blob: 784331738ee23f47cb9bc5cf9b796304f3e9a6d5 [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#include "src/assembler.h"
#include <cmath>
#include "src/api.h"
#include "src/base/cpu.h"
#include "src/base/functional.h"
#include "src/base/lazy-instance.h"
#include "src/base/platform/platform.h"
#include "src/base/utils/random-number-generator.h"
#include "src/builtins.h"
#include "src/codegen.h"
#include "src/counters.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/disassembler.h"
#include "src/execution.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/ostreams.h"
#include "src/profiler/cpu-profiler.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp-stack.h"
#include "src/register-configuration.h"
#include "src/runtime/runtime.h"
#include "src/simulator.h" // For flushing instruction cache.
#include "src/snapshot/serialize.h"
#if V8_TARGET_ARCH_IA32
#include "src/ia32/assembler-ia32-inl.h" // NOLINT
#elif V8_TARGET_ARCH_X64
#include "src/x64/assembler-x64-inl.h" // NOLINT
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/assembler-arm64-inl.h" // NOLINT
#elif V8_TARGET_ARCH_ARM
#include "src/arm/assembler-arm-inl.h" // NOLINT
#elif V8_TARGET_ARCH_PPC
#include "src/ppc/assembler-ppc-inl.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/assembler-mips-inl.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/assembler-mips64-inl.h" // NOLINT
#elif V8_TARGET_ARCH_X87
#include "src/x87/assembler-x87-inl.h" // NOLINT
#else
#error "Unknown architecture."
#endif
// Include native regexp-macro-assembler.
#ifndef V8_INTERPRETED_REGEXP
#if V8_TARGET_ARCH_IA32
#include "src/regexp/ia32/regexp-macro-assembler-ia32.h" // NOLINT
#elif V8_TARGET_ARCH_X64
#include "src/regexp/x64/regexp-macro-assembler-x64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM64
#include "src/regexp/arm64/regexp-macro-assembler-arm64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM
#include "src/regexp/arm/regexp-macro-assembler-arm.h" // NOLINT
#elif V8_TARGET_ARCH_PPC
#include "src/regexp/ppc/regexp-macro-assembler-ppc.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS
#include "src/regexp/mips/regexp-macro-assembler-mips.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS64
#include "src/regexp/mips64/regexp-macro-assembler-mips64.h" // NOLINT
#elif V8_TARGET_ARCH_X87
#include "src/regexp/x87/regexp-macro-assembler-x87.h" // NOLINT
#else // Unknown architecture.
#error "Unknown architecture."
#endif // Target architecture.
#endif // V8_INTERPRETED_REGEXP
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Common register code.
const char* Register::ToString() {
// This is the mapping of allocation indices to registers.
DCHECK(reg_code >= 0 && reg_code < kNumRegisters);
return RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT)
->GetGeneralRegisterName(reg_code);
}
bool Register::IsAllocatable() const {
return ((1 << reg_code) &
RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT)
->allocatable_general_codes_mask()) != 0;
}
const char* DoubleRegister::ToString() {
// This is the mapping of allocation indices to registers.
DCHECK(reg_code >= 0 && reg_code < kMaxNumRegisters);
return RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT)
->GetDoubleRegisterName(reg_code);
}
bool DoubleRegister::IsAllocatable() const {
return ((1 << reg_code) &
RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT)
->allocatable_double_codes_mask()) != 0;
}
// -----------------------------------------------------------------------------
// Common double constants.
struct DoubleConstant BASE_EMBEDDED {
double min_int;
double one_half;
double minus_one_half;
double negative_infinity;
double the_hole_nan;
double uint32_bias;
};
static DoubleConstant double_constants;
const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
static bool math_exp_data_initialized = false;
static base::Mutex* math_exp_data_mutex = NULL;
static double* math_exp_constants_array = NULL;
static double* math_exp_log_table_array = NULL;
// -----------------------------------------------------------------------------
// Implementation of AssemblerBase
AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size)
: isolate_(isolate),
jit_cookie_(0),
enabled_cpu_features_(0),
emit_debug_code_(FLAG_debug_code),
predictable_code_size_(false),
// We may use the assembler without an isolate.
serializer_enabled_(isolate && isolate->serializer_enabled()),
constant_pool_available_(false) {
DCHECK_NOT_NULL(isolate);
if (FLAG_mask_constants_with_cookie) {
jit_cookie_ = isolate->random_number_generator()->NextInt();
}
own_buffer_ = buffer == NULL;
if (buffer_size == 0) buffer_size = kMinimalBufferSize;
DCHECK(buffer_size > 0);
if (own_buffer_) buffer = NewArray<byte>(buffer_size);
buffer_ = static_cast<byte*>(buffer);
buffer_size_ = buffer_size;
pc_ = buffer_;
}
AssemblerBase::~AssemblerBase() {
if (own_buffer_) DeleteArray(buffer_);
}
void AssemblerBase::FlushICache(Isolate* isolate, void* start, size_t size) {
if (size == 0) return;
if (CpuFeatures::IsSupported(COHERENT_CACHE)) return;
#if defined(USE_SIMULATOR)
Simulator::FlushICache(isolate->simulator_i_cache(), start, size);
#else
CpuFeatures::FlushICache(start, size);
#endif // USE_SIMULATOR
}
void AssemblerBase::Print() {
OFStream os(stdout);
v8::internal::Disassembler::Decode(isolate(), &os, buffer_, pc_, nullptr);
}
// -----------------------------------------------------------------------------
// Implementation of PredictableCodeSizeScope
PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler)
: PredictableCodeSizeScope(assembler, -1) {}
PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler,
int expected_size)
: assembler_(assembler),
expected_size_(expected_size),
start_offset_(assembler->pc_offset()),
old_value_(assembler->predictable_code_size()) {
assembler_->set_predictable_code_size(true);
}
PredictableCodeSizeScope::~PredictableCodeSizeScope() {
// TODO(svenpanne) Remove the 'if' when everything works.
if (expected_size_ >= 0) {
CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_);
}
assembler_->set_predictable_code_size(old_value_);
}
// -----------------------------------------------------------------------------
// Implementation of CpuFeatureScope
#ifdef DEBUG
CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f)
: assembler_(assembler) {
DCHECK(CpuFeatures::IsSupported(f));
old_enabled_ = assembler_->enabled_cpu_features();
uint64_t mask = static_cast<uint64_t>(1) << f;
// TODO(svenpanne) This special case below doesn't belong here!
#if V8_TARGET_ARCH_ARM
// ARMv7 is implied by VFP3.
if (f == VFP3) {
mask |= static_cast<uint64_t>(1) << ARMv7;
}
#endif
assembler_->set_enabled_cpu_features(old_enabled_ | mask);
}
CpuFeatureScope::~CpuFeatureScope() {
assembler_->set_enabled_cpu_features(old_enabled_);
}
#endif
bool CpuFeatures::initialized_ = false;
unsigned CpuFeatures::supported_ = 0;
unsigned CpuFeatures::cache_line_size_ = 0;
// -----------------------------------------------------------------------------
// Implementation of Label
int Label::pos() const {
if (pos_ < 0) return -pos_ - 1;
if (pos_ > 0) return pos_ - 1;
UNREACHABLE();
return 0;
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfoWriter and RelocIterator
//
// Relocation information is written backwards in memory, from high addresses
// towards low addresses, byte by byte. Therefore, in the encodings listed
// below, the first byte listed it at the highest address, and successive
// bytes in the record are at progressively lower addresses.
//
// Encoding
//
// The most common modes are given single-byte encodings. Also, it is
// easy to identify the type of reloc info and skip unwanted modes in
// an iteration.
//
// The encoding relies on the fact that there are fewer than 14
// different relocation modes using standard non-compact encoding.
//
// The first byte of a relocation record has a tag in its low 2 bits:
// Here are the record schemes, depending on the low tag and optional higher
// tags.
//
// Low tag:
// 00: embedded_object: [6-bit pc delta] 00
//
// 01: code_target: [6-bit pc delta] 01
//
// 10: short_data_record: [6-bit pc delta] 10 followed by
// [6-bit data delta] [2-bit data type tag]
//
// 11: long_record [6 bit reloc mode] 11
// followed by pc delta
// followed by optional data depending on type.
//
// 2-bit data type tags, used in short_data_record and data_jump long_record:
// code_target_with_id: 00
// position: 01
// statement_position: 10
// deopt_reason: 11
//
// If a pc delta exceeds 6 bits, it is split into a remainder that fits into
// 6 bits and a part that does not. The latter is encoded as a long record
// with PC_JUMP as pseudo reloc info mode. The former is encoded as part of
// the following record in the usual way. The long pc jump record has variable
// length:
// pc-jump: [PC_JUMP] 11
// [7 bits data] 0
// ...
// [7 bits data] 1
// (Bits 6..31 of pc delta, with leading zeroes
// dropped, and last non-zero chunk tagged with 1.)
const int kTagBits = 2;
const int kTagMask = (1 << kTagBits) - 1;
const int kLongTagBits = 6;
const int kShortDataTypeTagBits = 2;
const int kShortDataBits = kBitsPerByte - kShortDataTypeTagBits;
const int kEmbeddedObjectTag = 0;
const int kCodeTargetTag = 1;
const int kLocatableTag = 2;
const int kDefaultTag = 3;
const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
const int kChunkBits = 7;
const int kChunkMask = (1 << kChunkBits) - 1;
const int kLastChunkTagBits = 1;
const int kLastChunkTagMask = 1;
const int kLastChunkTag = 1;
const int kCodeWithIdTag = 0;
const int kNonstatementPositionTag = 1;
const int kStatementPositionTag = 2;
const int kDeoptReasonTag = 3;
uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) {
// Return if the pc_delta can fit in kSmallPCDeltaBits bits.
// Otherwise write a variable length PC jump for the bits that do
// not fit in the kSmallPCDeltaBits bits.
if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
WriteMode(RelocInfo::PC_JUMP);
uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
DCHECK(pc_jump > 0);
// Write kChunkBits size chunks of the pc_jump.
for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
byte b = pc_jump & kChunkMask;
*--pos_ = b << kLastChunkTagBits;
}
// Tag the last chunk so it can be identified.
*pos_ = *pos_ | kLastChunkTag;
// Return the remaining kSmallPCDeltaBits of the pc_delta.
return pc_delta & kSmallPCDeltaMask;
}
void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) {
// Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump.
pc_delta = WriteLongPCJump(pc_delta);
*--pos_ = pc_delta << kTagBits | tag;
}
void RelocInfoWriter::WriteShortTaggedData(intptr_t data_delta, int tag) {
*--pos_ = static_cast<byte>(data_delta << kShortDataTypeTagBits | tag);
}
void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) {
STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits));
*--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag);
}
void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) {
// Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
pc_delta = WriteLongPCJump(pc_delta);
WriteMode(rmode);
*--pos_ = pc_delta;
}
void RelocInfoWriter::WriteIntData(int number) {
for (int i = 0; i < kIntSize; i++) {
*--pos_ = static_cast<byte>(number);
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
number = number >> kBitsPerByte;
}
}
void RelocInfoWriter::WriteData(intptr_t data_delta) {
for (int i = 0; i < kIntptrSize; i++) {
*--pos_ = static_cast<byte>(data_delta);
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
data_delta = data_delta >> kBitsPerByte;
}
}
void RelocInfoWriter::WritePosition(int pc_delta, int pos_delta,
RelocInfo::Mode rmode) {
int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag
: kStatementPositionTag;
// Check if delta is small enough to fit in a tagged byte.
if (is_intn(pos_delta, kShortDataBits)) {
WriteShortTaggedPC(pc_delta, kLocatableTag);
WriteShortTaggedData(pos_delta, pos_type_tag);
} else {
// Otherwise, use costly encoding.
WriteModeAndPC(pc_delta, rmode);
WriteIntData(pos_delta);
}
}
void RelocInfoWriter::FlushPosition() {
if (!next_position_candidate_flushed_) {
WritePosition(next_position_candidate_pc_delta_,
next_position_candidate_pos_delta_, RelocInfo::POSITION);
next_position_candidate_pos_delta_ = 0;
next_position_candidate_pc_delta_ = 0;
next_position_candidate_flushed_ = true;
}
}
void RelocInfoWriter::Write(const RelocInfo* rinfo) {
RelocInfo::Mode rmode = rinfo->rmode();
if (rmode != RelocInfo::POSITION) {
FlushPosition();
}
#ifdef DEBUG
byte* begin_pos = pos_;
#endif
DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
DCHECK(rinfo->pc() - last_pc_ >= 0);
// Use unsigned delta-encoding for pc.
uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
// The two most common modes are given small tags, and usually fit in a byte.
if (rmode == RelocInfo::EMBEDDED_OBJECT) {
WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag);
} else if (rmode == RelocInfo::CODE_TARGET) {
WriteShortTaggedPC(pc_delta, kCodeTargetTag);
DCHECK(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
} else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
// Use signed delta-encoding for id.
DCHECK_EQ(static_cast<int>(rinfo->data()), rinfo->data());
int id_delta = static_cast<int>(rinfo->data()) - last_id_;
// Check if delta is small enough to fit in a tagged byte.
if (is_intn(id_delta, kShortDataBits)) {
WriteShortTaggedPC(pc_delta, kLocatableTag);
WriteShortTaggedData(id_delta, kCodeWithIdTag);
} else {
// Otherwise, use costly encoding.
WriteModeAndPC(pc_delta, rmode);
WriteIntData(id_delta);
}
last_id_ = static_cast<int>(rinfo->data());
} else if (rmode == RelocInfo::DEOPT_REASON) {
DCHECK(rinfo->data() < (1 << kShortDataBits));
WriteShortTaggedPC(pc_delta, kLocatableTag);
WriteShortTaggedData(rinfo->data(), kDeoptReasonTag);
} else if (RelocInfo::IsPosition(rmode)) {
// Use signed delta-encoding for position.
DCHECK_EQ(static_cast<int>(rinfo->data()), rinfo->data());
int pos_delta = static_cast<int>(rinfo->data()) - last_position_;
if (rmode == RelocInfo::STATEMENT_POSITION) {
WritePosition(pc_delta, pos_delta, rmode);
} else {
DCHECK_EQ(rmode, RelocInfo::POSITION);
if (pc_delta != 0 || last_mode_ != RelocInfo::POSITION) {
FlushPosition();
next_position_candidate_pc_delta_ = pc_delta;
next_position_candidate_pos_delta_ = pos_delta;
} else {
next_position_candidate_pos_delta_ += pos_delta;
}
next_position_candidate_flushed_ = false;
}
last_position_ = static_cast<int>(rinfo->data());
} else {
WriteModeAndPC(pc_delta, rmode);
if (RelocInfo::IsComment(rmode)) {
WriteData(rinfo->data());
} else if (RelocInfo::IsConstPool(rmode) ||
RelocInfo::IsVeneerPool(rmode)) {
WriteIntData(static_cast<int>(rinfo->data()));
}
}
last_pc_ = rinfo->pc();
last_mode_ = rmode;
#ifdef DEBUG
DCHECK(begin_pos - pos_ <= kMaxSize);
#endif
}
inline int RelocIterator::AdvanceGetTag() {
return *--pos_ & kTagMask;
}
inline RelocInfo::Mode RelocIterator::GetMode() {
return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) &
((1 << kLongTagBits) - 1));
}
inline void RelocIterator::ReadShortTaggedPC() {
rinfo_.pc_ += *pos_ >> kTagBits;
}
inline void RelocIterator::AdvanceReadPC() {
rinfo_.pc_ += *--pos_;
}
void RelocIterator::AdvanceReadId() {
int x = 0;
for (int i = 0; i < kIntSize; i++) {
x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
}
last_id_ += x;
rinfo_.data_ = last_id_;
}
void RelocIterator::AdvanceReadInt() {
int x = 0;
for (int i = 0; i < kIntSize; i++) {
x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
}
rinfo_.data_ = x;
}
void RelocIterator::AdvanceReadPosition() {
int x = 0;
for (int i = 0; i < kIntSize; i++) {
x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
}
last_position_ += x;
rinfo_.data_ = last_position_;
}
void RelocIterator::AdvanceReadData() {
intptr_t x = 0;
for (int i = 0; i < kIntptrSize; i++) {
x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
}
rinfo_.data_ = x;
}
void RelocIterator::AdvanceReadLongPCJump() {
// Read the 32-kSmallPCDeltaBits most significant bits of the
// pc jump in kChunkBits bit chunks and shift them into place.
// Stop when the last chunk is encountered.
uint32_t pc_jump = 0;
for (int i = 0; i < kIntSize; i++) {
byte pc_jump_part = *--pos_;
pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
if ((pc_jump_part & kLastChunkTagMask) == 1) break;
}
// The least significant kSmallPCDeltaBits bits will be added
// later.
rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
}
inline int RelocIterator::GetShortDataTypeTag() {
return *pos_ & ((1 << kShortDataTypeTagBits) - 1);
}
inline void RelocIterator::ReadShortTaggedId() {
int8_t signed_b = *pos_;
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
last_id_ += signed_b >> kShortDataTypeTagBits;
rinfo_.data_ = last_id_;
}
inline void RelocIterator::ReadShortTaggedPosition() {
int8_t signed_b = *pos_;
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
last_position_ += signed_b >> kShortDataTypeTagBits;
rinfo_.data_ = last_position_;
}
inline void RelocIterator::ReadShortTaggedData() {
uint8_t unsigned_b = *pos_;
rinfo_.data_ = unsigned_b >> kTagBits;
}
static inline RelocInfo::Mode GetPositionModeFromTag(int tag) {
DCHECK(tag == kNonstatementPositionTag ||
tag == kStatementPositionTag);
return (tag == kNonstatementPositionTag) ?
RelocInfo::POSITION :
RelocInfo::STATEMENT_POSITION;
}
void RelocIterator::next() {
DCHECK(!done());
// Basically, do the opposite of RelocInfoWriter::Write.
// Reading of data is as far as possible avoided for unwanted modes,
// but we must always update the pc.
//
// We exit this loop by returning when we find a mode we want.
while (pos_ > end_) {
int tag = AdvanceGetTag();
if (tag == kEmbeddedObjectTag) {
ReadShortTaggedPC();
if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
} else if (tag == kCodeTargetTag) {
ReadShortTaggedPC();
if (SetMode(RelocInfo::CODE_TARGET)) return;
} else if (tag == kLocatableTag) {
ReadShortTaggedPC();
Advance();
int data_type_tag = GetShortDataTypeTag();
if (data_type_tag == kCodeWithIdTag) {
if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
ReadShortTaggedId();
return;
}
} else if (data_type_tag == kDeoptReasonTag) {
if (SetMode(RelocInfo::DEOPT_REASON)) {
ReadShortTaggedData();
return;
}
} else {
DCHECK(data_type_tag == kNonstatementPositionTag ||
data_type_tag == kStatementPositionTag);
if (mode_mask_ & RelocInfo::kPositionMask) {
// Always update the position if we are interested in either
// statement positions or non-statement positions.
ReadShortTaggedPosition();
if (SetMode(GetPositionModeFromTag(data_type_tag))) return;
}
}
} else {
DCHECK(tag == kDefaultTag);
RelocInfo::Mode rmode = GetMode();
if (rmode == RelocInfo::PC_JUMP) {
AdvanceReadLongPCJump();
} else {
AdvanceReadPC();
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
if (SetMode(rmode)) {
AdvanceReadId();
return;
}
Advance(kIntSize);
} else if (RelocInfo::IsComment(rmode)) {
if (SetMode(rmode)) {
AdvanceReadData();
return;
}
Advance(kIntptrSize);
} else if (RelocInfo::IsPosition(rmode)) {
if (mode_mask_ & RelocInfo::kPositionMask) {
// Always update the position if we are interested in either
// statement positions or non-statement positions.
AdvanceReadPosition();
if (SetMode(rmode)) return;
} else {
Advance(kIntSize);
}
} else if (RelocInfo::IsConstPool(rmode) ||
RelocInfo::IsVeneerPool(rmode)) {
if (SetMode(rmode)) {
AdvanceReadInt();
return;
}
Advance(kIntSize);
} else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) {
return;
}
}
}
}
if (code_age_sequence_ != NULL) {
byte* old_code_age_sequence = code_age_sequence_;
code_age_sequence_ = NULL;
if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) {
rinfo_.data_ = 0;
rinfo_.pc_ = old_code_age_sequence;
return;
}
}
done_ = true;
}
RelocIterator::RelocIterator(Code* code, int mode_mask)
: rinfo_(code->map()->GetIsolate()) {
rinfo_.host_ = code;
rinfo_.pc_ = code->instruction_start();
rinfo_.data_ = 0;
// Relocation info is read backwards.
pos_ = code->relocation_start() + code->relocation_size();
end_ = code->relocation_start();
done_ = false;
mode_mask_ = mode_mask;
last_id_ = 0;
last_position_ = 0;
byte* sequence = code->FindCodeAgeSequence();
// We get the isolate from the map, because at serialization time
// the code pointer has been cloned and isn't really in heap space.
Isolate* isolate = code->map()->GetIsolate();
if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) {
code_age_sequence_ = sequence;
} else {
code_age_sequence_ = NULL;
}
if (mode_mask_ == 0) pos_ = end_;
next();
}
RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask)
: rinfo_(desc.origin->isolate()) {
rinfo_.pc_ = desc.buffer;
rinfo_.data_ = 0;
// Relocation info is read backwards.
pos_ = desc.buffer + desc.buffer_size;
end_ = pos_ - desc.reloc_size;
done_ = false;
mode_mask_ = mode_mask;
last_id_ = 0;
last_position_ = 0;
code_age_sequence_ = NULL;
if (mode_mask_ == 0) pos_ = end_;
next();
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
#ifdef DEBUG
bool RelocInfo::RequiresRelocation(const CodeDesc& desc) {
// Ensure there are no code targets or embedded objects present in the
// deoptimization entries, they would require relocation after code
// generation.
int mode_mask = RelocInfo::kCodeTargetMask |
RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::CELL) |
RelocInfo::kApplyMask;
RelocIterator it(desc, mode_mask);
return !it.done();
}
#endif
#ifdef ENABLE_DISASSEMBLER
const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
switch (rmode) {
case NONE32:
return "no reloc 32";
case NONE64:
return "no reloc 64";
case EMBEDDED_OBJECT:
return "embedded object";
case DEBUGGER_STATEMENT:
return "debugger statement";
case CODE_TARGET:
return "code target";
case CODE_TARGET_WITH_ID:
return "code target with id";
case CELL:
return "property cell";
case RUNTIME_ENTRY:
return "runtime entry";
case COMMENT:
return "comment";
case POSITION:
return "position";
case STATEMENT_POSITION:
return "statement position";
case EXTERNAL_REFERENCE:
return "external reference";
case INTERNAL_REFERENCE:
return "internal reference";
case INTERNAL_REFERENCE_ENCODED:
return "encoded internal reference";
case DEOPT_REASON:
return "deopt reason";
case CONST_POOL:
return "constant pool";
case VENEER_POOL:
return "veneer pool";
case DEBUG_BREAK_SLOT_AT_POSITION:
return "debug break slot at position";
case DEBUG_BREAK_SLOT_AT_RETURN:
return "debug break slot at return";
case DEBUG_BREAK_SLOT_AT_CALL:
return "debug break slot at call";
case CODE_AGE_SEQUENCE:
return "code age sequence";
case GENERATOR_CONTINUATION:
return "generator continuation";
case NUMBER_OF_MODES:
case PC_JUMP:
UNREACHABLE();
return "number_of_modes";
}
return "unknown relocation type";
}
void RelocInfo::Print(Isolate* isolate, std::ostream& os) { // NOLINT
os << static_cast<const void*>(pc_) << " " << RelocModeName(rmode_);
if (IsComment(rmode_)) {
os << " (" << reinterpret_cast<char*>(data_) << ")";
} else if (rmode_ == DEOPT_REASON) {
os << " (" << Deoptimizer::GetDeoptReason(
static_cast<Deoptimizer::DeoptReason>(data_)) << ")";
} else if (rmode_ == EMBEDDED_OBJECT) {
os << " (" << Brief(target_object()) << ")";
} else if (rmode_ == EXTERNAL_REFERENCE) {
ExternalReferenceEncoder ref_encoder(isolate);
os << " ("
<< ref_encoder.NameOfAddress(isolate, target_external_reference())
<< ") (" << static_cast<const void*>(target_external_reference())
<< ")";
} else if (IsCodeTarget(rmode_)) {
Code* code = Code::GetCodeFromTargetAddress(target_address());
os << " (" << Code::Kind2String(code->kind()) << ") ("
<< static_cast<const void*>(target_address()) << ")";
if (rmode_ == CODE_TARGET_WITH_ID) {
os << " (id=" << static_cast<int>(data_) << ")";
}
} else if (IsPosition(rmode_)) {
os << " (" << data() << ")";
} else if (IsRuntimeEntry(rmode_) &&
isolate->deoptimizer_data() != NULL) {
// Depotimization bailouts are stored as runtime entries.
int id = Deoptimizer::GetDeoptimizationId(
isolate, target_address(), Deoptimizer::EAGER);
if (id != Deoptimizer::kNotDeoptimizationEntry) {
os << " (deoptimization bailout " << id << ")";
}
} else if (IsConstPool(rmode_)) {
os << " (size " << static_cast<int>(data_) << ")";
}
os << "\n";
}
#endif // ENABLE_DISASSEMBLER
#ifdef VERIFY_HEAP
void RelocInfo::Verify(Isolate* isolate) {
switch (rmode_) {
case EMBEDDED_OBJECT:
Object::VerifyPointer(target_object());
break;
case CELL:
Object::VerifyPointer(target_cell());
break;
case DEBUGGER_STATEMENT:
case CODE_TARGET_WITH_ID:
case CODE_TARGET: {
// convert inline target address to code object
Address addr = target_address();
CHECK(addr != NULL);
// Check that we can find the right code object.
Code* code = Code::GetCodeFromTargetAddress(addr);
Object* found = isolate->FindCodeObject(addr);
CHECK(found->IsCode());
CHECK(code->address() == HeapObject::cast(found)->address());
break;
}
case INTERNAL_REFERENCE:
case INTERNAL_REFERENCE_ENCODED: {
Address target = target_internal_reference();
Address pc = target_internal_reference_address();
Code* code = Code::cast(isolate->FindCodeObject(pc));
CHECK(target >= code->instruction_start());
CHECK(target <= code->instruction_end());
break;
}
case RUNTIME_ENTRY:
case COMMENT:
case POSITION:
case STATEMENT_POSITION:
case EXTERNAL_REFERENCE:
case DEOPT_REASON:
case CONST_POOL:
case VENEER_POOL:
case DEBUG_BREAK_SLOT_AT_POSITION:
case DEBUG_BREAK_SLOT_AT_RETURN:
case DEBUG_BREAK_SLOT_AT_CALL:
case GENERATOR_CONTINUATION:
case NONE32:
case NONE64:
break;
case NUMBER_OF_MODES:
case PC_JUMP:
UNREACHABLE();
break;
case CODE_AGE_SEQUENCE:
DCHECK(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode());
break;
}
}
#endif // VERIFY_HEAP
// Implementation of ExternalReference
void ExternalReference::SetUp() {
double_constants.min_int = kMinInt;
double_constants.one_half = 0.5;
double_constants.minus_one_half = -0.5;
double_constants.the_hole_nan = bit_cast<double>(kHoleNanInt64);
double_constants.negative_infinity = -V8_INFINITY;
double_constants.uint32_bias =
static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1;
math_exp_data_mutex = new base::Mutex();
}
void ExternalReference::InitializeMathExpData() {
// Early return?
if (math_exp_data_initialized) return;
base::LockGuard<base::Mutex> lock_guard(math_exp_data_mutex);
if (!math_exp_data_initialized) {
// If this is changed, generated code must be adapted too.
const int kTableSizeBits = 11;
const int kTableSize = 1 << kTableSizeBits;
const double kTableSizeDouble = static_cast<double>(kTableSize);
math_exp_constants_array = new double[9];
// Input values smaller than this always return 0.
math_exp_constants_array[0] = -708.39641853226408;
// Input values larger than this always return +Infinity.
math_exp_constants_array[1] = 709.78271289338397;
math_exp_constants_array[2] = V8_INFINITY;
// The rest is black magic. Do not attempt to understand it. It is
// loosely based on the "expd" function published at:
// http://herumi.blogspot.com/2011/08/fast-double-precision-exponential.html
const double constant3 = (1 << kTableSizeBits) / std::log(2.0);
math_exp_constants_array[3] = constant3;
math_exp_constants_array[4] =
static_cast<double>(static_cast<int64_t>(3) << 51);
math_exp_constants_array[5] = 1 / constant3;
math_exp_constants_array[6] = 3.0000000027955394;
math_exp_constants_array[7] = 0.16666666685227835;
math_exp_constants_array[8] = 1;
math_exp_log_table_array = new double[kTableSize];
for (int i = 0; i < kTableSize; i++) {
double value = std::pow(2, i / kTableSizeDouble);
uint64_t bits = bit_cast<uint64_t, double>(value);
bits &= (static_cast<uint64_t>(1) << 52) - 1;
double mantissa = bit_cast<double, uint64_t>(bits);
math_exp_log_table_array[i] = mantissa;
}
math_exp_data_initialized = true;
}
}
void ExternalReference::TearDownMathExpData() {
delete[] math_exp_constants_array;
math_exp_constants_array = NULL;
delete[] math_exp_log_table_array;
math_exp_log_table_array = NULL;
delete math_exp_data_mutex;
math_exp_data_mutex = NULL;
}
ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
: address_(Redirect(isolate, Builtins::c_function_address(id))) {}
ExternalReference::ExternalReference(
ApiFunction* fun,
Type type = ExternalReference::BUILTIN_CALL,
Isolate* isolate = NULL)
: address_(Redirect(isolate, fun->address(), type)) {}
ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
: address_(isolate->builtins()->builtin_address(name)) {}
ExternalReference::ExternalReference(Runtime::FunctionId id, Isolate* isolate)
: ExternalReference(Runtime::FunctionForId(id), isolate) {}
ExternalReference::ExternalReference(const Runtime::Function* f,
Isolate* isolate)
: address_(Redirect(isolate, f->entry, f->result_size == 3
? BUILTIN_CALL_TRIPLE
: BUILTIN_CALL)) {}
ExternalReference ExternalReference::isolate_address(Isolate* isolate) {
return ExternalReference(isolate);
}
ExternalReference::ExternalReference(StatsCounter* counter)
: address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
: address_(isolate->get_address_from_id(id)) {}
ExternalReference::ExternalReference(const SCTableReference& table_ref)
: address_(table_ref.address()) {}
ExternalReference ExternalReference::
incremental_marking_record_write_function(Isolate* isolate) {
return ExternalReference(Redirect(
isolate,
FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
}
ExternalReference ExternalReference::
store_buffer_overflow_function(Isolate* isolate) {
return ExternalReference(Redirect(
isolate,
FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
}
ExternalReference ExternalReference::delete_handle_scope_extensions(
Isolate* isolate) {
return ExternalReference(Redirect(
isolate,
FUNCTION_ADDR(HandleScope::DeleteExtensions)));
}
ExternalReference ExternalReference::get_date_field_function(
Isolate* isolate) {
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
}
ExternalReference ExternalReference::get_make_code_young_function(
Isolate* isolate) {
return ExternalReference(Redirect(
isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung)));
}
ExternalReference ExternalReference::get_mark_code_as_executed_function(
Isolate* isolate) {
return ExternalReference(Redirect(
isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted)));
}
ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
return ExternalReference(isolate->date_cache()->stamp_address());
}
ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) {
return ExternalReference(isolate->stress_deopt_count_address());
}
ExternalReference ExternalReference::new_deoptimizer_function(
Isolate* isolate) {
return ExternalReference(
Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
}
ExternalReference ExternalReference::compute_output_frames_function(
Isolate* isolate) {
return ExternalReference(
Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
}
ExternalReference ExternalReference::log_enter_external_function(
Isolate* isolate) {
return ExternalReference(
Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal)));
}
ExternalReference ExternalReference::log_leave_external_function(
Isolate* isolate) {
return ExternalReference(
Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal)));
}
ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
}
ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
Isolate* isolate) {
return ExternalReference(
isolate->keyed_lookup_cache()->field_offsets_address());
}
ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
return ExternalReference(isolate->heap()->roots_array_start());
}
ExternalReference ExternalReference::allocation_sites_list_address(
Isolate* isolate) {
return ExternalReference(isolate->heap()->allocation_sites_list_address());
}
ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
return ExternalReference(isolate->stack_guard()->address_of_jslimit());
}
ExternalReference ExternalReference::address_of_real_stack_limit(
Isolate* isolate) {
return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
}
ExternalReference ExternalReference::address_of_regexp_stack_limit(
Isolate* isolate) {
return ExternalReference(isolate->regexp_stack()->limit_address());
}
ExternalReference ExternalReference::new_space_start(Isolate* isolate) {
return ExternalReference(isolate->heap()->NewSpaceStart());
}
ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
return ExternalReference(isolate->heap()->store_buffer_top_address());
}
ExternalReference ExternalReference::new_space_mask(Isolate* isolate) {
return ExternalReference(reinterpret_cast<Address>(
isolate->heap()->NewSpaceMask()));
}
ExternalReference ExternalReference::new_space_allocation_top_address(
Isolate* isolate) {
return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
}
ExternalReference ExternalReference::new_space_allocation_limit_address(
Isolate* isolate) {
return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
}
ExternalReference ExternalReference::old_space_allocation_top_address(
Isolate* isolate) {
return ExternalReference(isolate->heap()->OldSpaceAllocationTopAddress());
}
ExternalReference ExternalReference::old_space_allocation_limit_address(
Isolate* isolate) {
return ExternalReference(isolate->heap()->OldSpaceAllocationLimitAddress());
}
ExternalReference ExternalReference::handle_scope_level_address(
Isolate* isolate) {
return ExternalReference(HandleScope::current_level_address(isolate));
}
ExternalReference ExternalReference::handle_scope_next_address(
Isolate* isolate) {
return ExternalReference(HandleScope::current_next_address(isolate));
}
ExternalReference ExternalReference::handle_scope_limit_address(
Isolate* isolate) {
return ExternalReference(HandleScope::current_limit_address(isolate));
}
ExternalReference ExternalReference::scheduled_exception_address(
Isolate* isolate) {
return ExternalReference(isolate->scheduled_exception_address());
}
ExternalReference ExternalReference::address_of_pending_message_obj(
Isolate* isolate) {
return ExternalReference(isolate->pending_message_obj_address());
}
ExternalReference ExternalReference::address_of_min_int() {
return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int));
}
ExternalReference ExternalReference::address_of_one_half() {
return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half));
}
ExternalReference ExternalReference::address_of_minus_one_half() {
return ExternalReference(
reinterpret_cast<void*>(&double_constants.minus_one_half));
}
ExternalReference ExternalReference::address_of_negative_infinity() {
return ExternalReference(
reinterpret_cast<void*>(&double_constants.negative_infinity));
}
ExternalReference ExternalReference::address_of_the_hole_nan() {
return ExternalReference(
reinterpret_cast<void*>(&double_constants.the_hole_nan));
}
ExternalReference ExternalReference::address_of_uint32_bias() {
return ExternalReference(
reinterpret_cast<void*>(&double_constants.uint32_bias));
}
ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) {
return ExternalReference(isolate->cpu_profiler()->is_profiling_address());
}
ExternalReference ExternalReference::invoke_function_callback(
Isolate* isolate) {
Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL;
ApiFunction thunk_fun(thunk_address);
return ExternalReference(&thunk_fun, thunk_type, isolate);
}
ExternalReference ExternalReference::invoke_accessor_getter_callback(
Isolate* isolate) {
Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
ExternalReference::Type thunk_type =
ExternalReference::PROFILING_GETTER_CALL;
ApiFunction thunk_fun(thunk_address);
return ExternalReference(&thunk_fun, thunk_type, isolate);
}
#ifndef V8_INTERPRETED_REGEXP
ExternalReference ExternalReference::re_check_stack_guard_state(
Isolate* isolate) {
Address function;
#if V8_TARGET_ARCH_X64
function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
#elif V8_TARGET_ARCH_IA32
function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
#elif V8_TARGET_ARCH_ARM64
function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState);
#elif V8_TARGET_ARCH_ARM
function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
#elif V8_TARGET_ARCH_PPC
function = FUNCTION_ADDR(RegExpMacroAssemblerPPC::CheckStackGuardState);
#elif V8_TARGET_ARCH_MIPS
function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
#elif V8_TARGET_ARCH_MIPS64
function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
#elif V8_TARGET_ARCH_X87
function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState);
#else
UNREACHABLE();
#endif
return ExternalReference(Redirect(isolate, function));
}
ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
return ExternalReference(
Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
}
ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
Isolate* isolate) {
return ExternalReference(Redirect(
isolate,
FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
}
ExternalReference ExternalReference::re_word_character_map() {
return ExternalReference(
NativeRegExpMacroAssembler::word_character_map_address());
}
ExternalReference ExternalReference::address_of_static_offsets_vector(
Isolate* isolate) {
return ExternalReference(
reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()));
}
ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
Isolate* isolate) {
return ExternalReference(
isolate->regexp_stack()->memory_address());
}
ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
Isolate* isolate) {
return ExternalReference(isolate->regexp_stack()->memory_size_address());
}
#endif // V8_INTERPRETED_REGEXP
ExternalReference ExternalReference::math_log_double_function(
Isolate* isolate) {
typedef double (*d2d)(double x);
return ExternalReference(Redirect(isolate,
FUNCTION_ADDR(static_cast<d2d>(std::log)),
BUILTIN_FP_CALL));
}
ExternalReference ExternalReference::math_exp_constants(int constant_index) {
DCHECK(math_exp_data_initialized);
return ExternalReference(
reinterpret_cast<void*>(math_exp_constants_array + constant_index));
}
ExternalReference ExternalReference::math_exp_log_table() {
DCHECK(math_exp_data_initialized);
return ExternalReference(reinterpret_cast<void*>(math_exp_log_table_array));
}
ExternalReference ExternalReference::page_flags(Page* page) {
return ExternalReference(reinterpret_cast<Address>(page) +
MemoryChunk::kFlagsOffset);
}
ExternalReference ExternalReference::ForDeoptEntry(Address entry) {
return ExternalReference(entry);
}
ExternalReference ExternalReference::cpu_features() {
DCHECK(CpuFeatures::initialized_);
return ExternalReference(&CpuFeatures::supported_);
}
ExternalReference ExternalReference::debug_is_active_address(
Isolate* isolate) {
return ExternalReference(isolate->debug()->is_active_address());
}
ExternalReference ExternalReference::debug_after_break_target_address(
Isolate* isolate) {
return ExternalReference(isolate->debug()->after_break_target_address());
}
ExternalReference ExternalReference::virtual_handler_register(
Isolate* isolate) {
return ExternalReference(isolate->virtual_handler_register_address());
}
ExternalReference ExternalReference::virtual_slot_register(Isolate* isolate) {
return ExternalReference(isolate->virtual_slot_register_address());
}
ExternalReference ExternalReference::runtime_function_table_address(
Isolate* isolate) {
return ExternalReference(
const_cast<Runtime::Function*>(Runtime::RuntimeFunctionTable(isolate)));
}
double power_helper(Isolate* isolate, double x, double y) {
int y_int = static_cast<int>(y);
if (y == y_int) {
return power_double_int(x, y_int); // Returns 1 if exponent is 0.
}
if (y == 0.5) {
lazily_initialize_fast_sqrt(isolate);
return (std::isinf(x)) ? V8_INFINITY
: fast_sqrt(x + 0.0, isolate); // Convert -0 to +0.
}
if (y == -0.5) {
lazily_initialize_fast_sqrt(isolate);
return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0,
isolate); // Convert -0 to +0.
}
return power_double_double(x, y);
}
// Helper function to compute x^y, where y is known to be an
// integer. Uses binary decomposition to limit the number of
// multiplications; see the discussion in "Hacker's Delight" by Henry
// S. Warren, Jr., figure 11-6, page 213.
double power_double_int(double x, int y) {
double m = (y < 0) ? 1 / x : x;
unsigned n = (y < 0) ? -y : y;
double p = 1;
while (n != 0) {
if ((n & 1) != 0) p *= m;
m *= m;
if ((n & 2) != 0) p *= m;
m *= m;
n >>= 2;
}
return p;
}
double power_double_double(double x, double y) {
#if (defined(__MINGW64_VERSION_MAJOR) && \
(!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)) || \
defined(V8_OS_AIX)
// MinGW64 and AIX have a custom implementation for pow. This handles certain
// special cases that are different.
if ((x == 0.0 || std::isinf(x)) && y != 0.0 && std::isfinite(y)) {
double f;
double result = ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0;
/* retain sign if odd integer exponent */
return ((std::modf(y, &f) == 0.0) && (static_cast<int64_t>(y) & 1))
? copysign(result, x)
: result;
}
if (x == 2.0) {
int y_int = static_cast<int>(y);
if (y == y_int) {
return std::ldexp(1.0, y_int);
}
}
#endif
// The checks for special cases can be dropped in ia32 because it has already
// been done in generated code before bailing out here.
if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) {
return std::numeric_limits<double>::quiet_NaN();
}
return std::pow(x, y);
}
ExternalReference ExternalReference::power_double_double_function(
Isolate* isolate) {
return ExternalReference(Redirect(isolate,
FUNCTION_ADDR(power_double_double),
BUILTIN_FP_FP_CALL));
}
ExternalReference ExternalReference::power_double_int_function(
Isolate* isolate) {
return ExternalReference(Redirect(isolate,
FUNCTION_ADDR(power_double_int),
BUILTIN_FP_INT_CALL));
}
ExternalReference ExternalReference::mod_two_doubles_operation(
Isolate* isolate) {
return ExternalReference(Redirect(isolate,
FUNCTION_ADDR(modulo),
BUILTIN_FP_FP_CALL));
}
ExternalReference ExternalReference::debug_step_in_enabled_address(
Isolate* isolate) {
return ExternalReference(isolate->debug()->step_in_enabled_address());
}
ExternalReference ExternalReference::fixed_typed_array_base_data_offset() {
return ExternalReference(reinterpret_cast<void*>(
FixedTypedArrayBase::kDataOffset - kHeapObjectTag));
}
bool operator==(ExternalReference lhs, ExternalReference rhs) {
return lhs.address() == rhs.address();
}
bool operator!=(ExternalReference lhs, ExternalReference rhs) {
return !(lhs == rhs);
}
size_t hash_value(ExternalReference reference) {
return base::hash<Address>()(reference.address());
}
std::ostream& operator<<(std::ostream& os, ExternalReference reference) {
os << static_cast<const void*>(reference.address());
const Runtime::Function* fn = Runtime::FunctionForEntry(reference.address());
if (fn) os << "<" << fn->name << ".entry>";
return os;
}
void PositionsRecorder::RecordPosition(int pos) {
DCHECK(pos != RelocInfo::kNoPosition);
DCHECK(pos >= 0);
state_.current_position = pos;
LOG_CODE_EVENT(assembler_->isolate(),
CodeLinePosInfoAddPositionEvent(jit_handler_data_,
assembler_->pc_offset(),
pos));
}
void PositionsRecorder::RecordStatementPosition(int pos) {
DCHECK(pos != RelocInfo::kNoPosition);
DCHECK(pos >= 0);
state_.current_statement_position = pos;
LOG_CODE_EVENT(assembler_->isolate(),
CodeLinePosInfoAddStatementPositionEvent(
jit_handler_data_,
assembler_->pc_offset(),
pos));
}
bool PositionsRecorder::WriteRecordedPositions() {
bool written = false;
// Write the statement position if it is different from what was written last
// time.
if (state_.current_statement_position != state_.written_statement_position) {
EnsureSpace ensure_space(assembler_);
assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
state_.current_statement_position);
state_.written_position = state_.current_statement_position;
state_.written_statement_position = state_.current_statement_position;
written = true;
}
// Write the position if it is different from what was written last time and
// also different from the statement position that was just written.
if (state_.current_position != state_.written_position) {
EnsureSpace ensure_space(assembler_);
assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position);
state_.written_position = state_.current_position;
written = true;
}
// Return whether something was written.
return written;
}
ConstantPoolBuilder::ConstantPoolBuilder(int ptr_reach_bits,
int double_reach_bits) {
info_[ConstantPoolEntry::INTPTR].entries.reserve(64);
info_[ConstantPoolEntry::INTPTR].regular_reach_bits = ptr_reach_bits;
info_[ConstantPoolEntry::DOUBLE].regular_reach_bits = double_reach_bits;
}
ConstantPoolEntry::Access ConstantPoolBuilder::NextAccess(
ConstantPoolEntry::Type type) const {
const PerTypeEntryInfo& info = info_[type];
if (info.overflow()) return ConstantPoolEntry::OVERFLOWED;
int dbl_count = info_[ConstantPoolEntry::DOUBLE].regular_count;
int dbl_offset = dbl_count * kDoubleSize;
int ptr_count = info_[ConstantPoolEntry::INTPTR].regular_count;
int ptr_offset = ptr_count * kPointerSize + dbl_offset;
if (type == ConstantPoolEntry::DOUBLE) {
// Double overflow detection must take into account the reach for both types
int ptr_reach_bits = info_[ConstantPoolEntry::INTPTR].regular_reach_bits;
if (!is_uintn(dbl_offset, info.regular_reach_bits) ||
(ptr_count > 0 &&
!is_uintn(ptr_offset + kDoubleSize - kPointerSize, ptr_reach_bits))) {
return ConstantPoolEntry::OVERFLOWED;
}
} else {
DCHECK(type == ConstantPoolEntry::INTPTR);
if (!is_uintn(ptr_offset, info.regular_reach_bits)) {
return ConstantPoolEntry::OVERFLOWED;
}
}
return ConstantPoolEntry::REGULAR;
}
ConstantPoolEntry::Access ConstantPoolBuilder::AddEntry(
ConstantPoolEntry& entry, ConstantPoolEntry::Type type) {
DCHECK(!emitted_label_.is_bound());
PerTypeEntryInfo& info = info_[type];
const int entry_size = ConstantPoolEntry::size(type);
bool merged = false;
if (entry.sharing_ok()) {
// Try to merge entries
std::vector<ConstantPoolEntry>::iterator it = info.shared_entries.begin();
int end = static_cast<int>(info.shared_entries.size());
for (int i = 0; i < end; i++, it++) {
if ((entry_size == kPointerSize) ? entry.value() == it->value()
: entry.value64() == it->value64()) {
// Merge with found entry.
entry.set_merged_index(i);
merged = true;
break;
}
}
}
// By definition, merged entries have regular access.
DCHECK(!merged || entry.merged_index() < info.regular_count);
ConstantPoolEntry::Access access =
(merged ? ConstantPoolEntry::REGULAR : NextAccess(type));
// Enforce an upper bound on search time by limiting the search to
// unique sharable entries which fit in the regular section.
if (entry.sharing_ok() && !merged && access == ConstantPoolEntry::REGULAR) {
info.shared_entries.push_back(entry);
} else {
info.entries.push_back(entry);
}
// We're done if we found a match or have already triggered the
// overflow state.
if (merged || info.overflow()) return access;
if (access == ConstantPoolEntry::REGULAR) {
info.regular_count++;
} else {
info.overflow_start = static_cast<int>(info.entries.size()) - 1;
}
return access;
}
void ConstantPoolBuilder::EmitSharedEntries(Assembler* assm,
ConstantPoolEntry::Type type) {
PerTypeEntryInfo& info = info_[type];
std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
const int entry_size = ConstantPoolEntry::size(type);
int base = emitted_label_.pos();
DCHECK(base > 0);
int shared_end = static_cast<int>(shared_entries.size());
std::vector<ConstantPoolEntry>::iterator shared_it = shared_entries.begin();
for (int i = 0; i < shared_end; i++, shared_it++) {
int offset = assm->pc_offset() - base;
shared_it->set_offset(offset); // Save offset for merged entries.
if (entry_size == kPointerSize) {
assm->dp(shared_it->value());
} else {
assm->dq(shared_it->value64());
}
DCHECK(is_uintn(offset, info.regular_reach_bits));
// Patch load sequence with correct offset.
assm->PatchConstantPoolAccessInstruction(shared_it->position(), offset,
ConstantPoolEntry::REGULAR, type);
}
}
void ConstantPoolBuilder::EmitGroup(Assembler* assm,
ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type) {
PerTypeEntryInfo& info = info_[type];
const bool overflow = info.overflow();
std::vector<ConstantPoolEntry>& entries = info.entries;
std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
const int entry_size = ConstantPoolEntry::size(type);
int base = emitted_label_.pos();
DCHECK(base > 0);
int begin;
int end;
if (access == ConstantPoolEntry::REGULAR) {
// Emit any shared entries first
EmitSharedEntries(assm, type);
}
if (access == ConstantPoolEntry::REGULAR) {
begin = 0;
end = overflow ? info.overflow_start : static_cast<int>(entries.size());
} else {
DCHECK(access == ConstantPoolEntry::OVERFLOWED);
if (!overflow) return;
begin = info.overflow_start;
end = static_cast<int>(entries.size());
}
std::vector<ConstantPoolEntry>::iterator it = entries.begin();
if (begin > 0) std::advance(it, begin);
for (int i = begin; i < end; i++, it++) {
// Update constant pool if necessary and get the entry's offset.
int offset;
ConstantPoolEntry::Access entry_access;
if (!it->is_merged()) {
// Emit new entry
offset = assm->pc_offset() - base;
entry_access = access;
if (entry_size == kPointerSize) {
assm->dp(it->value());
} else {
assm->dq(it->value64());
}
} else {
// Retrieve offset from shared entry.
offset = shared_entries[it->merged_index()].offset();
entry_access = ConstantPoolEntry::REGULAR;
}
DCHECK(entry_access == ConstantPoolEntry::OVERFLOWED ||
is_uintn(offset, info.regular_reach_bits));
// Patch load sequence with correct offset.
assm->PatchConstantPoolAccessInstruction(it->position(), offset,
entry_access, type);
}
}
// Emit and return position of pool. Zero implies no constant pool.
int ConstantPoolBuilder::Emit(Assembler* assm) {
bool emitted = emitted_label_.is_bound();
bool empty = IsEmpty();
if (!emitted) {
// Mark start of constant pool. Align if necessary.
if (!empty) assm->DataAlign(kDoubleSize);
assm->bind(&emitted_label_);
if (!empty) {
// Emit in groups based on access and type.
// Emit doubles first for alignment purposes.
EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::DOUBLE);
EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::INTPTR);
if (info_[ConstantPoolEntry::DOUBLE].overflow()) {
assm->DataAlign(kDoubleSize);
EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
ConstantPoolEntry::DOUBLE);
}
if (info_[ConstantPoolEntry::INTPTR].overflow()) {
EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
ConstantPoolEntry::INTPTR);
}
}
}
return !empty ? emitted_label_.pos() : 0;
}
// Platform specific but identical code for all the platforms.
void Assembler::RecordDeoptReason(const int reason, int raw_position) {
if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling()) {
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::POSITION, raw_position);
RecordRelocInfo(RelocInfo::DEOPT_REASON, reason);
}
}
void Assembler::RecordComment(const char* msg) {
if (FLAG_code_comments) {
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
}
}
void Assembler::RecordGeneratorContinuation() {
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::GENERATOR_CONTINUATION);
}
void Assembler::RecordDebugBreakSlot(RelocInfo::Mode mode) {
EnsureSpace ensure_space(this);
DCHECK(RelocInfo::IsDebugBreakSlot(mode));
RecordRelocInfo(mode);
}
void Assembler::DataAlign(int m) {
DCHECK(m >= 2 && base::bits::IsPowerOfTwo32(m));
while ((pc_offset() & (m - 1)) != 0) {
db(0);
}
}
} // namespace internal
} // namespace v8