blob: 72e009cf2922ac70b73d405b7a96c65b58656083 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS64
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- a0 : number of arguments excluding receiver
// (only guaranteed when the called function
// is not marked as DontAdaptArguments)
// -- a1 : called function
// -- sp[0] : last argument
// -- ...
// -- sp[8 * (argc - 1)] : first argument
// -- sp[8 * agrc] : receiver
// -----------------------------------
__ AssertFunction(a1);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
// TODO(bmeurer): Can we make this more robust?
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
__ push(a1);
} else {
DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects a0 to contain the number of arguments
// including the receiver and the extra arguments. But a0 is only valid
// if the called function is marked as DontAdaptArguments, otherwise we
// need to load the argument count from the SharedFunctionInfo.
Label argc, done_argc;
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(a2,
FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
__ Branch(&argc, eq, a2,
Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ Daddu(a0, a2, num_extra_args + 1);
__ jmp(&done_argc);
__ bind(&argc);
__ Daddu(a0, a0, num_extra_args + 1);
__ bind(&done_argc);
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the native context.
__ ld(result,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ ld(result, FieldMemOperand(result, JSGlobalObject::kNativeContextOffset));
// Load the InternalArray function from the native context.
__ ld(result,
MemOperand(result,
Context::SlotOffset(
Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the native context.
__ ld(result,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ ld(result, FieldMemOperand(result, JSGlobalObject::kNativeContextOffset));
// Load the Array function from the native context.
__ ld(result,
MemOperand(result,
Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(a2, a4);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction,
a4, Operand(zero_reg));
__ GetObjectType(a2, a3, a4);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction,
a4, Operand(MAP_TYPE));
}
// Run the native code for the InternalArray function called as a normal
// function.
// Tail call a stub.
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code;
// Get the Array function.
GenerateLoadArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(a2, a4);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction1,
a4, Operand(zero_reg));
__ GetObjectType(a2, a3, a4);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction2,
a4, Operand(MAP_TYPE));
}
// Run the native code for the Array function called as a normal function.
// Tail call a stub.
__ mov(a3, a1);
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- ra : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
// 1. Load the first argument into a0 and get rid of the rest (including the
// receiver).
Label no_arguments;
{
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Dsubu(a0, a0, Operand(1));
__ dsll(a0, a0, kPointerSizeLog2);
__ Daddu(sp, a0, sp);
__ ld(a0, MemOperand(sp));
__ Drop(2);
}
// 2a. At least one argument, return a0 if it's a string, otherwise
// dispatch to appropriate conversion.
Label to_string, symbol_descriptive_string;
{
__ JumpIfSmi(a0, &to_string);
__ GetObjectType(a0, a1, a1);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ Subu(a1, a1, Operand(FIRST_NONSTRING_TYPE));
__ Branch(&symbol_descriptive_string, eq, a1, Operand(zero_reg));
__ Branch(&to_string, gt, a1, Operand(zero_reg));
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0);
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(v0, Heap::kempty_stringRootIndex);
__ DropAndRet(1);
}
// 3a. Convert a0 to a string.
__ bind(&to_string);
{
ToStringStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// 3b. Convert symbol in a0 to a string.
__ bind(&symbol_descriptive_string);
{
__ Push(a0);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString, 1, 1);
}
}
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a3 : original constructor
// -- ra : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
// 1. Load the first argument into a0 and get rid of the rest (including the
// receiver).
{
Label no_arguments, done;
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Dsubu(a0, a0, Operand(1));
__ dsll(a0, a0, kPointerSizeLog2);
__ Daddu(sp, a0, sp);
__ ld(a0, MemOperand(sp));
__ Drop(2);
__ jmp(&done);
__ bind(&no_arguments);
__ LoadRoot(a0, Heap::kempty_stringRootIndex);
__ Drop(1);
__ bind(&done);
}
// 2. Make sure a0 is a string.
{
Label convert, done_convert;
__ JumpIfSmi(a0, &convert);
__ GetObjectType(a0, a2, a2);
__ And(t0, a2, Operand(kIsNotStringMask));
__ Branch(&done_convert, eq, t0, Operand(zero_reg));
__ bind(&convert);
{
FrameScope scope(masm, StackFrame::INTERNAL);
ToStringStub stub(masm->isolate());
__ Push(a1, a3);
__ CallStub(&stub);
__ Move(a0, v0);
__ Pop(a1, a3);
}
__ bind(&done_convert);
}
// 3. Allocate a JSValue wrapper for the string.
{
// ----------- S t a t e -------------
// -- a0 : the first argument
// -- a1 : constructor function
// -- a3 : original constructor
// -- ra : return address
// -----------------------------------
Label allocate, done_allocate, rt_call;
// Fall back to runtime if the original constructor and function differ.
__ Branch(&rt_call, ne, a1, Operand(a3));
__ Allocate(JSValue::kSize, v0, a2, a3, &allocate, TAG_OBJECT);
__ bind(&done_allocate);
// Initialize the JSValue in eax.
__ LoadGlobalFunctionInitialMap(a1, a2, a3);
__ sd(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
__ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
__ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
__ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
__ sd(a0, FieldMemOperand(v0, JSValue::kValueOffset));
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
__ Ret();
// Fallback to the runtime to allocate in new space.
__ bind(&allocate);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Move(a2, Smi::FromInt(JSValue::kSize));
__ Push(a0, a1, a2);
__ CallRuntime(Runtime::kAllocateInNewSpace, 1);
__ Pop(a0, a1);
}
__ jmp(&done_allocate);
// Fallback to the runtime to create new object.
__ bind(&rt_call);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a0, a1, a1, a3); // constructor function, original constructor
__ CallRuntime(Runtime::kNewObject, 2);
__ Pop(a0, a1);
}
__ sd(a0, FieldMemOperand(v0, JSValue::kValueOffset));
__ Ret();
}
}
static void CallRuntimePassFunction(
MacroAssembler* masm, Runtime::FunctionId function_id) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
// Push call kind information and function as parameter to the runtime call.
__ Push(a1, a1);
__ CallRuntime(function_id, 1);
// Restore call kind information and receiver.
__ Pop(a1);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
__ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
__ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ LoadRoot(a4, Heap::kStackLimitRootIndex);
__ Branch(&ok, hs, sp, Operand(a4));
CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
GenerateTailCallToReturnedCode(masm);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a2 : allocation site or undefined
// -- a3 : original constructor
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Isolate* isolate = masm->isolate();
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ AssertUndefinedOrAllocationSite(a2, t0);
__ SmiTag(a0);
__ Push(a2, a0, a1, a3);
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(isolate);
__ li(a2, Operand(debug_step_in_fp));
__ ld(a2, MemOperand(a2));
__ Branch(&rt_call, ne, a2, Operand(zero_reg));
// Fall back to runtime if the original constructor and function differ.
__ Branch(&rt_call, ne, a1, Operand(a3));
// Load the initial map and verify that it is in fact a map.
// a1: constructor function
__ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(a2, &rt_call);
__ GetObjectType(a2, t1, t0);
__ Branch(&rt_call, ne, t0, Operand(MAP_TYPE));
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the
// initial map's instance type would be JS_FUNCTION_TYPE.
// a1: constructor function
// a2: initial map
__ lbu(t1, FieldMemOperand(a2, Map::kInstanceTypeOffset));
__ Branch(&rt_call, eq, t1, Operand(JS_FUNCTION_TYPE));
if (!is_api_function) {
Label allocate;
MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset);
// Check if slack tracking is enabled.
__ lwu(a4, bit_field3);
__ DecodeField<Map::Counter>(a6, a4);
__ Branch(&allocate, lt, a6,
Operand(static_cast<int64_t>(Map::kSlackTrackingCounterEnd)));
// Decrease generous allocation count.
__ Dsubu(a4, a4, Operand(1 << Map::Counter::kShift));
__ Branch(USE_DELAY_SLOT, &allocate, ne, a6,
Operand(Map::kSlackTrackingCounterEnd));
__ sw(a4, bit_field3); // In delay slot.
__ Push(a1, a2, a1); // a1 = Constructor.
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ Pop(a1, a2);
__ li(a6, Operand(Map::kSlackTrackingCounterEnd - 1));
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
// a1: constructor function
// a2: initial map
Label rt_call_reload_new_target;
__ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
__ Allocate(a3, t0, t1, t2, &rt_call_reload_new_target, SIZE_IN_WORDS);
// Allocated the JSObject, now initialize the fields. Map is set to
// initial map and properties and elements are set to empty fixed array.
// a1: constructor function
// a2: initial map
// a3: object size
// t0: JSObject (not tagged)
__ LoadRoot(t2, Heap::kEmptyFixedArrayRootIndex);
__ mov(t1, t0);
__ sd(a2, MemOperand(t1, JSObject::kMapOffset));
__ sd(t2, MemOperand(t1, JSObject::kPropertiesOffset));
__ sd(t2, MemOperand(t1, JSObject::kElementsOffset));
__ Daddu(t1, t1, Operand(3*kPointerSize));
DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset);
// Fill all the in-object properties with appropriate filler.
// a1: constructor function
// a2: initial map
// a3: object size (in words)
// t0: JSObject (not tagged)
// t1: First in-object property of JSObject (not tagged)
// a6: slack tracking counter (non-API function case)
DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize);
// Use t3 to hold undefined, which is used in several places below.
__ LoadRoot(t3, Heap::kUndefinedValueRootIndex);
if (!is_api_function) {
Label no_inobject_slack_tracking;
// Check if slack tracking is enabled.
__ Branch(&no_inobject_slack_tracking, lt, a6,
Operand(static_cast<int64_t>(Map::kSlackTrackingCounterEnd)));
// Allocate object with a slack.
__ lbu(
a0,
FieldMemOperand(
a2, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset));
__ lbu(a2, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
__ dsubu(a0, a0, a2);
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(a0, t1, at);
// a0: offset of first field after pre-allocated fields
if (FLAG_debug_code) {
__ dsll(at, a3, kPointerSizeLog2);
__ Daddu(t2, t0, Operand(at)); // End of object.
__ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields,
a0, Operand(t2));
}
__ InitializeFieldsWithFiller(t1, a0, t3);
// To allow for truncation.
__ LoadRoot(t3, Heap::kOnePointerFillerMapRootIndex);
// Fill the remaining fields with one pointer filler map.
__ bind(&no_inobject_slack_tracking);
}
__ dsll(at, a3, kPointerSizeLog2);
__ Daddu(a0, t0, Operand(at)); // End of object.
__ InitializeFieldsWithFiller(t1, a0, t3);
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on.
__ Daddu(t0, t0, Operand(kHeapObjectTag));
// Continue with JSObject being successfully allocated.
// a4: JSObject
__ jmp(&allocated);
// Reload the original constructor and fall-through.
__ bind(&rt_call_reload_new_target);
__ ld(a3, MemOperand(sp, 0 * kPointerSize));
}
// Allocate the new receiver object using the runtime call.
// a1: constructor function
// a3: original constructor
__ bind(&rt_call);
__ Push(a1, a3); // constructor function, original constructor
__ CallRuntime(Runtime::kNewObject, 2);
__ mov(t0, v0);
// Receiver for constructor call allocated.
// t0: JSObject
__ bind(&allocated);
// Restore the parameters.
__ Pop(a3); // new.target
__ Pop(a1);
__ ld(a0, MemOperand(sp));
__ SmiUntag(a0);
__ Push(a3, t0, t0);
// Set up pointer to last argument.
__ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
// a0: number of arguments
// a1: constructor function
// a2: address of last argument (caller sp)
// a3: number of arguments (smi-tagged)
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: new.target
// sp[3]: number of arguments (smi-tagged)
Label loop, entry;
__ mov(a3, a0);
__ jmp(&entry);
__ bind(&loop);
__ dsll(a4, a3, kPointerSizeLog2);
__ Daddu(a4, a2, Operand(a4));
__ ld(a5, MemOperand(a4));
__ push(a5);
__ bind(&entry);
__ Daddu(a3, a3, Operand(-1));
__ Branch(&loop, greater_equal, a3, Operand(zero_reg));
// Call the function.
// a0: number of arguments
// a1: constructor function
if (is_api_function) {
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
__ Call(code, RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(a0);
__ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
}
// Store offset of return address for deoptimizer.
if (!is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// v0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: new.target
// sp[2]: number of arguments (smi-tagged)
__ JumpIfSmi(v0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
__ GetObjectType(v0, a1, a3);
__ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ ld(v0, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// v0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: new.target (original constructor)
// sp[2]: number of arguments (smi-tagged)
__ ld(a1, MemOperand(sp, 2 * kPointerSize));
// Leave construct frame.
}
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
__ Daddu(sp, sp, kPointerSize);
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
__ Ret();
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true);
}
void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a2 : allocation site or undefined
// -- a3 : original constructor
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
{
FrameScope frame_scope(masm, StackFrame::CONSTRUCT);
__ AssertUndefinedOrAllocationSite(a2, t0);
__ push(a2);
__ mov(a4, a0);
__ SmiTag(a4);
__ push(a4); // Smi-tagged arguments count.
// Push new.target.
__ push(a3);
// receiver is the hole.
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ push(at);
// Set up pointer to last argument.
__ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
// a0: number of arguments
// a1: constructor function
// a2: address of last argument (caller sp)
// a4: number of arguments (smi-tagged)
// sp[0]: receiver
// sp[1]: new.target
// sp[2]: number of arguments (smi-tagged)
Label loop, entry;
__ SmiUntag(a4);
__ jmp(&entry);
__ bind(&loop);
__ dsll(at, a4, kPointerSizeLog2);
__ Daddu(at, a2, Operand(at));
__ ld(at, MemOperand(at));
__ push(at);
__ bind(&entry);
__ Daddu(a4, a4, Operand(-1));
__ Branch(&loop, ge, a4, Operand(zero_reg));
// Handle step in.
Label skip_step_in;
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ li(a2, Operand(debug_step_in_fp));
__ ld(a2, MemOperand(a2));
__ Branch(&skip_step_in, eq, a2, Operand(zero_reg));
__ Push(a0, a1, a1);
__ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1);
__ Pop(a0, a1);
__ bind(&skip_step_in);
// Call the function.
// a0: number of arguments
// a1: constructor function
ParameterCount actual(a0);
__ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
// Restore context from the frame.
// v0: result
// sp[0]: new.target
// sp[1]: number of arguments (smi-tagged)
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ ld(a1, MemOperand(sp, kPointerSize));
// Leave construct frame.
}
__ SmiScale(at, a1, kPointerSizeLog2);
__ Daddu(sp, sp, Operand(at));
__ Daddu(sp, sp, Operand(kPointerSize));
__ Jump(ra);
}
enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
// Clobbers a2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
IsTagged argc_is_tagged) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
// Make a2 the space we have left. The stack might already be overflowed
// here which will cause r2 to become negative.
__ dsubu(a2, sp, a2);
// Check if the arguments will overflow the stack.
if (argc_is_tagged == kArgcIsSmiTagged) {
__ SmiScale(a7, v0, kPointerSizeLog2);
} else {
DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
__ dsll(a7, argc, kPointerSizeLog2);
}
__ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from JSEntryStub::GenerateBody
// ----------- S t a t e -------------
// -- a0: new.target
// -- a1: function
// -- a2: receiver_pointer
// -- a3: argc
// -- s0: argv
// -----------------------------------
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Clear the context before we push it when entering the JS frame.
__ mov(cp, zero_reg);
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ li(cp, Operand(context_address));
__ ld(cp, MemOperand(cp));
// Push the function and the receiver onto the stack.
__ Push(a1, a2);
// Check if we have enough stack space to push all arguments.
// Clobbers a2.
Generate_CheckStackOverflow(masm, a3, kArgcIsUntaggedInt);
// Remember new.target.
__ mov(a5, a0);
// Copy arguments to the stack in a loop.
// a3: argc
// s0: argv, i.e. points to first arg
Label loop, entry;
__ dsll(a4, a3, kPointerSizeLog2);
__ daddu(a6, s0, a4);
__ b(&entry);
__ nop(); // Branch delay slot nop.
// a6 points past last arg.
__ bind(&loop);
__ ld(a4, MemOperand(s0)); // Read next parameter.
__ daddiu(s0, s0, kPointerSize);
__ ld(a4, MemOperand(a4)); // Dereference handle.
__ push(a4); // Push parameter.
__ bind(&entry);
__ Branch(&loop, ne, s0, Operand(a6));
// Setup new.target and argc.
__ mov(a0, a3);
__ mov(a3, a5);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
__ mov(s1, a4);
__ mov(s2, a4);
__ mov(s3, a4);
__ mov(s4, a4);
__ mov(s5, a4);
// s6 holds the root address. Do not clobber.
// s7 is cp. Do not init.
// Invoke the code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ Jump(ra);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o a1: the JS function object being called.
// o cp: our context
// o fp: the caller's frame pointer
// o sp: stack pointer
// o ra: return address
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-mips.h for its layout.
// TODO(rmcilroy): We will need to include the current bytecode pointer in the
// frame.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ Push(ra, fp, cp, a1);
__ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
// Get the bytecode array from the function object and load the pointer to the
// first entry into kInterpreterBytecodeRegister.
__ ld(a0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(kInterpreterBytecodeArrayRegister,
FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ SmiTst(kInterpreterBytecodeArrayRegister, a4);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
Operand(zero_reg));
__ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
Operand(BYTECODE_ARRAY_TYPE));
}
// Allocate the local and temporary register file on the stack.
{
// Load frame size (word) from the BytecodeArray object.
__ lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ Dsubu(a5, sp, Operand(a4));
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
__ Branch(&ok, hs, a5, Operand(a2));
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
__ Branch(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(a5);
// Continue loop if not done.
__ bind(&loop_check);
__ Dsubu(a4, a4, Operand(kPointerSize));
__ Branch(&loop_header, ge, a4, Operand(zero_reg));
}
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's prologue:
// - Support profiler (specifically profiling_counter).
// - Call ProfileEntryHookStub when isolate has a function_entry_hook.
// - Allow simulator stop operations if FLAG_stop_at is set.
// - Code aging of the BytecodeArray object.
// Perform stack guard check.
{
Label ok;
__ LoadRoot(at, Heap::kStackLimitRootIndex);
__ Branch(&ok, hs, sp, Operand(at));
__ push(kInterpreterBytecodeArrayRegister);
__ CallRuntime(Runtime::kStackGuard, 0);
__ pop(kInterpreterBytecodeArrayRegister);
__ bind(&ok);
}
// Load bytecode offset and dispatch table into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ Dsubu(
kInterpreterRegisterFileRegister, fp,
Operand(kPointerSize + StandardFrameConstants::kFixedFrameSizeFromFp));
__ li(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ LoadRoot(kInterpreterDispatchTableRegister,
Heap::kInterpreterTableRootIndex);
__ Daddu(kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// Dispatch to the first bytecode handler for the function.
__ Daddu(a0, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ lbu(a0, MemOperand(a0));
__ dsll(at, a0, kPointerSizeLog2);
__ Daddu(at, kInterpreterDispatchTableRegister, at);
__ ld(at, MemOperand(at));
// TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging
// and header removal.
__ Daddu(at, at, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(at);
}
void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) {
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's EmitReturnSequence.
// - Supporting FLAG_trace for Runtime::TraceExit.
// - Support profiler (specifically decrementing profiling_counter
// appropriately and calling out to HandleInterrupts if necessary).
// The return value is in accumulator, which is already in v0.
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
// Drop receiver + arguments and return.
__ lw(at, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kParameterSizeOffset));
__ Daddu(sp, sp, at);
__ Jump(ra);
}
// static
void Builtins::Generate_InterpreterPushArgsAndCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- a1 : the target to call (can be any Object).
// -----------------------------------
// Find the address of the last argument.
__ Daddu(a3, a0, Operand(1)); // Add one for receiver.
__ dsll(a3, a3, kPointerSizeLog2);
__ Dsubu(a3, a2, Operand(a3));
// Push the arguments.
Label loop_header, loop_check;
__ Branch(&loop_check);
__ bind(&loop_header);
__ ld(t0, MemOperand(a2));
__ Daddu(a2, a2, Operand(-kPointerSize));
__ push(t0);
__ bind(&loop_check);
__ Branch(&loop_header, gt, a2, Operand(a3));
// Call the target.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argument count (not including receiver)
// -- a3 : original constructor
// -- a1 : constructor to call
// -- a2 : address of the first argument
// -----------------------------------
// Find the address of the last argument.
__ dsll(t0, a0, kPointerSizeLog2);
__ Dsubu(t0, a2, Operand(t0));
// Push a slot for the receiver.
__ push(zero_reg);
// Push the arguments.
Label loop_header, loop_check;
__ Branch(&loop_check);
__ bind(&loop_header);
__ ld(t1, MemOperand(a2));
__ Daddu(a2, a2, Operand(-kPointerSize));
__ push(t1);
__ bind(&loop_check);
__ Branch(&loop_header, gt, a2, Operand(t0));
// Call the constructor with a0, a1, and a3 unmodified.
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CONSTRUCT_CALL);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileLazy);
GenerateTailCallToReturnedCode(masm);
}
static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
// Push function as parameter to the runtime call.
__ Push(a1, a1);
// Whether to compile in a background thread.
__ LoadRoot(
at, concurrent ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
__ push(at);
__ CallRuntime(Runtime::kCompileOptimized, 2);
// Restore receiver.
__ Pop(a1);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
CallCompileOptimized(masm, false);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
CallCompileOptimized(masm, true);
GenerateTailCallToReturnedCode(masm);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Set a0 to point to the head of the PlatformCodeAge sequence.
__ Dsubu(a0, a0,
Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
// The following registers must be saved and restored when calling through to
// the runtime:
// a0 - contains return address (beginning of patch sequence)
// a1 - isolate
RegList saved_regs =
(a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(saved_regs);
__ PrepareCallCFunction(2, 0, a2);
__ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ MultiPop(saved_regs);
__ Jump(a0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
// Set a0 to point to the head of the PlatformCodeAge sequence.
__ Dsubu(a0, a0,
Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
// The following registers must be saved and restored when calling through to
// the runtime:
// a0 - contains return address (beginning of patch sequence)
// a1 - isolate
RegList saved_regs =
(a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(saved_regs);
__ PrepareCallCFunction(2, 0, a2);
__ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
__ MultiPop(saved_regs);
// Perform prologue operations usually performed by the young code stub.
__ Push(ra, fp, cp, a1);
__ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
// Jump to point after the code-age stub.
__ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength)));
__ Jump(a0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ MultiPush(kJSCallerSaved | kCalleeSaved);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
__ MultiPop(kJSCallerSaved | kCalleeSaved);
}
__ Daddu(sp, sp, Operand(kPointerSize)); // Ignore state
__ Jump(ra); // Jump to miss handler
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
__ push(a0);
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
}
// Get the full codegen state from the stack and untag it -> a6.
__ ld(a6, MemOperand(sp, 0 * kPointerSize));
__ SmiUntag(a6);
// Switch on the state.
Label with_tos_register, unknown_state;
__ Branch(&with_tos_register,
ne, a6, Operand(FullCodeGenerator::NO_REGISTERS));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
__ bind(&with_tos_register);
__ ld(v0, MemOperand(sp, 1 * kPointerSize));
__ Branch(&unknown_state, ne, a6, Operand(FullCodeGenerator::TOS_REG));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Daddu(sp, sp, Operand(2 * kPointerSize)); // Remove state.
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(a0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
// If the code object is null, just return to the unoptimized code.
__ Ret(eq, v0, Operand(Smi::FromInt(0)));
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ ld(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
__ SmiUntag(a1);
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ daddu(v0, v0, a1);
__ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
// We check the stack limit as indicator that recompilation might be done.
Label ok;
__ LoadRoot(at, Heap::kStackLimitRootIndex);
__ Branch(&ok, hs, sp, Operand(at));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kStackGuard, 0);
}
__ Jump(masm->isolate()->builtins()->OnStackReplacement(),
RelocInfo::CODE_TARGET);
__ bind(&ok);
__ Ret();
}
// static
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// a0: actual number of arguments
{
Label done;
__ Branch(&done, ne, a0, Operand(zero_reg));
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ Daddu(a0, a0, Operand(1));
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack.
// a0: actual number of arguments
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(at, sp, at);
__ ld(a1, MemOperand(at));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// a0: actual number of arguments
// a1: function
{
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(a2, sp, at);
__ bind(&loop);
__ ld(at, MemOperand(a2, -kPointerSize));
__ sd(at, MemOperand(a2));
__ Dsubu(a2, a2, Operand(kPointerSize));
__ Branch(&loop, ne, a2, Operand(sp));
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ Dsubu(a0, a0, Operand(1));
__ Pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
static void Generate_PushAppliedArguments(MacroAssembler* masm,
const int vectorOffset,
const int argumentsOffset,
const int indexOffset,
const int limitOffset) {
Label entry, loop;
Register receiver = LoadDescriptor::ReceiverRegister();
Register key = LoadDescriptor::NameRegister();
Register slot = LoadDescriptor::SlotRegister();
Register vector = LoadWithVectorDescriptor::VectorRegister();
__ ld(key, MemOperand(fp, indexOffset));
__ Branch(&entry);
// Load the current argument from the arguments array.
__ bind(&loop);
__ ld(receiver, MemOperand(fp, argumentsOffset));
// Use inline caching to speed up access to arguments.
int slot_index = TypeFeedbackVector::PushAppliedArgumentsIndex();
__ li(slot, Operand(Smi::FromInt(slot_index)));
__ ld(vector, MemOperand(fp, vectorOffset));
Handle<Code> ic =
KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode();
__ Call(ic, RelocInfo::CODE_TARGET);
__ push(v0);
// Use inline caching to access the arguments.
__ ld(key, MemOperand(fp, indexOffset));
__ Daddu(key, key, Operand(Smi::FromInt(1)));
__ sd(key, MemOperand(fp, indexOffset));
// Test if the copy loop has finished copying all the elements from the
// arguments object.
__ bind(&entry);
__ ld(a1, MemOperand(fp, limitOffset));
__ Branch(&loop, ne, key, Operand(a1));
// On exit, the pushed arguments count is in a0, untagged
__ mov(a0, key);
__ SmiUntag(a0);
}
// Used by FunctionApply and ReflectApply
static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) {
const int kFormalParameters = targetIsArgument ? 3 : 2;
const int kStackSize = kFormalParameters + 1;
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
const int kReceiverOffset = kArgumentsOffset + kPointerSize;
const int kFunctionOffset = kReceiverOffset + kPointerSize;
const int kVectorOffset =
InternalFrameConstants::kCodeOffset - 1 * kPointerSize;
// Push the vector.
__ ld(a1, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(a1, FieldMemOperand(a1, SharedFunctionInfo::kFeedbackVectorOffset));
__ Push(a1);
__ ld(a0, MemOperand(fp, kFunctionOffset)); // Get the function.
__ ld(a1, MemOperand(fp, kArgumentsOffset)); // Get the args array.
__ Push(a0, a1);
// Returns (in v0) number of arguments to copy to stack as Smi.
if (targetIsArgument) {
__ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX,
CALL_FUNCTION);
} else {
__ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION);
}
// Returns the result in v0.
Generate_CheckStackOverflow(masm, v0, kArgcIsSmiTagged);
// Push current limit and index.
const int kIndexOffset = kVectorOffset - (2 * kPointerSize);
const int kLimitOffset = kVectorOffset - (1 * kPointerSize);
__ mov(a1, zero_reg);
__ ld(a2, MemOperand(fp, kReceiverOffset));
__ Push(v0, a1, a2); // limit, initial index and receiver.
// Copy all arguments from the array to the stack.
Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset,
kIndexOffset, kLimitOffset);
// Call the callable.
// TODO(bmeurer): This should be a tail call according to ES6.
__ ld(a1, MemOperand(fp, kFunctionOffset));
__ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
// Tear down the internal frame and remove function, receiver and args.
}
__ Ret(USE_DELAY_SLOT);
__ Daddu(sp, sp, Operand(kStackSize * kPointerSize)); // In delay slot.
}
static void Generate_ConstructHelper(MacroAssembler* masm) {
const int kFormalParameters = 3;
const int kStackSize = kFormalParameters + 1;
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize;
const int kArgumentsOffset = kNewTargetOffset + kPointerSize;
const int kFunctionOffset = kArgumentsOffset + kPointerSize;
const int kVectorOffset =
InternalFrameConstants::kCodeOffset - 1 * kPointerSize;
// Push the vector.
__ ld(a1, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(a1, FieldMemOperand(a1, SharedFunctionInfo::kFeedbackVectorOffset));
__ Push(a1);
// If newTarget is not supplied, set it to constructor
Label validate_arguments;
__ ld(a0, MemOperand(fp, kNewTargetOffset));
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ Branch(&validate_arguments, ne, a0, Operand(at));
__ ld(a0, MemOperand(fp, kFunctionOffset));
__ sd(a0, MemOperand(fp, kNewTargetOffset));
// Validate arguments
__ bind(&validate_arguments);
__ ld(a0, MemOperand(fp, kFunctionOffset)); // get the function
__ push(a0);
__ ld(a0, MemOperand(fp, kArgumentsOffset)); // get the args array
__ push(a0);
__ ld(a0, MemOperand(fp, kNewTargetOffset)); // get the new.target
__ push(a0);
// Returns argument count in v0.
__ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX,
CALL_FUNCTION);
// Returns result in v0.
Generate_CheckStackOverflow(masm, v0, kArgcIsSmiTagged);
// Push current limit and index.
const int kIndexOffset = kVectorOffset - (2 * kPointerSize);
const int kLimitOffset = kVectorOffset - (1 * kPointerSize);
__ push(v0); // limit
__ mov(a1, zero_reg); // initial index
__ push(a1);
// Push the constructor function as callee.
__ ld(a0, MemOperand(fp, kFunctionOffset));
__ push(a0);
// Copy all arguments from the array to the stack.
Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset,
kIndexOffset, kLimitOffset);
// Use undefined feedback vector
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
__ ld(a1, MemOperand(fp, kFunctionOffset));
__ ld(a4, MemOperand(fp, kNewTargetOffset));
// Call the function.
CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL);
__ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
// Leave internal frame.
}
__ jr(ra);
__ Daddu(sp, sp, Operand(kStackSize * kPointerSize)); // In delay slot.
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, false);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, true);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
Generate_ConstructHelper(masm);
}
static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- a0 : actual number of arguments
// -- a1 : function (passed through to callee)
// -- a2 : expected number of arguments
// -----------------------------------
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(a5, Heap::kRealStackLimitRootIndex);
// Make a5 the space we have left. The stack might already be overflowed
// here which will cause a5 to become negative.
__ dsubu(a5, sp, a5);
// Check if the arguments will overflow the stack.
__ dsll(at, a2, kPointerSizeLog2);
// Signed comparison.
__ Branch(stack_overflow, le, a5, Operand(at));
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
// __ sll(a0, a0, kSmiTagSize);
__ dsll32(a0, a0, 0);
__ li(a4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
__ Daddu(fp, sp,
Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
__ mov(sp, fp);
__ MultiPop(fp.bit() | ra.bit());
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
// Adjust for the receiver.
__ Daddu(sp, sp, Operand(kPointerSize));
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -----------------------------------
Label convert, convert_global_proxy, convert_to_object, done_convert;
__ AssertFunction(a1);
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
{
Label non_class_constructor;
// Check whether the current function is a classConstructor
__ lbu(a3,
FieldMemOperand(a2, SharedFunctionInfo::kFunctionKindByteOffset));
__ And(at, a3,
Operand(SharedFunctionInfo::kClassConstructorBitsWithinByte));
__ Branch(&non_class_constructor, eq, at, Operand(zero_reg));
// Step: 2, If we call a classConstructor Function throw a TypeError.
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError, 0);
}
__ bind(&non_class_constructor);
}
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
SharedFunctionInfo::kStrictModeByteOffset);
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
__ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
__ And(at, a3, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) |
(1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
__ Branch(&done_convert, ne, at, Operand(zero_reg));
{
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(at, sp, at);
__ ld(a3, MemOperand(at));
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- a3 : the receiver
// -- cp : the function context.
// -----------------------------------
Label convert_receiver;
__ JumpIfSmi(a3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ GetObjectType(a3, a4, a4);
__ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE));
__ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex, &convert_global_proxy);
__ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(a3);
}
__ Branch(&convert_receiver);
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(a0);
__ Push(a0, a1);
__ mov(a0, a3);
ToObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ mov(a3, v0);
__ Pop(a0, a1);
__ SmiUntag(a0);
}
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(at, sp, at);
__ sd(a3, MemOperand(at));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ lw(a2,
FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
__ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
ParameterCount actual(a0);
ParameterCount expected(a2);
__ InvokeCode(a3, expected, actual, JUMP_FUNCTION, NullCallWrapper());
}
// static
void Builtins::Generate_Call(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(a1, &non_callable);
__ bind(&non_smi);
__ GetObjectType(a1, t1, t2);
__ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET,
eq, t2, Operand(JS_FUNCTION_TYPE));
__ Branch(&non_function, ne, t2, Operand(JS_FUNCTION_PROXY_TYPE));
// 1. Call to function proxy.
// TODO(neis): This doesn't match the ES6 spec for [[Call]] on proxies.
__ ld(a1, FieldMemOperand(a1, JSFunctionProxy::kCallTrapOffset));
__ AssertNotSmi(a1);
__ Branch(&non_smi);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Check if target has a [[Call]] internal method.
__ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t1, t1, Operand(1 << Map::kIsCallable));
__ Branch(&non_callable, eq, t1, Operand(zero_reg));
// Overwrite the original receiver with the (original) target.
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(at, sp, at);
__ sd(a1, MemOperand(at));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1);
__ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowCalledNonCallable, 1);
}
}
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (checked to be a JSFunction)
// -- a3 : the original constructor (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(a1);
__ AssertFunction(a3);
// Calling convention for function specific ConstructStubs require
// a2 to contain either an AllocationSite or undefined.
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
__ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (checked to be a JSFunctionProxy)
// -- a3 : the original constructor (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// TODO(neis): This doesn't match the ES6 spec for [[Construct]] on proxies.
__ ld(a1, FieldMemOperand(a1, JSFunctionProxy::kConstructTrapOffset));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (can be any Object)
// -- a3 : the original constructor (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target has a [[Construct]] internal method.
Label non_constructor;
__ JumpIfSmi(a1, &non_constructor);
__ ld(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
__ lbu(t2, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t2, t2, Operand(1 << Map::kIsCallable));
__ Branch(&non_constructor, eq, t2, Operand(zero_reg));
// Dispatch based on instance type.
__ lbu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset));
__ Jump(masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
__ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET,
eq, t2, Operand(JS_FUNCTION_PROXY_TYPE));
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(at, sp, at);
__ sd(a1, MemOperand(at));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowCalledNonCallable, 1);
}
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// State setup as expected by MacroAssembler::InvokePrologue.
// ----------- S t a t e -------------
// -- a0: actual arguments count
// -- a1: function (passed through to callee)
// -- a2: expected arguments count
// -----------------------------------
Label stack_overflow;
ArgumentAdaptorStackCheck(masm, &stack_overflow);
Label invoke, dont_adapt_arguments;
Label enough, too_few;
__ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ Branch(&dont_adapt_arguments, eq,
a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
// We use Uless as the number of argument should always be greater than 0.
__ Branch(&too_few, Uless, a0, Operand(a2));
{ // Enough parameters: actual >= expected.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: code entry to call
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into a0 and copy end address into a4.
__ SmiScale(a0, a0, kPointerSizeLog2);
__ Daddu(a0, fp, a0);
// Adjust for return address and receiver.
__ Daddu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address.
__ dsll(a4, a2, kPointerSizeLog2);
__ dsubu(a4, a0, a4);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: expected number of arguments
// a3: code entry to call
// a4: copy end address
Label copy;
__ bind(&copy);
__ ld(a5, MemOperand(a0));
__ push(a5);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a4));
__ daddiu(a0, a0, -kPointerSize); // In delay slot.
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
// If the function is strong we need to throw an error.
Label no_strong_error;
__ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lbu(a5, FieldMemOperand(a4, SharedFunctionInfo::kStrongModeByteOffset));
__ And(a5, a5, Operand(1 << SharedFunctionInfo::kStrongModeBitWithinByte));
__ Branch(&no_strong_error, eq, a5, Operand(zero_reg));
// What we really care about is the required number of arguments.
DCHECK_EQ(kPointerSize, kInt64Size);
__ lw(a5, FieldMemOperand(a4, SharedFunctionInfo::kLengthOffset));
__ srl(a5, a5, 1);
__ Branch(&no_strong_error, ge, a0, Operand(a5));
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0);
}
__ bind(&no_strong_error);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into a0 and copy end address into a7.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: code entry to call
__ SmiScale(a0, a0, kPointerSizeLog2);
__ Daddu(a0, fp, a0);
// Adjust for return address and receiver.
__ Daddu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address. Also adjust for return address.
__ Daddu(a7, fp, kPointerSize);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: expected number of arguments
// a3: code entry to call
// a7: copy end address
Label copy;
__ bind(&copy);
__ ld(a4, MemOperand(a0)); // Adjusted above for return addr and receiver.
__ Dsubu(sp, sp, kPointerSize);
__ Dsubu(a0, a0, kPointerSize);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a7));
__ sd(a4, MemOperand(sp)); // In the delay slot.
// Fill the remaining expected arguments with undefined.
// a1: function
// a2: expected number of arguments
// a3: code entry to call
__ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
__ dsll(a6, a2, kPointerSizeLog2);
__ Dsubu(a4, fp, Operand(a6));
// Adjust for frame.
__ Dsubu(a4, a4, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
2 * kPointerSize));
Label fill;
__ bind(&fill);
__ Dsubu(sp, sp, kPointerSize);
__ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a4));
__ sd(a5, MemOperand(sp));
}
// Call the entry point.
__ bind(&invoke);
__ mov(a0, a2);
// a0 : expected number of arguments
// a1 : function (passed through to callee)
__ Call(a3);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// -------------------------------------------
// Don't adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ Jump(a3);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ break_(0xCC);
}
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS64