blob: 4033ea6b9c30627f0d292399967890df523bc1b3 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- r0 : number of arguments excluding receiver
// -- r1 : target
// -- r3 : new.target
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
__ AssertFunction(r1);
// Insert extra arguments.
int num_extra_args = 0;
switch (extra_args) {
case BuiltinExtraArguments::kTarget:
__ Push(r1);
++num_extra_args;
break;
case BuiltinExtraArguments::kNewTarget:
__ Push(r3);
++num_extra_args;
break;
case BuiltinExtraArguments::kTargetAndNewTarget:
__ Push(r1, r3);
num_extra_args += 2;
break;
case BuiltinExtraArguments::kNone:
break;
}
// JumpToExternalReference expects r0 to contain the number of arguments
// including the receiver and the extra arguments.
__ add(r0, r0, Operand(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the InternalArray function from the current native context.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result);
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the Array function from the current native context.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, r1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(r2);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction);
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the Array function.
GenerateLoadArrayFunction(masm, r1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(r2);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
__ mov(r3, r1);
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into r0 and get rid of the rest (including the
// receiver).
Label no_arguments;
{
__ sub(r0, r0, Operand(1), SetCC);
__ b(lo, &no_arguments);
__ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex));
__ Drop(2);
}
// 2a. At least one argument, return r0 if it's a string, otherwise
// dispatch to appropriate conversion.
Label to_string, symbol_descriptive_string;
{
__ JumpIfSmi(r0, &to_string);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ CompareObjectType(r0, r1, r1, FIRST_NONSTRING_TYPE);
__ b(hi, &to_string);
__ b(eq, &symbol_descriptive_string);
__ Ret();
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(r0, Heap::kempty_stringRootIndex);
__ Ret(1);
}
// 3a. Convert r0 to a string.
__ bind(&to_string);
{
ToStringStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// 3b. Convert symbol in r0 to a string.
__ bind(&symbol_descriptive_string);
{
__ Push(r0);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString, 1, 1);
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- r3 : new target
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into r2 and get rid of the rest (including the
// receiver).
{
Label no_arguments, done;
__ sub(r0, r0, Operand(1), SetCC);
__ b(lo, &no_arguments);
__ ldr(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex));
__ Drop(2);
__ b(&done);
__ bind(&no_arguments);
__ LoadRoot(r2, Heap::kempty_stringRootIndex);
__ Drop(1);
__ bind(&done);
}
// 2. Make sure r2 is a string.
{
Label convert, done_convert;
__ JumpIfSmi(r2, &convert);
__ CompareObjectType(r2, r4, r4, FIRST_NONSTRING_TYPE);
__ b(lo, &done_convert);
__ bind(&convert);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
ToStringStub stub(masm->isolate());
__ Push(r1, r3);
__ Move(r0, r2);
__ CallStub(&stub);
__ Move(r2, r0);
__ Pop(r1, r3);
}
__ bind(&done_convert);
}
// 3. Check if new target and constructor differ.
Label new_object;
__ cmp(r1, r3);
__ b(ne, &new_object);
// 4. Allocate a JSValue wrapper for the string.
{
// ----------- S t a t e -------------
// -- r2 : the first argument
// -- r1 : constructor function
// -- r3 : new target
// -- lr : return address
// -----------------------------------
__ Allocate(JSValue::kSize, r0, r4, r5, &new_object, TAG_OBJECT);
// Initialize the JSValue in r0.
__ LoadGlobalFunctionInitialMap(r1, r3, r4);
__ str(r3, FieldMemOperand(r0, HeapObject::kMapOffset));
__ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
__ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
__ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
__ str(r2, FieldMemOperand(r0, JSValue::kValueOffset));
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
__ Ret();
}
// 5. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r2, r1, r3); // first argument, constructor, new target
__ CallRuntime(Runtime::kNewObject, 2);
__ Pop(r2);
}
__ str(r2, FieldMemOperand(r0, JSValue::kValueOffset));
__ Ret();
}
static void CallRuntimePassFunction(
MacroAssembler* masm, Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- r1 : target function (preserved for callee)
// -- r3 : new target (preserved for callee)
// -----------------------------------
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function and the new target.
__ push(r1);
__ push(r3);
// Push function as parameter to the runtime call.
__ Push(r1);
__ CallRuntime(function_id, 1);
// Restore target function and new target.
__ pop(r3);
__ pop(r1);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCodeOffset));
__ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r2);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
__ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r0);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmp(sp, Operand(ip));
__ b(hs, &ok);
CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
GenerateTailCallToReturnedCode(masm);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool create_implicit_receiver) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- r2 : allocation site or undefined
// -- r3 : new target
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Isolate* isolate = masm->isolate();
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ AssertUndefinedOrAllocationSite(r2, r4);
__ push(r2);
__ SmiTag(r0);
__ push(r0);
if (create_implicit_receiver) {
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
// Verify that the new target is a JSFunction.
__ CompareObjectType(r3, r5, r4, JS_FUNCTION_TYPE);
__ b(ne, &rt_call);
// Load the initial map and verify that it is in fact a map.
// r3: new target
__ ldr(r2,
FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(r2, &rt_call);
__ CompareObjectType(r2, r5, r4, MAP_TYPE);
__ b(ne, &rt_call);
// Fall back to runtime if the expected base constructor and base
// constructor differ.
__ ldr(r5, FieldMemOperand(r2, Map::kConstructorOrBackPointerOffset));
__ cmp(r1, r5);
__ b(ne, &rt_call);
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the
// initial map's instance type would be JS_FUNCTION_TYPE.
// r1: constructor function
// r2: initial map
// r3: new target
__ CompareInstanceType(r2, r5, JS_FUNCTION_TYPE);
__ b(eq, &rt_call);
// Now allocate the JSObject on the heap.
// r1: constructor function
// r2: initial map
// r3: new target
__ ldrb(r9, FieldMemOperand(r2, Map::kInstanceSizeOffset));
__ Allocate(r9, r4, r9, r6, &rt_call, SIZE_IN_WORDS);
// Allocated the JSObject, now initialize the fields. Map is set to
// initial map and properties and elements are set to empty fixed array.
// r1: constructor function
// r2: initial map
// r3: new target
// r4: JSObject (not HeapObject tagged - the actual address).
// r9: start of next object
__ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
__ mov(r5, r4);
STATIC_ASSERT(0 * kPointerSize == JSObject::kMapOffset);
__ str(r2, MemOperand(r5, kPointerSize, PostIndex));
STATIC_ASSERT(1 * kPointerSize == JSObject::kPropertiesOffset);
__ str(r6, MemOperand(r5, kPointerSize, PostIndex));
STATIC_ASSERT(2 * kPointerSize == JSObject::kElementsOffset);
__ str(r6, MemOperand(r5, kPointerSize, PostIndex));
STATIC_ASSERT(3 * kPointerSize == JSObject::kHeaderSize);
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on.
__ add(r4, r4, Operand(kHeapObjectTag));
// Fill all the in-object properties with the appropriate filler.
// r4: JSObject (tagged)
// r5: First in-object property of JSObject (not tagged)
__ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
if (!is_api_function) {
Label no_inobject_slack_tracking;
// Check if slack tracking is enabled.
MemOperand bit_field3 = FieldMemOperand(r2, Map::kBitField3Offset);
// Check if slack tracking is enabled.
__ ldr(r0, bit_field3);
__ DecodeField<Map::Counter>(ip, r0);
// ip: slack tracking counter
__ cmp(ip, Operand(Map::kSlackTrackingCounterEnd));
__ b(lt, &no_inobject_slack_tracking);
__ push(ip); // Save allocation count value.
// Decrease generous allocation count.
__ sub(r0, r0, Operand(1 << Map::Counter::kShift));
__ str(r0, bit_field3);
// Allocate object with a slack.
__ ldr(r0, FieldMemOperand(r2, Map::kInstanceAttributesOffset));
__ Ubfx(r0, r0, Map::kUnusedPropertyFieldsByte * kBitsPerByte,
kBitsPerByte);
__ sub(r0, r9, Operand(r0, LSL, kPointerSizeLog2));
// r0: offset of first field after pre-allocated fields
if (FLAG_debug_code) {
__ cmp(r5, r0);
__ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields);
}
__ InitializeFieldsWithFiller(r5, r0, r6);
// To allow truncation fill the remaining fields with one pointer
// filler map.
__ LoadRoot(r6, Heap::kOnePointerFillerMapRootIndex);
__ InitializeFieldsWithFiller(r5, r9, r6);
__ pop(r0); // Restore allocation count value before decreasing.
__ cmp(r0, Operand(Map::kSlackTrackingCounterEnd));
__ b(ne, &allocated);
// Push the constructor, new_target and the object to the stack,
// and then the initial map as an argument to the runtime call.
__ Push(r1, r3, r4, r2);
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ Pop(r1, r3, r4);
// Continue with JSObject being successfully allocated
// r1: constructor function
// r3: new target
// r4: JSObject
__ jmp(&allocated);
__ bind(&no_inobject_slack_tracking);
}
__ InitializeFieldsWithFiller(r5, r9, r6);
// Continue with JSObject being successfully allocated
// r1: constructor function
// r3: new target
// r4: JSObject
__ jmp(&allocated);
}
// Allocate the new receiver object using the runtime call.
// r1: constructor function
// r3: new target
__ bind(&rt_call);
// Push the constructor and new_target twice, second pair as arguments
// to the runtime call.
__ Push(r1, r3);
__ Push(r1, r3); // constructor function, new target
__ CallRuntime(Runtime::kNewObject, 2);
__ mov(r4, r0);
__ Pop(r1, r3);
// Receiver for constructor call allocated.
// r1: constructor function
// r3: new target
// r4: JSObject
__ bind(&allocated);
// Retrieve smi-tagged arguments count from the stack.
__ ldr(r0, MemOperand(sp));
}
__ SmiUntag(r0);
if (create_implicit_receiver) {
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(r4);
__ push(r4);
} else {
__ PushRoot(Heap::kTheHoleValueRootIndex);
}
// Set up pointer to last argument.
__ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
// r0: number of arguments
// r1: constructor function
// r2: address of last argument (caller sp)
// r3: new target
// r4: number of arguments (smi-tagged)
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: number of arguments (smi-tagged)
Label loop, entry;
__ SmiTag(r4, r0);
__ b(&entry);
__ bind(&loop);
__ ldr(ip, MemOperand(r2, r4, LSL, kPointerSizeLog2 - 1));
__ push(ip);
__ bind(&entry);
__ sub(r4, r4, Operand(2), SetCC);
__ b(ge, &loop);
// Call the function.
// r0: number of arguments
// r1: constructor function
// r3: new target
if (is_api_function) {
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
__ Call(code, RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(r0);
__ InvokeFunction(r1, r3, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
}
// Store offset of return address for deoptimizer.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
// r0: result
// sp[0]: receiver
// sp[1]: number of arguments (smi-tagged)
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
if (create_implicit_receiver) {
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// r0: result
// sp[0]: receiver
// sp[1]: number of arguments (smi-tagged)
__ JumpIfSmi(r0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ CompareObjectType(r0, r1, r3, FIRST_JS_RECEIVER_TYPE);
__ b(ge, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ ldr(r0, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// r0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: number of arguments (smi-tagged)
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
} else {
__ ldr(r1, MemOperand(sp));
}
// Leave construct frame.
}
__ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
__ add(sp, sp, Operand(kPointerSize));
if (create_implicit_receiver) {
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, r1, r2);
}
__ Jump(lr);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, true);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(r1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable, 1);
}
enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
// Clobbers r2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
IsTagged argc_is_tagged) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
// Make r2 the space we have left. The stack might already be overflowed
// here which will cause r2 to become negative.
__ sub(r2, sp, r2);
// Check if the arguments will overflow the stack.
if (argc_is_tagged == kArgcIsSmiTagged) {
__ cmp(r2, Operand::PointerOffsetFromSmiKey(argc));
} else {
DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
__ cmp(r2, Operand(argc, LSL, kPointerSizeLog2));
}
__ b(gt, &okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from Generate_JS_Entry
// r0: new.target
// r1: function
// r2: receiver
// r3: argc
// r4: argv
// r5-r6, r8 (if !FLAG_enable_embedded_constant_pool) and cp may be clobbered
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Clear the context before we push it when entering the internal frame.
__ mov(cp, Operand::Zero());
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ mov(cp, Operand(context_address));
__ ldr(cp, MemOperand(cp));
__ InitializeRootRegister();
// Push the function and the receiver onto the stack.
__ Push(r1, r2);
// Check if we have enough stack space to push all arguments.
// Clobbers r2.
Generate_CheckStackOverflow(masm, r3, kArgcIsUntaggedInt);
// Remember new.target.
__ mov(r5, r0);
// Copy arguments to the stack in a loop.
// r1: function
// r3: argc
// r4: argv, i.e. points to first arg
Label loop, entry;
__ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
// r2 points past last arg.
__ b(&entry);
__ bind(&loop);
__ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter
__ ldr(r0, MemOperand(r0)); // dereference handle
__ push(r0); // push parameter
__ bind(&entry);
__ cmp(r4, r2);
__ b(ne, &loop);
// Setup new.target and argc.
__ mov(r0, Operand(r3));
__ mov(r3, Operand(r5));
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
__ mov(r5, Operand(r4));
__ mov(r6, Operand(r4));
if (!FLAG_enable_embedded_constant_pool) {
__ mov(r8, Operand(r4));
}
if (kR9Available == 1) {
__ mov(r9, Operand(r4));
}
// Invoke the code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS frame and remove the parameters (except function), and
// return.
// Respect ABI stack constraint.
}
__ Jump(lr);
// r0: result
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o r1: the JS function object being called.
// o r3: the new target
// o cp: our context
// o pp: the caller's constant pool pointer (if enabled)
// o fp: the caller's frame pointer
// o sp: stack pointer
// o lr: return address
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-arm.h for its layout.
// TODO(rmcilroy): We will need to include the current bytecode pointer in the
// frame.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushFixedFrame(r1);
__ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
__ push(r3);
// Get the bytecode array from the function object and load the pointer to the
// first entry into kInterpreterBytecodeRegister.
__ ldr(r0, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(kInterpreterBytecodeArrayRegister,
FieldMemOperand(r0, SharedFunctionInfo::kFunctionDataOffset));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ SmiTst(kInterpreterBytecodeArrayRegister);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r0, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ ldr(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ sub(r9, sp, Operand(r4));
__ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
__ cmp(r9, Operand(r2));
__ b(hs, &ok);
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
__ b(&loop_check, al);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(r9);
// Continue loop if not done.
__ bind(&loop_check);
__ sub(r4, r4, Operand(kPointerSize), SetCC);
__ b(&loop_header, ge);
}
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's prologue:
// - Support profiler (specifically profiling_counter).
// - Call ProfileEntryHookStub when isolate has a function_entry_hook.
// - Allow simulator stop operations if FLAG_stop_at is set.
// - Code aging of the BytecodeArray object.
// Perform stack guard check.
{
Label ok;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmp(sp, Operand(ip));
__ b(hs, &ok);
__ push(kInterpreterBytecodeArrayRegister);
__ CallRuntime(Runtime::kStackGuard, 0);
__ pop(kInterpreterBytecodeArrayRegister);
__ bind(&ok);
}
// Load accumulator, register file, bytecode offset, dispatch table into
// registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ sub(kInterpreterRegisterFileRegister, fp,
Operand(2 * kPointerSize +
StandardFrameConstants::kFixedFrameSizeFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ LoadRoot(kInterpreterDispatchTableRegister,
Heap::kInterpreterTableRootIndex);
__ add(kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// Dispatch to the first bytecode handler for the function.
__ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ldr(ip, MemOperand(kInterpreterDispatchTableRegister, r1, LSL,
kPointerSizeLog2));
// TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging
// and header removal.
__ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(ip);
}
void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) {
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's EmitReturnSequence.
// - Supporting FLAG_trace for Runtime::TraceExit.
// - Support profiler (specifically decrementing profiling_counter
// appropriately and calling out to HandleInterrupts if necessary).
// The return value is in accumulator, which is already in r0.
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
// Drop receiver + arguments and return.
__ ldr(ip, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kParameterSizeOffset));
__ add(sp, sp, ip, LeaveCC);
__ Jump(lr);
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register index,
Register limit, Register scratch) {
Label loop_header, loop_check;
__ b(al, &loop_check);
__ bind(&loop_header);
__ ldr(scratch, MemOperand(index, -kPointerSize, PostIndex));
__ push(scratch);
__ bind(&loop_check);
__ cmp(index, limit);
__ b(gt, &loop_header);
}
// static
void Builtins::Generate_InterpreterPushArgsAndCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- r1 : the target to call (can be any Object).
// -----------------------------------
// Find the address of the last argument.
__ add(r3, r0, Operand(1)); // Add one for receiver.
__ mov(r3, Operand(r3, LSL, kPointerSizeLog2));
__ sub(r3, r2, r3);
// Push the arguments.
Generate_InterpreterPushArgs(masm, r2, r3, r4);
// Call the target.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argument count (not including receiver)
// -- r3 : new target
// -- r1 : constructor to call
// -- r2 : address of the first argument
// -----------------------------------
// Find the address of the last argument.
__ mov(r4, Operand(r0, LSL, kPointerSizeLog2));
__ sub(r4, r2, r4);
// Push a slot for the receiver to be constructed.
__ push(r0);
// Push the arguments.
Generate_InterpreterPushArgs(masm, r2, r4, r5);
// Call the constructor with r0, r1, and r3 unmodified.
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileLazy);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileOptimized_NotConcurrent);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileOptimized_Concurrent);
GenerateTailCallToReturnedCode(masm);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// The following registers must be saved and restored when calling through to
// the runtime:
// r0 - contains return address (beginning of patch sequence)
// r1 - isolate
// r3 - new target
FrameScope scope(masm, StackFrame::MANUAL);
__ stm(db_w, sp, r0.bit() | r1.bit() | r3.bit() | fp.bit() | lr.bit());
__ PrepareCallCFunction(2, 0, r2);
__ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ ldm(ia_w, sp, r0.bit() | r1.bit() | r3.bit() | fp.bit() | lr.bit());
__ mov(pc, r0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
// The following registers must be saved and restored when calling through to
// the runtime:
// r0 - contains return address (beginning of patch sequence)
// r1 - isolate
// r3 - new target
FrameScope scope(masm, StackFrame::MANUAL);
__ stm(db_w, sp, r0.bit() | r1.bit() | r3.bit() | fp.bit() | lr.bit());
__ PrepareCallCFunction(2, 0, r2);
__ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(ExternalReference::get_mark_code_as_executed_function(
masm->isolate()), 2);
__ ldm(ia_w, sp, r0.bit() | r1.bit() | r3.bit() | fp.bit() | lr.bit());
// Perform prologue operations usually performed by the young code stub.
__ PushFixedFrame(r1);
__ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
// Jump to point after the code-age stub.
__ add(r0, r0, Operand(kNoCodeAgeSequenceLength));
__ mov(pc, r0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ stm(db_w, sp, kJSCallerSaved | kCalleeSaved);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
__ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved);
}
__ add(sp, sp, Operand(kPointerSize)); // Ignore state
__ mov(pc, lr); // Jump to miss handler
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ mov(r0, Operand(Smi::FromInt(static_cast<int>(type))));
__ push(r0);
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
}
// Get the full codegen state from the stack and untag it -> r6.
__ ldr(r6, MemOperand(sp, 0 * kPointerSize));
__ SmiUntag(r6);
// Switch on the state.
Label with_tos_register, unknown_state;
__ cmp(r6, Operand(FullCodeGenerator::NO_REGISTERS));
__ b(ne, &with_tos_register);
__ add(sp, sp, Operand(1 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&with_tos_register);
__ ldr(r0, MemOperand(sp, 1 * kPointerSize));
__ cmp(r6, Operand(FullCodeGenerator::TOS_REG));
__ b(ne, &unknown_state);
__ add(sp, sp, Operand(2 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
Register function_template_info,
Register scratch0, Register scratch1,
Register scratch2,
Label* receiver_check_failed) {
Register signature = scratch0;
Register map = scratch1;
Register constructor = scratch2;
// If the receiver is not an object, jump to receiver_check_failed.
__ CompareObjectType(receiver, map, ip, FIRST_JS_OBJECT_TYPE);
__ b(lo, receiver_check_failed);
// If there is no signature, return the holder.
__ ldr(signature, FieldMemOperand(function_template_info,
FunctionTemplateInfo::kSignatureOffset));
__ CompareRoot(signature, Heap::kUndefinedValueRootIndex);
Label receiver_check_passed;
__ b(eq, &receiver_check_passed);
// Walk the prototype chain.
Label prototype_loop_start;
__ bind(&prototype_loop_start);
// End if the receiver is null or if it's a hidden type.
__ CompareRoot(receiver, Heap::kNullValueRootIndex);
__ b(eq, receiver_check_failed);
__ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ ldr(ip, FieldMemOperand(map, Map::kBitField3Offset));
__ tst(ip, Operand(Map::IsHiddenPrototype::kMask));
__ b(ne, receiver_check_failed);
// Get the constructor, if any.
__ GetMapConstructor(constructor, map, ip, ip);
__ cmp(ip, Operand(JS_FUNCTION_TYPE));
Label next_prototype;
__ b(ne, &next_prototype);
Register type = constructor;
__ ldr(type,
FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset));
__ ldr(type, FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset));
// Loop through the chain of inheriting function templates.
Label function_template_loop;
__ bind(&function_template_loop);
// If the signatures match, we have a compatible receiver.
__ cmp(signature, type);
__ b(eq, &receiver_check_passed);
// If the current type is not a FunctionTemplateInfo, load the next prototype
// in the chain.
__ JumpIfSmi(type, &next_prototype);
__ CompareObjectType(type, ip, ip, FUNCTION_TEMPLATE_INFO_TYPE);
// Otherwise load the parent function template and iterate.
__ ldr(type,
FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset),
eq);
__ b(&function_template_loop, eq);
// Load the next prototype and iterate.
__ bind(&next_prototype);
__ ldr(receiver, FieldMemOperand(map, Map::kPrototypeOffset));
__ b(&prototype_loop_start);
__ bind(&receiver_check_passed);
}
void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments excluding receiver
// -- r1 : callee
// -- lr : return address
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
// Load the receiver.
__ ldr(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// Update the receiver if this is a contextual call.
Label set_global_proxy, valid_receiver;
__ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
__ b(eq, &set_global_proxy);
__ bind(&valid_receiver);
// Load the FunctionTemplateInfo.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset));
// Do the compatible receiver check.
Label receiver_check_failed;
CompatibleReceiverCheck(masm, r2, r3, r4, r5, r6, &receiver_check_failed);
// Get the callback offset from the FunctionTemplateInfo, and jump to the
// beginning of the code.
__ ldr(r4, FieldMemOperand(r3, FunctionTemplateInfo::kCallCodeOffset));
__ ldr(r4, FieldMemOperand(r4, CallHandlerInfo::kFastHandlerOffset));
__ add(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r4);
__ bind(&set_global_proxy);
__ LoadGlobalProxy(r2);
__ str(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ b(&valid_receiver);
// Compatible receiver check failed: throw an Illegal Invocation exception.
__ bind(&receiver_check_failed);
// Drop the arguments (including the receiver)
__ add(r0, r0, Operand(1));
__ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
__ TailCallRuntime(Runtime::kThrowIllegalInvocation, 0, 1);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(r0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
// If the code object is null, just return to the unoptimized code.
Label skip;
__ cmp(r0, Operand(Smi::FromInt(0)));
__ b(ne, &skip);
__ Ret();
__ bind(&skip);
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset));
{ ConstantPoolUnavailableScope constant_pool_unavailable(masm);
__ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
if (FLAG_enable_embedded_constant_pool) {
__ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r0);
}
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex)));
// Compute the target address = code start + osr_offset
__ add(lr, r0, Operand::SmiUntag(r1));
// And "return" to the OSR entry point of the function.
__ Ret();
}
}
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
// We check the stack limit as indicator that recompilation might be done.
Label ok;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmp(sp, Operand(ip));
__ b(hs, &ok);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kStackGuard, 0);
}
__ Jump(masm->isolate()->builtins()->OnStackReplacement(),
RelocInfo::CODE_TARGET);
__ bind(&ok);
__ Ret();
}
// static
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// r0: actual number of arguments
{
Label done;
__ cmp(r0, Operand::Zero());
__ b(ne, &done);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ add(r0, r0, Operand(1));
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
// r0: actual number of arguments
__ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// r0: actual number of arguments
// r1: callable
{
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
__ bind(&loop);
__ ldr(ip, MemOperand(r2, -kPointerSize));
__ str(ip, MemOperand(r2));
__ sub(r2, r2, Operand(kPointerSize));
__ cmp(r2, sp);
__ b(ne, &loop);
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ sub(r0, r0, Operand(1));
__ pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
static void Generate_PushAppliedArguments(MacroAssembler* masm,
const int vectorOffset,
const int argumentsOffset,
const int indexOffset,
const int limitOffset) {
Label entry, loop;
Register receiver = LoadDescriptor::ReceiverRegister();
Register key = LoadDescriptor::NameRegister();
Register slot = LoadDescriptor::SlotRegister();
Register vector = LoadWithVectorDescriptor::VectorRegister();
__ ldr(key, MemOperand(fp, indexOffset));
__ b(&entry);
// Load the current argument from the arguments array.
__ bind(&loop);
__ ldr(receiver, MemOperand(fp, argumentsOffset));
// Use inline caching to speed up access to arguments.
int slot_index = TypeFeedbackVector::PushAppliedArgumentsIndex();
__ mov(slot, Operand(Smi::FromInt(slot_index)));
__ ldr(vector, MemOperand(fp, vectorOffset));
Handle<Code> ic =
KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode();
__ Call(ic, RelocInfo::CODE_TARGET);
// Push the nth argument.
__ push(r0);
__ ldr(key, MemOperand(fp, indexOffset));
__ add(key, key, Operand(1 << kSmiTagSize));
__ str(key, MemOperand(fp, indexOffset));
// Test if the copy loop has finished copying all the elements from the
// arguments object.
__ bind(&entry);
__ ldr(r1, MemOperand(fp, limitOffset));
__ cmp(key, r1);
__ b(ne, &loop);
// On exit, the pushed arguments count is in r0, untagged
__ mov(r0, key);
__ SmiUntag(r0);
}
// Used by FunctionApply and ReflectApply
static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) {
const int kFormalParameters = targetIsArgument ? 3 : 2;
const int kStackSize = kFormalParameters + 1;
{
FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
const int kReceiverOffset = kArgumentsOffset + kPointerSize;
const int kFunctionOffset = kReceiverOffset + kPointerSize;
const int kVectorOffset =
InternalFrameConstants::kCodeOffset - 1 * kPointerSize;
// Push the vector.
__ ldr(r1, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r1, FieldMemOperand(r1, SharedFunctionInfo::kFeedbackVectorOffset));
__ Push(r1);
__ ldr(r0, MemOperand(fp, kFunctionOffset)); // get the function
__ ldr(r1, MemOperand(fp, kArgumentsOffset)); // get the args array
__ Push(r0, r1);
if (targetIsArgument) {
__ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX,
CALL_FUNCTION);
} else {
__ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION);
}
Generate_CheckStackOverflow(masm, r0, kArgcIsSmiTagged);
// Push current limit and index.
const int kIndexOffset = kVectorOffset - (2 * kPointerSize);
const int kLimitOffset = kVectorOffset - (1 * kPointerSize);
__ mov(r1, Operand::Zero());
__ ldr(r2, MemOperand(fp, kReceiverOffset));
__ Push(r0, r1, r2); // limit, initial index and receiver.
// Copy all arguments from the array to the stack.
Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset,
kIndexOffset, kLimitOffset);
// Call the callable.
// TODO(bmeurer): This should be a tail call according to ES6.
__ ldr(r1, MemOperand(fp, kFunctionOffset));
__ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
// Tear down the internal frame and remove function, receiver and args.
}
__ add(sp, sp, Operand(kStackSize * kPointerSize));
__ Jump(lr);
}
static void Generate_ConstructHelper(MacroAssembler* masm) {
const int kFormalParameters = 3;
const int kStackSize = kFormalParameters + 1;
{
FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize;
const int kArgumentsOffset = kNewTargetOffset + kPointerSize;
const int kFunctionOffset = kArgumentsOffset + kPointerSize;
static const int kVectorOffset =
InternalFrameConstants::kCodeOffset - 1 * kPointerSize;
// Push the vector.
__ ldr(r1, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r1, FieldMemOperand(r1, SharedFunctionInfo::kFeedbackVectorOffset));
__ Push(r1);
// If newTarget is not supplied, set it to constructor
Label validate_arguments;
__ ldr(r0, MemOperand(fp, kNewTargetOffset));
__ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
__ b(ne, &validate_arguments);
__ ldr(r0, MemOperand(fp, kFunctionOffset));
__ str(r0, MemOperand(fp, kNewTargetOffset));
// Validate arguments
__ bind(&validate_arguments);
__ ldr(r0, MemOperand(fp, kFunctionOffset)); // get the function
__ push(r0);
__ ldr(r0, MemOperand(fp, kArgumentsOffset)); // get the args array
__ push(r0);
__ ldr(r0, MemOperand(fp, kNewTargetOffset)); // get the new.target
__ push(r0);
__ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX,
CALL_FUNCTION);
Generate_CheckStackOverflow(masm, r0, kArgcIsSmiTagged);
// Push current limit and index.
const int kIndexOffset = kVectorOffset - (2 * kPointerSize);
const int kLimitOffset = kVectorOffset - (1 * kPointerSize);
__ push(r0); // limit
__ mov(r1, Operand::Zero()); // initial index
__ push(r1);
// Push the constructor function as callee.
__ ldr(r0, MemOperand(fp, kFunctionOffset));
__ push(r0);
// Copy all arguments from the array to the stack.
Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset,
kIndexOffset, kLimitOffset);
// Use undefined feedback vector
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ ldr(r1, MemOperand(fp, kFunctionOffset));
__ ldr(r3, MemOperand(fp, kNewTargetOffset));
// Call the function.
__ Call(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ add(sp, sp, Operand(kStackSize * kPointerSize));
__ Jump(lr);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, false);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, true);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
Generate_ConstructHelper(masm);
}
static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- r0 : actual number of arguments
// -- r1 : function (passed through to callee)
// -- r2 : expected number of arguments
// -- r3 : new target (passed through to callee)
// -----------------------------------
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(r5, Heap::kRealStackLimitRootIndex);
// Make r5 the space we have left. The stack might already be overflowed
// here which will cause r5 to become negative.
__ sub(r5, sp, r5);
// Check if the arguments will overflow the stack.
__ cmp(r5, Operand(r2, LSL, kPointerSizeLog2));
__ b(le, stack_overflow); // Signed comparison.
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(r0);
__ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() |
(FLAG_enable_embedded_constant_pool ? pp.bit() : 0) |
fp.bit() | lr.bit());
__ add(fp, sp,
Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ ldr(r1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
__ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR);
__ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1));
__ add(sp, sp, Operand(kPointerSize)); // adjust for receiver
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(r1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldrb(r3, FieldMemOperand(r2, SharedFunctionInfo::kFunctionKindByteOffset));
__ tst(r3, Operand(SharedFunctionInfo::kClassConstructorBitsWithinByte));
__ b(ne, &class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
SharedFunctionInfo::kStrictModeByteOffset);
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ ldrb(r3, FieldMemOperand(r2, SharedFunctionInfo::kNativeByteOffset));
__ tst(r3, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) |
(1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
__ b(ne, &done_convert);
{
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSFunction)
// -- r2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(r3);
} else {
Label convert_to_object, convert_receiver;
__ ldr(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ JumpIfSmi(r3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
__ b(hs, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(r3, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(r3, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(r3);
}
__ b(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(r0);
__ Push(r0, r1);
__ mov(r0, r3);
ToObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ mov(r3, r0);
__ Pop(r0, r1);
__ SmiUntag(r0);
}
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSFunction)
// -- r2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ ldr(r2,
FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset));
__ SmiUntag(r2);
ParameterCount actual(r0);
ParameterCount expected(r2);
__ InvokeFunctionCode(r1, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ push(r1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError, 1);
}
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(r1, &non_callable);
__ bind(&non_smi);
__ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq);
__ cmp(r5, Operand(JS_PROXY_TYPE));
__ b(ne, &non_function);
// 1. Runtime fallback for Proxy [[Call]].
__ Push(r1);
// Increase the arguments size to include the pushed function and the
// existing receiver on the stack.
__ add(r0, r0, Operand(2));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Check if target has a [[Call]] internal method.
__ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r4, Operand(1 << Map::kIsCallable));
__ b(eq, &non_callable);
// Overwrite the original receiver the (original) target.
__ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r1);
__ CallRuntime(Runtime::kThrowCalledNonCallable, 1);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the constructor to call (checked to be a JSFunction)
// -- r3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertFunction(r1);
// Calling convention for function specific ConstructStubs require
// r2 to contain either an AllocationSite or undefined.
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset));
__ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the constructor to call (checked to be a JSProxy)
// -- r3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// TODO(neis): This doesn't match the ES6 spec for [[Construct]] on proxies.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the constructor to call (can be any Object)
// -- r3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(r1, &non_constructor);
// Dispatch based on instance type.
__ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET, eq);
__ cmp(r5, Operand(JS_PROXY_TYPE));
__ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET,
eq);
// Check if target has a [[Construct]] internal method.
__ ldrb(r2, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r2, Operand(1 << Map::kIsConstructor));
__ b(eq, &non_constructor);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : actual number of arguments
// -- r1 : function (passed through to callee)
// -- r2 : expected number of arguments
// -- r3 : new target (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Label enough, too_few;
__ cmp(r0, r2);
__ b(lt, &too_few);
__ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ b(eq, &dont_adapt_arguments);
{ // Enough parameters: actual >= expected
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
ArgumentAdaptorStackCheck(masm, &stack_overflow);
// Calculate copy start address into r0 and copy end address into r4.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
// adjust for return address and receiver
__ add(r0, r0, Operand(2 * kPointerSize));
__ sub(r4, r0, Operand(r2, LSL, kPointerSizeLog2));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
// r4: copy end address
Label copy;
__ bind(&copy);
__ ldr(ip, MemOperand(r0, 0));
__ push(ip);
__ cmp(r0, r4); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, &copy);
__ b(&invoke);
}
{ // Too few parameters: Actual < expected
__ bind(&too_few);
// If the function is strong we need to throw an error.
Label no_strong_error;
__ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r5, FieldMemOperand(r4, SharedFunctionInfo::kCompilerHintsOffset));
__ tst(r5, Operand(1 << (SharedFunctionInfo::kStrongModeFunction +
kSmiTagSize)));
__ b(eq, &no_strong_error);
// What we really care about is the required number of arguments.
__ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kLengthOffset));
__ cmp(r0, Operand::SmiUntag(r4));
__ b(ge, &no_strong_error);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0);
}
__ bind(&no_strong_error);
EnterArgumentsAdaptorFrame(masm);
ArgumentAdaptorStackCheck(masm, &stack_overflow);
// Calculate copy start address into r0 and copy end address is fp.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
Label copy;
__ bind(&copy);
// Adjust load for return address and receiver.
__ ldr(ip, MemOperand(r0, 2 * kPointerSize));
__ push(ip);
__ cmp(r0, fp); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, &copy);
// Fill the remaining expected arguments with undefined.
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ sub(r4, fp, Operand(r2, LSL, kPointerSizeLog2));
// Adjust for frame.
__ sub(r4, r4, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
2 * kPointerSize));
Label fill;
__ bind(&fill);
__ push(ip);
__ cmp(sp, r4);
__ b(ne, &fill);
}
// Call the entry point.
__ bind(&invoke);
__ mov(r0, r2);
// r0 : expected number of arguments
// r1 : function (passed through to callee)
// r3 : new target (passed through to callee)
__ ldr(r4, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ Call(r4);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Jump(lr);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ ldr(r4, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ Jump(r4);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bkpt(0);
}
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM