blob: 584d69b4f1c8d56e14cd2ea14fb90ae2dcdd412a [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PARSER_H_
#define V8_PARSER_H_
#include "src/allocation.h"
#include "src/ast.h"
#include "src/compiler.h" // TODO(titzer): remove this include dependency
#include "src/pending-compilation-error-handler.h"
#include "src/preparse-data.h"
#include "src/preparse-data-format.h"
#include "src/preparser.h"
#include "src/scopes.h"
namespace v8 {
class ScriptCompiler;
namespace internal {
class Target;
// A container for the inputs, configuration options, and outputs of parsing.
class ParseInfo {
public:
explicit ParseInfo(Zone* zone);
ParseInfo(Zone* zone, Handle<JSFunction> function);
ParseInfo(Zone* zone, Handle<Script> script);
// TODO(all) Only used via Debug::FindSharedFunctionInfoInScript, remove?
ParseInfo(Zone* zone, Handle<SharedFunctionInfo> shared);
~ParseInfo() {
if (ast_value_factory_owned()) {
delete ast_value_factory_;
set_ast_value_factory_owned(false);
}
ast_value_factory_ = nullptr;
}
Zone* zone() { return zone_; }
// Convenience accessor methods for flags.
#define FLAG_ACCESSOR(flag, getter, setter) \
bool getter() const { return GetFlag(flag); } \
void setter() { SetFlag(flag); } \
void setter(bool val) { SetFlag(flag, val); }
FLAG_ACCESSOR(kToplevel, is_toplevel, set_toplevel)
FLAG_ACCESSOR(kLazy, is_lazy, set_lazy)
FLAG_ACCESSOR(kEval, is_eval, set_eval)
FLAG_ACCESSOR(kGlobal, is_global, set_global)
FLAG_ACCESSOR(kStrictMode, is_strict_mode, set_strict_mode)
FLAG_ACCESSOR(kStrongMode, is_strong_mode, set_strong_mode)
FLAG_ACCESSOR(kNative, is_native, set_native)
FLAG_ACCESSOR(kModule, is_module, set_module)
FLAG_ACCESSOR(kAllowLazyParsing, allow_lazy_parsing, set_allow_lazy_parsing)
FLAG_ACCESSOR(kAstValueFactoryOwned, ast_value_factory_owned,
set_ast_value_factory_owned)
#undef FLAG_ACCESSOR
void set_parse_restriction(ParseRestriction restriction) {
SetFlag(kParseRestriction, restriction != NO_PARSE_RESTRICTION);
}
ParseRestriction parse_restriction() const {
return GetFlag(kParseRestriction) ? ONLY_SINGLE_FUNCTION_LITERAL
: NO_PARSE_RESTRICTION;
}
ScriptCompiler::ExternalSourceStream* source_stream() {
return source_stream_;
}
void set_source_stream(ScriptCompiler::ExternalSourceStream* source_stream) {
source_stream_ = source_stream;
}
ScriptCompiler::StreamedSource::Encoding source_stream_encoding() {
return source_stream_encoding_;
}
void set_source_stream_encoding(
ScriptCompiler::StreamedSource::Encoding source_stream_encoding) {
source_stream_encoding_ = source_stream_encoding;
}
v8::Extension* extension() { return extension_; }
void set_extension(v8::Extension* extension) { extension_ = extension; }
ScriptData** cached_data() { return cached_data_; }
void set_cached_data(ScriptData** cached_data) { cached_data_ = cached_data; }
ScriptCompiler::CompileOptions compile_options() { return compile_options_; }
void set_compile_options(ScriptCompiler::CompileOptions compile_options) {
compile_options_ = compile_options;
}
Scope* script_scope() { return script_scope_; }
void set_script_scope(Scope* script_scope) { script_scope_ = script_scope; }
AstValueFactory* ast_value_factory() { return ast_value_factory_; }
void set_ast_value_factory(AstValueFactory* ast_value_factory) {
ast_value_factory_ = ast_value_factory;
}
FunctionLiteral* function() { // TODO(titzer): temporary name adapter
return literal_;
}
FunctionLiteral* literal() { return literal_; }
void set_literal(FunctionLiteral* literal) { literal_ = literal; }
Scope* scope() { return scope_; }
void set_scope(Scope* scope) { scope_ = scope; }
UnicodeCache* unicode_cache() { return unicode_cache_; }
void set_unicode_cache(UnicodeCache* unicode_cache) {
unicode_cache_ = unicode_cache;
}
uintptr_t stack_limit() { return stack_limit_; }
void set_stack_limit(uintptr_t stack_limit) { stack_limit_ = stack_limit; }
uint32_t hash_seed() { return hash_seed_; }
void set_hash_seed(uint32_t hash_seed) { hash_seed_ = hash_seed; }
//--------------------------------------------------------------------------
// TODO(titzer): these should not be part of ParseInfo.
//--------------------------------------------------------------------------
Isolate* isolate() { return isolate_; }
Handle<JSFunction> closure() { return closure_; }
Handle<SharedFunctionInfo> shared_info() { return shared_; }
Handle<Script> script() { return script_; }
Handle<Context> context() { return context_; }
void clear_script() { script_ = Handle<Script>::null(); }
void set_isolate(Isolate* isolate) { isolate_ = isolate; }
void set_context(Handle<Context> context) { context_ = context; }
void set_script(Handle<Script> script) { script_ = script; }
//--------------------------------------------------------------------------
LanguageMode language_mode() {
return construct_language_mode(is_strict_mode(), is_strong_mode());
}
void set_language_mode(LanguageMode language_mode) {
STATIC_ASSERT(LANGUAGE_END == 3);
set_strict_mode(language_mode & STRICT_BIT);
set_strong_mode(language_mode & STRONG_BIT);
}
void ReopenHandlesInNewHandleScope() {
closure_ = Handle<JSFunction>(*closure_);
shared_ = Handle<SharedFunctionInfo>(*shared_);
script_ = Handle<Script>(*script_);
context_ = Handle<Context>(*context_);
}
private:
// Various configuration flags for parsing.
enum Flag {
// ---------- Input flags ---------------------------
kToplevel = 1 << 0,
kLazy = 1 << 1,
kEval = 1 << 2,
kGlobal = 1 << 3,
kStrictMode = 1 << 4,
kStrongMode = 1 << 5,
kNative = 1 << 6,
kParseRestriction = 1 << 7,
kModule = 1 << 8,
kAllowLazyParsing = 1 << 9,
// ---------- Output flags --------------------------
kAstValueFactoryOwned = 1 << 10
};
//------------- Inputs to parsing and scope analysis -----------------------
Zone* zone_;
unsigned flags_;
ScriptCompiler::ExternalSourceStream* source_stream_;
ScriptCompiler::StreamedSource::Encoding source_stream_encoding_;
v8::Extension* extension_;
ScriptCompiler::CompileOptions compile_options_;
Scope* script_scope_;
UnicodeCache* unicode_cache_;
uintptr_t stack_limit_;
uint32_t hash_seed_;
// TODO(titzer): Move handles and isolate out of ParseInfo.
Isolate* isolate_;
Handle<JSFunction> closure_;
Handle<SharedFunctionInfo> shared_;
Handle<Script> script_;
Handle<Context> context_;
//----------- Inputs+Outputs of parsing and scope analysis -----------------
ScriptData** cached_data_; // used if available, populated if requested.
AstValueFactory* ast_value_factory_; // used if available, otherwise new.
//----------- Outputs of parsing and scope analysis ------------------------
FunctionLiteral* literal_; // produced by full parser.
Scope* scope_; // produced by scope analysis.
void SetFlag(Flag f) { flags_ |= f; }
void SetFlag(Flag f, bool v) { flags_ = v ? flags_ | f : flags_ & ~f; }
bool GetFlag(Flag f) const { return (flags_ & f) != 0; }
void set_shared_info(Handle<SharedFunctionInfo> shared) { shared_ = shared; }
void set_closure(Handle<JSFunction> closure) { closure_ = closure; }
};
class FunctionEntry BASE_EMBEDDED {
public:
enum {
kStartPositionIndex,
kEndPositionIndex,
kLiteralCountIndex,
kPropertyCountIndex,
kLanguageModeIndex,
kUsesSuperPropertyIndex,
kSize
};
explicit FunctionEntry(Vector<unsigned> backing)
: backing_(backing) { }
FunctionEntry() : backing_() { }
int start_pos() { return backing_[kStartPositionIndex]; }
int end_pos() { return backing_[kEndPositionIndex]; }
int literal_count() { return backing_[kLiteralCountIndex]; }
int property_count() { return backing_[kPropertyCountIndex]; }
LanguageMode language_mode() {
DCHECK(is_valid_language_mode(backing_[kLanguageModeIndex]));
return static_cast<LanguageMode>(backing_[kLanguageModeIndex]);
}
bool uses_super_property() { return backing_[kUsesSuperPropertyIndex]; }
bool is_valid() { return !backing_.is_empty(); }
private:
Vector<unsigned> backing_;
};
// Wrapper around ScriptData to provide parser-specific functionality.
class ParseData {
public:
static ParseData* FromCachedData(ScriptData* cached_data) {
ParseData* pd = new ParseData(cached_data);
if (pd->IsSane()) return pd;
cached_data->Reject();
delete pd;
return NULL;
}
void Initialize();
FunctionEntry GetFunctionEntry(int start);
int FunctionCount();
bool HasError();
unsigned* Data() { // Writable data as unsigned int array.
return reinterpret_cast<unsigned*>(const_cast<byte*>(script_data_->data()));
}
void Reject() { script_data_->Reject(); }
bool rejected() const { return script_data_->rejected(); }
private:
explicit ParseData(ScriptData* script_data) : script_data_(script_data) {}
bool IsSane();
unsigned Magic();
unsigned Version();
int FunctionsSize();
int Length() const {
// Script data length is already checked to be a multiple of unsigned size.
return script_data_->length() / sizeof(unsigned);
}
ScriptData* script_data_;
int function_index_;
DISALLOW_COPY_AND_ASSIGN(ParseData);
};
// ----------------------------------------------------------------------------
// REGEXP PARSING
// A BufferedZoneList is an automatically growing list, just like (and backed
// by) a ZoneList, that is optimized for the case of adding and removing
// a single element. The last element added is stored outside the backing list,
// and if no more than one element is ever added, the ZoneList isn't even
// allocated.
// Elements must not be NULL pointers.
template <typename T, int initial_size>
class BufferedZoneList {
public:
BufferedZoneList() : list_(NULL), last_(NULL) {}
// Adds element at end of list. This element is buffered and can
// be read using last() or removed using RemoveLast until a new Add or until
// RemoveLast or GetList has been called.
void Add(T* value, Zone* zone) {
if (last_ != NULL) {
if (list_ == NULL) {
list_ = new(zone) ZoneList<T*>(initial_size, zone);
}
list_->Add(last_, zone);
}
last_ = value;
}
T* last() {
DCHECK(last_ != NULL);
return last_;
}
T* RemoveLast() {
DCHECK(last_ != NULL);
T* result = last_;
if ((list_ != NULL) && (list_->length() > 0))
last_ = list_->RemoveLast();
else
last_ = NULL;
return result;
}
T* Get(int i) {
DCHECK((0 <= i) && (i < length()));
if (list_ == NULL) {
DCHECK_EQ(0, i);
return last_;
} else {
if (i == list_->length()) {
DCHECK(last_ != NULL);
return last_;
} else {
return list_->at(i);
}
}
}
void Clear() {
list_ = NULL;
last_ = NULL;
}
int length() {
int length = (list_ == NULL) ? 0 : list_->length();
return length + ((last_ == NULL) ? 0 : 1);
}
ZoneList<T*>* GetList(Zone* zone) {
if (list_ == NULL) {
list_ = new(zone) ZoneList<T*>(initial_size, zone);
}
if (last_ != NULL) {
list_->Add(last_, zone);
last_ = NULL;
}
return list_;
}
private:
ZoneList<T*>* list_;
T* last_;
};
// Accumulates RegExp atoms and assertions into lists of terms and alternatives.
class RegExpBuilder: public ZoneObject {
public:
explicit RegExpBuilder(Zone* zone);
void AddCharacter(uc16 character);
// "Adds" an empty expression. Does nothing except consume a
// following quantifier
void AddEmpty();
void AddAtom(RegExpTree* tree);
void AddAssertion(RegExpTree* tree);
void NewAlternative(); // '|'
void AddQuantifierToAtom(
int min, int max, RegExpQuantifier::QuantifierType type);
RegExpTree* ToRegExp();
private:
void FlushCharacters();
void FlushText();
void FlushTerms();
Zone* zone() const { return zone_; }
Zone* zone_;
bool pending_empty_;
ZoneList<uc16>* characters_;
BufferedZoneList<RegExpTree, 2> terms_;
BufferedZoneList<RegExpTree, 2> text_;
BufferedZoneList<RegExpTree, 2> alternatives_;
#ifdef DEBUG
enum {ADD_NONE, ADD_CHAR, ADD_TERM, ADD_ASSERT, ADD_ATOM} last_added_;
#define LAST(x) last_added_ = x;
#else
#define LAST(x)
#endif
};
class RegExpParser BASE_EMBEDDED {
public:
RegExpParser(FlatStringReader* in, Handle<String>* error, bool multiline_mode,
bool unicode, Isolate* isolate, Zone* zone);
static bool ParseRegExp(Isolate* isolate, Zone* zone, FlatStringReader* input,
bool multiline, bool unicode,
RegExpCompileData* result);
RegExpTree* ParsePattern();
RegExpTree* ParseDisjunction();
RegExpTree* ParseGroup();
RegExpTree* ParseCharacterClass();
// Parses a {...,...} quantifier and stores the range in the given
// out parameters.
bool ParseIntervalQuantifier(int* min_out, int* max_out);
// Parses and returns a single escaped character. The character
// must not be 'b' or 'B' since they are usually handle specially.
uc32 ParseClassCharacterEscape();
// Checks whether the following is a length-digit hexadecimal number,
// and sets the value if it is.
bool ParseHexEscape(int length, uc32* value);
bool ParseUnicodeEscape(uc32* value);
bool ParseUnlimitedLengthHexNumber(int max_value, uc32* value);
uc32 ParseOctalLiteral();
// Tries to parse the input as a back reference. If successful it
// stores the result in the output parameter and returns true. If
// it fails it will push back the characters read so the same characters
// can be reparsed.
bool ParseBackReferenceIndex(int* index_out);
CharacterRange ParseClassAtom(uc16* char_class);
RegExpTree* ReportError(Vector<const char> message);
void Advance();
void Advance(int dist);
void Reset(int pos);
// Reports whether the pattern might be used as a literal search string.
// Only use if the result of the parse is a single atom node.
bool simple();
bool contains_anchor() { return contains_anchor_; }
void set_contains_anchor() { contains_anchor_ = true; }
int captures_started() { return captures_ == NULL ? 0 : captures_->length(); }
int position() { return next_pos_ - 1; }
bool failed() { return failed_; }
static bool IsSyntaxCharacter(uc32 c);
static const int kMaxCaptures = 1 << 16;
static const uc32 kEndMarker = (1 << 21);
private:
enum SubexpressionType {
INITIAL,
CAPTURE, // All positive values represent captures.
POSITIVE_LOOKAHEAD,
NEGATIVE_LOOKAHEAD,
GROUPING
};
class RegExpParserState : public ZoneObject {
public:
RegExpParserState(RegExpParserState* previous_state,
SubexpressionType group_type,
int disjunction_capture_index,
Zone* zone)
: previous_state_(previous_state),
builder_(new(zone) RegExpBuilder(zone)),
group_type_(group_type),
disjunction_capture_index_(disjunction_capture_index) {}
// Parser state of containing expression, if any.
RegExpParserState* previous_state() { return previous_state_; }
bool IsSubexpression() { return previous_state_ != NULL; }
// RegExpBuilder building this regexp's AST.
RegExpBuilder* builder() { return builder_; }
// Type of regexp being parsed (parenthesized group or entire regexp).
SubexpressionType group_type() { return group_type_; }
// Index in captures array of first capture in this sub-expression, if any.
// Also the capture index of this sub-expression itself, if group_type
// is CAPTURE.
int capture_index() { return disjunction_capture_index_; }
private:
// Linked list implementation of stack of states.
RegExpParserState* previous_state_;
// Builder for the stored disjunction.
RegExpBuilder* builder_;
// Stored disjunction type (capture, look-ahead or grouping), if any.
SubexpressionType group_type_;
// Stored disjunction's capture index (if any).
int disjunction_capture_index_;
};
Isolate* isolate() { return isolate_; }
Zone* zone() const { return zone_; }
uc32 current() { return current_; }
bool has_more() { return has_more_; }
bool has_next() { return next_pos_ < in()->length(); }
uc32 Next();
FlatStringReader* in() { return in_; }
void ScanForCaptures();
Isolate* isolate_;
Zone* zone_;
Handle<String>* error_;
ZoneList<RegExpCapture*>* captures_;
FlatStringReader* in_;
uc32 current_;
int next_pos_;
// The capture count is only valid after we have scanned for captures.
int capture_count_;
bool has_more_;
bool multiline_;
bool unicode_;
bool simple_;
bool contains_anchor_;
bool is_scanned_for_captures_;
bool failed_;
};
// ----------------------------------------------------------------------------
// JAVASCRIPT PARSING
class Parser;
class SingletonLogger;
class ParserTraits {
public:
struct Type {
// TODO(marja): To be removed. The Traits object should contain all the data
// it needs.
typedef v8::internal::Parser* Parser;
typedef Variable GeneratorVariable;
typedef v8::internal::AstProperties AstProperties;
// Return types for traversing functions.
typedef const AstRawString* Identifier;
typedef v8::internal::Expression* Expression;
typedef Yield* YieldExpression;
typedef v8::internal::FunctionLiteral* FunctionLiteral;
typedef v8::internal::ClassLiteral* ClassLiteral;
typedef v8::internal::Literal* Literal;
typedef ObjectLiteral::Property* ObjectLiteralProperty;
typedef ZoneList<v8::internal::Expression*>* ExpressionList;
typedef ZoneList<ObjectLiteral::Property*>* PropertyList;
typedef const v8::internal::AstRawString* FormalParameter;
typedef Scope FormalParameterScope;
typedef ZoneList<v8::internal::Statement*>* StatementList;
// For constructing objects returned by the traversing functions.
typedef AstNodeFactory Factory;
};
explicit ParserTraits(Parser* parser) : parser_(parser) {}
// Helper functions for recursive descent.
bool IsEval(const AstRawString* identifier) const;
bool IsArguments(const AstRawString* identifier) const;
bool IsEvalOrArguments(const AstRawString* identifier) const;
bool IsUndefined(const AstRawString* identifier) const;
V8_INLINE bool IsFutureStrictReserved(const AstRawString* identifier) const;
// Returns true if the expression is of type "this.foo".
static bool IsThisProperty(Expression* expression);
static bool IsIdentifier(Expression* expression);
bool IsPrototype(const AstRawString* identifier) const;
bool IsConstructor(const AstRawString* identifier) const;
static const AstRawString* AsIdentifier(Expression* expression) {
DCHECK(IsIdentifier(expression));
return expression->AsVariableProxy()->raw_name();
}
static bool IsBoilerplateProperty(ObjectLiteral::Property* property) {
return ObjectLiteral::IsBoilerplateProperty(property);
}
static bool IsArrayIndex(const AstRawString* string, uint32_t* index) {
return string->AsArrayIndex(index);
}
static Expression* GetPropertyValue(ObjectLiteral::Property* property) {
return property->value();
}
// Functions for encapsulating the differences between parsing and preparsing;
// operations interleaved with the recursive descent.
static void PushLiteralName(FuncNameInferrer* fni, const AstRawString* id) {
fni->PushLiteralName(id);
}
void PushPropertyName(FuncNameInferrer* fni, Expression* expression);
static void InferFunctionName(FuncNameInferrer* fni,
FunctionLiteral* func_to_infer) {
fni->AddFunction(func_to_infer);
}
static void CheckFunctionLiteralInsideTopLevelObjectLiteral(
Scope* scope, ObjectLiteralProperty* property, bool* has_function) {
Expression* value = property->value();
if (scope->DeclarationScope()->is_script_scope() &&
value->AsFunctionLiteral() != NULL) {
*has_function = true;
value->AsFunctionLiteral()->set_pretenure();
}
}
// If we assign a function literal to a property we pretenure the
// literal so it can be added as a constant function property.
static void CheckAssigningFunctionLiteralToProperty(Expression* left,
Expression* right);
// Keep track of eval() calls since they disable all local variable
// optimizations. This checks if expression is an eval call, and if yes,
// forwards the information to scope.
void CheckPossibleEvalCall(Expression* expression, Scope* scope);
// Determine if the expression is a variable proxy and mark it as being used
// in an assignment or with a increment/decrement operator.
static Expression* MarkExpressionAsAssigned(Expression* expression);
// Returns true if we have a binary expression between two numeric
// literals. In that case, *x will be changed to an expression which is the
// computed value.
bool ShortcutNumericLiteralBinaryExpression(Expression** x, Expression* y,
Token::Value op, int pos,
AstNodeFactory* factory);
// Rewrites the following types of unary expressions:
// not <literal> -> true / false
// + <numeric literal> -> <numeric literal>
// - <numeric literal> -> <numeric literal with value negated>
// ! <literal> -> true / false
// The following rewriting rules enable the collection of type feedback
// without any special stub and the multiplication is removed later in
// Crankshaft's canonicalization pass.
// + foo -> foo * 1
// - foo -> foo * (-1)
// ~ foo -> foo ^(~0)
Expression* BuildUnaryExpression(Expression* expression, Token::Value op,
int pos, AstNodeFactory* factory);
// Generate AST node that throws a ReferenceError with the given type.
Expression* NewThrowReferenceError(MessageTemplate::Template message,
int pos);
// Generate AST node that throws a SyntaxError with the given
// type. The first argument may be null (in the handle sense) in
// which case no arguments are passed to the constructor.
Expression* NewThrowSyntaxError(MessageTemplate::Template message,
const AstRawString* arg, int pos);
// Generate AST node that throws a TypeError with the given
// type. Both arguments must be non-null (in the handle sense).
Expression* NewThrowTypeError(MessageTemplate::Template message,
const AstRawString* arg, int pos);
// Generic AST generator for throwing errors from compiled code.
Expression* NewThrowError(const AstRawString* constructor,
MessageTemplate::Template message,
const AstRawString* arg, int pos);
// Reporting errors.
void ReportMessageAt(Scanner::Location source_location,
MessageTemplate::Template message,
const char* arg = NULL,
ParseErrorType error_type = kSyntaxError);
void ReportMessage(MessageTemplate::Template message, const char* arg = NULL,
ParseErrorType error_type = kSyntaxError);
void ReportMessage(MessageTemplate::Template message, const AstRawString* arg,
ParseErrorType error_type = kSyntaxError);
void ReportMessageAt(Scanner::Location source_location,
MessageTemplate::Template message,
const AstRawString* arg,
ParseErrorType error_type = kSyntaxError);
// "null" return type creators.
static const AstRawString* EmptyIdentifier() {
return NULL;
}
static Expression* EmptyExpression() {
return NULL;
}
static Literal* EmptyLiteral() {
return NULL;
}
static ObjectLiteralProperty* EmptyObjectLiteralProperty() { return NULL; }
static FunctionLiteral* EmptyFunctionLiteral() { return NULL; }
// Used in error return values.
static ZoneList<Expression*>* NullExpressionList() {
return NULL;
}
static const AstRawString* EmptyFormalParameter() { return NULL; }
// Non-NULL empty string.
V8_INLINE const AstRawString* EmptyIdentifierString();
// Odd-ball literal creators.
Literal* GetLiteralTheHole(int position, AstNodeFactory* factory);
// Producing data during the recursive descent.
const AstRawString* GetSymbol(Scanner* scanner);
const AstRawString* GetNextSymbol(Scanner* scanner);
const AstRawString* GetNumberAsSymbol(Scanner* scanner);
Expression* ThisExpression(Scope* scope, AstNodeFactory* factory,
int pos = RelocInfo::kNoPosition);
Expression* SuperReference(Scope* scope, AstNodeFactory* factory, int pos);
Expression* DefaultConstructor(bool call_super, Scope* scope, int pos,
int end_pos);
Literal* ExpressionFromLiteral(Token::Value token, int pos, Scanner* scanner,
AstNodeFactory* factory);
Expression* ExpressionFromIdentifier(const AstRawString* name,
int start_position, int end_position,
Scope* scope, AstNodeFactory* factory);
Expression* ExpressionFromString(int pos, Scanner* scanner,
AstNodeFactory* factory);
Expression* GetIterator(Expression* iterable, AstNodeFactory* factory);
ZoneList<v8::internal::Expression*>* NewExpressionList(int size, Zone* zone) {
return new(zone) ZoneList<v8::internal::Expression*>(size, zone);
}
ZoneList<ObjectLiteral::Property*>* NewPropertyList(int size, Zone* zone) {
return new(zone) ZoneList<ObjectLiteral::Property*>(size, zone);
}
ZoneList<v8::internal::Statement*>* NewStatementList(int size, Zone* zone) {
return new(zone) ZoneList<v8::internal::Statement*>(size, zone);
}
V8_INLINE Scope* NewScope(Scope* parent_scope, ScopeType scope_type,
FunctionKind kind = kNormalFunction);
bool DeclareFormalParameter(Scope* scope, const AstRawString* name,
bool is_rest, int pos) {
bool is_duplicate = false;
Variable* var =
scope->DeclareParameter(name, VAR, is_rest, &is_duplicate, pos);
if (is_sloppy(scope->language_mode())) {
// TODO(sigurds) Mark every parameter as maybe assigned. This is a
// conservative approximation necessary to account for parameters
// that are assigned via the arguments array.
var->set_maybe_assigned();
}
return is_duplicate;
}
void DeclareArrowFunctionParameters(Scope* scope, Expression* expr,
const Scanner::Location& params_loc,
Scanner::Location* duplicate_loc,
bool* ok);
void ParseArrowFunctionFormalParameters(Scope* scope, Expression* params,
const Scanner::Location& params_loc,
bool* is_rest,
Scanner::Location* duplicate_loc,
bool* ok);
// Temporary glue; these functions will move to ParserBase.
Expression* ParseV8Intrinsic(bool* ok);
FunctionLiteral* ParseFunctionLiteral(
const AstRawString* name, Scanner::Location function_name_location,
bool name_is_strict_reserved, FunctionKind kind,
int function_token_position, FunctionLiteral::FunctionType type,
FunctionLiteral::ArityRestriction arity_restriction, bool* ok);
V8_INLINE void SkipLazyFunctionBody(
int* materialized_literal_count, int* expected_property_count, bool* ok,
Scanner::BookmarkScope* bookmark = nullptr);
V8_INLINE ZoneList<Statement*>* ParseEagerFunctionBody(
const AstRawString* name, int pos, Variable* fvar,
Token::Value fvar_init_op, FunctionKind kind, bool* ok);
ClassLiteral* ParseClassLiteral(const AstRawString* name,
Scanner::Location class_name_location,
bool name_is_strict_reserved, int pos,
bool* ok);
V8_INLINE void CheckConflictingVarDeclarations(v8::internal::Scope* scope,
bool* ok);
class TemplateLiteral : public ZoneObject {
public:
TemplateLiteral(Zone* zone, int pos)
: cooked_(8, zone), raw_(8, zone), expressions_(8, zone), pos_(pos) {}
const ZoneList<Expression*>* cooked() const { return &cooked_; }
const ZoneList<Expression*>* raw() const { return &raw_; }
const ZoneList<Expression*>* expressions() const { return &expressions_; }
int position() const { return pos_; }
void AddTemplateSpan(Literal* cooked, Literal* raw, int end, Zone* zone) {
DCHECK_NOT_NULL(cooked);
DCHECK_NOT_NULL(raw);
cooked_.Add(cooked, zone);
raw_.Add(raw, zone);
}
void AddExpression(Expression* expression, Zone* zone) {
DCHECK_NOT_NULL(expression);
expressions_.Add(expression, zone);
}
private:
ZoneList<Expression*> cooked_;
ZoneList<Expression*> raw_;
ZoneList<Expression*> expressions_;
int pos_;
};
typedef TemplateLiteral* TemplateLiteralState;
V8_INLINE TemplateLiteralState OpenTemplateLiteral(int pos);
V8_INLINE void AddTemplateSpan(TemplateLiteralState* state, bool tail);
V8_INLINE void AddTemplateExpression(TemplateLiteralState* state,
Expression* expression);
V8_INLINE Expression* CloseTemplateLiteral(TemplateLiteralState* state,
int start, Expression* tag);
V8_INLINE Expression* NoTemplateTag() { return NULL; }
V8_INLINE static bool IsTaggedTemplate(const Expression* tag) {
return tag != NULL;
}
V8_INLINE ZoneList<v8::internal::Expression*>* PrepareSpreadArguments(
ZoneList<v8::internal::Expression*>* list);
V8_INLINE void MaterializeUnspreadArgumentsLiterals(int count) {}
V8_INLINE Expression* SpreadCall(Expression* function,
ZoneList<v8::internal::Expression*>* args,
int pos);
V8_INLINE Expression* SpreadCallNew(Expression* function,
ZoneList<v8::internal::Expression*>* args,
int pos);
private:
Parser* parser_;
};
class Parser : public ParserBase<ParserTraits> {
public:
explicit Parser(ParseInfo* info);
~Parser() {
delete reusable_preparser_;
reusable_preparser_ = NULL;
delete cached_parse_data_;
cached_parse_data_ = NULL;
}
// Parses the source code represented by the compilation info and sets its
// function literal. Returns false (and deallocates any allocated AST
// nodes) if parsing failed.
static bool ParseStatic(ParseInfo* info);
bool Parse(ParseInfo* info);
void ParseOnBackground(ParseInfo* info);
// Handle errors detected during parsing, move statistics to Isolate,
// internalize strings (move them to the heap).
void Internalize(Isolate* isolate, Handle<Script> script, bool error);
void HandleSourceURLComments(Isolate* isolate, Handle<Script> script);
private:
friend class ParserTraits;
// Limit the allowed number of local variables in a function. The hard limit
// is that offsets computed by FullCodeGenerator::StackOperand and similar
// functions are ints, and they should not overflow. In addition, accessing
// local variables creates user-controlled constants in the generated code,
// and we don't want too much user-controlled memory inside the code (this was
// the reason why this limit was introduced in the first place; see
// https://codereview.chromium.org/7003030/ ).
static const int kMaxNumFunctionLocals = 4194303; // 2^22-1
// Returns NULL if parsing failed.
FunctionLiteral* ParseProgram(Isolate* isolate, ParseInfo* info);
FunctionLiteral* ParseLazy(Isolate* isolate, ParseInfo* info);
FunctionLiteral* ParseLazy(Isolate* isolate, ParseInfo* info,
Utf16CharacterStream* source);
// Called by ParseProgram after setting up the scanner.
FunctionLiteral* DoParseProgram(ParseInfo* info);
void SetCachedData(ParseInfo* info);
bool inside_with() const { return scope_->inside_with(); }
ScriptCompiler::CompileOptions compile_options() const {
return compile_options_;
}
bool consume_cached_parse_data() const {
return compile_options_ == ScriptCompiler::kConsumeParserCache &&
cached_parse_data_ != NULL;
}
bool produce_cached_parse_data() const {
return compile_options_ == ScriptCompiler::kProduceParserCache;
}
Scope* DeclarationScope(VariableMode mode) {
return IsLexicalVariableMode(mode)
? scope_ : scope_->DeclarationScope();
}
// All ParseXXX functions take as the last argument an *ok parameter
// which is set to false if parsing failed; it is unchanged otherwise.
// By making the 'exception handling' explicit, we are forced to check
// for failure at the call sites.
void* ParseStatementList(ZoneList<Statement*>* body, int end_token, bool* ok);
Statement* ParseStatementListItem(bool* ok);
void* ParseModuleItemList(ZoneList<Statement*>* body, bool* ok);
Statement* ParseModuleItem(bool* ok);
const AstRawString* ParseModuleSpecifier(bool* ok);
Statement* ParseImportDeclaration(bool* ok);
Statement* ParseExportDeclaration(bool* ok);
Statement* ParseExportDefault(bool* ok);
void* ParseExportClause(ZoneList<const AstRawString*>* export_names,
ZoneList<Scanner::Location>* export_locations,
ZoneList<const AstRawString*>* local_names,
Scanner::Location* reserved_loc, bool* ok);
ZoneList<ImportDeclaration*>* ParseNamedImports(int pos, bool* ok);
Statement* ParseStatement(ZoneList<const AstRawString*>* labels, bool* ok);
Statement* ParseSubStatement(ZoneList<const AstRawString*>* labels, bool* ok);
Statement* ParseStatementAsUnlabelled(ZoneList<const AstRawString*>* labels,
bool* ok);
Statement* ParseFunctionDeclaration(ZoneList<const AstRawString*>* names,
bool* ok);
Statement* ParseClassDeclaration(ZoneList<const AstRawString*>* names,
bool* ok);
Statement* ParseNativeDeclaration(bool* ok);
Block* ParseBlock(ZoneList<const AstRawString*>* labels, bool* ok);
Block* ParseVariableStatement(VariableDeclarationContext var_context,
ZoneList<const AstRawString*>* names,
bool* ok);
struct DeclarationDescriptor {
Parser* parser;
Scope* declaration_scope;
Scope* scope;
VariableMode mode;
bool is_const;
bool needs_init;
int declaration_pos;
int initialization_pos;
Token::Value init_op;
};
struct DeclarationParsingResult {
struct Declaration {
Declaration(Expression* pattern, int initializer_position,
Expression* initializer)
: pattern(pattern),
initializer_position(initializer_position),
initializer(initializer) {}
Expression* pattern;
int initializer_position;
Expression* initializer;
};
DeclarationParsingResult()
: declarations(4),
first_initializer_loc(Scanner::Location::invalid()),
bindings_loc(Scanner::Location::invalid()) {}
Block* BuildInitializationBlock(ZoneList<const AstRawString*>* names,
bool* ok);
const AstRawString* SingleName() const;
DeclarationDescriptor descriptor;
List<Declaration> declarations;
Scanner::Location first_initializer_loc;
Scanner::Location bindings_loc;
};
class PatternRewriter : private AstVisitor {
public:
static void DeclareAndInitializeVariables(
Block* block, const DeclarationDescriptor* declaration_descriptor,
const DeclarationParsingResult::Declaration* declaration,
ZoneList<const AstRawString*>* names, bool* ok);
void set_initializer_position(int pos) { initializer_position_ = pos; }
private:
PatternRewriter() {}
#define DECLARE_VISIT(type) void Visit##type(v8::internal::type* node) override;
// Visiting functions for AST nodes make this an AstVisitor.
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
virtual void Visit(AstNode* node) override;
void RecurseIntoSubpattern(AstNode* pattern, Expression* value) {
Expression* old_value = current_value_;
current_value_ = value;
pattern->Accept(this);
current_value_ = old_value;
}
Variable* CreateTempVar(Expression* value = nullptr);
AstNodeFactory* factory() const { return descriptor_->parser->factory(); }
AstValueFactory* ast_value_factory() const {
return descriptor_->parser->ast_value_factory();
}
bool inside_with() const { return descriptor_->parser->inside_with(); }
Zone* zone() const { return descriptor_->parser->zone(); }
Expression* pattern_;
int initializer_position_;
Block* block_;
const DeclarationDescriptor* descriptor_;
ZoneList<const AstRawString*>* names_;
Expression* current_value_;
bool* ok_;
};
void ParseVariableDeclarations(VariableDeclarationContext var_context,
DeclarationParsingResult* parsing_result,
bool* ok);
Statement* ParseExpressionOrLabelledStatement(
ZoneList<const AstRawString*>* labels, bool* ok);
IfStatement* ParseIfStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
Statement* ParseContinueStatement(bool* ok);
Statement* ParseBreakStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
Statement* ParseReturnStatement(bool* ok);
Statement* ParseWithStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
CaseClause* ParseCaseClause(bool* default_seen_ptr, bool* ok);
SwitchStatement* ParseSwitchStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
DoWhileStatement* ParseDoWhileStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
WhileStatement* ParseWhileStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
Statement* ParseForStatement(ZoneList<const AstRawString*>* labels, bool* ok);
Statement* ParseThrowStatement(bool* ok);
Expression* MakeCatchContext(Handle<String> id, VariableProxy* value);
TryStatement* ParseTryStatement(bool* ok);
DebuggerStatement* ParseDebuggerStatement(bool* ok);
// Support for hamony block scoped bindings.
Block* ParseScopedBlock(ZoneList<const AstRawString*>* labels, bool* ok);
// !%_IsSpecObject(result = iterator.next()) &&
// %ThrowIteratorResultNotAnObject(result)
Expression* BuildIteratorNextResult(Expression* iterator, Variable* result,
int pos);
// Initialize the components of a for-in / for-of statement.
void InitializeForEachStatement(ForEachStatement* stmt,
Expression* each,
Expression* subject,
Statement* body);
Statement* DesugarLexicalBindingsInForStatement(
Scope* inner_scope, bool is_const, ZoneList<const AstRawString*>* names,
ForStatement* loop, Statement* init, Expression* cond, Statement* next,
Statement* body, bool* ok);
ZoneList<Statement*>* DesugarInitializeParameters(
Scope* scope, bool has_parameter_expressions,
ZoneList<Expression*>* initializers);
FunctionLiteral* ParseFunctionLiteral(
const AstRawString* name, Scanner::Location function_name_location,
bool name_is_strict_reserved, FunctionKind kind,
int function_token_position, FunctionLiteral::FunctionType type,
FunctionLiteral::ArityRestriction arity_restriction, bool* ok);
ClassLiteral* ParseClassLiteral(const AstRawString* name,
Scanner::Location class_name_location,
bool name_is_strict_reserved, int pos,
bool* ok);
// Magical syntax support.
Expression* ParseV8Intrinsic(bool* ok);
// Get odd-ball literals.
Literal* GetLiteralUndefined(int position);
// For harmony block scoping mode: Check if the scope has conflicting var/let
// declarations from different scopes. It covers for example
//
// function f() { { { var x; } let x; } }
// function g() { { var x; let x; } }
//
// The var declarations are hoisted to the function scope, but originate from
// a scope where the name has also been let bound or the var declaration is
// hoisted over such a scope.
void CheckConflictingVarDeclarations(Scope* scope, bool* ok);
// Parser support
VariableProxy* NewUnresolved(const AstRawString* name, VariableMode mode);
Variable* Declare(Declaration* declaration, bool resolve, bool* ok);
bool TargetStackContainsLabel(const AstRawString* label);
BreakableStatement* LookupBreakTarget(const AstRawString* label, bool* ok);
IterationStatement* LookupContinueTarget(const AstRawString* label, bool* ok);
void AddAssertIsConstruct(ZoneList<Statement*>* body, int pos);
Statement* BuildAssertIsCoercible(Variable* var);
// Factory methods.
FunctionLiteral* DefaultConstructor(bool call_super, Scope* scope, int pos,
int end_pos);
// Skip over a lazy function, either using cached data if we have it, or
// by parsing the function with PreParser. Consumes the ending }.
//
// If bookmark is set, the (pre-)parser may decide to abort skipping
// in order to force the function to be eagerly parsed, after all.
// In this case, it'll reset the scanner using the bookmark.
void SkipLazyFunctionBody(int* materialized_literal_count,
int* expected_property_count, bool* ok,
Scanner::BookmarkScope* bookmark = nullptr);
PreParser::PreParseResult ParseLazyFunctionBodyWithPreParser(
SingletonLogger* logger, Scanner::BookmarkScope* bookmark = nullptr);
// Consumes the ending }.
ZoneList<Statement*>* ParseEagerFunctionBody(
const AstRawString* function_name, int pos, Variable* fvar,
Token::Value fvar_init_op, FunctionKind kind, bool* ok);
void ThrowPendingError(Isolate* isolate, Handle<Script> script);
TemplateLiteralState OpenTemplateLiteral(int pos);
void AddTemplateSpan(TemplateLiteralState* state, bool tail);
void AddTemplateExpression(TemplateLiteralState* state,
Expression* expression);
Expression* CloseTemplateLiteral(TemplateLiteralState* state, int start,
Expression* tag);
uint32_t ComputeTemplateLiteralHash(const TemplateLiteral* lit);
ZoneList<v8::internal::Expression*>* PrepareSpreadArguments(
ZoneList<v8::internal::Expression*>* list);
Expression* SpreadCall(Expression* function,
ZoneList<v8::internal::Expression*>* args, int pos);
Expression* SpreadCallNew(Expression* function,
ZoneList<v8::internal::Expression*>* args, int pos);
Scanner scanner_;
PreParser* reusable_preparser_;
Scope* original_scope_; // for ES5 function declarations in sloppy eval
Target* target_stack_; // for break, continue statements
ScriptCompiler::CompileOptions compile_options_;
ParseData* cached_parse_data_;
PendingCompilationErrorHandler pending_error_handler_;
// Other information which will be stored in Parser and moved to Isolate after
// parsing.
int use_counts_[v8::Isolate::kUseCounterFeatureCount];
int total_preparse_skipped_;
HistogramTimer* pre_parse_timer_;
bool parsing_on_main_thread_;
};
bool ParserTraits::IsFutureStrictReserved(
const AstRawString* identifier) const {
return parser_->scanner()->IdentifierIsFutureStrictReserved(identifier);
}
Scope* ParserTraits::NewScope(Scope* parent_scope, ScopeType scope_type,
FunctionKind kind) {
return parser_->NewScope(parent_scope, scope_type, kind);
}
const AstRawString* ParserTraits::EmptyIdentifierString() {
return parser_->ast_value_factory()->empty_string();
}
void ParserTraits::SkipLazyFunctionBody(int* materialized_literal_count,
int* expected_property_count, bool* ok,
Scanner::BookmarkScope* bookmark) {
return parser_->SkipLazyFunctionBody(materialized_literal_count,
expected_property_count, ok, bookmark);
}
ZoneList<Statement*>* ParserTraits::ParseEagerFunctionBody(
const AstRawString* name, int pos, Variable* fvar,
Token::Value fvar_init_op, FunctionKind kind, bool* ok) {
return parser_->ParseEagerFunctionBody(name, pos, fvar, fvar_init_op, kind,
ok);
}
void ParserTraits::CheckConflictingVarDeclarations(v8::internal::Scope* scope,
bool* ok) {
parser_->CheckConflictingVarDeclarations(scope, ok);
}
// Support for handling complex values (array and object literals) that
// can be fully handled at compile time.
class CompileTimeValue: public AllStatic {
public:
enum LiteralType {
OBJECT_LITERAL_FAST_ELEMENTS,
OBJECT_LITERAL_SLOW_ELEMENTS,
ARRAY_LITERAL
};
static bool IsCompileTimeValue(Expression* expression);
// Get the value as a compile time value.
static Handle<FixedArray> GetValue(Isolate* isolate, Expression* expression);
// Get the type of a compile time value returned by GetValue().
static LiteralType GetLiteralType(Handle<FixedArray> value);
// Get the elements array of a compile time value returned by GetValue().
static Handle<FixedArray> GetElements(Handle<FixedArray> value);
private:
static const int kLiteralTypeSlot = 0;
static const int kElementsSlot = 1;
DISALLOW_IMPLICIT_CONSTRUCTORS(CompileTimeValue);
};
ParserTraits::TemplateLiteralState ParserTraits::OpenTemplateLiteral(int pos) {
return parser_->OpenTemplateLiteral(pos);
}
void ParserTraits::AddTemplateSpan(TemplateLiteralState* state, bool tail) {
parser_->AddTemplateSpan(state, tail);
}
void ParserTraits::AddTemplateExpression(TemplateLiteralState* state,
Expression* expression) {
parser_->AddTemplateExpression(state, expression);
}
Expression* ParserTraits::CloseTemplateLiteral(TemplateLiteralState* state,
int start, Expression* tag) {
return parser_->CloseTemplateLiteral(state, start, tag);
}
ZoneList<v8::internal::Expression*>* ParserTraits::PrepareSpreadArguments(
ZoneList<v8::internal::Expression*>* list) {
return parser_->PrepareSpreadArguments(list);
}
Expression* ParserTraits::SpreadCall(Expression* function,
ZoneList<v8::internal::Expression*>* args,
int pos) {
return parser_->SpreadCall(function, args, pos);
}
Expression* ParserTraits::SpreadCallNew(
Expression* function, ZoneList<v8::internal::Expression*>* args, int pos) {
return parser_->SpreadCallNew(function, args, pos);
}
} } // namespace v8::internal
#endif // V8_PARSER_H_