blob: e222143f31c3be16a3fd5d376f4f8e3faf1991e0 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <set>
#include "content/browser/loader/resource_scheduler.h"
#include "base/metrics/field_trial.h"
#include "base/metrics/histogram.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_piece.h"
#include "base/supports_user_data.h"
#include "base/time/time.h"
#include "content/common/resource_messages.h"
#include "content/public/browser/resource_controller.h"
#include "content/public/browser/resource_request_info.h"
#include "content/public/browser/resource_throttle.h"
#include "net/base/host_port_pair.h"
#include "net/base/load_flags.h"
#include "net/base/request_priority.h"
#include "net/http/http_server_properties.h"
#include "net/url_request/url_request.h"
#include "net/url_request/url_request_context.h"
namespace content {
namespace {
// Field trial constants
const char kThrottleCoalesceFieldTrial[] = "RequestThrottlingAndCoalescing";
const char kThrottleCoalesceFieldTrialThrottle[] = "Throttle";
const char kThrottleCoalesceFieldTrialCoalesce[] = "Coalesce";
const char kRequestLimitFieldTrial[] = "OutstandingRequestLimiting";
const char kRequestLimitFieldTrialGroupPrefix[] = "Limit";
// Post ResourceScheduler histograms of the following forms:
// If |histogram_suffix| is NULL or the empty string:
// ResourceScheduler.base_name.histogram_name
// Else:
// ResourceScheduler.base_name.histogram_name.histogram_suffix
void PostHistogram(const char* base_name,
const char* histogram_name,
const char* histogram_suffix,
base::TimeDelta time) {
std::string histogram =
base::StringPrintf("ResourceScheduler.%s.%s", base_name, histogram_name);
if (histogram_suffix && histogram_suffix[0] != '\0')
histogram = histogram + "." + histogram_suffix;
base::HistogramBase* histogram_counter = base::Histogram::FactoryTimeGet(
histogram, base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(5), 50,
base::Histogram::kUmaTargetedHistogramFlag);
histogram_counter->AddTime(time);
}
// For use with PostHistogram to specify the correct string for histogram
// suffixes based on number of Clients.
const char* GetNumClientsString(size_t num_clients) {
if (num_clients == 1)
return "1Client";
else if (num_clients <= 5)
return "Max5Clients";
else if (num_clients <= 15)
return "Max15Clients";
else if (num_clients <= 30)
return "Max30Clients";
return "Over30Clients";
}
} // namespace
static const size_t kCoalescedTimerPeriod = 5000;
static const size_t kMaxNumDelayableRequestsPerClient = 10;
static const size_t kMaxNumDelayableRequestsPerHost = 6;
static const size_t kMaxNumThrottledRequestsPerClient = 1;
struct ResourceScheduler::RequestPriorityParams {
RequestPriorityParams()
: priority(net::DEFAULT_PRIORITY),
intra_priority(0) {
}
RequestPriorityParams(net::RequestPriority priority, int intra_priority)
: priority(priority),
intra_priority(intra_priority) {
}
bool operator==(const RequestPriorityParams& other) const {
return (priority == other.priority) &&
(intra_priority == other.intra_priority);
}
bool operator!=(const RequestPriorityParams& other) const {
return !(*this == other);
}
bool GreaterThan(const RequestPriorityParams& other) const {
if (priority != other.priority)
return priority > other.priority;
return intra_priority > other.intra_priority;
}
net::RequestPriority priority;
int intra_priority;
};
class ResourceScheduler::RequestQueue {
public:
typedef std::multiset<ScheduledResourceRequest*, ScheduledResourceSorter>
NetQueue;
RequestQueue() : fifo_ordering_ids_(0) {}
~RequestQueue() {}
// Adds |request| to the queue with given |priority|.
void Insert(ScheduledResourceRequest* request);
// Removes |request| from the queue.
void Erase(ScheduledResourceRequest* request) {
PointerMap::iterator it = pointers_.find(request);
DCHECK(it != pointers_.end());
if (it == pointers_.end())
return;
queue_.erase(it->second);
pointers_.erase(it);
}
NetQueue::iterator GetNextHighestIterator() {
return queue_.begin();
}
NetQueue::iterator End() {
return queue_.end();
}
// Returns true if |request| is queued.
bool IsQueued(ScheduledResourceRequest* request) const {
return ContainsKey(pointers_, request);
}
// Returns true if no requests are queued.
bool IsEmpty() const { return queue_.size() == 0; }
private:
typedef std::map<ScheduledResourceRequest*, NetQueue::iterator> PointerMap;
uint32 MakeFifoOrderingId() {
fifo_ordering_ids_ += 1;
return fifo_ordering_ids_;
}
// Used to create an ordering ID for scheduled resources so that resources
// with same priority/intra_priority stay in fifo order.
uint32 fifo_ordering_ids_;
NetQueue queue_;
PointerMap pointers_;
};
// This is the handle we return to the ResourceDispatcherHostImpl so it can
// interact with the request.
class ResourceScheduler::ScheduledResourceRequest : public ResourceThrottle {
public:
ScheduledResourceRequest(const ClientId& client_id,
net::URLRequest* request,
ResourceScheduler* scheduler,
const RequestPriorityParams& priority,
bool is_async)
: client_id_(client_id),
client_state_on_creation_(scheduler->GetClientState(client_id_)),
request_(request),
ready_(false),
deferred_(false),
is_async_(is_async),
classification_(NORMAL_REQUEST),
scheduler_(scheduler),
priority_(priority),
fifo_ordering_(0) {
DCHECK(!request_->GetUserData(kUserDataKey));
request_->SetUserData(kUserDataKey, new UnownedPointer(this));
}
~ScheduledResourceRequest() override {
request_->RemoveUserData(kUserDataKey);
scheduler_->RemoveRequest(this);
}
static ScheduledResourceRequest* ForRequest(net::URLRequest* request) {
return static_cast<UnownedPointer*>(request->GetUserData(kUserDataKey))
->get();
}
void Start() {
ready_ = true;
if (!request_->status().is_success())
return;
base::TimeTicks time = base::TimeTicks::Now();
ClientState current_state = scheduler_->GetClientState(client_id_);
// Note: the client state isn't perfectly accurate since it won't capture
// tabs which have switched between active and background multiple times.
// Ex: A tab with the following transitions Active -> Background -> Active
// will be recorded as Active.
const char* client_state = "Other";
if (current_state == client_state_on_creation_ && current_state == ACTIVE) {
client_state = "Active";
} else if (current_state == client_state_on_creation_ &&
current_state == BACKGROUND) {
client_state = "Background";
}
base::TimeDelta time_was_deferred = base::TimeDelta::FromMicroseconds(0);
if (deferred_) {
deferred_ = false;
controller()->Resume();
time_was_deferred = time - time_deferred_;
}
PostHistogram("RequestTimeDeferred", client_state, NULL, time_was_deferred);
PostHistogram("RequestTimeThrottled", client_state, NULL,
time - request_->creation_time());
// TODO(aiolos): Remove one of the above histograms after gaining an
// understanding of the difference between them and which one is more
// interesting.
}
void set_request_priority_params(const RequestPriorityParams& priority) {
priority_ = priority;
}
const RequestPriorityParams& get_request_priority_params() const {
return priority_;
}
const ClientId& client_id() const { return client_id_; }
net::URLRequest* url_request() { return request_; }
const net::URLRequest* url_request() const { return request_; }
bool is_async() const { return is_async_; }
uint32 fifo_ordering() const { return fifo_ordering_; }
void set_fifo_ordering(uint32 fifo_ordering) {
fifo_ordering_ = fifo_ordering;
}
RequestClassification classification() const {
return classification_;
}
void set_classification(RequestClassification classification) {
classification_ = classification;
}
private:
class UnownedPointer : public base::SupportsUserData::Data {
public:
explicit UnownedPointer(ScheduledResourceRequest* pointer)
: pointer_(pointer) {}
ScheduledResourceRequest* get() const { return pointer_; }
private:
ScheduledResourceRequest* const pointer_;
DISALLOW_COPY_AND_ASSIGN(UnownedPointer);
};
static const void* const kUserDataKey;
// ResourceThrottle interface:
void WillStartRequest(bool* defer) override {
deferred_ = *defer = !ready_;
time_deferred_ = base::TimeTicks::Now();
}
const char* GetNameForLogging() const override { return "ResourceScheduler"; }
const ClientId client_id_;
const ResourceScheduler::ClientState client_state_on_creation_;
net::URLRequest* request_;
bool ready_;
bool deferred_;
bool is_async_;
RequestClassification classification_;
ResourceScheduler* scheduler_;
RequestPriorityParams priority_;
uint32 fifo_ordering_;
base::TimeTicks time_deferred_;
DISALLOW_COPY_AND_ASSIGN(ScheduledResourceRequest);
};
const void* const ResourceScheduler::ScheduledResourceRequest::kUserDataKey =
&ResourceScheduler::ScheduledResourceRequest::kUserDataKey;
bool ResourceScheduler::ScheduledResourceSorter::operator()(
const ScheduledResourceRequest* a,
const ScheduledResourceRequest* b) const {
// Want the set to be ordered first by decreasing priority, then by
// decreasing intra_priority.
// ie. with (priority, intra_priority)
// [(1, 0), (1, 0), (0, 100), (0, 0)]
if (a->get_request_priority_params() != b->get_request_priority_params())
return a->get_request_priority_params().GreaterThan(
b->get_request_priority_params());
// If priority/intra_priority is the same, fall back to fifo ordering.
// std::multiset doesn't guarantee this until c++11.
return a->fifo_ordering() < b->fifo_ordering();
}
void ResourceScheduler::RequestQueue::Insert(
ScheduledResourceRequest* request) {
DCHECK(!ContainsKey(pointers_, request));
request->set_fifo_ordering(MakeFifoOrderingId());
pointers_[request] = queue_.insert(request);
}
// Each client represents a tab.
class ResourceScheduler::Client {
public:
explicit Client(ResourceScheduler* scheduler,
bool is_visible,
bool is_audible)
: is_audible_(is_audible),
is_visible_(is_visible),
is_loaded_(false),
is_paused_(false),
has_body_(false),
using_spdy_proxy_(false),
load_started_time_(base::TimeTicks::Now()),
scheduler_(scheduler),
in_flight_delayable_count_(0),
total_layout_blocking_count_(0),
throttle_state_(ResourceScheduler::THROTTLED) {}
~Client() {
// Update to default state and pause to ensure the scheduler has a
// correct count of relevant types of clients.
is_visible_ = false;
is_audible_ = false;
is_paused_ = true;
UpdateThrottleState();
}
void ScheduleRequest(net::URLRequest* url_request,
ScheduledResourceRequest* request) {
if (ShouldStartRequest(request) == START_REQUEST)
StartRequest(request);
else
pending_requests_.Insert(request);
SetRequestClassification(request, ClassifyRequest(request));
}
void RemoveRequest(ScheduledResourceRequest* request) {
if (pending_requests_.IsQueued(request)) {
pending_requests_.Erase(request);
DCHECK(!ContainsKey(in_flight_requests_, request));
} else {
EraseInFlightRequest(request);
// Removing this request may have freed up another to load.
LoadAnyStartablePendingRequests();
}
}
RequestSet StartAndRemoveAllRequests() {
// First start any pending requests so that they will be moved into
// in_flight_requests_. This may exceed the limits
// kMaxNumDelayableRequestsPerClient, kMaxNumDelayableRequestsPerHost and
// kMaxNumThrottledRequestsPerClient, so this method must not do anything
// that depends on those limits before calling ClearInFlightRequests()
// below.
while (!pending_requests_.IsEmpty()) {
ScheduledResourceRequest* request =
*pending_requests_.GetNextHighestIterator();
pending_requests_.Erase(request);
// StartRequest() may modify pending_requests_. TODO(ricea): Does it?
StartRequest(request);
}
RequestSet unowned_requests;
for (RequestSet::iterator it = in_flight_requests_.begin();
it != in_flight_requests_.end(); ++it) {
unowned_requests.insert(*it);
(*it)->set_classification(NORMAL_REQUEST);
}
ClearInFlightRequests();
return unowned_requests;
}
bool is_active() const { return is_visible_ || is_audible_; }
bool is_loaded() const { return is_loaded_; }
bool is_visible() const { return is_visible_; }
void OnAudibilityChanged(bool is_audible) {
UpdateState(is_audible, &is_audible_);
}
void OnVisibilityChanged(bool is_visible) {
UpdateState(is_visible, &is_visible_);
}
// Function to update any client state variable used to determine whether a
// Client is active or background. Used for is_visible_ and is_audible_.
void UpdateState(bool new_state, bool* current_state) {
bool was_active = is_active();
*current_state = new_state;
if (was_active == is_active())
return;
last_active_switch_time_ = base::TimeTicks::Now();
UpdateThrottleState();
}
void OnLoadingStateChanged(bool is_loaded) {
if (is_loaded == is_loaded_) {
return;
}
is_loaded_ = is_loaded;
UpdateThrottleState();
if (!is_loaded_) {
load_started_time_ = base::TimeTicks::Now();
last_active_switch_time_ = base::TimeTicks();
return;
}
base::TimeTicks cur_time = base::TimeTicks::Now();
const char* num_clients =
GetNumClientsString(scheduler_->client_map_.size());
const char* client_catagory = "Other";
if (last_active_switch_time_.is_null()) {
client_catagory = is_active() ? "Active" : "Background";
} else if (is_active()) {
base::TimeDelta time_since_active = cur_time - last_active_switch_time_;
PostHistogram("ClientLoadedTime", "Other.SwitchedToActive", NULL,
time_since_active);
PostHistogram("ClientLoadedTime", "Other.SwitchedToActive", num_clients,
time_since_active);
}
base::TimeDelta time_since_load_started = cur_time - load_started_time_;
PostHistogram("ClientLoadedTime", client_catagory, NULL,
time_since_load_started);
PostHistogram("ClientLoadedTime", client_catagory, num_clients,
time_since_load_started);
// TODO(aiolos): The above histograms will not take main resource load time
// into account with PlzNavigate into account. The ResourceScheduler also
// will load the main resources without a clients with the current logic.
// Find a way to fix both of these issues.
}
void SetPaused() {
is_paused_ = true;
UpdateThrottleState();
}
void UpdateThrottleState() {
ClientThrottleState old_throttle_state = throttle_state_;
if (!scheduler_->should_throttle()) {
SetThrottleState(UNTHROTTLED);
} else if (is_active() && !is_loaded_) {
SetThrottleState(ACTIVE_AND_LOADING);
} else if (is_active()) {
SetThrottleState(UNTHROTTLED);
} else if (is_paused_) {
SetThrottleState(PAUSED);
} else if (!scheduler_->active_clients_loaded()) {
SetThrottleState(THROTTLED);
} else if (is_loaded_ && scheduler_->should_coalesce()) {
SetThrottleState(COALESCED);
} else if (!is_active()) {
SetThrottleState(UNTHROTTLED);
}
if (throttle_state_ == old_throttle_state) {
return;
}
if (throttle_state_ == ACTIVE_AND_LOADING) {
scheduler_->IncrementActiveClientsLoading();
} else if (old_throttle_state == ACTIVE_AND_LOADING) {
scheduler_->DecrementActiveClientsLoading();
}
if (throttle_state_ == COALESCED) {
scheduler_->IncrementCoalescedClients();
} else if (old_throttle_state == COALESCED) {
scheduler_->DecrementCoalescedClients();
}
}
void OnNavigate() {
has_body_ = false;
is_loaded_ = false;
}
void OnWillInsertBody() {
has_body_ = true;
LoadAnyStartablePendingRequests();
}
void OnReceivedSpdyProxiedHttpResponse() {
if (!using_spdy_proxy_) {
using_spdy_proxy_ = true;
LoadAnyStartablePendingRequests();
}
}
void ReprioritizeRequest(ScheduledResourceRequest* request,
RequestPriorityParams old_priority_params,
RequestPriorityParams new_priority_params) {
request->url_request()->SetPriority(new_priority_params.priority);
request->set_request_priority_params(new_priority_params);
if (!pending_requests_.IsQueued(request)) {
DCHECK(ContainsKey(in_flight_requests_, request));
// The priority of the request and priority support of the server may
// have changed, so update the delayable count.
SetRequestClassification(request, ClassifyRequest(request));
// Request has already started.
return;
}
pending_requests_.Erase(request);
pending_requests_.Insert(request);
if (new_priority_params.priority > old_priority_params.priority) {
// Check if this request is now able to load at its new priority.
LoadAnyStartablePendingRequests();
}
}
// Called on Client creation, when a Client changes user observability,
// possibly when all observable Clients have finished loading, and
// possibly when this Client has finished loading.
// State changes:
// Client became observable.
// any state -> UNTHROTTLED
// Client is unobservable, but all observable clients finished loading.
// THROTTLED -> UNTHROTTLED
// Non-observable client finished loading.
// THROTTLED || UNTHROTTLED -> COALESCED
// Non-observable client, an observable client starts loading.
// COALESCED -> THROTTLED
// A COALESCED client will transition into UNTHROTTLED when the network is
// woken up by a heartbeat and then transition back into COALESCED.
void SetThrottleState(ResourceScheduler::ClientThrottleState throttle_state) {
if (throttle_state == throttle_state_) {
return;
}
throttle_state_ = throttle_state;
if (throttle_state_ != PAUSED) {
is_paused_ = false;
}
LoadAnyStartablePendingRequests();
// TODO(aiolos): Stop any started but not inflght requests when
// switching to stricter throttle state?
}
ResourceScheduler::ClientThrottleState throttle_state() const {
return throttle_state_;
}
void LoadCoalescedRequests() {
if (throttle_state_ != COALESCED) {
return;
}
if (scheduler_->active_clients_loaded()) {
SetThrottleState(UNTHROTTLED);
} else {
SetThrottleState(THROTTLED);
}
LoadAnyStartablePendingRequests();
SetThrottleState(COALESCED);
}
private:
enum ShouldStartReqResult {
DO_NOT_START_REQUEST_AND_STOP_SEARCHING,
DO_NOT_START_REQUEST_AND_KEEP_SEARCHING,
START_REQUEST,
};
void InsertInFlightRequest(ScheduledResourceRequest* request) {
in_flight_requests_.insert(request);
SetRequestClassification(request, ClassifyRequest(request));
}
void EraseInFlightRequest(ScheduledResourceRequest* request) {
size_t erased = in_flight_requests_.erase(request);
DCHECK_EQ(1u, erased);
// Clear any special state that we were tracking for this request.
SetRequestClassification(request, NORMAL_REQUEST);
}
void ClearInFlightRequests() {
in_flight_requests_.clear();
in_flight_delayable_count_ = 0;
total_layout_blocking_count_ = 0;
}
size_t CountRequestsWithClassification(
const RequestClassification classification, const bool include_pending) {
size_t classification_request_count = 0;
for (RequestSet::const_iterator it = in_flight_requests_.begin();
it != in_flight_requests_.end(); ++it) {
if ((*it)->classification() == classification)
classification_request_count++;
}
if (include_pending) {
for (RequestQueue::NetQueue::const_iterator
it = pending_requests_.GetNextHighestIterator();
it != pending_requests_.End(); ++it) {
if ((*it)->classification() == classification)
classification_request_count++;
}
}
return classification_request_count;
}
void SetRequestClassification(ScheduledResourceRequest* request,
RequestClassification classification) {
RequestClassification old_classification = request->classification();
if (old_classification == classification)
return;
if (old_classification == IN_FLIGHT_DELAYABLE_REQUEST)
in_flight_delayable_count_--;
if (old_classification == LAYOUT_BLOCKING_REQUEST)
total_layout_blocking_count_--;
if (classification == IN_FLIGHT_DELAYABLE_REQUEST)
in_flight_delayable_count_++;
if (classification == LAYOUT_BLOCKING_REQUEST)
total_layout_blocking_count_++;
request->set_classification(classification);
DCHECK_EQ(
CountRequestsWithClassification(IN_FLIGHT_DELAYABLE_REQUEST, false),
in_flight_delayable_count_);
DCHECK_EQ(CountRequestsWithClassification(LAYOUT_BLOCKING_REQUEST, true),
total_layout_blocking_count_);
}
RequestClassification ClassifyRequest(ScheduledResourceRequest* request) {
// If a request is already marked as layout-blocking make sure to keep the
// classification across redirects unless the priority was lowered.
if (request->classification() == LAYOUT_BLOCKING_REQUEST &&
request->url_request()->priority() > net::LOW) {
return LAYOUT_BLOCKING_REQUEST;
}
if (!has_body_ && request->url_request()->priority() > net::LOW)
return LAYOUT_BLOCKING_REQUEST;
if (request->url_request()->priority() < net::LOW) {
net::HostPortPair host_port_pair =
net::HostPortPair::FromURL(request->url_request()->url());
net::HttpServerProperties& http_server_properties =
*request->url_request()->context()->http_server_properties();
if (!http_server_properties.SupportsRequestPriority(host_port_pair) &&
ContainsKey(in_flight_requests_, request)) {
return IN_FLIGHT_DELAYABLE_REQUEST;
}
}
return NORMAL_REQUEST;
}
bool ShouldKeepSearching(
const net::HostPortPair& active_request_host) const {
size_t same_host_count = 0;
for (RequestSet::const_iterator it = in_flight_requests_.begin();
it != in_flight_requests_.end(); ++it) {
net::HostPortPair host_port_pair =
net::HostPortPair::FromURL((*it)->url_request()->url());
if (active_request_host.Equals(host_port_pair)) {
same_host_count++;
if (same_host_count >= kMaxNumDelayableRequestsPerHost)
return true;
}
}
return false;
}
void StartRequest(ScheduledResourceRequest* request) {
InsertInFlightRequest(request);
request->Start();
}
// ShouldStartRequest is the main scheduling algorithm.
//
// Requests are evaluated on five attributes:
//
// 1. Non-delayable requests:
// * Synchronous requests.
// * Non-HTTP[S] requests.
//
// 2. Requests to request-priority-capable origin servers.
//
// 3. High-priority requests:
// * Higher priority requests (>= net::LOW).
//
// 4. Layout-blocking requests:
// * High-priority requests (> net::LOW) initiated before the renderer has
// a <body>.
//
// 5. Low priority requests
//
// The following rules are followed:
//
// All types of requests:
// * If an outstanding request limit is in place, only that number
// of requests may be in flight for a single client at the same time.
//
// ACTIVE_AND_LOADING and UNTHROTTLED Clients follow these rules:
// * Non-delayable, High-priority and request-priority capable requests are
// issued immediately.
// * Low priority requests are delayable.
// * While layout-blocking requests are loading or the body tag has not
// yet been parsed, limit the number of delayable requests that may be
// in flight (to 1 by default, or to zero if there's an outstanding
// request limit in place).
// * If no high priority or layout-blocking requests are in flight, start
// loading delayable requests.
// * Never exceed 10 delayable requests in flight per client.
// * Never exceed 6 delayable requests for a given host.
//
// THROTTLED Clients follow these rules:
// * Non-delayable and request-priority-capable requests are issued
// immediately.
// * At most one non-request-priority-capable request will be issued per
// THROTTLED Client
// * If no high priority requests are in flight, start loading low priority
// requests.
//
// COALESCED Clients never load requests, with the following exceptions:
// * Non-delayable requests are issued imediately.
// * On a (currently 5 second) heart beat, they load all requests as an
// UNTHROTTLED Client, and then return to the COALESCED state.
// * When an active Client makes a request, they are THROTTLED until the
// active Client finishes loading.
ShouldStartReqResult ShouldStartRequest(
ScheduledResourceRequest* request) const {
const net::URLRequest& url_request = *request->url_request();
// Syncronous requests could block the entire render, which could impact
// user-observable Clients.
if (!request->is_async()) {
return START_REQUEST;
}
// TODO(simonjam): This may end up causing disk contention. We should
// experiment with throttling if that happens.
// TODO(aiolos): We probably want to Coalesce these as well to avoid
// waking the disk.
if (!url_request.url().SchemeIsHTTPOrHTTPS()) {
return START_REQUEST;
}
if (throttle_state_ == COALESCED) {
return DO_NOT_START_REQUEST_AND_STOP_SEARCHING;
}
if (using_spdy_proxy_ && url_request.url().SchemeIs(url::kHttpScheme)) {
return START_REQUEST;
}
// Implementation of the kRequestLimitFieldTrial.
if (scheduler_->limit_outstanding_requests() &&
in_flight_requests_.size() >= scheduler_->outstanding_request_limit()) {
return DO_NOT_START_REQUEST_AND_STOP_SEARCHING;
}
net::HostPortPair host_port_pair =
net::HostPortPair::FromURL(url_request.url());
net::HttpServerProperties& http_server_properties =
*url_request.context()->http_server_properties();
// TODO(willchan): We should really improve this algorithm as described in
// crbug.com/164101. Also, theoretically we should not count a
// request-priority capable request against the delayable requests limit.
if (http_server_properties.SupportsRequestPriority(host_port_pair)) {
return START_REQUEST;
}
if (throttle_state_ == THROTTLED &&
in_flight_requests_.size() >= kMaxNumThrottledRequestsPerClient) {
// There may still be request-priority-capable requests that should be
// issued.
return DO_NOT_START_REQUEST_AND_KEEP_SEARCHING;
}
// High-priority and layout-blocking requests.
if (url_request.priority() >= net::LOW) {
return START_REQUEST;
}
if (in_flight_delayable_count_ >= kMaxNumDelayableRequestsPerClient) {
return DO_NOT_START_REQUEST_AND_STOP_SEARCHING;
}
if (ShouldKeepSearching(host_port_pair)) {
// There may be other requests for other hosts we'd allow,
// so keep checking.
return DO_NOT_START_REQUEST_AND_KEEP_SEARCHING;
}
bool have_immediate_requests_in_flight =
in_flight_requests_.size() > in_flight_delayable_count_;
if (have_immediate_requests_in_flight &&
(!has_body_ || total_layout_blocking_count_ != 0) &&
// Do not allow a low priority request through in parallel if
// we are in a limit field trial.
(scheduler_->limit_outstanding_requests() ||
in_flight_delayable_count_ != 0)) {
return DO_NOT_START_REQUEST_AND_STOP_SEARCHING;
}
return START_REQUEST;
}
void LoadAnyStartablePendingRequests() {
// We iterate through all the pending requests, starting with the highest
// priority one. For each entry, one of three things can happen:
// 1) We start the request, remove it from the list, and keep checking.
// 2) We do NOT start the request, but ShouldStartRequest() signals us that
// there may be room for other requests, so we keep checking and leave
// the previous request still in the list.
// 3) We do not start the request, same as above, but StartRequest() tells
// us there's no point in checking any further requests.
RequestQueue::NetQueue::iterator request_iter =
pending_requests_.GetNextHighestIterator();
while (request_iter != pending_requests_.End()) {
ScheduledResourceRequest* request = *request_iter;
ShouldStartReqResult query_result = ShouldStartRequest(request);
if (query_result == START_REQUEST) {
pending_requests_.Erase(request);
StartRequest(request);
// StartRequest can modify the pending list, so we (re)start evaluation
// from the currently highest priority request. Avoid copying a singular
// iterator, which would trigger undefined behavior.
if (pending_requests_.GetNextHighestIterator() ==
pending_requests_.End())
break;
request_iter = pending_requests_.GetNextHighestIterator();
} else if (query_result == DO_NOT_START_REQUEST_AND_KEEP_SEARCHING) {
++request_iter;
continue;
} else {
DCHECK(query_result == DO_NOT_START_REQUEST_AND_STOP_SEARCHING);
break;
}
}
}
bool is_audible_;
bool is_visible_;
bool is_loaded_;
bool is_paused_;
bool has_body_;
bool using_spdy_proxy_;
RequestQueue pending_requests_;
RequestSet in_flight_requests_;
base::TimeTicks load_started_time_;
// The last time the client switched state between active and background.
base::TimeTicks last_active_switch_time_;
ResourceScheduler* scheduler_;
// The number of delayable in-flight requests.
size_t in_flight_delayable_count_;
// The number of layout-blocking in-flight requests.
size_t total_layout_blocking_count_;
ResourceScheduler::ClientThrottleState throttle_state_;
};
ResourceScheduler::ResourceScheduler()
: should_coalesce_(false),
should_throttle_(false),
active_clients_loading_(0),
coalesced_clients_(0),
limit_outstanding_requests_(false),
outstanding_request_limit_(0),
coalescing_timer_(new base::Timer(true /* retain_user_task */,
true /* is_repeating */)) {
std::string throttling_trial_group =
base::FieldTrialList::FindFullName(kThrottleCoalesceFieldTrial);
if (throttling_trial_group == kThrottleCoalesceFieldTrialThrottle) {
should_throttle_ = true;
} else if (throttling_trial_group == kThrottleCoalesceFieldTrialCoalesce) {
should_coalesce_ = true;
should_throttle_ = true;
}
std::string outstanding_limit_trial_group =
base::FieldTrialList::FindFullName(kRequestLimitFieldTrial);
std::vector<std::string> split_group(
base::SplitString(outstanding_limit_trial_group, "=",
base::KEEP_WHITESPACE, base::SPLIT_WANT_ALL));
int outstanding_limit = 0;
if (split_group.size() == 2 &&
split_group[0] == kRequestLimitFieldTrialGroupPrefix &&
base::StringToInt(split_group[1], &outstanding_limit) &&
outstanding_limit > 0) {
limit_outstanding_requests_ = true;
outstanding_request_limit_ = outstanding_limit;
}
}
ResourceScheduler::~ResourceScheduler() {
DCHECK(unowned_requests_.empty());
DCHECK(client_map_.empty());
}
void ResourceScheduler::SetThrottleOptionsForTesting(bool should_throttle,
bool should_coalesce) {
should_coalesce_ = should_coalesce;
should_throttle_ = should_throttle;
OnLoadingActiveClientsStateChangedForAllClients();
}
ResourceScheduler::ClientThrottleState
ResourceScheduler::GetClientStateForTesting(int child_id, int route_id) {
Client* client = GetClient(child_id, route_id);
DCHECK(client);
return client->throttle_state();
}
scoped_ptr<ResourceThrottle> ResourceScheduler::ScheduleRequest(
int child_id,
int route_id,
bool is_async,
net::URLRequest* url_request) {
DCHECK(CalledOnValidThread());
ClientId client_id = MakeClientId(child_id, route_id);
scoped_ptr<ScheduledResourceRequest> request(new ScheduledResourceRequest(
client_id, url_request, this,
RequestPriorityParams(url_request->priority(), 0), is_async));
ClientMap::iterator it = client_map_.find(client_id);
if (it == client_map_.end()) {
// There are several ways this could happen:
// 1. <a ping> requests don't have a route_id.
// 2. Most unittests don't send the IPCs needed to register Clients.
// 3. The tab is closed while a RequestResource IPC is in flight.
unowned_requests_.insert(request.get());
request->Start();
return request.Pass();
}
Client* client = it->second;
client->ScheduleRequest(url_request, request.get());
return request.Pass();
}
void ResourceScheduler::RemoveRequest(ScheduledResourceRequest* request) {
DCHECK(CalledOnValidThread());
if (ContainsKey(unowned_requests_, request)) {
unowned_requests_.erase(request);
return;
}
ClientMap::iterator client_it = client_map_.find(request->client_id());
if (client_it == client_map_.end()) {
return;
}
Client* client = client_it->second;
client->RemoveRequest(request);
}
void ResourceScheduler::OnClientCreated(int child_id,
int route_id,
bool is_visible,
bool is_audible) {
DCHECK(CalledOnValidThread());
ClientId client_id = MakeClientId(child_id, route_id);
DCHECK(!ContainsKey(client_map_, client_id));
Client* client = new Client(this, is_visible, is_audible);
client_map_[client_id] = client;
client->UpdateThrottleState();
}
void ResourceScheduler::OnClientDeleted(int child_id, int route_id) {
DCHECK(CalledOnValidThread());
ClientId client_id = MakeClientId(child_id, route_id);
DCHECK(ContainsKey(client_map_, client_id));
ClientMap::iterator it = client_map_.find(client_id);
if (it == client_map_.end())
return;
Client* client = it->second;
// ResourceDispatcherHost cancels all requests except for cross-renderer
// navigations, async revalidations and detachable requests after
// OnClientDeleted() returns.
RequestSet client_unowned_requests = client->StartAndRemoveAllRequests();
for (RequestSet::iterator it = client_unowned_requests.begin();
it != client_unowned_requests.end(); ++it) {
unowned_requests_.insert(*it);
}
delete client;
client_map_.erase(it);
}
void ResourceScheduler::OnLoadingStateChanged(int child_id,
int route_id,
bool is_loaded) {
Client* client = GetClient(child_id, route_id);
DCHECK(client);
client->OnLoadingStateChanged(is_loaded);
}
void ResourceScheduler::OnVisibilityChanged(int child_id,
int route_id,
bool is_visible) {
Client* client = GetClient(child_id, route_id);
DCHECK(client);
client->OnVisibilityChanged(is_visible);
}
void ResourceScheduler::OnAudibilityChanged(int child_id,
int route_id,
bool is_audible) {
Client* client = GetClient(child_id, route_id);
// We might get this call after the client has been deleted.
if (client)
client->OnAudibilityChanged(is_audible);
}
void ResourceScheduler::OnNavigate(int child_id, int route_id) {
DCHECK(CalledOnValidThread());
ClientId client_id = MakeClientId(child_id, route_id);
ClientMap::iterator it = client_map_.find(client_id);
if (it == client_map_.end()) {
// The client was likely deleted shortly before we received this IPC.
return;
}
Client* client = it->second;
client->OnNavigate();
}
void ResourceScheduler::OnWillInsertBody(int child_id, int route_id) {
DCHECK(CalledOnValidThread());
ClientId client_id = MakeClientId(child_id, route_id);
ClientMap::iterator it = client_map_.find(client_id);
if (it == client_map_.end()) {
// The client was likely deleted shortly before we received this IPC.
return;
}
Client* client = it->second;
client->OnWillInsertBody();
}
void ResourceScheduler::OnReceivedSpdyProxiedHttpResponse(
int child_id,
int route_id) {
DCHECK(CalledOnValidThread());
ClientId client_id = MakeClientId(child_id, route_id);
ClientMap::iterator client_it = client_map_.find(client_id);
if (client_it == client_map_.end()) {
return;
}
Client* client = client_it->second;
client->OnReceivedSpdyProxiedHttpResponse();
}
bool ResourceScheduler::IsClientVisibleForTesting(int child_id, int route_id) {
Client* client = GetClient(child_id, route_id);
DCHECK(client);
return client->is_visible();
}
bool ResourceScheduler::HasLoadingClients() const {
for (const auto& client : client_map_) {
if (!client.second->is_loaded())
return true;
}
return false;
}
ResourceScheduler::Client* ResourceScheduler::GetClient(int child_id,
int route_id) {
ClientId client_id = MakeClientId(child_id, route_id);
ClientMap::iterator client_it = client_map_.find(client_id);
if (client_it == client_map_.end()) {
return NULL;
}
return client_it->second;
}
void ResourceScheduler::DecrementActiveClientsLoading() {
DCHECK_NE(0u, active_clients_loading_);
--active_clients_loading_;
DCHECK_EQ(active_clients_loading_, CountActiveClientsLoading());
if (active_clients_loading_ == 0) {
OnLoadingActiveClientsStateChangedForAllClients();
}
}
void ResourceScheduler::IncrementActiveClientsLoading() {
++active_clients_loading_;
DCHECK_EQ(active_clients_loading_, CountActiveClientsLoading());
if (active_clients_loading_ == 1) {
OnLoadingActiveClientsStateChangedForAllClients();
}
}
void ResourceScheduler::OnLoadingActiveClientsStateChangedForAllClients() {
ClientMap::iterator client_it = client_map_.begin();
while (client_it != client_map_.end()) {
Client* client = client_it->second;
client->UpdateThrottleState();
++client_it;
}
}
size_t ResourceScheduler::CountActiveClientsLoading() const {
size_t active_and_loading = 0;
ClientMap::const_iterator client_it = client_map_.begin();
while (client_it != client_map_.end()) {
Client* client = client_it->second;
if (client->throttle_state() == ACTIVE_AND_LOADING) {
++active_and_loading;
}
++client_it;
}
return active_and_loading;
}
void ResourceScheduler::IncrementCoalescedClients() {
++coalesced_clients_;
DCHECK(should_coalesce_);
DCHECK_EQ(coalesced_clients_, CountCoalescedClients());
if (coalesced_clients_ == 1) {
coalescing_timer_->Start(
FROM_HERE,
base::TimeDelta::FromMilliseconds(kCoalescedTimerPeriod),
base::Bind(&ResourceScheduler::LoadCoalescedRequests,
base::Unretained(this)));
}
}
void ResourceScheduler::DecrementCoalescedClients() {
DCHECK(should_coalesce_);
DCHECK_NE(0U, coalesced_clients_);
--coalesced_clients_;
DCHECK_EQ(coalesced_clients_, CountCoalescedClients());
if (coalesced_clients_ == 0) {
coalescing_timer_->Stop();
}
}
size_t ResourceScheduler::CountCoalescedClients() const {
DCHECK(should_coalesce_);
size_t coalesced_clients = 0;
ClientMap::const_iterator client_it = client_map_.begin();
while (client_it != client_map_.end()) {
Client* client = client_it->second;
if (client->throttle_state() == COALESCED) {
++coalesced_clients;
}
++client_it;
}
return coalesced_clients_;
}
void ResourceScheduler::LoadCoalescedRequests() {
DCHECK(should_coalesce_);
ClientMap::iterator client_it = client_map_.begin();
while (client_it != client_map_.end()) {
Client* client = client_it->second;
client->LoadCoalescedRequests();
++client_it;
}
}
ResourceScheduler::ClientState ResourceScheduler::GetClientState(
ClientId client_id) const {
ClientMap::const_iterator client_it = client_map_.find(client_id);
if (client_it == client_map_.end())
return UNKNOWN;
return client_it->second->is_active() ? ACTIVE : BACKGROUND;
}
void ResourceScheduler::ReprioritizeRequest(net::URLRequest* request,
net::RequestPriority new_priority,
int new_intra_priority_value) {
if (request->load_flags() & net::LOAD_IGNORE_LIMITS) {
// We should not be re-prioritizing requests with the
// IGNORE_LIMITS flag.
NOTREACHED();
return;
}
auto* scheduled_resource_request =
ScheduledResourceRequest::ForRequest(request);
// Downloads don't use the resource scheduler.
if (!scheduled_resource_request) {
request->SetPriority(new_priority);
return;
}
RequestPriorityParams new_priority_params(new_priority,
new_intra_priority_value);
RequestPriorityParams old_priority_params =
scheduled_resource_request->get_request_priority_params();
DCHECK(old_priority_params != new_priority_params);
ClientMap::iterator client_it =
client_map_.find(scheduled_resource_request->client_id());
if (client_it == client_map_.end()) {
// The client was likely deleted shortly before we received this IPC.
request->SetPriority(new_priority_params.priority);
scheduled_resource_request->set_request_priority_params(
new_priority_params);
return;
}
if (old_priority_params == new_priority_params)
return;
Client *client = client_it->second;
client->ReprioritizeRequest(scheduled_resource_request, old_priority_params,
new_priority_params);
}
ResourceScheduler::ClientId ResourceScheduler::MakeClientId(
int child_id, int route_id) {
return (static_cast<ResourceScheduler::ClientId>(child_id) << 32) | route_id;
}
} // namespace content