blob: ff212f0297bdfeac7185b1b2daf3a7abdf2d9cbe [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_PPC
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- r3 : number of arguments excluding receiver
// -- r4 : target
// -- r6 : new.target
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
__ AssertFunction(r4);
// Insert extra arguments.
int num_extra_args = 0;
switch (extra_args) {
case BuiltinExtraArguments::kTarget:
__ Push(r4);
++num_extra_args;
break;
case BuiltinExtraArguments::kNewTarget:
__ Push(r6);
++num_extra_args;
break;
case BuiltinExtraArguments::kTargetAndNewTarget:
__ Push(r4, r6);
num_extra_args += 2;
break;
case BuiltinExtraArguments::kNone:
break;
}
// JumpToExternalReference expects r3 to contain the number of arguments
// including the receiver and the extra arguments.
__ addi(r3, r3, Operand(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the InternalArray function from the current native context.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result);
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the Array function from the current native context.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, r4);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
__ TestIfSmi(r5, r0);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, cr0);
__ CompareObjectType(r5, r6, r7, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the Array function.
GenerateLoadArrayFunction(masm, r4);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
__ TestIfSmi(r5, r0);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
__ CompareObjectType(r5, r6, r7, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
__ mr(r6, r4);
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : number of arguments
// -- r4 : constructor function
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into r3 and get rid of the rest (including the
// receiver).
Label no_arguments;
{
__ cmpi(r3, Operand::Zero());
__ beq(&no_arguments);
__ subi(r3, r3, Operand(1));
__ ShiftLeftImm(r3, r3, Operand(kPointerSizeLog2));
__ LoadPUX(r3, MemOperand(sp, r3));
__ Drop(2);
}
// 2a. At least one argument, return r3 if it's a string, otherwise
// dispatch to appropriate conversion.
Label to_string, symbol_descriptive_string;
{
__ JumpIfSmi(r3, &to_string);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ CompareObjectType(r3, r4, r4, FIRST_NONSTRING_TYPE);
__ bgt(&to_string);
__ beq(&symbol_descriptive_string);
__ Ret();
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(r3, Heap::kempty_stringRootIndex);
__ Ret(1);
}
// 3a. Convert r3 to a string.
__ bind(&to_string);
{
ToStringStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// 3b. Convert symbol in r3 to a string.
__ bind(&symbol_descriptive_string);
{
__ Push(r3);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString, 1, 1);
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : number of arguments
// -- r4 : constructor function
// -- r6 : new target
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into r5 and get rid of the rest (including the
// receiver).
{
Label no_arguments, done;
__ cmpi(r3, Operand::Zero());
__ beq(&no_arguments);
__ subi(r3, r3, Operand(1));
__ ShiftLeftImm(r5, r3, Operand(kPointerSizeLog2));
__ LoadPUX(r5, MemOperand(sp, r5));
__ Drop(2);
__ b(&done);
__ bind(&no_arguments);
__ LoadRoot(r5, Heap::kempty_stringRootIndex);
__ Drop(1);
__ bind(&done);
}
// 2. Make sure r5 is a string.
{
Label convert, done_convert;
__ JumpIfSmi(r5, &convert);
__ CompareObjectType(r5, r7, r7, FIRST_NONSTRING_TYPE);
__ blt(&done_convert);
__ bind(&convert);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
ToStringStub stub(masm->isolate());
__ Push(r4, r6);
__ mr(r3, r5);
__ CallStub(&stub);
__ mr(r5, r3);
__ Pop(r4, r6);
}
__ bind(&done_convert);
}
// 3. Check if new target and constructor differ.
Label new_object;
__ cmp(r4, r6);
__ bne(&new_object);
// 4. Allocate a JSValue wrapper for the string.
{
// ----------- S t a t e -------------
// -- r5 : the first argument
// -- r4 : constructor function
// -- r6 : new target
// -- lr : return address
// -----------------------------------
__ Allocate(JSValue::kSize, r3, r7, r8, &new_object, TAG_OBJECT);
// Initialize the JSValue in r3.
__ LoadGlobalFunctionInitialMap(r4, r6, r7);
__ StoreP(r6, FieldMemOperand(r3, HeapObject::kMapOffset), r0);
__ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
__ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
__ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
__ StoreP(r5, FieldMemOperand(r3, JSValue::kValueOffset), r0);
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
__ Ret();
}
// 5. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r5, r4, r6); // first argument, constructor, new target
__ CallRuntime(Runtime::kNewObject, 2);
__ Pop(r5);
}
__ StoreP(r5, FieldMemOperand(r3, JSValue::kValueOffset), r0);
__ Ret();
}
static void CallRuntimePassFunction(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- r4 : target function (preserved for callee)
// -- r6 : new target (preserved for callee)
// -----------------------------------
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function and the new target.
// Push function as parameter to the runtime call.
__ Push(r4, r6, r4);
__ CallRuntime(function_id, 1);
// Restore target function and new target.
__ Pop(r4, r6);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ LoadP(ip, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(ip, FieldMemOperand(ip, SharedFunctionInfo::kCodeOffset));
__ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
__ addi(ip, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmpl(sp, ip);
__ bge(&ok);
CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
GenerateTailCallToReturnedCode(masm);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool create_implicit_receiver) {
// ----------- S t a t e -------------
// -- r3 : number of arguments
// -- r4 : constructor function
// -- r5 : allocation site or undefined
// -- r6 : new target
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Isolate* isolate = masm->isolate();
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ AssertUndefinedOrAllocationSite(r5, r7);
if (!create_implicit_receiver) {
__ SmiTag(r7, r3, SetRC);
__ Push(r5, r7);
__ PushRoot(Heap::kTheHoleValueRootIndex);
} else {
__ SmiTag(r3);
__ Push(r5, r3);
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
// Verify that the new target is a JSFunction.
__ CompareObjectType(r6, r8, r7, JS_FUNCTION_TYPE);
__ bne(&rt_call);
// Load the initial map and verify that it is in fact a map.
// r6: new target
__ LoadP(r5,
FieldMemOperand(r6, JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(r5, &rt_call);
__ CompareObjectType(r5, r8, r7, MAP_TYPE);
__ bne(&rt_call);
// Fall back to runtime if the expected base constructor and base
// constructor differ.
__ LoadP(r8, FieldMemOperand(r5, Map::kConstructorOrBackPointerOffset));
__ cmp(r4, r8);
__ bne(&rt_call);
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the
// initial map's instance type would be JS_FUNCTION_TYPE.
// r4: constructor function
// r5: initial map
// r6: new target
__ CompareInstanceType(r5, r8, JS_FUNCTION_TYPE);
__ beq(&rt_call);
// Now allocate the JSObject on the heap.
// r4: constructor function
// r5: initial map
// r6: new target
__ lbz(r10, FieldMemOperand(r5, Map::kInstanceSizeOffset));
__ Allocate(r10, r7, r10, r9, &rt_call, SIZE_IN_WORDS);
// Allocated the JSObject, now initialize the fields. Map is set to
// initial map and properties and elements are set to empty fixed array.
// r4: constructor function
// r5: initial map
// r6: new target
// r7: JSObject (not HeapObject tagged - the actual address).
// r10: start of next object
__ LoadRoot(r9, Heap::kEmptyFixedArrayRootIndex);
__ StoreP(r5, MemOperand(r7, JSObject::kMapOffset));
__ StoreP(r9, MemOperand(r7, JSObject::kPropertiesOffset));
__ StoreP(r9, MemOperand(r7, JSObject::kElementsOffset));
__ addi(r8, r7, Operand(JSObject::kElementsOffset + kPointerSize));
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on.
__ addi(r7, r7, Operand(kHeapObjectTag));
// Fill all the in-object properties with the appropriate filler.
// r7: JSObject (tagged)
// r8: First in-object property of JSObject (not tagged)
__ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
if (!is_api_function) {
Label no_inobject_slack_tracking;
MemOperand bit_field3 = FieldMemOperand(r5, Map::kBitField3Offset);
// Check if slack tracking is enabled.
__ lwz(r3, bit_field3);
__ DecodeField<Map::Counter>(r11, r3);
// r11: slack tracking counter
__ cmpi(r11, Operand(Map::kSlackTrackingCounterEnd));
__ blt(&no_inobject_slack_tracking);
// Decrease generous allocation count.
__ Add(r3, r3, -(1 << Map::Counter::kShift), r0);
__ stw(r3, bit_field3);
// Allocate object with a slack.
__ lbz(r3, FieldMemOperand(r5, Map::kUnusedPropertyFieldsOffset));
__ ShiftLeftImm(r3, r3, Operand(kPointerSizeLog2));
__ sub(r3, r10, r3);
// r3: offset of first field after pre-allocated fields
if (FLAG_debug_code) {
__ cmp(r8, r3);
__ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields);
}
__ InitializeFieldsWithFiller(r8, r3, r9);
// To allow truncation fill the remaining fields with one pointer
// filler map.
__ LoadRoot(r9, Heap::kOnePointerFillerMapRootIndex);
__ InitializeFieldsWithFiller(r8, r10, r9);
// r11: slack tracking counter value before decreasing.
__ cmpi(r11, Operand(Map::kSlackTrackingCounterEnd));
__ bne(&allocated);
// Push the constructor, new_target and the object to the stack,
// and then the initial map as an argument to the runtime call.
__ Push(r4, r6, r7, r5);
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ Pop(r4, r6, r7);
// Continue with JSObject being successfully allocated
// r4: constructor function
// r6: new target
// r7: JSObject
__ b(&allocated);
__ bind(&no_inobject_slack_tracking);
}
__ InitializeFieldsWithFiller(r8, r10, r9);
// Continue with JSObject being successfully allocated
// r4: constructor function
// r6: new target
// r7: JSObject
__ b(&allocated);
}
// Allocate the new receiver object using the runtime call.
// r4: constructor function
// r6: new target
__ bind(&rt_call);
// Push the constructor and new_target twice, second pair as arguments
// to the runtime call.
__ Push(r4, r6, r4, r6);
__ CallRuntime(Runtime::kNewObject, 2);
__ mr(r7, r3);
__ Pop(r4, r6);
// Receiver for constructor call allocated.
// r4: constructor function
// r6: new target
// r7: JSObject
__ bind(&allocated);
// Retrieve smi-tagged arguments count from the stack.
__ LoadP(r3, MemOperand(sp));
__ SmiUntag(r3, SetRC);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(r7, r7);
}
// Set up pointer to last argument.
__ addi(r5, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
// r3: number of arguments
// r4: constructor function
// r5: address of last argument (caller sp)
// r6: new target
// cr0: condition indicating whether r3 is zero
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: number of arguments (smi-tagged)
Label loop, no_args;
__ beq(&no_args, cr0);
__ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2));
__ sub(sp, sp, ip);
__ mtctr(r3);
__ bind(&loop);
__ subi(ip, ip, Operand(kPointerSize));
__ LoadPX(r0, MemOperand(r5, ip));
__ StorePX(r0, MemOperand(sp, ip));
__ bdnz(&loop);
__ bind(&no_args);
// Call the function.
// r3: number of arguments
// r4: constructor function
// r6: new target
if (is_api_function) {
__ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
Handle<Code> code = masm->isolate()->builtins()->HandleApiCallConstruct();
__ Call(code, RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(r3);
__ InvokeFunction(r4, r6, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
}
// Store offset of return address for deoptimizer.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
// r3: result
// sp[0]: receiver
// sp[1]: number of arguments (smi-tagged)
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
if (create_implicit_receiver) {
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// r3: result
// sp[0]: receiver
// sp[1]: number of arguments (smi-tagged)
__ JumpIfSmi(r3, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ CompareObjectType(r3, r4, r6, FIRST_JS_RECEIVER_TYPE);
__ bge(&exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ LoadP(r3, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// r3: result
// sp[0]: receiver (newly allocated object)
// sp[1]: number of arguments (smi-tagged)
__ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
} else {
__ LoadP(r4, MemOperand(sp));
}
// Leave construct frame.
}
__ SmiToPtrArrayOffset(r4, r4);
__ add(sp, sp, r4);
__ addi(sp, sp, Operand(kPointerSize));
if (create_implicit_receiver) {
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, r4, r5);
}
__ blr();
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, true);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ push(r4);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable, 1);
}
enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
// Clobbers r5; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
IsTagged argc_is_tagged) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(r5, Heap::kRealStackLimitRootIndex);
// Make r5 the space we have left. The stack might already be overflowed
// here which will cause r5 to become negative.
__ sub(r5, sp, r5);
// Check if the arguments will overflow the stack.
if (argc_is_tagged == kArgcIsSmiTagged) {
__ SmiToPtrArrayOffset(r0, argc);
} else {
DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
__ ShiftLeftImm(r0, argc, Operand(kPointerSizeLog2));
}
__ cmp(r5, r0);
__ bgt(&okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from Generate_JS_Entry
// r3: new.target
// r4: function
// r5: receiver
// r6: argc
// r7: argv
// r0,r8-r9, cp may be clobbered
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Clear the context before we push it when entering the internal frame.
__ li(cp, Operand::Zero());
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ mov(cp, Operand(context_address));
__ LoadP(cp, MemOperand(cp));
__ InitializeRootRegister();
// Push the function and the receiver onto the stack.
__ Push(r4, r5);
// Check if we have enough stack space to push all arguments.
// Clobbers r5.
Generate_CheckStackOverflow(masm, r6, kArgcIsUntaggedInt);
// Copy arguments to the stack in a loop.
// r4: function
// r6: argc
// r7: argv, i.e. points to first arg
Label loop, entry;
__ ShiftLeftImm(r0, r6, Operand(kPointerSizeLog2));
__ add(r5, r7, r0);
// r5 points past last arg.
__ b(&entry);
__ bind(&loop);
__ LoadP(r8, MemOperand(r7)); // read next parameter
__ addi(r7, r7, Operand(kPointerSize));
__ LoadP(r0, MemOperand(r8)); // dereference handle
__ push(r0); // push parameter
__ bind(&entry);
__ cmp(r7, r5);
__ bne(&loop);
// Setup new.target and argc.
__ mr(r7, r3);
__ mr(r3, r6);
__ mr(r6, r7);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
__ mr(r14, r7);
__ mr(r15, r7);
__ mr(r16, r7);
__ mr(r17, r7);
// Invoke the code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS frame and remove the parameters (except function), and
// return.
}
__ blr();
// r3: result
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o r4: the JS function object being called.
// o r6: the new target
// o cp: our context
// o pp: the caller's constant pool pointer (if enabled)
// o fp: the caller's frame pointer
// o sp: stack pointer
// o lr: return address
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-ppc.h for its layout.
// TODO(rmcilroy): We will need to include the current bytecode pointer in the
// frame.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushFixedFrame(r4);
__ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
__ push(r6);
// Get the bytecode array from the function object and load the pointer to the
// first entry into kInterpreterBytecodeRegister.
__ LoadP(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(kInterpreterBytecodeArrayRegister,
FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ TestIfSmi(kInterpreterBytecodeArrayRegister, r0);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Allocate the local and temporary register file on the stack.
{
// Load frame size (word) from the BytecodeArray object.
__ lwz(r5, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ sub(r6, sp, r5);
__ LoadRoot(r0, Heap::kRealStackLimitRootIndex);
__ cmpl(r6, r0);
__ bge(&ok);
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
Label loop, no_args;
__ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
__ ShiftRightImm(r5, r5, Operand(kPointerSizeLog2), SetRC);
__ beq(&no_args, cr0);
__ mtctr(r5);
__ bind(&loop);
__ push(r6);
__ bdnz(&loop);
__ bind(&no_args);
}
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's prologue:
// - Support profiler (specifically profiling_counter).
// - Call ProfileEntryHookStub when isolate has a function_entry_hook.
// - Allow simulator stop operations if FLAG_stop_at is set.
// - Code aging of the BytecodeArray object.
// Perform stack guard check.
{
Label ok;
__ LoadRoot(r0, Heap::kStackLimitRootIndex);
__ cmp(sp, r0);
__ bge(&ok);
__ push(kInterpreterBytecodeArrayRegister);
__ CallRuntime(Runtime::kStackGuard, 0);
__ pop(kInterpreterBytecodeArrayRegister);
__ bind(&ok);
}
// Load accumulator, register file, bytecode offset, dispatch table into
// registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ subi(kInterpreterRegisterFileRegister, fp,
Operand(2 * kPointerSize +
StandardFrameConstants::kFixedFrameSizeFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ LoadRoot(kInterpreterDispatchTableRegister,
Heap::kInterpreterTableRootIndex);
__ addi(kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// Dispatch to the first bytecode handler for the function.
__ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ShiftLeftImm(ip, r4, Operand(kPointerSizeLog2));
__ LoadPX(ip, MemOperand(kInterpreterDispatchTableRegister, ip));
// TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging
// and header removal.
__ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(ip);
__ bkpt(0); // Does not return here.
}
void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) {
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's EmitReturnSequence.
// - Supporting FLAG_trace for Runtime::TraceExit.
// - Support profiler (specifically decrementing profiling_counter
// appropriately and calling out to HandleInterrupts if necessary).
// The return value is in accumulator, which is already in r3.
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
// Drop receiver + arguments and return.
__ lwz(r0, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kParameterSizeOffset));
__ add(sp, sp, r0);
__ blr();
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register index,
Register count, Register scratch) {
Label loop;
__ addi(index, index, Operand(kPointerSize)); // Bias up for LoadPU
__ mtctr(count);
__ bind(&loop);
__ LoadPU(scratch, MemOperand(index, -kPointerSize));
__ push(scratch);
__ bdnz(&loop);
}
// static
void Builtins::Generate_InterpreterPushArgsAndCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : the number of arguments (not including the receiver)
// -- r5 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- r4 : the target to call (can be any Object).
// -----------------------------------
// Calculate number of arguments (add one for receiver).
__ addi(r6, r3, Operand(1));
// Push the arguments.
Generate_InterpreterPushArgs(masm, r5, r6, r7);
// Call the target.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : argument count (not including receiver)
// -- r6 : new target
// -- r4 : constructor to call
// -- r5 : address of the first argument
// -----------------------------------
// Push a slot for the receiver to be constructed.
__ push(r3);
// Push the arguments (skip if none).
Label skip;
__ cmpi(r3, Operand::Zero());
__ beq(&skip);
Generate_InterpreterPushArgs(masm, r5, r3, r7);
__ bind(&skip);
// Call the constructor with r3, r4, and r6 unmodified.
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileLazy);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileOptimized_NotConcurrent);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileOptimized_Concurrent);
GenerateTailCallToReturnedCode(masm);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Point r3 at the start of the PlatformCodeAge sequence.
__ mr(r3, ip);
// The following registers must be saved and restored when calling through to
// the runtime:
// r3 - contains return address (beginning of patch sequence)
// r4 - isolate
// r6 - new target
// lr - return address
FrameScope scope(masm, StackFrame::MANUAL);
__ mflr(r0);
__ MultiPush(r0.bit() | r3.bit() | r4.bit() | r6.bit() | fp.bit());
__ PrepareCallCFunction(2, 0, r5);
__ mov(r4, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ MultiPop(r0.bit() | r3.bit() | r4.bit() | r6.bit() | fp.bit());
__ mtlr(r0);
__ mr(ip, r3);
__ Jump(ip);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Point r3 at the start of the PlatformCodeAge sequence.
__ mr(r3, ip);
// The following registers must be saved and restored when calling through to
// the runtime:
// r3 - contains return address (beginning of patch sequence)
// r4 - isolate
// r6 - new target
// lr - return address
FrameScope scope(masm, StackFrame::MANUAL);
__ mflr(r0);
__ MultiPush(r0.bit() | r3.bit() | r4.bit() | r6.bit() | fp.bit());
__ PrepareCallCFunction(2, 0, r5);
__ mov(r4, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
__ MultiPop(r0.bit() | r3.bit() | r4.bit() | r6.bit() | fp.bit());
__ mtlr(r0);
__ mr(ip, r3);
// Perform prologue operations usually performed by the young code stub.
__ PushFixedFrame(r4);
__ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
// Jump to point after the code-age stub.
__ addi(r3, ip, Operand(kNoCodeAgeSequenceLength));
__ Jump(r3);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ MultiPush(kJSCallerSaved | kCalleeSaved);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
__ MultiPop(kJSCallerSaved | kCalleeSaved);
}
__ addi(sp, sp, Operand(kPointerSize)); // Ignore state
__ blr(); // Jump to miss handler
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ LoadSmiLiteral(r3, Smi::FromInt(static_cast<int>(type)));
__ push(r3);
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
}
// Get the full codegen state from the stack and untag it -> r9.
__ LoadP(r9, MemOperand(sp, 0 * kPointerSize));
__ SmiUntag(r9);
// Switch on the state.
Label with_tos_register, unknown_state;
__ cmpi(r9, Operand(FullCodeGenerator::NO_REGISTERS));
__ bne(&with_tos_register);
__ addi(sp, sp, Operand(1 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&with_tos_register);
__ LoadP(r3, MemOperand(sp, 1 * kPointerSize));
__ cmpi(r9, Operand(FullCodeGenerator::TOS_REG));
__ bne(&unknown_state);
__ addi(sp, sp, Operand(2 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
// Clobbers registers {r7, r8, r9, r10}.
void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
Register function_template_info,
Label* receiver_check_failed) {
Register signature = r7;
Register map = r8;
Register constructor = r9;
Register scratch = r10;
__ CompareObjectType(receiver, map, no_reg, FIRST_JS_OBJECT_TYPE);
__ blt(receiver_check_failed);
// If there is no signature, return the holder.
__ LoadP(signature, FieldMemOperand(function_template_info,
FunctionTemplateInfo::kSignatureOffset));
Label receiver_check_passed;
__ JumpIfRoot(signature, Heap::kUndefinedValueRootIndex,
&receiver_check_passed);
// Walk the prototype chain.
Label prototype_loop_start;
__ bind(&prototype_loop_start);
// End if the receiver is null or if it's a hidden type.
__ JumpIfRoot(receiver, Heap::kNullValueRootIndex, receiver_check_failed);
__ LoadP(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ LoadP(scratch, FieldMemOperand(map, Map::kBitField3Offset));
__ DecodeField<Map::IsHiddenPrototype>(scratch, SetRC);
__ bne(receiver_check_failed, cr0);
// Get the constructor, if any.
__ GetMapConstructor(constructor, map, scratch, scratch);
__ cmpi(scratch, Operand(JS_FUNCTION_TYPE));
Label next_prototype;
__ bne(&next_prototype);
Register type = constructor;
__ LoadP(type,
FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(type,
FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset));
// Loop through the chain of inheriting function templates.
Label function_template_loop;
__ bind(&function_template_loop);
// If the signatures match, we have a compatible receiver.
__ cmp(signature, type);
__ beq(&receiver_check_passed);
// If the current type is not a FunctionTemplateInfo, load the next prototype
// in the chain.
__ JumpIfSmi(type, &next_prototype);
__ CompareObjectType(type, scratch, scratch, FUNCTION_TEMPLATE_INFO_TYPE);
__ bne(&next_prototype);
// Otherwise load the parent function template and iterate.
__ LoadP(type,
FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset));
__ b(&function_template_loop);
// Load the next prototype and iterate.
__ bind(&next_prototype);
__ LoadP(receiver, FieldMemOperand(map, Map::kPrototypeOffset));
__ b(&prototype_loop_start);
__ bind(&receiver_check_passed);
}
void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : number of arguments excluding receiver
// -- r4 : callee
// -- lr : return address
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
// Load the receiver.
__ ShiftLeftImm(r11, r3, Operand(kPointerSizeLog2));
__ LoadPX(r5, MemOperand(sp, r11));
// Update the receiver if this is a contextual call.
Label set_global_proxy, valid_receiver;
__ JumpIfRoot(r5, Heap::kUndefinedValueRootIndex, &set_global_proxy);
// Load the FunctionTemplateInfo.
__ bind(&valid_receiver);
__ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kFunctionDataOffset));
// Do the compatible receiver check.
Label receiver_check_failed;
CompatibleReceiverCheck(masm, r5, r6, &receiver_check_failed);
// Get the callback offset from the FunctionTemplateInfo, and jump to the
// beginning of the code.
__ LoadP(r7, FieldMemOperand(r6, FunctionTemplateInfo::kCallCodeOffset));
__ LoadP(r7, FieldMemOperand(r7, CallHandlerInfo::kFastHandlerOffset));
__ addi(ip, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
__ bind(&set_global_proxy);
__ LoadGlobalProxy(r5);
__ StorePX(r5, MemOperand(sp, r11));
__ b(&valid_receiver);
// Compatible receiver check failed: throw an Illegal Invocation exception.
__ bind(&receiver_check_failed);
// Drop the arguments (including the receiver);
__ addi(r11, r11, Operand(kPointerSize));
__ add(sp, sp, r11);
__ TailCallRuntime(Runtime::kThrowIllegalInvocation, 0, 1);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(r3);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
// If the code object is null, just return to the unoptimized code.
Label skip;
__ CmpSmiLiteral(r3, Smi::FromInt(0), r0);
__ bne(&skip);
__ Ret();
__ bind(&skip);
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ LoadP(r4, FieldMemOperand(r3, Code::kDeoptimizationDataOffset));
{
ConstantPoolUnavailableScope constant_pool_unavailable(masm);
__ addi(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
if (FLAG_enable_embedded_constant_pool) {
__ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r3);
}
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ LoadP(r4, FieldMemOperand(
r4, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex)));
__ SmiUntag(r4);
// Compute the target address = code start + osr_offset
__ add(r0, r3, r4);
// And "return" to the OSR entry point of the function.
__ mtlr(r0);
__ blr();
}
}
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
// We check the stack limit as indicator that recompilation might be done.
Label ok;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmpl(sp, ip);
__ bge(&ok);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kStackGuard, 0);
}
__ Jump(masm->isolate()->builtins()->OnStackReplacement(),
RelocInfo::CODE_TARGET);
__ bind(&ok);
__ Ret();
}
// static
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// r3: actual number of arguments
{
Label done;
__ cmpi(r3, Operand::Zero());
__ bne(&done);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ addi(r3, r3, Operand(1));
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
// r3: actual number of arguments
__ ShiftLeftImm(r5, r3, Operand(kPointerSizeLog2));
__ LoadPX(r4, MemOperand(sp, r5));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// r3: actual number of arguments
// r4: callable
{
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ add(r5, sp, r5);
__ mtctr(r3);
__ bind(&loop);
__ LoadP(ip, MemOperand(r5, -kPointerSize));
__ StoreP(ip, MemOperand(r5));
__ subi(r5, r5, Operand(kPointerSize));
__ bdnz(&loop);
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ subi(r3, r3, Operand(1));
__ pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
static void Generate_PushAppliedArguments(MacroAssembler* masm,
const int vectorOffset,
const int argumentsOffset,
const int indexOffset,
const int limitOffset) {
Register receiver = LoadDescriptor::ReceiverRegister();
Register key = LoadDescriptor::NameRegister();
Register slot = LoadDescriptor::SlotRegister();
Register vector = LoadWithVectorDescriptor::VectorRegister();
// Copy all arguments from the array to the stack.
Label entry, loop;
__ LoadP(key, MemOperand(fp, indexOffset));
__ b(&entry);
__ bind(&loop);
__ LoadP(receiver, MemOperand(fp, argumentsOffset));
// Use inline caching to speed up access to arguments.
int slot_index = TypeFeedbackVector::PushAppliedArgumentsIndex();
__ LoadSmiLiteral(slot, Smi::FromInt(slot_index));
__ LoadP(vector, MemOperand(fp, vectorOffset));
Handle<Code> ic =
KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode();
__ Call(ic, RelocInfo::CODE_TARGET);
// Push the nth argument.
__ push(r3);
// Update the index on the stack and in register key.
__ LoadP(key, MemOperand(fp, indexOffset));
__ AddSmiLiteral(key, key, Smi::FromInt(1), r0);
__ StoreP(key, MemOperand(fp, indexOffset));
// Test if the copy loop has finished copying all the elements from the
// arguments object.
__ bind(&entry);
__ LoadP(r0, MemOperand(fp, limitOffset));
__ cmp(key, r0);
__ bne(&loop);
// On exit, the pushed arguments count is in r3, untagged
__ SmiUntag(r3, key);
}
// Used by FunctionApply and ReflectApply
static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) {
const int kFormalParameters = targetIsArgument ? 3 : 2;
const int kStackSize = kFormalParameters + 1;
{
FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
const int kReceiverOffset = kArgumentsOffset + kPointerSize;
const int kFunctionOffset = kReceiverOffset + kPointerSize;
const int kVectorOffset =
InternalFrameConstants::kCodeOffset - 1 * kPointerSize;
// Push the vector.
__ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r4,
FieldMemOperand(r4, SharedFunctionInfo::kFeedbackVectorOffset));
__ push(r4);
__ LoadP(r3, MemOperand(fp, kFunctionOffset)); // get the function
__ LoadP(r4, MemOperand(fp, kArgumentsOffset)); // get the args array
__ Push(r3, r4);
if (targetIsArgument) {
__ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX,
CALL_FUNCTION);
} else {
__ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION);
}
Generate_CheckStackOverflow(masm, r3, kArgcIsSmiTagged);
// Push current limit and index.
const int kIndexOffset = kVectorOffset - (2 * kPointerSize);
const int kLimitOffset = kVectorOffset - (1 * kPointerSize);
__ li(r4, Operand::Zero());
__ LoadP(r5, MemOperand(fp, kReceiverOffset));
__ Push(r3, r4, r5); // limit, initial index and receiver.
// Copy all arguments from the array to the stack.
Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset,
kIndexOffset, kLimitOffset);
// Call the callable.
// TODO(bmeurer): This should be a tail call according to ES6.
__ LoadP(r4, MemOperand(fp, kFunctionOffset));
__ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
// Tear down the internal frame and remove function, receiver and args.
}
__ addi(sp, sp, Operand(kStackSize * kPointerSize));
__ blr();
}
static void Generate_ConstructHelper(MacroAssembler* masm) {
const int kFormalParameters = 3;
const int kStackSize = kFormalParameters + 1;
{
FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize;
const int kArgumentsOffset = kNewTargetOffset + kPointerSize;
const int kFunctionOffset = kArgumentsOffset + kPointerSize;
static const int kVectorOffset =
InternalFrameConstants::kCodeOffset - 1 * kPointerSize;
// Push the vector.
__ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r4,
FieldMemOperand(r4, SharedFunctionInfo::kFeedbackVectorOffset));
__ push(r4);
// If newTarget is not supplied, set it to constructor
Label validate_arguments;
__ LoadP(r3, MemOperand(fp, kNewTargetOffset));
__ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
__ bne(&validate_arguments);
__ LoadP(r3, MemOperand(fp, kFunctionOffset));
__ StoreP(r3, MemOperand(fp, kNewTargetOffset));
// Validate arguments
__ bind(&validate_arguments);
__ LoadP(r3, MemOperand(fp, kFunctionOffset)); // get the function
__ push(r3);
__ LoadP(r3, MemOperand(fp, kArgumentsOffset)); // get the args array
__ push(r3);
__ LoadP(r3, MemOperand(fp, kNewTargetOffset)); // get the new.target
__ push(r3);
__ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX,
CALL_FUNCTION);
Generate_CheckStackOverflow(masm, r3, kArgcIsSmiTagged);
// Push current limit and index.
const int kIndexOffset = kVectorOffset - (2 * kPointerSize);
const int kLimitOffset = kVectorOffset - (1 * kPointerSize);
__ li(r4, Operand::Zero());
__ Push(r3, r4); // limit and initial index.
// Push the constructor function as callee
__ LoadP(r3, MemOperand(fp, kFunctionOffset));
__ push(r3);
// Copy all arguments from the array to the stack.
Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset,
kIndexOffset, kLimitOffset);
// Use undefined feedback vector
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ LoadP(r4, MemOperand(fp, kFunctionOffset));
__ LoadP(r6, MemOperand(fp, kNewTargetOffset));
// Call the function.
__ Call(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ addi(sp, sp, Operand(kStackSize * kPointerSize));
__ blr();
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, false);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, true);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
Generate_ConstructHelper(masm);
}
static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- r3 : actual number of arguments
// -- r4 : function (passed through to callee)
// -- r5 : expected number of arguments
// -- r6 : new target (passed through to callee)
// -----------------------------------
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(r8, Heap::kRealStackLimitRootIndex);
// Make r8 the space we have left. The stack might already be overflowed
// here which will cause r8 to become negative.
__ sub(r8, sp, r8);
// Check if the arguments will overflow the stack.
__ ShiftLeftImm(r0, r5, Operand(kPointerSizeLog2));
__ cmp(r8, r0);
__ ble(stack_overflow); // Signed comparison.
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(r3);
__ LoadSmiLiteral(r7, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ mflr(r0);
__ push(r0);
if (FLAG_enable_embedded_constant_pool) {
__ Push(fp, kConstantPoolRegister, r7, r4, r3);
} else {
__ Push(fp, r7, r4, r3);
}
__ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ LoadP(r4, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
int stack_adjustment = kPointerSize; // adjust for receiver
__ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment);
__ SmiToPtrArrayOffset(r0, r4);
__ add(sp, sp, r0);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r3 : the number of arguments (not including the receiver)
// -- r4 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(r4);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ lwz(r6, FieldMemOperand(r5, SharedFunctionInfo::kCompilerHintsOffset));
__ TestBitMask(r6, SharedFunctionInfo::kClassConstructorBits, r0);
__ bne(&class_constructor, cr0);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ andi(r0, r6, Operand((1 << SharedFunctionInfo::kStrictModeBit) |
(1 << SharedFunctionInfo::kNativeBit)));
__ bne(&done_convert, cr0);
{
// ----------- S t a t e -------------
// -- r3 : the number of arguments (not including the receiver)
// -- r4 : the function to call (checked to be a JSFunction)
// -- r5 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(r6);
} else {
Label convert_to_object, convert_receiver;
__ ShiftLeftImm(r6, r3, Operand(kPointerSizeLog2));
__ LoadPX(r6, MemOperand(sp, r6));
__ JumpIfSmi(r6, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r6, r7, r7, FIRST_JS_RECEIVER_TYPE);
__ bge(&done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(r6, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(r6, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(r6);
}
__ b(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(r3);
__ Push(r3, r4);
__ mr(r3, r6);
ToObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ mr(r6, r3);
__ Pop(r3, r4);
__ SmiUntag(r3);
}
__ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ ShiftLeftImm(r7, r3, Operand(kPointerSizeLog2));
__ StorePX(r6, MemOperand(sp, r7));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- r3 : the number of arguments (not including the receiver)
// -- r4 : the function to call (checked to be a JSFunction)
// -- r5 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ LoadWordArith(
r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
#if !V8_TARGET_ARCH_PPC64
__ SmiUntag(r5);
#endif
ParameterCount actual(r3);
ParameterCount expected(r5);
__ InvokeFunctionCode(r4, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL);
__ push(r4);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError, 1);
}
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r3 : the number of arguments (not including the receiver)
// -- r4 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(r4, &non_callable);
__ bind(&non_smi);
__ CompareObjectType(r4, r7, r8, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq);
__ cmpi(r8, Operand(JS_PROXY_TYPE));
__ bne(&non_function);
// 1. Runtime fallback for Proxy [[Call]].
__ Push(r4);
// Increase the arguments size to include the pushed function and the
// existing receiver on the stack.
__ addi(r3, r3, Operand(2));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Check if target has a [[Call]] internal method.
__ lbz(r7, FieldMemOperand(r7, Map::kBitFieldOffset));
__ TestBit(r7, Map::kIsCallable, r0);
__ beq(&non_callable, cr0);
// Overwrite the original receiver the (original) target.
__ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2));
__ StorePX(r4, MemOperand(sp, r8));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r4);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r4);
__ CallRuntime(Runtime::kThrowCalledNonCallable, 1);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : the number of arguments (not including the receiver)
// -- r4 : the constructor to call (checked to be a JSFunction)
// -- r6 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertFunction(r4);
// Calling convention for function specific ConstructStubs require
// r5 to contain either an AllocationSite or undefined.
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r7, FieldMemOperand(r7, SharedFunctionInfo::kConstructStubOffset));
__ addi(ip, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : the number of arguments (not including the receiver)
// -- r4 : the constructor to call (checked to be a JSProxy)
// -- r6 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// TODO(neis): This doesn't match the ES6 spec for [[Construct]] on proxies.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : the number of arguments (not including the receiver)
// -- r4 : the constructor to call (can be any Object)
// -- r6 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(r4, &non_constructor);
// Dispatch based on instance type.
__ CompareObjectType(r4, r7, r8, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET, eq);
__ cmpi(r8, Operand(JS_PROXY_TYPE));
__ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET,
eq);
// Check if target has a [[Construct]] internal method.
__ lbz(r5, FieldMemOperand(r7, Map::kBitFieldOffset));
__ TestBit(r5, Map::kIsConstructor, r0);
__ beq(&non_constructor, cr0);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2));
__ StorePX(r4, MemOperand(sp, r8));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r4);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : actual number of arguments
// -- r4 : function (passed through to callee)
// -- r5 : expected number of arguments
// -- r6 : new target (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Label enough, too_few;
__ LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
__ cmp(r3, r5);
__ blt(&too_few);
__ cmpi(r5, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ beq(&dont_adapt_arguments);
{ // Enough parameters: actual >= expected
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
ArgumentAdaptorStackCheck(masm, &stack_overflow);
// Calculate copy start address into r3 and copy end address into r7.
// r3: actual number of arguments as a smi
// r4: function
// r5: expected number of arguments
// r6: new target (passed through to callee)
// ip: code entry to call
__ SmiToPtrArrayOffset(r3, r3);
__ add(r3, r3, fp);
// adjust for return address and receiver
__ addi(r3, r3, Operand(2 * kPointerSize));
__ ShiftLeftImm(r7, r5, Operand(kPointerSizeLog2));
__ sub(r7, r3, r7);
// Copy the arguments (including the receiver) to the new stack frame.
// r3: copy start address
// r4: function
// r5: expected number of arguments
// r6: new target (passed through to callee)
// r7: copy end address
// ip: code entry to call
Label copy;
__ bind(&copy);
__ LoadP(r0, MemOperand(r3, 0));
__ push(r0);
__ cmp(r3, r7); // Compare before moving to next argument.
__ subi(r3, r3, Operand(kPointerSize));
__ bne(&copy);
__ b(&invoke);
}
{ // Too few parameters: Actual < expected
__ bind(&too_few);
// If the function is strong we need to throw an error.
Label no_strong_error;
__ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ lwz(r8, FieldMemOperand(r7, SharedFunctionInfo::kCompilerHintsOffset));
__ TestBit(r8, SharedFunctionInfo::kStrongModeBit, r0);
__ beq(&no_strong_error, cr0);
// What we really care about is the required number of arguments.
__ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kLengthOffset));
#if V8_TARGET_ARCH_PPC64
// See commment near kLenghtOffset in src/objects.h
__ srawi(r7, r7, kSmiTagSize);
#else
__ SmiUntag(r7);
#endif
__ cmp(r3, r7);
__ bge(&no_strong_error);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0);
}
__ bind(&no_strong_error);
EnterArgumentsAdaptorFrame(masm);
ArgumentAdaptorStackCheck(masm, &stack_overflow);
// Calculate copy start address into r0 and copy end address is fp.
// r3: actual number of arguments as a smi
// r4: function
// r5: expected number of arguments
// r6: new target (passed through to callee)
// ip: code entry to call
__ SmiToPtrArrayOffset(r3, r3);
__ add(r3, r3, fp);
// Copy the arguments (including the receiver) to the new stack frame.
// r3: copy start address
// r4: function
// r5: expected number of arguments
// r6: new target (passed through to callee)
// ip: code entry to call
Label copy;
__ bind(&copy);
// Adjust load for return address and receiver.
__ LoadP(r0, MemOperand(r3, 2 * kPointerSize));
__ push(r0);
__ cmp(r3, fp); // Compare before moving to next argument.
__ subi(r3, r3, Operand(kPointerSize));
__ bne(&copy);
// Fill the remaining expected arguments with undefined.
// r4: function
// r5: expected number of arguments
// r6: new target (passed through to callee)
// ip: code entry to call
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ ShiftLeftImm(r7, r5, Operand(kPointerSizeLog2));
__ sub(r7, fp, r7);
// Adjust for frame.
__ subi(r7, r7, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
2 * kPointerSize));
Label fill;
__ bind(&fill);
__ push(r0);
__ cmp(sp, r7);
__ bne(&fill);
}
// Call the entry point.
__ bind(&invoke);
__ mr(r3, r5);
// r3 : expected number of arguments
// r4 : function (passed through to callee)
// r6 : new target (passed through to callee)
__ CallJSEntry(ip);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ blr();
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ JumpToJSEntry(ip);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bkpt(0);
}
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_PPC