are unintuitive and won't make a difference on a single dword.
process_mask &= (process_mask - 1);
}
#elif defined(WEBRTC_MAC)
uint32_t sysctl_value;
size_t length = sizeof(sysctl_value);
int error = sysctlbyname("hw.ncpu", &sysctl_value, &length, NULL, 0);
cur_cpus = !error ? static_cast<int>(sysctl_value) : 1;
#else
// Linux, Solaris, WEBRTC_ANDROID
cur_cpus = static_cast<int>(sysconf(_SC_NPROCESSORS_ONLN));
#endif
return cur_cpus;
}
// Return the type of this CPU.
SystemInfo::Architecture SystemInfo::GetCpuArchitecture() {
return cpu_arch_;
}
// Returns the vendor string from the cpu, e.g. "GenuineIntel", "AuthenticAMD".
// See "Intel Processor Identification and the CPUID Instruction"
// (Intel document number: 241618)
std::string SystemInfo::GetCpuVendor() {
if (cpu_vendor_.empty()) {
#if defined(CPU_X86)
int cpu_info[4];
__cpuid(cpu_info, 0);
cpu_info[0] = cpu_info[1]; // Reorder output
cpu_info[1] = cpu_info[3];
// cpu_info[2] = cpu_info[2]; // Avoid -Werror=self-assign
cpu_info[3] = 0;
cpu_vendor_ = std::string(reinterpret_cast<char*>(&cpu_info[0]));
#elif defined(CPU_ARM)
cpu_vendor_ = std::string("ARM");
#else
cpu_vendor_ = std::string("Undefined");
#endif
}
return cpu_vendor_;
}
int SystemInfo::GetCpuCacheSize() {
return cache_size_;
}
// Return the "family" of this CPU.
int SystemInfo::GetCpuFamily() {
return cpu_family_;
}
// Return the "model" of this CPU.
int SystemInfo::GetCpuModel() {
return cpu_model_;
}
// Return the "stepping" of this CPU.
int SystemInfo::GetCpuStepping() {
return cpu_stepping_;
}
// Return the clockrate of the primary processor in Mhz. This value can be
// cached. Returns -1 on error.
int SystemInfo::GetMaxCpuSpeed() {
if (cpu_speed_) {
return cpu_speed_;
}
#if defined(WEBRTC_WIN)
HKEY key;
static const WCHAR keyName[] =
L"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0";
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, keyName , 0, KEY_QUERY_VALUE, &key)
== ERROR_SUCCESS) {
DWORD data, len;
len = sizeof(data);
if (RegQueryValueEx(key, L"~Mhz", 0, 0, reinterpret_cast<LPBYTE>(&data),
&len) == ERROR_SUCCESS) {
cpu_speed_ = data;
} else {
LOG(LS_WARNING) << "Failed to query registry value HKLM\\" << keyName
<< "\\~Mhz";
cpu_speed_ = -1;
}
RegCloseKey(key);
} else {
LOG(LS_WARNING) << "Failed to open registry key HKLM\\" << keyName;
cpu_speed_ = -1;
}
#elif defined(WEBRTC_MAC)
uint64_t sysctl_value;
size_t length = sizeof(sysctl_value);
int error = sysctlbyname("hw.cpufrequency_max", &sysctl_value, &length,
NULL, 0);
cpu_speed_ = !error ? static_cast<int>(sysctl_value/1000000) : -1;
#else
// TODO(fbarchard): Implement using proc/cpuinfo
cpu_speed_ = 0;
#endif
return cpu_speed_;
}
// Dynamically check the current clockrate, which could be reduced because of
// powersaving profiles. Eventually for windows we want to query WMI for
// root\WMI::ProcessorPerformance.InstanceName="Processor_Number_0".frequency
int SystemInfo::GetCurCpuSpeed() {
#if defined(WEBRTC_WIN)
// TODO(fbarchard): Add WMI check, requires COM initialization
// NOTE(fbarchard): Testable on Sandy Bridge.
return GetMaxCpuSpeed();
#elif defined(WEBRTC_MAC)
uint64_t sysctl_value;
size_t length = sizeof(sysctl_value);
int error = sysctlbyname("hw.cpufrequency", &sysctl_value, &length, NULL, 0);
return !error ? static_cast<int>(sysctl_value/1000000) : GetMaxCpuSpeed();
#else // WEBRTC_LINUX
// TODO(fbarchard): Use proc/cpuinfo for Cur speed on Linux.
return GetMaxCpuSpeed();
#endif
}
// Returns the amount of installed physical memory in Bytes. Cacheable.
// Returns -1 on error.
int64 SystemInfo::GetMemorySize() {
if (memory_) {
return memory_;
}
#if defined(WEBRTC_WIN)
MEMORYSTATUSEX status = {0};
status.dwLength = sizeof(status);
if (GlobalMemoryStatusEx(&status)) {
memory_ = status.ullTotalPhys;
} else {
LOG_GLE(LS_WARNING) << "GlobalMemoryStatusEx failed.";
memory_ = -1;
}
#elif defined(WEBRTC_MAC)
size_t len = sizeof(memory_);
int error = sysctlbyname("hw.memsize", &memory_, &len, NULL, 0);
if (error || memory_ == 0) {
memory_ = -1;
}
#else // WEBRTC_LINUX
memory_ = static_cast<int64>(sysconf(_SC_PHYS_PAGES)) *
static_cast<int64>(sysconf(_SC_PAGESIZE));
if (memory_ < 0) {
LOG(LS_WARNING) << "sysconf(_SC_PHYS_PAGES) failed."
<< "sysconf(_SC_PHYS_PAGES) " << sysconf(_SC_PHYS_PAGES)
<< "sysconf(_SC_PAGESIZE) " << sysconf(_SC_PAGESIZE);
memory_ = -1;
}
#endif
return memory_;
}
// Return the name of the machine model we are currently running on.
// This is a human readable string that consists of the name and version
// number of the hardware, i.e 'MacBookAir1,1'. Returns an empty string if
// model can not be determined. The string is cached for subsequent calls.
std::string SystemInfo::GetMachineModel() {
if (!machine_model_.empty()) {
return machine_model_;
}
#if defined(WEBRTC_MAC)
char buffer[128];
size_t length = sizeof(buffer);
int error = sysctlbyname("hw.model", buffer, &length, NULL, 0);
if (!error) {
machine_model_.assign(buffer, length - 1);
} else {
machine_model_.clear();
}
#else
machine_model_ = "Not available";
#endif
return machine_model_;
}
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
// Helper functions to query IOKit for video hardware properties.
static CFTypeRef SearchForProperty(io_service_t port, CFStringRef name) {
return IORegistryEntrySearchCFProperty(port, kIOServicePlane,
name, kCFAllocatorDefault,
kIORegistryIterateRecursively | kIORegistryIterateParents);
}
static void GetProperty(io_service_t port, CFStringRef name, int* value) {
if (!value) return;
CFTypeRef ref = SearchForProperty(port, name);
if (ref) {
CFTypeID refType = CFGetTypeID(ref);
if (CFNumberGetTypeID() == refType) {
CFNumberRef number = reinterpret_cast<CFNumberRef>(ref);
p_convertCFNumberToInt(number, value);
} else if (CFDataGetTypeID() == refType) {
CFDataRef data = reinterpret_cast<CFDataRef>(ref);
if (CFDataGetLength(data) == sizeof(UInt32)) {
*value = *reinterpret_cast<const UInt32*>(CFDataGetBytePtr(data));
}
}
CFRelease(ref);
}
}
static void GetProperty(io_service_t port, CFStringRef name,
std::string* value) {
if (!value) return;
CFTypeRef ref = SearchForProperty(port, name);
if (ref) {
CFTypeID refType = CFGetTypeID(ref);
if (CFStringGetTypeID() == refType) {
CFStringRef stringRef = reinterpret_cast<CFStringRef>(ref);
p_convertHostCFStringRefToCPPString(stringRef, *value);
} else if (CFDataGetTypeID() == refType) {
CFDataRef dataRef = reinterpret_cast<CFDataRef>(ref);
*value = std::string(reinterpret_cast<const char*>(
CFDataGetBytePtr(dataRef)), CFDataGetLength(dataRef));
}
CFRelease(ref);
}
}
#endif
SystemInfo::GpuInfo::GpuInfo() : vendor_id(0), device_id(0) {
}
SystemInfo::GpuInfo::~GpuInfo() = default;
// Fills a struct with information on the graphics adapater and returns true
// iff successful.
bool SystemInfo::GetGpuInfo(GpuInfo *info) {
if (!info) return false;
#if defined(WEBRTC_WIN) && !defined(EXCLUDE_D3D9)
D3DADAPTER_IDENTIFIER9 identifier;
HRESULT hr = E_FAIL;
HINSTANCE d3d_lib = LoadLibrary(L"d3d9.dll");
if (d3d_lib) {
typedef IDirect3D9* (WINAPI *D3DCreate9Proc)(UINT);
D3DCreate9Proc d3d_create_proc = reinterpret_cast<D3DCreate9Proc>(
GetProcAddress(d3d_lib, "Direct3DCreate9"));
if (d3d_create_proc) {
IDirect3D9* d3d = d3d_create_proc(D3D_SDK_VERSION);
if (d3d) {
hr = d3d->GetAdapterIdentifier(D3DADAPTER_DEFAULT, 0, &identifier);
d3d->Release();
}
}
FreeLibrary(d3d_lib);
}
if (hr != D3D_OK) {
LOG(LS_ERROR) << "Failed to access Direct3D9 information.";
return false;
}
info->device_name = identifier.DeviceName;
info->description = identifier.Description;
info->vendor_id = identifier.VendorId;
info->device_id = identifier.DeviceId;
info->driver = identifier.Driver;
// driver_version format: product.version.subversion.build
std::stringstream ss;
ss << HIWORD(identifier.DriverVersion.HighPart) << "."
<< LOWORD(identifier.DriverVersion.HighPart) << "."
<< HIWORD(identifier.DriverVersion.LowPart) << "."
<< LOWORD(identifier.DriverVersion.LowPart);
info->driver_version = ss.str();
return true;
#elif defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
// We'll query the IOKit for the gpu of the main display.
io_service_t display_service_port = CGDisplayIOServicePort(
kCGDirectMainDisplay);
GetProperty(display_service_port, CFSTR("vendor-id"), &info->vendor_id);
GetProperty(display_service_port, CFSTR("device-id"), &info->device_id);
GetProperty(display_service_port, CFSTR("model"), &info->description);
return true;
#else // WEBRTC_LINUX
// TODO(fbarchard): Implement this on Linux
return false;
#endif
}
} // namespace rtc