blob: 38d8462df866127507e93ffce45c4249c075c20f [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "src/v8.h"
#include "src/counters.h"
#include "src/heap/store-buffer-inl.h"
namespace v8 {
namespace internal {
StoreBuffer::StoreBuffer(Heap* heap)
: heap_(heap),
start_(NULL),
limit_(NULL),
old_start_(NULL),
old_limit_(NULL),
old_top_(NULL),
old_reserved_limit_(NULL),
old_buffer_is_sorted_(false),
old_buffer_is_filtered_(false),
during_gc_(false),
store_buffer_rebuilding_enabled_(false),
callback_(NULL),
may_move_store_buffer_entries_(true),
virtual_memory_(NULL),
hash_set_1_(NULL),
hash_set_2_(NULL),
hash_sets_are_empty_(true) {}
void StoreBuffer::SetUp() {
// Allocate 3x the buffer size, so that we can start the new store buffer
// aligned to 2x the size. This lets us use a bit test to detect the end of
// the area.
virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3);
uintptr_t start_as_int =
reinterpret_cast<uintptr_t>(virtual_memory_->address());
start_ =
reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
limit_ = start_ + (kStoreBufferSize / kPointerSize);
// Reserve space for the larger old buffer.
old_virtual_memory_ =
new base::VirtualMemory(kOldStoreBufferLength * kPointerSize);
old_top_ = old_start_ =
reinterpret_cast<Address*>(old_virtual_memory_->address());
// Don't know the alignment requirements of the OS, but it is certainly not
// less than 0xfff.
CHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
CHECK(kStoreBufferSize >= base::OS::CommitPageSize());
// Initial size of the old buffer is as big as the buffer for new pointers.
// This means even if we later fail to enlarge the old buffer due to OOM from
// the OS, we will still be able to empty the new pointer buffer into the old
// buffer.
int initial_length = static_cast<int>(kStoreBufferSize / kPointerSize);
CHECK(initial_length > 0);
CHECK(initial_length <= kOldStoreBufferLength);
old_limit_ = old_start_ + initial_length;
old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
if (!old_virtual_memory_->Commit(reinterpret_cast<void*>(old_start_),
(old_limit_ - old_start_) * kPointerSize,
false)) {
V8::FatalProcessOutOfMemory("StoreBuffer::SetUp");
}
DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
Address* vm_limit = reinterpret_cast<Address*>(
reinterpret_cast<char*>(virtual_memory_->address()) +
virtual_memory_->size());
DCHECK(start_ <= vm_limit);
DCHECK(limit_ <= vm_limit);
USE(vm_limit);
DCHECK((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
DCHECK((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
0);
if (!virtual_memory_->Commit(reinterpret_cast<Address>(start_),
kStoreBufferSize,
false)) { // Not executable.
V8::FatalProcessOutOfMemory("StoreBuffer::SetUp");
}
heap_->public_set_store_buffer_top(start_);
hash_set_1_ = new uintptr_t[kHashSetLength];
hash_set_2_ = new uintptr_t[kHashSetLength];
hash_sets_are_empty_ = false;
ClearFilteringHashSets();
heap_->isolate()->set_store_buffer_hash_set_1_address(hash_set_1_);
heap_->isolate()->set_store_buffer_hash_set_2_address(hash_set_2_);
}
void StoreBuffer::TearDown() {
delete virtual_memory_;
delete old_virtual_memory_;
delete[] hash_set_1_;
delete[] hash_set_2_;
old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
start_ = limit_ = NULL;
heap_->public_set_store_buffer_top(start_);
}
void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
isolate->heap()->store_buffer()->Compact();
isolate->counters()->store_buffer_overflows()->Increment();
}
bool StoreBuffer::SpaceAvailable(intptr_t space_needed) {
return old_limit_ - old_top_ >= space_needed;
}
void StoreBuffer::EnsureSpace(intptr_t space_needed) {
while (old_limit_ - old_top_ < space_needed &&
old_limit_ < old_reserved_limit_) {
size_t grow = old_limit_ - old_start_; // Double size.
if (old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
grow * kPointerSize, false)) {
old_limit_ += grow;
} else {
break;
}
}
if (SpaceAvailable(space_needed)) return;
if (old_buffer_is_filtered_) return;
DCHECK(may_move_store_buffer_entries_);
Compact();
old_buffer_is_filtered_ = true;
bool page_has_scan_on_scavenge_flag = false;
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
while ((chunk = it.next()) != NULL) {
if (chunk->scan_on_scavenge()) {
page_has_scan_on_scavenge_flag = true;
break;
}
}
if (page_has_scan_on_scavenge_flag) {
Filter(MemoryChunk::SCAN_ON_SCAVENGE);
}
if (SpaceAvailable(space_needed)) return;
// Sample 1 entry in 97 and filter out the pages where we estimate that more
// than 1 in 8 pointers are to new space.
static const int kSampleFinenesses = 5;
static const struct Samples {
int prime_sample_step;
int threshold;
} samples[kSampleFinenesses] = {
{97, ((Page::kPageSize / kPointerSize) / 97) / 8},
{23, ((Page::kPageSize / kPointerSize) / 23) / 16},
{7, ((Page::kPageSize / kPointerSize) / 7) / 32},
{3, ((Page::kPageSize / kPointerSize) / 3) / 256},
{1, 0}};
for (int i = 0; i < kSampleFinenesses; i++) {
ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
// As a last resort we mark all pages as being exempt from the store buffer.
DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_);
if (SpaceAvailable(space_needed)) return;
}
UNREACHABLE();
}
// Sample the store buffer to see if some pages are taking up a lot of space
// in the store buffer.
void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
while ((chunk = it.next()) != NULL) {
chunk->set_store_buffer_counter(0);
}
bool created_new_scan_on_scavenge_pages = false;
MemoryChunk* previous_chunk = NULL;
for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
Address addr = *p;
MemoryChunk* containing_chunk = NULL;
if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
containing_chunk = previous_chunk;
} else {
containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
}
int old_counter = containing_chunk->store_buffer_counter();
if (old_counter >= threshold) {
containing_chunk->set_scan_on_scavenge(true);
created_new_scan_on_scavenge_pages = true;
}
containing_chunk->set_store_buffer_counter(old_counter + 1);
previous_chunk = containing_chunk;
}
if (created_new_scan_on_scavenge_pages) {
Filter(MemoryChunk::SCAN_ON_SCAVENGE);
heap_->isolate()->CountUsage(
v8::Isolate::UseCounterFeature::kStoreBufferOverflow);
}
old_buffer_is_filtered_ = true;
}
void StoreBuffer::Filter(int flag) {
Address* new_top = old_start_;
MemoryChunk* previous_chunk = NULL;
for (Address* p = old_start_; p < old_top_; p++) {
Address addr = *p;
MemoryChunk* containing_chunk = NULL;
if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
containing_chunk = previous_chunk;
} else {
containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
previous_chunk = containing_chunk;
}
if (!containing_chunk->IsFlagSet(flag)) {
*new_top++ = addr;
}
}
old_top_ = new_top;
// Filtering hash sets are inconsistent with the store buffer after this
// operation.
ClearFilteringHashSets();
}
bool StoreBuffer::PrepareForIteration() {
Compact();
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
bool page_has_scan_on_scavenge_flag = false;
while ((chunk = it.next()) != NULL) {
if (chunk->scan_on_scavenge()) {
page_has_scan_on_scavenge_flag = true;
break;
}
}
if (page_has_scan_on_scavenge_flag) {
Filter(MemoryChunk::SCAN_ON_SCAVENGE);
}
// Filtering hash sets are inconsistent with the store buffer after
// iteration.
ClearFilteringHashSets();
return page_has_scan_on_scavenge_flag;
}
void StoreBuffer::ClearFilteringHashSets() {
if (!hash_sets_are_empty_) {
memset(reinterpret_cast<void*>(hash_set_1_), 0,
sizeof(uintptr_t) * kHashSetLength);
memset(reinterpret_cast<void*>(hash_set_2_), 0,
sizeof(uintptr_t) * kHashSetLength);
hash_sets_are_empty_ = true;
}
}
void StoreBuffer::GCPrologue() {
ClearFilteringHashSets();
during_gc_ = true;
}
#ifdef VERIFY_HEAP
void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
LargeObjectIterator it(space);
for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
if (object->IsFixedArray()) {
Address slot_address = object->address();
Address end = object->address() + object->Size();
while (slot_address < end) {
HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
// When we are not in GC the Heap::InNewSpace() predicate
// checks that pointers which satisfy predicate point into
// the active semispace.
Object* object = *slot;
heap_->InNewSpace(object);
slot_address += kPointerSize;
}
}
}
}
#endif
void StoreBuffer::Verify() {
#ifdef VERIFY_HEAP
VerifyPointers(heap_->lo_space());
#endif
}
void StoreBuffer::GCEpilogue() {
during_gc_ = false;
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
Verify();
}
#endif
}
void StoreBuffer::ProcessOldToNewSlot(Address slot_address,
ObjectSlotCallback slot_callback) {
Object** slot = reinterpret_cast<Object**>(slot_address);
Object* object = *slot;
// If the object is not in from space, it must be a duplicate store buffer
// entry and the slot was already updated.
if (heap_->InFromSpace(object)) {
HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
DCHECK(heap_object->IsHeapObject());
slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
object = *slot;
// If the object was in from space before and is after executing the
// callback in to space, the object is still live.
// Unfortunately, we do not know about the slot. It could be in a
// just freed free space object.
if (heap_->InToSpace(object)) {
EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
}
}
}
void StoreBuffer::FindPointersToNewSpaceInRegion(
Address start, Address end, ObjectSlotCallback slot_callback) {
for (Address slot_address = start; slot_address < end;
slot_address += kPointerSize) {
ProcessOldToNewSlot(slot_address, slot_callback);
}
}
void StoreBuffer::IteratePointersInStoreBuffer(
ObjectSlotCallback slot_callback) {
Address* limit = old_top_;
old_top_ = old_start_;
{
DontMoveStoreBufferEntriesScope scope(this);
for (Address* current = old_start_; current < limit; current++) {
#ifdef DEBUG
Address* saved_top = old_top_;
#endif
ProcessOldToNewSlot(*current, slot_callback);
DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top);
}
}
}
void StoreBuffer::ClearInvalidStoreBufferEntries() {
Compact();
Address* new_top = old_start_;
for (Address* current = old_start_; current < old_top_; current++) {
Address addr = *current;
Object** slot = reinterpret_cast<Object**>(addr);
Object* object = *slot;
if (heap_->InNewSpace(object) && object->IsHeapObject()) {
// If the target object is not black, the source slot must be part
// of a non-black (dead) object.
HeapObject* heap_object = HeapObject::cast(object);
if (Marking::IsBlack(Marking::MarkBitFrom(heap_object)) &&
heap_->mark_compact_collector()->IsSlotInLiveObject(addr)) {
*new_top++ = addr;
}
}
}
old_top_ = new_top;
ClearFilteringHashSets();
// Don't scan on scavenge dead large objects.
LargeObjectIterator it(heap_->lo_space());
for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
MemoryChunk* chunk = MemoryChunk::FromAddress(object->address());
if (chunk->scan_on_scavenge() &&
Marking::IsWhite(Marking::MarkBitFrom(object))) {
chunk->set_scan_on_scavenge(false);
}
}
}
void StoreBuffer::VerifyValidStoreBufferEntries() {
for (Address* current = old_start_; current < old_top_; current++) {
Object** slot = reinterpret_cast<Object**>(*current);
Object* object = *slot;
CHECK(object->IsHeapObject());
CHECK(heap_->InNewSpace(object));
heap_->mark_compact_collector()->VerifyIsSlotInLiveObject(
reinterpret_cast<Address>(slot), HeapObject::cast(object));
}
}
void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
// We do not sort or remove duplicated entries from the store buffer because
// we expect that callback will rebuild the store buffer thus removing
// all duplicates and pointers to old space.
bool some_pages_to_scan = PrepareForIteration();
// TODO(gc): we want to skip slots on evacuation candidates
// but we can't simply figure that out from slot address
// because slot can belong to a large object.
IteratePointersInStoreBuffer(slot_callback);
// We are done scanning all the pointers that were in the store buffer, but
// there may be some pages marked scan_on_scavenge that have pointers to new
// space that are not in the store buffer. We must scan them now. As we
// scan, the surviving pointers to new space will be added to the store
// buffer. If there are still a lot of pointers to new space then we will
// keep the scan_on_scavenge flag on the page and discard the pointers that
// were added to the store buffer. If there are not many pointers to new
// space left on the page we will keep the pointers in the store buffer and
// remove the flag from the page.
if (some_pages_to_scan) {
if (callback_ != NULL) {
(*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
}
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
while ((chunk = it.next()) != NULL) {
if (chunk->scan_on_scavenge()) {
chunk->set_scan_on_scavenge(false);
if (callback_ != NULL) {
(*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
}
if (chunk->owner() == heap_->lo_space()) {
LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
HeapObject* array = large_page->GetObject();
DCHECK(array->IsFixedArray());
Address start = array->address();
Address end = start + array->Size();
FindPointersToNewSpaceInRegion(start, end, slot_callback);
} else {
Page* page = reinterpret_cast<Page*>(chunk);
PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
if (owner == heap_->map_space()) {
DCHECK(page->WasSwept());
HeapObjectIterator iterator(page, NULL);
for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
heap_object = iterator.Next()) {
// We skip free space objects.
if (!heap_object->IsFiller()) {
DCHECK(heap_object->IsMap());
FindPointersToNewSpaceInRegion(
heap_object->address() + Map::kPointerFieldsBeginOffset,
heap_object->address() + Map::kPointerFieldsEndOffset,
slot_callback);
}
}
} else {
CHECK(page->owner() == heap_->old_space());
heap_->mark_compact_collector()->EnsureSweepingCompleted(page,
owner);
HeapObjectIterator iterator(page, NULL);
for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
heap_object = iterator.Next()) {
// We iterate over objects that contain new space pointers only.
Address obj_address = heap_object->address();
const int start_offset = HeapObject::kHeaderSize;
const int end_offset = heap_object->Size();
switch (heap_object->ContentType()) {
case HeapObjectContents::kTaggedValues: {
Address start_address = obj_address + start_offset;
Address end_address = obj_address + end_offset;
// Object has only tagged fields.
FindPointersToNewSpaceInRegion(start_address, end_address,
slot_callback);
break;
}
case HeapObjectContents::kMixedValues: {
if (heap_object->IsFixedTypedArrayBase()) {
FindPointersToNewSpaceInRegion(
obj_address + FixedTypedArrayBase::kBasePointerOffset,
obj_address + FixedTypedArrayBase::kHeaderSize,
slot_callback);
} else if (FLAG_unbox_double_fields) {
LayoutDescriptorHelper helper(heap_object->map());
DCHECK(!helper.all_fields_tagged());
for (int offset = start_offset; offset < end_offset;) {
int end_of_region_offset;
if (helper.IsTagged(offset, end_offset,
&end_of_region_offset)) {
FindPointersToNewSpaceInRegion(
obj_address + offset,
obj_address + end_of_region_offset, slot_callback);
}
offset = end_of_region_offset;
}
} else {
UNREACHABLE();
}
break;
}
case HeapObjectContents::kRawValues:
break;
}
}
}
}
}
}
if (callback_ != NULL) {
(*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
}
}
}
void StoreBuffer::Compact() {
CHECK(hash_set_1_ == heap_->isolate()->store_buffer_hash_set_1_address());
CHECK(hash_set_2_ == heap_->isolate()->store_buffer_hash_set_2_address());
Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
if (top == start_) return;
// There's no check of the limit in the loop below so we check here for
// the worst case (compaction doesn't eliminate any pointers).
DCHECK(top <= limit_);
heap_->public_set_store_buffer_top(start_);
EnsureSpace(top - start_);
DCHECK(may_move_store_buffer_entries_);
// Goes through the addresses in the store buffer attempting to remove
// duplicates. In the interest of speed this is a lossy operation. Some
// duplicates will remain. We have two hash sets with different hash
// functions to reduce the number of unnecessary clashes.
hash_sets_are_empty_ = false; // Hash sets are in use.
for (Address* current = start_; current < top; current++) {
DCHECK(!heap_->code_space()->Contains(*current));
uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
// Shift out the last bits including any tags.
int_addr >>= kPointerSizeLog2;
// The upper part of an address is basically random because of ASLR and OS
// non-determinism, so we use only the bits within a page for hashing to
// make v8's behavior (more) deterministic.
uintptr_t hash_addr =
int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2);
int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) &
(kHashSetLength - 1));
if (hash_set_1_[hash1] == int_addr) continue;
uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2));
hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
hash2 &= (kHashSetLength - 1);
if (hash_set_2_[hash2] == int_addr) continue;
if (hash_set_1_[hash1] == 0) {
hash_set_1_[hash1] = int_addr;
} else if (hash_set_2_[hash2] == 0) {
hash_set_2_[hash2] = int_addr;
} else {
// Rather than slowing down we just throw away some entries. This will
// cause some duplicates to remain undetected.
hash_set_1_[hash1] = int_addr;
hash_set_2_[hash2] = 0;
}
old_buffer_is_sorted_ = false;
old_buffer_is_filtered_ = false;
*old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
DCHECK(old_top_ <= old_limit_);
}
heap_->isolate()->counters()->store_buffer_compactions()->Increment();
}
} // namespace internal
} // namespace v8