blob: 03dfd73a73a76f1111ad8988901f1a77b397f76c [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
namespace v8 {
namespace internal {
namespace compiler {
enum ImmediateMode {
kArithmeticImm, // 12 bit unsigned immediate shifted left 0 or 12 bits
kShift32Imm, // 0 - 31
kShift64Imm, // 0 - 63
kLogical32Imm,
kLogical64Imm,
kLoadStoreImm8, // signed 8 bit or 12 bit unsigned scaled by access size
kLoadStoreImm16,
kLoadStoreImm32,
kLoadStoreImm64,
kNoImmediate
};
// Adds Arm64-specific methods for generating operands.
class Arm64OperandGenerator final : public OperandGenerator {
public:
explicit Arm64OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand UseOperand(Node* node, ImmediateMode mode) {
if (CanBeImmediate(node, mode)) {
return UseImmediate(node);
}
return UseRegister(node);
}
// Use the provided node if it has the required value, or create a
// TempImmediate otherwise.
InstructionOperand UseImmediateOrTemp(Node* node, int32_t value) {
if (GetIntegerConstantValue(node) == value) {
return UseImmediate(node);
}
return TempImmediate(value);
}
bool IsIntegerConstant(Node* node) {
return (node->opcode() == IrOpcode::kInt32Constant) ||
(node->opcode() == IrOpcode::kInt64Constant);
}
int64_t GetIntegerConstantValue(Node* node) {
if (node->opcode() == IrOpcode::kInt32Constant) {
return OpParameter<int32_t>(node);
}
DCHECK(node->opcode() == IrOpcode::kInt64Constant);
return OpParameter<int64_t>(node);
}
bool CanBeImmediate(Node* node, ImmediateMode mode) {
return IsIntegerConstant(node) &&
CanBeImmediate(GetIntegerConstantValue(node), mode);
}
bool CanBeImmediate(int64_t value, ImmediateMode mode) {
unsigned ignored;
switch (mode) {
case kLogical32Imm:
// TODO(dcarney): some unencodable values can be handled by
// switching instructions.
return Assembler::IsImmLogical(static_cast<uint64_t>(value), 32,
&ignored, &ignored, &ignored);
case kLogical64Imm:
return Assembler::IsImmLogical(static_cast<uint64_t>(value), 64,
&ignored, &ignored, &ignored);
case kArithmeticImm:
return Assembler::IsImmAddSub(value);
case kLoadStoreImm8:
return IsLoadStoreImmediate(value, LSByte);
case kLoadStoreImm16:
return IsLoadStoreImmediate(value, LSHalfword);
case kLoadStoreImm32:
return IsLoadStoreImmediate(value, LSWord);
case kLoadStoreImm64:
return IsLoadStoreImmediate(value, LSDoubleWord);
case kNoImmediate:
return false;
case kShift32Imm: // Fall through.
case kShift64Imm:
// Shift operations only observe the bottom 5 or 6 bits of the value.
// All possible shifts can be encoded by discarding bits which have no
// effect.
return true;
}
return false;
}
private:
bool IsLoadStoreImmediate(int64_t value, LSDataSize size) {
return Assembler::IsImmLSScaled(value, size) ||
Assembler::IsImmLSUnscaled(value);
}
};
namespace {
void VisitRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, Node* node,
ImmediateMode operand_mode) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseOperand(node->InputAt(1), operand_mode));
}
bool TryMatchAnyShift(InstructionSelector* selector, Node* node,
Node* input_node, InstructionCode* opcode, bool try_ror) {
Arm64OperandGenerator g(selector);
if (!selector->CanCover(node, input_node)) return false;
if (input_node->InputCount() != 2) return false;
if (!g.IsIntegerConstant(input_node->InputAt(1))) return false;
switch (input_node->opcode()) {
case IrOpcode::kWord32Shl:
case IrOpcode::kWord64Shl:
*opcode |= AddressingModeField::encode(kMode_Operand2_R_LSL_I);
return true;
case IrOpcode::kWord32Shr:
case IrOpcode::kWord64Shr:
*opcode |= AddressingModeField::encode(kMode_Operand2_R_LSR_I);
return true;
case IrOpcode::kWord32Sar:
case IrOpcode::kWord64Sar:
*opcode |= AddressingModeField::encode(kMode_Operand2_R_ASR_I);
return true;
case IrOpcode::kWord32Ror:
case IrOpcode::kWord64Ror:
if (try_ror) {
*opcode |= AddressingModeField::encode(kMode_Operand2_R_ROR_I);
return true;
}
return false;
default:
return false;
}
}
bool TryMatchAnyExtend(Arm64OperandGenerator* g, InstructionSelector* selector,
Node* node, Node* left_node, Node* right_node,
InstructionOperand* left_op,
InstructionOperand* right_op, InstructionCode* opcode) {
if (!selector->CanCover(node, right_node)) return false;
NodeMatcher nm(right_node);
if (nm.IsWord32And()) {
Int32BinopMatcher mright(right_node);
if (mright.right().Is(0xff) || mright.right().Is(0xffff)) {
int32_t mask = mright.right().Value();
*left_op = g->UseRegister(left_node);
*right_op = g->UseRegister(mright.left().node());
*opcode |= AddressingModeField::encode(
(mask == 0xff) ? kMode_Operand2_R_UXTB : kMode_Operand2_R_UXTH);
return true;
}
} else if (nm.IsWord32Sar()) {
Int32BinopMatcher mright(right_node);
if (selector->CanCover(mright.node(), mright.left().node()) &&
mright.left().IsWord32Shl()) {
Int32BinopMatcher mleft_of_right(mright.left().node());
if ((mright.right().Is(16) && mleft_of_right.right().Is(16)) ||
(mright.right().Is(24) && mleft_of_right.right().Is(24))) {
int32_t shift = mright.right().Value();
*left_op = g->UseRegister(left_node);
*right_op = g->UseRegister(mleft_of_right.left().node());
*opcode |= AddressingModeField::encode(
(shift == 24) ? kMode_Operand2_R_SXTB : kMode_Operand2_R_SXTH);
return true;
}
}
}
return false;
}
// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, ImmediateMode operand_mode,
FlagsContinuation* cont) {
Arm64OperandGenerator g(selector);
Matcher m(node);
InstructionOperand inputs[5];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
bool is_cmp = opcode == kArm64Cmp32;
// We can commute cmp by switching the inputs and commuting the flags
// continuation.
bool can_commute = m.HasProperty(Operator::kCommutative) || is_cmp;
// The cmp instruction is encoded as sub with zero output register, and
// therefore supports the same operand modes.
bool is_add_sub = m.IsInt32Add() || m.IsInt64Add() || m.IsInt32Sub() ||
m.IsInt64Sub() || is_cmp;
Node* left_node = m.left().node();
Node* right_node = m.right().node();
if (g.CanBeImmediate(right_node, operand_mode)) {
inputs[input_count++] = g.UseRegister(left_node);
inputs[input_count++] = g.UseImmediate(right_node);
} else if (is_cmp && g.CanBeImmediate(left_node, operand_mode)) {
cont->Commute();
inputs[input_count++] = g.UseRegister(right_node);
inputs[input_count++] = g.UseImmediate(left_node);
} else if (is_add_sub &&
TryMatchAnyExtend(&g, selector, node, left_node, right_node,
&inputs[0], &inputs[1], &opcode)) {
input_count += 2;
} else if (is_add_sub && can_commute &&
TryMatchAnyExtend(&g, selector, node, right_node, left_node,
&inputs[0], &inputs[1], &opcode)) {
if (is_cmp) cont->Commute();
input_count += 2;
} else if (TryMatchAnyShift(selector, node, right_node, &opcode,
!is_add_sub)) {
Matcher m_shift(right_node);
inputs[input_count++] = g.UseRegister(left_node);
inputs[input_count++] = g.UseRegister(m_shift.left().node());
inputs[input_count++] = g.UseImmediate(m_shift.right().node());
} else if (can_commute && TryMatchAnyShift(selector, node, left_node, &opcode,
!is_add_sub)) {
if (is_cmp) cont->Commute();
Matcher m_shift(left_node);
inputs[input_count++] = g.UseRegister(right_node);
inputs[input_count++] = g.UseRegister(m_shift.left().node());
inputs[input_count++] = g.UseImmediate(m_shift.right().node());
} else {
inputs[input_count++] = g.UseRegister(left_node);
inputs[input_count++] = g.UseRegister(right_node);
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
if (!is_cmp) {
outputs[output_count++] = g.DefineAsRegister(node);
}
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0u, input_count);
DCHECK((output_count != 0) || is_cmp);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->Emit(cont->Encode(opcode), output_count, outputs, input_count,
inputs);
}
// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node, ArchOpcode opcode,
ImmediateMode operand_mode) {
FlagsContinuation cont;
VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont);
}
template <typename Matcher>
void VisitAddSub(InstructionSelector* selector, Node* node, ArchOpcode opcode,
ArchOpcode negate_opcode) {
Arm64OperandGenerator g(selector);
Matcher m(node);
if (m.right().HasValue() && (m.right().Value() < 0) &&
g.CanBeImmediate(-m.right().Value(), kArithmeticImm)) {
selector->Emit(negate_opcode, g.DefineAsRegister(node),
g.UseRegister(m.left().node()),
g.TempImmediate(static_cast<int32_t>(-m.right().Value())));
} else {
VisitBinop<Matcher>(selector, node, opcode, kArithmeticImm);
}
}
// For multiplications by immediate of the form x * (2^k + 1), where k > 0,
// return the value of k, otherwise return zero. This is used to reduce the
// multiplication to addition with left shift: x + (x << k).
template <typename Matcher>
int32_t LeftShiftForReducedMultiply(Matcher* m) {
DCHECK(m->IsInt32Mul() || m->IsInt64Mul());
if (m->right().HasValue() && m->right().Value() >= 3) {
uint64_t value_minus_one = m->right().Value() - 1;
if (base::bits::IsPowerOfTwo64(value_minus_one)) {
return WhichPowerOf2_64(value_minus_one);
}
}
return 0;
}
} // namespace
void InstructionSelector::VisitLoad(Node* node) {
MachineType rep = RepresentationOf(OpParameter<LoadRepresentation>(node));
MachineType typ = TypeOf(OpParameter<LoadRepresentation>(node));
Arm64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
ArchOpcode opcode;
ImmediateMode immediate_mode = kNoImmediate;
switch (rep) {
case kRepFloat32:
opcode = kArm64LdrS;
immediate_mode = kLoadStoreImm32;
break;
case kRepFloat64:
opcode = kArm64LdrD;
immediate_mode = kLoadStoreImm64;
break;
case kRepBit: // Fall through.
case kRepWord8:
opcode = typ == kTypeInt32 ? kArm64Ldrsb : kArm64Ldrb;
immediate_mode = kLoadStoreImm8;
break;
case kRepWord16:
opcode = typ == kTypeInt32 ? kArm64Ldrsh : kArm64Ldrh;
immediate_mode = kLoadStoreImm16;
break;
case kRepWord32:
opcode = kArm64LdrW;
immediate_mode = kLoadStoreImm32;
break;
case kRepTagged: // Fall through.
case kRepWord64:
opcode = kArm64Ldr;
immediate_mode = kLoadStoreImm64;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, immediate_mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR),
g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index));
}
}
void InstructionSelector::VisitStore(Node* node) {
Arm64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = OpParameter<StoreRepresentation>(node);
MachineType rep = RepresentationOf(store_rep.machine_type());
if (store_rep.write_barrier_kind() == kFullWriteBarrier) {
DCHECK(rep == kRepTagged);
// TODO(dcarney): refactor RecordWrite function to take temp registers
// and pass them here instead of using fixed regs
// TODO(dcarney): handle immediate indices.
InstructionOperand temps[] = {g.TempRegister(x11), g.TempRegister(x12)};
Emit(kArm64StoreWriteBarrier, g.NoOutput(), g.UseFixed(base, x10),
g.UseFixed(index, x11), g.UseFixed(value, x12), arraysize(temps),
temps);
return;
}
DCHECK_EQ(kNoWriteBarrier, store_rep.write_barrier_kind());
ArchOpcode opcode;
ImmediateMode immediate_mode = kNoImmediate;
switch (rep) {
case kRepFloat32:
opcode = kArm64StrS;
immediate_mode = kLoadStoreImm32;
break;
case kRepFloat64:
opcode = kArm64StrD;
immediate_mode = kLoadStoreImm64;
break;
case kRepBit: // Fall through.
case kRepWord8:
opcode = kArm64Strb;
immediate_mode = kLoadStoreImm8;
break;
case kRepWord16:
opcode = kArm64Strh;
immediate_mode = kLoadStoreImm16;
break;
case kRepWord32:
opcode = kArm64StrW;
immediate_mode = kLoadStoreImm32;
break;
case kRepTagged: // Fall through.
case kRepWord64:
opcode = kArm64Str;
immediate_mode = kLoadStoreImm64;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, immediate_mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(base), g.UseImmediate(index), g.UseRegister(value));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR), g.NoOutput(),
g.UseRegister(base), g.UseRegister(index), g.UseRegister(value));
}
}
void InstructionSelector::VisitCheckedLoad(Node* node) {
MachineType rep = RepresentationOf(OpParameter<MachineType>(node));
MachineType typ = TypeOf(OpParameter<MachineType>(node));
Arm64OperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
ArchOpcode opcode;
switch (rep) {
case kRepWord8:
opcode = typ == kTypeInt32 ? kCheckedLoadInt8 : kCheckedLoadUint8;
break;
case kRepWord16:
opcode = typ == kTypeInt32 ? kCheckedLoadInt16 : kCheckedLoadUint16;
break;
case kRepWord32:
opcode = kCheckedLoadWord32;
break;
case kRepFloat32:
opcode = kCheckedLoadFloat32;
break;
case kRepFloat64:
opcode = kCheckedLoadFloat64;
break;
default:
UNREACHABLE();
return;
}
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(buffer),
g.UseRegister(offset), g.UseOperand(length, kArithmeticImm));
}
void InstructionSelector::VisitCheckedStore(Node* node) {
MachineType rep = RepresentationOf(OpParameter<MachineType>(node));
Arm64OperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
Node* const value = node->InputAt(3);
ArchOpcode opcode;
switch (rep) {
case kRepWord8:
opcode = kCheckedStoreWord8;
break;
case kRepWord16:
opcode = kCheckedStoreWord16;
break;
case kRepWord32:
opcode = kCheckedStoreWord32;
break;
case kRepFloat32:
opcode = kCheckedStoreFloat32;
break;
case kRepFloat64:
opcode = kCheckedStoreFloat64;
break;
default:
UNREACHABLE();
return;
}
Emit(opcode, g.NoOutput(), g.UseRegister(buffer), g.UseRegister(offset),
g.UseOperand(length, kArithmeticImm), g.UseRegister(value));
}
template <typename Matcher>
static void VisitLogical(InstructionSelector* selector, Node* node, Matcher* m,
ArchOpcode opcode, bool left_can_cover,
bool right_can_cover, ImmediateMode imm_mode) {
Arm64OperandGenerator g(selector);
// Map instruction to equivalent operation with inverted right input.
ArchOpcode inv_opcode = opcode;
switch (opcode) {
case kArm64And32:
inv_opcode = kArm64Bic32;
break;
case kArm64And:
inv_opcode = kArm64Bic;
break;
case kArm64Or32:
inv_opcode = kArm64Orn32;
break;
case kArm64Or:
inv_opcode = kArm64Orn;
break;
case kArm64Eor32:
inv_opcode = kArm64Eon32;
break;
case kArm64Eor:
inv_opcode = kArm64Eon;
break;
default:
UNREACHABLE();
}
// Select Logical(y, ~x) for Logical(Xor(x, -1), y).
if ((m->left().IsWord32Xor() || m->left().IsWord64Xor()) && left_can_cover) {
Matcher mleft(m->left().node());
if (mleft.right().Is(-1)) {
// TODO(all): support shifted operand on right.
selector->Emit(inv_opcode, g.DefineAsRegister(node),
g.UseRegister(m->right().node()),
g.UseRegister(mleft.left().node()));
return;
}
}
// Select Logical(x, ~y) for Logical(x, Xor(y, -1)).
if ((m->right().IsWord32Xor() || m->right().IsWord64Xor()) &&
right_can_cover) {
Matcher mright(m->right().node());
if (mright.right().Is(-1)) {
// TODO(all): support shifted operand on right.
selector->Emit(inv_opcode, g.DefineAsRegister(node),
g.UseRegister(m->left().node()),
g.UseRegister(mright.left().node()));
return;
}
}
if (m->IsWord32Xor() && m->right().Is(-1)) {
selector->Emit(kArm64Not32, g.DefineAsRegister(node),
g.UseRegister(m->left().node()));
} else if (m->IsWord64Xor() && m->right().Is(-1)) {
selector->Emit(kArm64Not, g.DefineAsRegister(node),
g.UseRegister(m->left().node()));
} else {
VisitBinop<Matcher>(selector, node, opcode, imm_mode);
}
}
void InstructionSelector::VisitWord32And(Node* node) {
Arm64OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) &&
m.right().HasValue()) {
uint32_t mask = m.right().Value();
uint32_t mask_width = base::bits::CountPopulation32(mask);
uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
// The mask must be contiguous, and occupy the least-significant bits.
DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
// Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least
// significant bits.
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
// Any shift value can match; int32 shifts use `value % 32`.
uint32_t lsb = mleft.right().Value() & 0x1f;
// Ubfx cannot extract bits past the register size, however since
// shifting the original value would have introduced some zeros we can
// still use ubfx with a smaller mask and the remaining bits will be
// zeros.
if (lsb + mask_width > 32) mask_width = 32 - lsb;
Emit(kArm64Ubfx32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseImmediateOrTemp(mleft.right().node(), lsb),
g.TempImmediate(mask_width));
return;
}
// Other cases fall through to the normal And operation.
}
}
VisitLogical<Int32BinopMatcher>(
this, node, &m, kArm64And32, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kLogical32Imm);
}
void InstructionSelector::VisitWord64And(Node* node) {
Arm64OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().IsWord64Shr() && CanCover(node, m.left().node()) &&
m.right().HasValue()) {
uint64_t mask = m.right().Value();
uint64_t mask_width = base::bits::CountPopulation64(mask);
uint64_t mask_msb = base::bits::CountLeadingZeros64(mask);
if ((mask_width != 0) && (mask_msb + mask_width == 64)) {
// The mask must be contiguous, and occupy the least-significant bits.
DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask));
// Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least
// significant bits.
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
// Any shift value can match; int64 shifts use `value % 64`.
uint32_t lsb = static_cast<uint32_t>(mleft.right().Value() & 0x3f);
// Ubfx cannot extract bits past the register size, however since
// shifting the original value would have introduced some zeros we can
// still use ubfx with a smaller mask and the remaining bits will be
// zeros.
if (lsb + mask_width > 64) mask_width = 64 - lsb;
Emit(kArm64Ubfx, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseImmediateOrTemp(mleft.right().node(), lsb),
g.TempImmediate(static_cast<int32_t>(mask_width)));
return;
}
// Other cases fall through to the normal And operation.
}
}
VisitLogical<Int64BinopMatcher>(
this, node, &m, kArm64And, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kLogical64Imm);
}
void InstructionSelector::VisitWord32Or(Node* node) {
Int32BinopMatcher m(node);
VisitLogical<Int32BinopMatcher>(
this, node, &m, kArm64Or32, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kLogical32Imm);
}
void InstructionSelector::VisitWord64Or(Node* node) {
Int64BinopMatcher m(node);
VisitLogical<Int64BinopMatcher>(
this, node, &m, kArm64Or, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kLogical64Imm);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
Int32BinopMatcher m(node);
VisitLogical<Int32BinopMatcher>(
this, node, &m, kArm64Eor32, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kLogical32Imm);
}
void InstructionSelector::VisitWord64Xor(Node* node) {
Int64BinopMatcher m(node);
VisitLogical<Int64BinopMatcher>(
this, node, &m, kArm64Eor, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kLogical64Imm);
}
void InstructionSelector::VisitWord32Shl(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && CanCover(node, m.left().node()) &&
m.right().IsInRange(1, 31)) {
Arm64OperandGenerator g(this);
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
uint32_t mask = mleft.right().Value();
uint32_t mask_width = base::bits::CountPopulation32(mask);
uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
uint32_t shift = m.right().Value();
DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
DCHECK_NE(0u, shift);
if ((shift + mask_width) >= 32) {
// If the mask is contiguous and reaches or extends beyond the top
// bit, only the shift is needed.
Emit(kArm64Lsl32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseImmediate(m.right().node()));
return;
} else {
// Select Ubfiz for Shl(And(x, mask), imm) where the mask is
// contiguous, and the shift immediate non-zero.
Emit(kArm64Ubfiz32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseImmediate(m.right().node()), g.TempImmediate(mask_width));
return;
}
}
}
}
VisitRRO(this, kArm64Lsl32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Shl(Node* node) {
Arm64OperandGenerator g(this);
Int64BinopMatcher m(node);
if ((m.left().IsChangeInt32ToInt64() || m.left().IsChangeUint32ToUint64()) &&
m.right().IsInRange(32, 63)) {
// There's no need to sign/zero-extend to 64-bit if we shift out the upper
// 32 bits anyway.
Emit(kArm64Lsl, g.DefineAsRegister(node),
g.UseRegister(m.left().node()->InputAt(0)),
g.UseImmediate(m.right().node()));
return;
}
VisitRRO(this, kArm64Lsl, node, kShift64Imm);
}
namespace {
bool TryEmitBitfieldExtract32(InstructionSelector* selector, Node* node) {
Arm64OperandGenerator g(selector);
Int32BinopMatcher m(node);
if (selector->CanCover(node, m.left().node()) && m.left().IsWord32Shl()) {
// Select Ubfx or Sbfx for (x << (K & 0x1f)) OP (K & 0x1f), where
// OP is >>> or >> and (K & 0x1f) != 0.
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue() && m.right().HasValue() &&
(mleft.right().Value() & 0x1f) == (m.right().Value() & 0x1f)) {
DCHECK(m.IsWord32Shr() || m.IsWord32Sar());
ArchOpcode opcode = m.IsWord32Sar() ? kArm64Sbfx32 : kArm64Ubfx32;
int right_val = m.right().Value() & 0x1f;
DCHECK_NE(right_val, 0);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(0),
g.TempImmediate(32 - right_val));
return true;
}
}
return false;
}
} // namespace
void InstructionSelector::VisitWord32Shr(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && m.right().HasValue()) {
uint32_t lsb = m.right().Value() & 0x1f;
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
// Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is
// shifted into the least-significant bits.
uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
unsigned mask_width = base::bits::CountPopulation32(mask);
unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_msb + mask_width + lsb) == 32) {
Arm64OperandGenerator g(this);
DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
Emit(kArm64Ubfx32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseImmediateOrTemp(m.right().node(), lsb),
g.TempImmediate(mask_width));
return;
}
}
} else if (TryEmitBitfieldExtract32(this, node)) {
return;
}
if (m.left().IsUint32MulHigh() && m.right().HasValue() &&
CanCover(node, node->InputAt(0))) {
// Combine this shift with the multiply and shift that would be generated
// by Uint32MulHigh.
Arm64OperandGenerator g(this);
Node* left = m.left().node();
int shift = m.right().Value() & 0x1f;
InstructionOperand const smull_operand = g.TempRegister();
Emit(kArm64Umull, smull_operand, g.UseRegister(left->InputAt(0)),
g.UseRegister(left->InputAt(1)));
Emit(kArm64Lsr, g.DefineAsRegister(node), smull_operand,
g.TempImmediate(32 + shift));
return;
}
VisitRRO(this, kArm64Lsr32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Shr(Node* node) {
Int64BinopMatcher m(node);
if (m.left().IsWord64And() && m.right().HasValue()) {
uint32_t lsb = m.right().Value() & 0x3f;
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
// Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is
// shifted into the least-significant bits.
uint64_t mask = (mleft.right().Value() >> lsb) << lsb;
unsigned mask_width = base::bits::CountPopulation64(mask);
unsigned mask_msb = base::bits::CountLeadingZeros64(mask);
if ((mask_msb + mask_width + lsb) == 64) {
Arm64OperandGenerator g(this);
DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask));
Emit(kArm64Ubfx, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseImmediateOrTemp(m.right().node(), lsb),
g.TempImmediate(mask_width));
return;
}
}
}
VisitRRO(this, kArm64Lsr, node, kShift64Imm);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
if (TryEmitBitfieldExtract32(this, node)) {
return;
}
Int32BinopMatcher m(node);
if (m.left().IsInt32MulHigh() && m.right().HasValue() &&
CanCover(node, node->InputAt(0))) {
// Combine this shift with the multiply and shift that would be generated
// by Int32MulHigh.
Arm64OperandGenerator g(this);
Node* left = m.left().node();
int shift = m.right().Value() & 0x1f;
InstructionOperand const smull_operand = g.TempRegister();
Emit(kArm64Smull, smull_operand, g.UseRegister(left->InputAt(0)),
g.UseRegister(left->InputAt(1)));
Emit(kArm64Asr, g.DefineAsRegister(node), smull_operand,
g.TempImmediate(32 + shift));
return;
}
if (m.left().IsInt32Add() && m.right().HasValue() &&
CanCover(node, node->InputAt(0))) {
Node* add_node = m.left().node();
Int32BinopMatcher madd_node(add_node);
if (madd_node.left().IsInt32MulHigh() &&
CanCover(add_node, madd_node.left().node())) {
// Combine the shift that would be generated by Int32MulHigh with the add
// on the left of this Sar operation. We do it here, as the result of the
// add potentially has 33 bits, so we have to ensure the result is
// truncated by being the input to this 32-bit Sar operation.
Arm64OperandGenerator g(this);
Node* mul_node = madd_node.left().node();
InstructionOperand const smull_operand = g.TempRegister();
Emit(kArm64Smull, smull_operand, g.UseRegister(mul_node->InputAt(0)),
g.UseRegister(mul_node->InputAt(1)));
InstructionOperand const add_operand = g.TempRegister();
Emit(kArm64Add | AddressingModeField::encode(kMode_Operand2_R_ASR_I),
add_operand, g.UseRegister(add_node->InputAt(1)), smull_operand,
g.TempImmediate(32));
Emit(kArm64Asr32, g.DefineAsRegister(node), add_operand,
g.UseImmediate(node->InputAt(1)));
return;
}
}
VisitRRO(this, kArm64Asr32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Sar(Node* node) {
VisitRRO(this, kArm64Asr, node, kShift64Imm);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitRRO(this, kArm64Ror32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Ror(Node* node) {
VisitRRO(this, kArm64Ror, node, kShift64Imm);
}
void InstructionSelector::VisitWord32Clz(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Clz32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitInt32Add(Node* node) {
Arm64OperandGenerator g(this);
Int32BinopMatcher m(node);
// Select Madd(x, y, z) for Add(Mul(x, y), z).
if (m.left().IsInt32Mul() && CanCover(node, m.left().node())) {
Int32BinopMatcher mleft(m.left().node());
// Check multiply can't be later reduced to addition with shift.
if (LeftShiftForReducedMultiply(&mleft) == 0) {
Emit(kArm64Madd32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseRegister(mleft.right().node()),
g.UseRegister(m.right().node()));
return;
}
}
// Select Madd(x, y, z) for Add(z, Mul(x, y)).
if (m.right().IsInt32Mul() && CanCover(node, m.right().node())) {
Int32BinopMatcher mright(m.right().node());
// Check multiply can't be later reduced to addition with shift.
if (LeftShiftForReducedMultiply(&mright) == 0) {
Emit(kArm64Madd32, g.DefineAsRegister(node),
g.UseRegister(mright.left().node()),
g.UseRegister(mright.right().node()),
g.UseRegister(m.left().node()));
return;
}
}
VisitAddSub<Int32BinopMatcher>(this, node, kArm64Add32, kArm64Sub32);
}
void InstructionSelector::VisitInt64Add(Node* node) {
Arm64OperandGenerator g(this);
Int64BinopMatcher m(node);
// Select Madd(x, y, z) for Add(Mul(x, y), z).
if (m.left().IsInt64Mul() && CanCover(node, m.left().node())) {
Int64BinopMatcher mleft(m.left().node());
// Check multiply can't be later reduced to addition with shift.
if (LeftShiftForReducedMultiply(&mleft) == 0) {
Emit(kArm64Madd, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseRegister(mleft.right().node()),
g.UseRegister(m.right().node()));
return;
}
}
// Select Madd(x, y, z) for Add(z, Mul(x, y)).
if (m.right().IsInt64Mul() && CanCover(node, m.right().node())) {
Int64BinopMatcher mright(m.right().node());
// Check multiply can't be later reduced to addition with shift.
if (LeftShiftForReducedMultiply(&mright) == 0) {
Emit(kArm64Madd, g.DefineAsRegister(node),
g.UseRegister(mright.left().node()),
g.UseRegister(mright.right().node()),
g.UseRegister(m.left().node()));
return;
}
}
VisitAddSub<Int64BinopMatcher>(this, node, kArm64Add, kArm64Sub);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
Arm64OperandGenerator g(this);
Int32BinopMatcher m(node);
// Select Msub(x, y, a) for Sub(a, Mul(x, y)).
if (m.right().IsInt32Mul() && CanCover(node, m.right().node())) {
Int32BinopMatcher mright(m.right().node());
// Check multiply can't be later reduced to addition with shift.
if (LeftShiftForReducedMultiply(&mright) == 0) {
Emit(kArm64Msub32, g.DefineAsRegister(node),
g.UseRegister(mright.left().node()),
g.UseRegister(mright.right().node()),
g.UseRegister(m.left().node()));
return;
}
}
if (m.left().Is(0)) {
Emit(kArm64Neg32, g.DefineAsRegister(node),
g.UseRegister(m.right().node()));
} else {
VisitAddSub<Int32BinopMatcher>(this, node, kArm64Sub32, kArm64Add32);
}
}
void InstructionSelector::VisitInt64Sub(Node* node) {
Arm64OperandGenerator g(this);
Int64BinopMatcher m(node);
// Select Msub(x, y, a) for Sub(a, Mul(x, y)).
if (m.right().IsInt64Mul() && CanCover(node, m.right().node())) {
Int64BinopMatcher mright(m.right().node());
// Check multiply can't be later reduced to addition with shift.
if (LeftShiftForReducedMultiply(&mright) == 0) {
Emit(kArm64Msub, g.DefineAsRegister(node),
g.UseRegister(mright.left().node()),
g.UseRegister(mright.right().node()),
g.UseRegister(m.left().node()));
return;
}
}
if (m.left().Is(0)) {
Emit(kArm64Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node()));
} else {
VisitAddSub<Int64BinopMatcher>(this, node, kArm64Sub, kArm64Add);
}
}
void InstructionSelector::VisitInt32Mul(Node* node) {
Arm64OperandGenerator g(this);
Int32BinopMatcher m(node);
// First, try to reduce the multiplication to addition with left shift.
// x * (2^k + 1) -> x + (x << k)
int32_t shift = LeftShiftForReducedMultiply(&m);
if (shift > 0) {
Emit(kArm64Add32 | AddressingModeField::encode(kMode_Operand2_R_LSL_I),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.left().node()), g.TempImmediate(shift));
return;
}
if (m.left().IsInt32Sub() && CanCover(node, m.left().node())) {
Int32BinopMatcher mleft(m.left().node());
// Select Mneg(x, y) for Mul(Sub(0, x), y).
if (mleft.left().Is(0)) {
Emit(kArm64Mneg32, g.DefineAsRegister(node),
g.UseRegister(mleft.right().node()),
g.UseRegister(m.right().node()));
return;
}
}
if (m.right().IsInt32Sub() && CanCover(node, m.right().node())) {
Int32BinopMatcher mright(m.right().node());
// Select Mneg(x, y) for Mul(x, Sub(0, y)).
if (mright.left().Is(0)) {
Emit(kArm64Mneg32, g.DefineAsRegister(node),
g.UseRegister(m.left().node()),
g.UseRegister(mright.right().node()));
return;
}
}
VisitRRR(this, kArm64Mul32, node);
}
void InstructionSelector::VisitInt64Mul(Node* node) {
Arm64OperandGenerator g(this);
Int64BinopMatcher m(node);
// First, try to reduce the multiplication to addition with left shift.
// x * (2^k + 1) -> x + (x << k)
int32_t shift = LeftShiftForReducedMultiply(&m);
if (shift > 0) {
Emit(kArm64Add | AddressingModeField::encode(kMode_Operand2_R_LSL_I),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.left().node()), g.TempImmediate(shift));
return;
}
if (m.left().IsInt64Sub() && CanCover(node, m.left().node())) {
Int64BinopMatcher mleft(m.left().node());
// Select Mneg(x, y) for Mul(Sub(0, x), y).
if (mleft.left().Is(0)) {
Emit(kArm64Mneg, g.DefineAsRegister(node),
g.UseRegister(mleft.right().node()),
g.UseRegister(m.right().node()));
return;
}
}
if (m.right().IsInt64Sub() && CanCover(node, m.right().node())) {
Int64BinopMatcher mright(m.right().node());
// Select Mneg(x, y) for Mul(x, Sub(0, y)).
if (mright.left().Is(0)) {
Emit(kArm64Mneg, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(mright.right().node()));
return;
}
}
VisitRRR(this, kArm64Mul, node);
}
void InstructionSelector::VisitInt32MulHigh(Node* node) {
Arm64OperandGenerator g(this);
InstructionOperand const smull_operand = g.TempRegister();
Emit(kArm64Smull, smull_operand, g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
Emit(kArm64Asr, g.DefineAsRegister(node), smull_operand, g.TempImmediate(32));
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
Arm64OperandGenerator g(this);
InstructionOperand const smull_operand = g.TempRegister();
Emit(kArm64Umull, smull_operand, g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
Emit(kArm64Lsr, g.DefineAsRegister(node), smull_operand, g.TempImmediate(32));
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitRRR(this, kArm64Idiv32, node);
}
void InstructionSelector::VisitInt64Div(Node* node) {
VisitRRR(this, kArm64Idiv, node);
}
void InstructionSelector::VisitUint32Div(Node* node) {
VisitRRR(this, kArm64Udiv32, node);
}
void InstructionSelector::VisitUint64Div(Node* node) {
VisitRRR(this, kArm64Udiv, node);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitRRR(this, kArm64Imod32, node);
}
void InstructionSelector::VisitInt64Mod(Node* node) {
VisitRRR(this, kArm64Imod, node);
}
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitRRR(this, kArm64Umod32, node);
}
void InstructionSelector::VisitUint64Mod(Node* node) {
VisitRRR(this, kArm64Umod, node);
}
void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
VisitRR(this, kArm64Float32ToFloat64, node);
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
VisitRR(this, kArm64Int32ToFloat64, node);
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
VisitRR(this, kArm64Uint32ToFloat64, node);
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
VisitRR(this, kArm64Float64ToInt32, node);
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
VisitRR(this, kArm64Float64ToUint32, node);
}
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
VisitRR(this, kArm64Sxtw, node);
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
Arm64OperandGenerator g(this);
Node* value = node->InputAt(0);
switch (value->opcode()) {
case IrOpcode::kWord32And:
case IrOpcode::kWord32Or:
case IrOpcode::kWord32Xor:
case IrOpcode::kWord32Shl:
case IrOpcode::kWord32Shr:
case IrOpcode::kWord32Sar:
case IrOpcode::kWord32Ror:
case IrOpcode::kWord32Equal:
case IrOpcode::kInt32Add:
case IrOpcode::kInt32AddWithOverflow:
case IrOpcode::kInt32Sub:
case IrOpcode::kInt32SubWithOverflow:
case IrOpcode::kInt32Mul:
case IrOpcode::kInt32MulHigh:
case IrOpcode::kInt32Div:
case IrOpcode::kInt32Mod:
case IrOpcode::kInt32LessThan:
case IrOpcode::kInt32LessThanOrEqual:
case IrOpcode::kUint32Div:
case IrOpcode::kUint32LessThan:
case IrOpcode::kUint32LessThanOrEqual:
case IrOpcode::kUint32Mod:
case IrOpcode::kUint32MulHigh: {
// 32-bit operations will write their result in a W register (implicitly
// clearing the top 32-bit of the corresponding X register) so the
// zero-extension is a no-op.
Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value));
return;
}
default:
break;
}
Emit(kArm64Mov32, g.DefineAsRegister(node), g.UseRegister(value));
}
void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
VisitRR(this, kArm64Float64ToFloat32, node);
}
void InstructionSelector::VisitTruncateFloat64ToInt32(Node* node) {
switch (TruncationModeOf(node->op())) {
case TruncationMode::kJavaScript:
return VisitRR(this, kArchTruncateDoubleToI, node);
case TruncationMode::kRoundToZero:
return VisitRR(this, kArm64Float64ToInt32, node);
}
UNREACHABLE();
}
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
Arm64OperandGenerator g(this);
Node* value = node->InputAt(0);
if (CanCover(node, value) && value->InputCount() >= 2) {
Int64BinopMatcher m(value);
if ((m.IsWord64Sar() && m.right().HasValue() &&
(m.right().Value() == 32)) ||
(m.IsWord64Shr() && m.right().IsInRange(32, 63))) {
Emit(kArm64Lsr, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseImmediate(m.right().node()));
return;
}
}
Emit(kArm64Mov32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat32Add(Node* node) {
VisitRRR(this, kArm64Float32Add, node);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
VisitRRR(this, kArm64Float64Add, node);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
VisitRRR(this, kArm64Float32Sub, node);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
Arm64OperandGenerator g(this);
Float64BinopMatcher m(node);
if (m.left().IsMinusZero()) {
if (m.right().IsFloat64RoundDown() &&
CanCover(m.node(), m.right().node())) {
if (m.right().InputAt(0)->opcode() == IrOpcode::kFloat64Sub &&
CanCover(m.right().node(), m.right().InputAt(0))) {
Float64BinopMatcher mright0(m.right().InputAt(0));
if (mright0.left().IsMinusZero()) {
Emit(kArm64Float64RoundUp, g.DefineAsRegister(node),
g.UseRegister(mright0.right().node()));
return;
}
}
}
Emit(kArm64Float64Neg, g.DefineAsRegister(node),
g.UseRegister(m.right().node()));
return;
}
VisitRRR(this, kArm64Float64Sub, node);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitRRR(this, kArm64Float32Mul, node);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
VisitRRR(this, kArm64Float64Mul, node);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitRRR(this, kArm64Float32Div, node);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitRRR(this, kArm64Float64Div, node);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64Mod, g.DefineAsFixed(node, d0),
g.UseFixed(node->InputAt(0), d0),
g.UseFixed(node->InputAt(1), d1))->MarkAsCall();
}
void InstructionSelector::VisitFloat32Max(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitFloat64Max(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitFloat32Min(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitFloat64Min(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitFloat32Abs(Node* node) {
VisitRR(this, kArm64Float32Abs, node);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
VisitRR(this, kArm64Float64Abs, node);
}
void InstructionSelector::VisitFloat32Sqrt(Node* node) {
VisitRR(this, kArm64Float32Sqrt, node);
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
VisitRR(this, kArm64Float64Sqrt, node);
}
void InstructionSelector::VisitFloat64RoundDown(Node* node) {
VisitRR(this, kArm64Float64RoundDown, node);
}
void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
VisitRR(this, kArm64Float64RoundTruncate, node);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
VisitRR(this, kArm64Float64RoundTiesAway, node);
}
void InstructionSelector::VisitCall(Node* node, BasicBlock* handler) {
Arm64OperandGenerator g(this);
const CallDescriptor* descriptor = OpParameter<const CallDescriptor*>(node);
FrameStateDescriptor* frame_state_descriptor = nullptr;
if (descriptor->NeedsFrameState()) {
frame_state_descriptor = GetFrameStateDescriptor(
node->InputAt(static_cast<int>(descriptor->InputCount())));
}
CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
// Compute InstructionOperands for inputs and outputs.
// TODO(turbofan): on ARM64 it's probably better to use the code object in a
// register if there are multiple uses of it. Improve constant pool and the
// heuristics in the register allocator for where to emit constants.
InitializeCallBuffer(node, &buffer, true, true);
// Push the arguments to the stack.
int aligned_push_count = static_cast<int>(buffer.pushed_nodes.size());
bool pushed_count_uneven = aligned_push_count & 1;
// TODO(dcarney): claim and poke probably take small immediates,
// loop here or whatever.
// Bump the stack pointer(s).
if (aligned_push_count > 0) {
// TODO(dcarney): it would be better to bump the csp here only
// and emit paired stores with increment for non c frames.
Emit(kArm64Claim, g.NoOutput(), g.TempImmediate(aligned_push_count));
}
// Move arguments to the stack.
{
int slot = aligned_push_count - 1;
// Emit the uneven pushes.
if (pushed_count_uneven) {
Node* input = buffer.pushed_nodes[slot];
Emit(kArm64Poke, g.NoOutput(), g.UseRegister(input),
g.TempImmediate(slot));
slot--;
}
// Now all pushes can be done in pairs.
for (; slot >= 0; slot -= 2) {
Emit(kArm64PokePair, g.NoOutput(),
g.UseRegister(buffer.pushed_nodes[slot]),
g.UseRegister(buffer.pushed_nodes[slot - 1]),
g.TempImmediate(slot));
}
}
// Pass label of exception handler block.
CallDescriptor::Flags flags = descriptor->flags();
if (handler != nullptr) {
DCHECK_EQ(IrOpcode::kIfException, handler->front()->opcode());
IfExceptionHint hint = OpParameter<IfExceptionHint>(handler->front());
if (hint == IfExceptionHint::kLocallyCaught) {
flags |= CallDescriptor::kHasLocalCatchHandler;
}
flags |= CallDescriptor::kHasExceptionHandler;
buffer.instruction_args.push_back(g.Label(handler));
}
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallAddress:
opcode =
kArchCallCFunction |
MiscField::encode(static_cast<int>(descriptor->CParameterCount()));
break;
case CallDescriptor::kCallCodeObject:
opcode = kArchCallCodeObject | MiscField::encode(flags);
break;
case CallDescriptor::kCallJSFunction:
opcode = kArchCallJSFunction | MiscField::encode(flags);
break;
default:
UNREACHABLE();
return;
}
// Emit the call instruction.
size_t const output_count = buffer.outputs.size();
auto* outputs = output_count ? &buffer.outputs.front() : nullptr;
Emit(opcode, output_count, outputs, buffer.instruction_args.size(),
&buffer.instruction_args.front())->MarkAsCall();
}
void InstructionSelector::VisitTailCall(Node* node) {
Arm64OperandGenerator g(this);
const CallDescriptor* descriptor = OpParameter<const CallDescriptor*>(node);
DCHECK_NE(0, descriptor->flags() & CallDescriptor::kSupportsTailCalls);
DCHECK_EQ(0, descriptor->flags() & CallDescriptor::kPatchableCallSite);
DCHECK_EQ(0, descriptor->flags() & CallDescriptor::kNeedsNopAfterCall);
// TODO(turbofan): Relax restriction for stack parameters.
if (linkage()->GetIncomingDescriptor()->CanTailCall(node)) {
CallBuffer buffer(zone(), descriptor, nullptr);
// Compute InstructionOperands for inputs and outputs.
// TODO(turbofan): on ARM64 it's probably better to use the code object in a
// register if there are multiple uses of it. Improve constant pool and the
// heuristics in the register allocator for where to emit constants.
InitializeCallBuffer(node, &buffer, true, false);
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject:
case CallDescriptor::kInterpreterDispatch:
opcode = kArchTailCallCodeObject;
break;
case CallDescriptor::kCallJSFunction:
opcode = kArchTailCallJSFunction;
break;
default:
UNREACHABLE();
return;
}
opcode |= MiscField::encode(descriptor->flags());
// Emit the tailcall instruction.
Emit(opcode, 0, nullptr, buffer.instruction_args.size(),
&buffer.instruction_args.front());
} else {
FrameStateDescriptor* frame_state_descriptor = nullptr;
if (descriptor->NeedsFrameState()) {
frame_state_descriptor = GetFrameStateDescriptor(
node->InputAt(static_cast<int>(descriptor->InputCount())));
}
CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
// Compute InstructionOperands for inputs and outputs.
// TODO(turbofan): on ARM64 it's probably better to use the code object in a
// register if there are multiple uses of it. Improve constant pool and the
// heuristics in the register allocator for where to emit constants.
InitializeCallBuffer(node, &buffer, true, false);
// Push the arguments to the stack.
int aligned_push_count = static_cast<int>(buffer.pushed_nodes.size());
bool pushed_count_uneven = aligned_push_count & 1;
// TODO(dcarney): claim and poke probably take small immediates,
// loop here or whatever.
// Bump the stack pointer(s).
if (aligned_push_count > 0) {
// TODO(dcarney): it would be better to bump the csp here only
// and emit paired stores with increment for non c frames.
Emit(kArm64Claim, g.NoOutput(), g.TempImmediate(aligned_push_count));
}
// Move arguments to the stack.
{
int slot = aligned_push_count - 1;
// Emit the uneven pushes.
if (pushed_count_uneven) {
Node* input = buffer.pushed_nodes[slot];
Emit(kArm64Poke, g.NoOutput(), g.UseRegister(input),
g.TempImmediate(slot));
slot--;
}
// Now all pushes can be done in pairs.
for (; slot >= 0; slot -= 2) {
Emit(kArm64PokePair, g.NoOutput(),
g.UseRegister(buffer.pushed_nodes[slot]),
g.UseRegister(buffer.pushed_nodes[slot - 1]),
g.TempImmediate(slot));
}
}
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject: {
opcode = kArchCallCodeObject;
break;
}
case CallDescriptor::kCallJSFunction:
opcode = kArchCallJSFunction;
break;
default:
UNREACHABLE();
return;
}
opcode |= MiscField::encode(descriptor->flags());
// Emit the call instruction.
size_t const output_count = buffer.outputs.size();
auto* outputs = output_count ? &buffer.outputs.front() : nullptr;
Emit(opcode, output_count, outputs, buffer.instruction_args.size(),
&buffer.instruction_args.front())->MarkAsCall();
Emit(kArchRet, 0, nullptr, output_count, outputs);
}
}
namespace {
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
Arm64OperandGenerator g(selector);
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), left, right,
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else {
DCHECK(cont->IsSet());
selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
}
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont,
bool commutative, ImmediateMode immediate_mode) {
Arm64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right, immediate_mode)) {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right),
cont);
} else if (g.CanBeImmediate(left, immediate_mode)) {
if (!commutative) cont->Commute();
VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left),
cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
cont);
}
}
void VisitWord32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitBinop<Int32BinopMatcher>(selector, node, kArm64Cmp32, kArithmeticImm,
cont);
}
void VisitWordTest(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
Arm64OperandGenerator g(selector);
VisitCompare(selector, opcode, g.UseRegister(node), g.UseRegister(node),
cont);
}
void VisitWord32Test(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitWordTest(selector, node, kArm64Tst32, cont);
}
void VisitWord64Test(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitWordTest(selector, node, kArm64Tst, cont);
}
// Shared routine for multiple float64 compare operations.
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Arm64OperandGenerator g(selector);
Float32BinopMatcher m(node);
if (m.right().Is(0.0f)) {
VisitCompare(selector, kArm64Float32Cmp, g.UseRegister(m.left().node()),
g.UseImmediate(m.right().node()), cont);
} else {
VisitCompare(selector, kArm64Float32Cmp, g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()), cont);
}
}
// Shared routine for multiple float64 compare operations.
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Arm64OperandGenerator g(selector);
Float64BinopMatcher m(node);
if (m.right().Is(0.0)) {
VisitCompare(selector, kArm64Float64Cmp, g.UseRegister(m.left().node()),
g.UseImmediate(m.right().node()), cont);
} else {
VisitCompare(selector, kArm64Float64Cmp, g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()), cont);
}
}
} // namespace
void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
BasicBlock* fbranch) {
OperandGenerator g(this);
Node* user = branch;
Node* value = branch->InputAt(0);
FlagsContinuation cont(kNotEqual, tbranch, fbranch);
// Try to combine with comparisons against 0 by simply inverting the branch.
while (CanCover(user, value) && value->opcode() == IrOpcode::kWord32Equal) {
Int32BinopMatcher m(value);
if (m.right().Is(0)) {
user = value;
value = m.left().node();
cont.Negate();
} else {
break;
}
}
// Try to combine the branch with a comparison.
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal:
cont.OverwriteAndNegateIfEqual(kEqual);
return VisitWord32Compare(this, value, &cont);
case IrOpcode::kInt32LessThan:
cont.OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord32Compare(this, value, &cont);
case IrOpcode::kInt32LessThanOrEqual:
cont.OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord32Compare(this, value, &cont);
case IrOpcode::kUint32LessThan:
cont.OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord32Compare(this, value, &cont);
case IrOpcode::kUint32LessThanOrEqual:
cont.OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord32Compare(this, value, &cont);
case IrOpcode::kWord64Equal:
cont.OverwriteAndNegateIfEqual(kEqual);
return VisitWordCompare(this, value, kArm64Cmp, &cont, false,
kArithmeticImm);
case IrOpcode::kInt64LessThan:
cont.OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(this, value, kArm64Cmp, &cont, false,
kArithmeticImm);
case IrOpcode::kInt64LessThanOrEqual:
cont.OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(this, value, kArm64Cmp, &cont, false,
kArithmeticImm);
case IrOpcode::kUint64LessThan:
cont.OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(this, value, kArm64Cmp, &cont, false,
kArithmeticImm);
case IrOpcode::kUint64LessThanOrEqual:
cont.OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(this, value, kArm64Cmp, &cont, false,
kArithmeticImm);
case IrOpcode::kFloat32Equal:
cont.OverwriteAndNegateIfEqual(kEqual);
return VisitFloat32Compare(this, value, &cont);
case IrOpcode::kFloat32LessThan:
cont.OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat32Compare(this, value, &cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont.OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat32Compare(this, value, &cont);
case IrOpcode::kFloat64Equal:
cont.OverwriteAndNegateIfEqual(kEqual);
return VisitFloat64Compare(this, value, &cont);
case IrOpcode::kFloat64LessThan:
cont.OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat64Compare(this, value, &cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont.OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat64Compare(this, value, &cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either NULL, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == NULL || IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont.OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32,
kArithmeticImm, &cont);
case IrOpcode::kInt32SubWithOverflow:
cont.OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32,
kArithmeticImm, &cont);
default:
break;
}
}
}
break;
case IrOpcode::kInt32Add:
return VisitWordCompare(this, value, kArm64Cmn32, &cont, true,
kArithmeticImm);
case IrOpcode::kInt32Sub:
return VisitWord32Compare(this, value, &cont);
case IrOpcode::kWord32And: {
Int32BinopMatcher m(value);
if (m.right().HasValue() &&
(base::bits::CountPopulation32(m.right().Value()) == 1)) {
// If the mask has only one bit set, we can use tbz/tbnz.
DCHECK((cont.condition() == kEqual) ||
(cont.condition() == kNotEqual));
Emit(cont.Encode(kArm64TestAndBranch32), g.NoOutput(),
g.UseRegister(m.left().node()),
g.TempImmediate(
base::bits::CountTrailingZeros32(m.right().Value())),
g.Label(cont.true_block()), g.Label(cont.false_block()));
return;
}
return VisitWordCompare(this, value, kArm64Tst32, &cont, true,
kLogical32Imm);
}
case IrOpcode::kWord64And: {
Int64BinopMatcher m(value);
if (m.right().HasValue() &&
(base::bits::CountPopulation64(m.right().Value()) == 1)) {
// If the mask has only one bit set, we can use tbz/tbnz.
DCHECK((cont.condition() == kEqual) ||
(cont.condition() == kNotEqual));
Emit(cont.Encode(kArm64TestAndBranch), g.NoOutput(),
g.UseRegister(m.left().node()),
g.TempImmediate(
base::bits::CountTrailingZeros64(m.right().Value())),
g.Label(cont.true_block()), g.Label(cont.false_block()));
return;
}
return VisitWordCompare(this, value, kArm64Tst, &cont, true,
kLogical64Imm);
}
default:
break;
}
}
// Branch could not be combined with a compare, compare against 0 and branch.
Emit(cont.Encode(kArm64CompareAndBranch32), g.NoOutput(),
g.UseRegister(value), g.Label(cont.true_block()),
g.Label(cont.false_block()));
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
Arm64OperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchLookupSwitch.
size_t table_space_cost = 4 + sw.value_range;
size_t table_time_cost = 3;
size_t lookup_space_cost = 3 + 2 * sw.case_count;
size_t lookup_time_cost = sw.case_count;
if (sw.case_count > 0 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value > std::numeric_limits<int32_t>::min()) {
InstructionOperand index_operand = value_operand;
if (sw.min_value) {
index_operand = g.TempRegister();
Emit(kArm64Sub32, index_operand, value_operand,
g.TempImmediate(sw.min_value));
}
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
// Generate a sequence of conditional jumps.
return EmitLookupSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
Node* const user = node;
FlagsContinuation cont(kEqual, node);
Int32BinopMatcher m(user);
if (m.right().Is(0)) {
Node* const value = m.left().node();
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kInt32Add:
return VisitWordCompare(this, value, kArm64Cmn32, &cont, true,
kArithmeticImm);
case IrOpcode::kInt32Sub:
return VisitWordCompare(this, value, kArm64Cmp32, &cont, false,
kArithmeticImm);
case IrOpcode::kWord32And:
return VisitWordCompare(this, value, kArm64Tst32, &cont, true,
kLogical32Imm);
default:
break;
}
return VisitWord32Test(this, value, &cont);
}
}
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont(kSignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont(kSignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont(kUnsignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitWord64Equal(Node* const node) {
Node* const user = node;
FlagsContinuation cont(kEqual, node);
Int64BinopMatcher m(user);
if (m.right().Is(0)) {
Node* const value = m.left().node();
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord64And:
return VisitWordCompare(this, value, kArm64Tst, &cont, true,
kLogical64Imm);
default:
break;
}
return VisitWord64Test(this, value, &cont);
}
}
VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont(kOverflow, ovf);
return VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32,
kArithmeticImm, &cont);
}
FlagsContinuation cont;
VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32, kArithmeticImm, &cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont(kOverflow, ovf);
return VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32,
kArithmeticImm, &cont);
}
FlagsContinuation cont;
VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32, kArithmeticImm, &cont);
}
void InstructionSelector::VisitInt64LessThan(Node* node) {
FlagsContinuation cont(kSignedLessThan, node);
VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm);
}
void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
FlagsContinuation cont(kSignedLessThanOrEqual, node);
VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm);
}
void InstructionSelector::VisitUint64LessThan(Node* node) {
FlagsContinuation cont(kUnsignedLessThan, node);
VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm);
}
void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm);
}
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont(kEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont(kUnsignedLessThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont(kEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont(kUnsignedLessThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64ExtractLowWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64ExtractHighWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
Arm64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 &&
CanCover(node, left)) {
Node* right_of_left = left->InputAt(1);
Emit(kArm64Bfi, g.DefineSameAsFirst(right), g.UseRegister(right),
g.UseRegister(right_of_left), g.TempImmediate(32),
g.TempImmediate(32));
Emit(kArm64Float64MoveU64, g.DefineAsRegister(node), g.UseRegister(right));
return;
}
Emit(kArm64Float64InsertLowWord32, g.DefineAsRegister(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
Arm64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 &&
CanCover(node, left)) {
Node* right_of_left = left->InputAt(1);
Emit(kArm64Bfi, g.DefineSameAsFirst(left), g.UseRegister(right_of_left),
g.UseRegister(right), g.TempImmediate(32), g.TempImmediate(32));
Emit(kArm64Float64MoveU64, g.DefineAsRegister(node), g.UseRegister(left));
return;
}
Emit(kArm64Float64InsertHighWord32, g.DefineAsRegister(node),
g.UseRegister(left), g.UseRegister(right));
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
return MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTiesAway |
MachineOperatorBuilder::kWord32ShiftIsSafe |
MachineOperatorBuilder::kInt32DivIsSafe |
MachineOperatorBuilder::kUint32DivIsSafe;
}
} // namespace compiler
} // namespace internal
} // namespace v8