blob: 460384cf56f3964c17e8c2e3be83637242c53993 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/adapters.h"
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
namespace v8 {
namespace internal {
namespace compiler {
// Adds IA32-specific methods for generating operands.
class IA32OperandGenerator final : public OperandGenerator {
public:
explicit IA32OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand UseByteRegister(Node* node) {
// TODO(titzer): encode byte register use constraints.
return UseFixed(node, edx);
}
InstructionOperand DefineAsByteRegister(Node* node) {
// TODO(titzer): encode byte register def constraints.
return DefineAsRegister(node);
}
bool CanBeImmediate(Node* node) {
switch (node->opcode()) {
case IrOpcode::kInt32Constant:
case IrOpcode::kNumberConstant:
case IrOpcode::kExternalConstant:
return true;
case IrOpcode::kHeapConstant: {
// Constants in new space cannot be used as immediates in V8 because
// the GC does not scan code objects when collecting the new generation.
Unique<HeapObject> value = OpParameter<Unique<HeapObject> >(node);
Isolate* isolate = value.handle()->GetIsolate();
return !isolate->heap()->InNewSpace(*value.handle());
}
default:
return false;
}
}
AddressingMode GenerateMemoryOperandInputs(Node* index, int scale, Node* base,
Node* displacement_node,
InstructionOperand inputs[],
size_t* input_count) {
AddressingMode mode = kMode_MRI;
int32_t displacement = (displacement_node == NULL)
? 0
: OpParameter<int32_t>(displacement_node);
if (base != NULL) {
if (base->opcode() == IrOpcode::kInt32Constant) {
displacement += OpParameter<int32_t>(base);
base = NULL;
}
}
if (base != NULL) {
inputs[(*input_count)++] = UseRegister(base);
if (index != NULL) {
DCHECK(scale >= 0 && scale <= 3);
inputs[(*input_count)++] = UseRegister(index);
if (displacement != 0) {
inputs[(*input_count)++] = TempImmediate(displacement);
static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I,
kMode_MR4I, kMode_MR8I};
mode = kMRnI_modes[scale];
} else {
static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2,
kMode_MR4, kMode_MR8};
mode = kMRn_modes[scale];
}
} else {
if (displacement == 0) {
mode = kMode_MR;
} else {
inputs[(*input_count)++] = TempImmediate(displacement);
mode = kMode_MRI;
}
}
} else {
DCHECK(scale >= 0 && scale <= 3);
if (index != NULL) {
inputs[(*input_count)++] = UseRegister(index);
if (displacement != 0) {
inputs[(*input_count)++] = TempImmediate(displacement);
static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I,
kMode_M4I, kMode_M8I};
mode = kMnI_modes[scale];
} else {
static const AddressingMode kMn_modes[] = {kMode_MR, kMode_M2,
kMode_M4, kMode_M8};
mode = kMn_modes[scale];
}
} else {
inputs[(*input_count)++] = TempImmediate(displacement);
return kMode_MI;
}
}
return mode;
}
AddressingMode GetEffectiveAddressMemoryOperand(Node* node,
InstructionOperand inputs[],
size_t* input_count) {
BaseWithIndexAndDisplacement32Matcher m(node, true);
DCHECK(m.matches());
if ((m.displacement() == NULL || CanBeImmediate(m.displacement()))) {
return GenerateMemoryOperandInputs(m.index(), m.scale(), m.base(),
m.displacement(), inputs, input_count);
} else {
inputs[(*input_count)++] = UseRegister(node->InputAt(0));
inputs[(*input_count)++] = UseRegister(node->InputAt(1));
return kMode_MR1;
}
}
bool CanBeBetterLeftOperand(Node* node) const {
return !selector()->IsLive(node);
}
};
namespace {
void VisitRO(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
IA32OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void VisitRR(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
IA32OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void VisitRROFloat(InstructionSelector* selector, Node* node,
ArchOpcode avx_opcode, ArchOpcode sse_opcode) {
IA32OperandGenerator g(selector);
InstructionOperand operand0 = g.UseRegister(node->InputAt(0));
InstructionOperand operand1 = g.Use(node->InputAt(1));
if (selector->IsSupported(AVX)) {
selector->Emit(avx_opcode, g.DefineAsRegister(node), operand0, operand1);
} else {
selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0, operand1);
}
}
void VisitFloatUnop(InstructionSelector* selector, Node* node, Node* input,
ArchOpcode avx_opcode, ArchOpcode sse_opcode) {
IA32OperandGenerator g(selector);
if (selector->IsSupported(AVX)) {
selector->Emit(avx_opcode, g.DefineAsRegister(node), g.Use(input));
} else {
selector->Emit(sse_opcode, g.DefineSameAsFirst(node), g.UseRegister(input));
}
}
} // namespace
void InstructionSelector::VisitLoad(Node* node) {
MachineType rep = RepresentationOf(OpParameter<LoadRepresentation>(node));
MachineType typ = TypeOf(OpParameter<LoadRepresentation>(node));
ArchOpcode opcode;
switch (rep) {
case kRepFloat32:
opcode = kIA32Movss;
break;
case kRepFloat64:
opcode = kIA32Movsd;
break;
case kRepBit: // Fall through.
case kRepWord8:
opcode = typ == kTypeInt32 ? kIA32Movsxbl : kIA32Movzxbl;
break;
case kRepWord16:
opcode = typ == kTypeInt32 ? kIA32Movsxwl : kIA32Movzxwl;
break;
case kRepTagged: // Fall through.
case kRepWord32:
opcode = kIA32Movl;
break;
default:
UNREACHABLE();
return;
}
IA32OperandGenerator g(this);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionOperand inputs[3];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code = opcode | AddressingModeField::encode(mode);
Emit(code, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitStore(Node* node) {
IA32OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = OpParameter<StoreRepresentation>(node);
MachineType rep = RepresentationOf(store_rep.machine_type());
if (store_rep.write_barrier_kind() == kFullWriteBarrier) {
DCHECK_EQ(kRepTagged, rep);
// TODO(dcarney): refactor RecordWrite function to take temp registers
// and pass them here instead of using fixed regs
if (g.CanBeImmediate(index)) {
InstructionOperand temps[] = {g.TempRegister(ecx), g.TempRegister()};
Emit(kIA32StoreWriteBarrier, g.NoOutput(), g.UseFixed(base, ebx),
g.UseImmediate(index), g.UseFixed(value, ecx), arraysize(temps),
temps);
} else {
InstructionOperand temps[] = {g.TempRegister(ecx), g.TempRegister(edx)};
Emit(kIA32StoreWriteBarrier, g.NoOutput(), g.UseFixed(base, ebx),
g.UseFixed(index, ecx), g.UseFixed(value, edx), arraysize(temps),
temps);
}
return;
}
DCHECK_EQ(kNoWriteBarrier, store_rep.write_barrier_kind());
ArchOpcode opcode;
switch (rep) {
case kRepFloat32:
opcode = kIA32Movss;
break;
case kRepFloat64:
opcode = kIA32Movsd;
break;
case kRepBit: // Fall through.
case kRepWord8:
opcode = kIA32Movb;
break;
case kRepWord16:
opcode = kIA32Movw;
break;
case kRepTagged: // Fall through.
case kRepWord32:
opcode = kIA32Movl;
break;
default:
UNREACHABLE();
return;
}
InstructionOperand val;
if (g.CanBeImmediate(value)) {
val = g.UseImmediate(value);
} else if (rep == kRepWord8 || rep == kRepBit) {
val = g.UseByteRegister(value);
} else {
val = g.UseRegister(value);
}
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code = opcode | AddressingModeField::encode(mode);
inputs[input_count++] = val;
Emit(code, 0, static_cast<InstructionOperand*>(NULL), input_count, inputs);
}
void InstructionSelector::VisitCheckedLoad(Node* node) {
MachineType rep = RepresentationOf(OpParameter<MachineType>(node));
MachineType typ = TypeOf(OpParameter<MachineType>(node));
IA32OperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
ArchOpcode opcode;
switch (rep) {
case kRepWord8:
opcode = typ == kTypeInt32 ? kCheckedLoadInt8 : kCheckedLoadUint8;
break;
case kRepWord16:
opcode = typ == kTypeInt32 ? kCheckedLoadInt16 : kCheckedLoadUint16;
break;
case kRepWord32:
opcode = kCheckedLoadWord32;
break;
case kRepFloat32:
opcode = kCheckedLoadFloat32;
break;
case kRepFloat64:
opcode = kCheckedLoadFloat64;
break;
default:
UNREACHABLE();
return;
}
InstructionOperand offset_operand = g.UseRegister(offset);
InstructionOperand length_operand =
g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length);
if (g.CanBeImmediate(buffer)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), offset_operand, length_operand,
offset_operand, g.UseImmediate(buffer));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MR1),
g.DefineAsRegister(node), offset_operand, length_operand,
g.UseRegister(buffer), offset_operand);
}
}
void InstructionSelector::VisitCheckedStore(Node* node) {
MachineType rep = RepresentationOf(OpParameter<MachineType>(node));
IA32OperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
Node* const value = node->InputAt(3);
ArchOpcode opcode;
switch (rep) {
case kRepWord8:
opcode = kCheckedStoreWord8;
break;
case kRepWord16:
opcode = kCheckedStoreWord16;
break;
case kRepWord32:
opcode = kCheckedStoreWord32;
break;
case kRepFloat32:
opcode = kCheckedStoreFloat32;
break;
case kRepFloat64:
opcode = kCheckedStoreFloat64;
break;
default:
UNREACHABLE();
return;
}
InstructionOperand value_operand =
g.CanBeImmediate(value)
? g.UseImmediate(value)
: ((rep == kRepWord8 || rep == kRepBit) ? g.UseByteRegister(value)
: g.UseRegister(value));
InstructionOperand offset_operand = g.UseRegister(offset);
InstructionOperand length_operand =
g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length);
if (g.CanBeImmediate(buffer)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
offset_operand, length_operand, value_operand, offset_operand,
g.UseImmediate(buffer));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MR1), g.NoOutput(),
offset_operand, length_operand, value_operand, g.UseRegister(buffer),
offset_operand);
}
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
// TODO(turbofan): match complex addressing modes.
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// mov eax, [ebp-0x10]
// add eax, [ebp-0x10]
// jo label
InstructionOperand const input = g.UseRegister(left);
inputs[input_count++] = input;
inputs[input_count++] = input;
} else if (g.CanBeImmediate(right)) {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.UseImmediate(right);
} else {
if (node->op()->HasProperty(Operator::kCommutative) &&
g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.Use(right);
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
outputs[output_count++] = g.DefineSameAsFirst(node);
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsByteRegister(cont->result());
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->Emit(cont->Encode(opcode), output_count, outputs, input_count,
inputs);
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
FlagsContinuation cont;
VisitBinop(selector, node, opcode, &cont);
}
void InstructionSelector::VisitWord32And(Node* node) {
VisitBinop(this, node, kIA32And);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kIA32Or);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
IA32OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kIA32Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
} else {
VisitBinop(this, node, kIA32Xor);
}
}
// Shared routine for multiple shift operations.
static inline void VisitShift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
IA32OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, ecx));
}
}
namespace {
void VisitMulHigh(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
IA32OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsFixed(node, edx),
g.UseFixed(node->InputAt(0), eax),
g.UseUniqueRegister(node->InputAt(1)));
}
void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
IA32OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(edx)};
selector->Emit(opcode, g.DefineAsFixed(node, eax),
g.UseFixed(node->InputAt(0), eax),
g.UseUnique(node->InputAt(1)), arraysize(temps), temps);
}
void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
IA32OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsFixed(node, edx),
g.UseFixed(node->InputAt(0), eax),
g.UseUnique(node->InputAt(1)));
}
void EmitLea(InstructionSelector* selector, Node* result, Node* index,
int scale, Node* base, Node* displacement) {
IA32OperandGenerator g(selector);
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode mode = g.GenerateMemoryOperandInputs(
index, scale, base, displacement, inputs, &input_count);
DCHECK_NE(0u, input_count);
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(result);
InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea;
selector->Emit(opcode, 1, outputs, input_count, inputs);
}
} // namespace
void InstructionSelector::VisitWord32Shl(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : NULL;
EmitLea(this, node, index, m.scale(), base, NULL);
return;
}
VisitShift(this, node, kIA32Shl);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitShift(this, node, kIA32Shr);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
VisitShift(this, node, kIA32Sar);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitShift(this, node, kIA32Ror);
}
void InstructionSelector::VisitWord32Clz(Node* node) {
IA32OperandGenerator g(this);
Emit(kIA32Lzcnt, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitInt32Add(Node* node) {
IA32OperandGenerator g(this);
// Try to match the Add to a lea pattern
BaseWithIndexAndDisplacement32Matcher m(node);
if (m.matches() &&
(m.displacement() == NULL || g.CanBeImmediate(m.displacement()))) {
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode mode = g.GenerateMemoryOperandInputs(
m.index(), m.scale(), m.base(), m.displacement(), inputs, &input_count);
DCHECK_NE(0u, input_count);
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea;
Emit(opcode, 1, outputs, input_count, inputs);
return;
}
// No lea pattern match, use add
VisitBinop(this, node, kIA32Add);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
IA32OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kIA32Neg, g.DefineSameAsFirst(node), g.Use(m.right().node()));
} else {
VisitBinop(this, node, kIA32Sub);
}
}
void InstructionSelector::VisitInt32Mul(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : NULL;
EmitLea(this, node, index, m.scale(), base, NULL);
return;
}
IA32OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (g.CanBeImmediate(right)) {
Emit(kIA32Imul, g.DefineAsRegister(node), g.Use(left),
g.UseImmediate(right));
} else {
if (g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(left),
g.Use(right));
}
}
void InstructionSelector::VisitInt32MulHigh(Node* node) {
VisitMulHigh(this, node, kIA32ImulHigh);
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
VisitMulHigh(this, node, kIA32UmulHigh);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitDiv(this, node, kIA32Idiv);
}
void InstructionSelector::VisitUint32Div(Node* node) {
VisitDiv(this, node, kIA32Udiv);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitMod(this, node, kIA32Idiv);
}
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitMod(this, node, kIA32Udiv);
}
void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
VisitRO(this, node, kSSEFloat32ToFloat64);
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
VisitRO(this, node, kSSEInt32ToFloat64);
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
VisitRO(this, node, kSSEUint32ToFloat64);
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
VisitRO(this, node, kSSEFloat64ToInt32);
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
VisitRO(this, node, kSSEFloat64ToUint32);
}
void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
VisitRO(this, node, kSSEFloat64ToFloat32);
}
void InstructionSelector::VisitTruncateFloat64ToInt32(Node* node) {
switch (TruncationModeOf(node->op())) {
case TruncationMode::kJavaScript:
return VisitRR(this, node, kArchTruncateDoubleToI);
case TruncationMode::kRoundToZero:
return VisitRO(this, node, kSSEFloat64ToInt32);
}
UNREACHABLE();
}
void InstructionSelector::VisitFloat32Add(Node* node) {
VisitRROFloat(this, node, kAVXFloat32Add, kSSEFloat32Add);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
VisitRROFloat(this, node, kAVXFloat64Add, kSSEFloat64Add);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
IA32OperandGenerator g(this);
Float32BinopMatcher m(node);
if (m.left().IsMinusZero()) {
VisitFloatUnop(this, node, m.right().node(), kAVXFloat32Neg,
kSSEFloat32Neg);
return;
}
VisitRROFloat(this, node, kAVXFloat32Sub, kSSEFloat32Sub);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
IA32OperandGenerator g(this);
Float64BinopMatcher m(node);
if (m.left().IsMinusZero()) {
if (m.right().IsFloat64RoundDown() &&
CanCover(m.node(), m.right().node())) {
if (m.right().InputAt(0)->opcode() == IrOpcode::kFloat64Sub &&
CanCover(m.right().node(), m.right().InputAt(0))) {
Float64BinopMatcher mright0(m.right().InputAt(0));
if (mright0.left().IsMinusZero()) {
Emit(kSSEFloat64Round | MiscField::encode(kRoundUp),
g.DefineAsRegister(node), g.UseRegister(mright0.right().node()));
return;
}
}
}
VisitFloatUnop(this, node, m.right().node(), kAVXFloat64Neg,
kSSEFloat64Neg);
return;
}
VisitRROFloat(this, node, kAVXFloat64Sub, kSSEFloat64Sub);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitRROFloat(this, node, kAVXFloat32Mul, kSSEFloat32Mul);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
VisitRROFloat(this, node, kAVXFloat64Mul, kSSEFloat64Mul);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitRROFloat(this, node, kAVXFloat32Div, kSSEFloat32Div);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitRROFloat(this, node, kAVXFloat64Div, kSSEFloat64Div);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister(eax)};
Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1,
temps);
}
void InstructionSelector::VisitFloat32Max(Node* node) {
VisitRROFloat(this, node, kAVXFloat32Max, kSSEFloat32Max);
}
void InstructionSelector::VisitFloat64Max(Node* node) {
VisitRROFloat(this, node, kAVXFloat64Max, kSSEFloat64Max);
}
void InstructionSelector::VisitFloat32Min(Node* node) {
VisitRROFloat(this, node, kAVXFloat32Min, kSSEFloat32Min);
}
void InstructionSelector::VisitFloat64Min(Node* node) {
VisitRROFloat(this, node, kAVXFloat64Min, kSSEFloat64Min);
}
void InstructionSelector::VisitFloat32Abs(Node* node) {
IA32OperandGenerator g(this);
VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat32Abs, kSSEFloat32Abs);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
IA32OperandGenerator g(this);
VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat64Abs, kSSEFloat64Abs);
}
void InstructionSelector::VisitFloat32Sqrt(Node* node) {
VisitRO(this, node, kSSEFloat32Sqrt);
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
VisitRO(this, node, kSSEFloat64Sqrt);
}
void InstructionSelector::VisitFloat64RoundDown(Node* node) {
VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundDown));
}
void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundToZero));
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitCall(Node* node, BasicBlock* handler) {
IA32OperandGenerator g(this);
const CallDescriptor* descriptor = OpParameter<const CallDescriptor*>(node);
FrameStateDescriptor* frame_state_descriptor = nullptr;
if (descriptor->NeedsFrameState()) {
frame_state_descriptor =
GetFrameStateDescriptor(node->InputAt(descriptor->InputCount()));
}
CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
// Compute InstructionOperands for inputs and outputs.
InitializeCallBuffer(node, &buffer, true, true);
// Prepare for C function call.
if (descriptor->IsCFunctionCall()) {
InstructionOperand temps[] = {g.TempRegister()};
size_t const temp_count = arraysize(temps);
Emit(kArchPrepareCallCFunction |
MiscField::encode(static_cast<int>(descriptor->CParameterCount())),
0, nullptr, 0, nullptr, temp_count, temps);
// Poke any stack arguments.
for (size_t n = 0; n < buffer.pushed_nodes.size(); ++n) {
if (Node* node = buffer.pushed_nodes[n]) {
int const slot = static_cast<int>(n);
InstructionOperand value =
g.CanBeImmediate(node) ? g.UseImmediate(node) : g.UseRegister(node);
Emit(kIA32Poke | MiscField::encode(slot), g.NoOutput(), value);
}
}
} else {
// Push any stack arguments.
for (Node* node : base::Reversed(buffer.pushed_nodes)) {
// TODO(titzer): handle pushing double parameters.
InstructionOperand value =
g.CanBeImmediate(node)
? g.UseImmediate(node)
: IsSupported(ATOM) ? g.UseRegister(node) : g.Use(node);
Emit(kIA32Push, g.NoOutput(), value);
}
}
// Pass label of exception handler block.
CallDescriptor::Flags flags = descriptor->flags();
if (handler) {
DCHECK_EQ(IrOpcode::kIfException, handler->front()->opcode());
IfExceptionHint hint = OpParameter<IfExceptionHint>(handler->front());
if (hint == IfExceptionHint::kLocallyCaught) {
flags |= CallDescriptor::kHasLocalCatchHandler;
}
flags |= CallDescriptor::kHasExceptionHandler;
buffer.instruction_args.push_back(g.Label(handler));
}
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallAddress:
opcode =
kArchCallCFunction |
MiscField::encode(static_cast<int>(descriptor->CParameterCount()));
break;
case CallDescriptor::kCallCodeObject:
opcode = kArchCallCodeObject | MiscField::encode(flags);
break;
case CallDescriptor::kCallJSFunction:
opcode = kArchCallJSFunction | MiscField::encode(flags);
break;
default:
UNREACHABLE();
return;
}
// Emit the call instruction.
size_t const output_count = buffer.outputs.size();
auto* outputs = output_count ? &buffer.outputs.front() : nullptr;
Emit(opcode, output_count, outputs, buffer.instruction_args.size(),
&buffer.instruction_args.front())->MarkAsCall();
}
void InstructionSelector::VisitTailCall(Node* node) {
IA32OperandGenerator g(this);
CallDescriptor const* descriptor = OpParameter<CallDescriptor const*>(node);
DCHECK_NE(0, descriptor->flags() & CallDescriptor::kSupportsTailCalls);
DCHECK_EQ(0, descriptor->flags() & CallDescriptor::kPatchableCallSite);
DCHECK_EQ(0, descriptor->flags() & CallDescriptor::kNeedsNopAfterCall);
// TODO(turbofan): Relax restriction for stack parameters.
if (linkage()->GetIncomingDescriptor()->CanTailCall(node)) {
CallBuffer buffer(zone(), descriptor, nullptr);
// Compute InstructionOperands for inputs and outputs.
InitializeCallBuffer(node, &buffer, true, true);
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject:
case CallDescriptor::kInterpreterDispatch:
opcode = kArchTailCallCodeObject;
break;
case CallDescriptor::kCallJSFunction:
opcode = kArchTailCallJSFunction;
break;
default:
UNREACHABLE();
return;
}
opcode |= MiscField::encode(descriptor->flags());
// Emit the tailcall instruction.
Emit(opcode, 0, nullptr, buffer.instruction_args.size(),
&buffer.instruction_args.front());
} else {
FrameStateDescriptor* frame_state_descriptor =
descriptor->NeedsFrameState()
? GetFrameStateDescriptor(
node->InputAt(static_cast<int>(descriptor->InputCount())))
: nullptr;
CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
// Compute InstructionOperands for inputs and outputs.
InitializeCallBuffer(node, &buffer, true, true);
// Push any stack arguments.
for (Node* node : base::Reversed(buffer.pushed_nodes)) {
// TODO(titzer): Handle pushing double parameters.
InstructionOperand value =
g.CanBeImmediate(node)
? g.UseImmediate(node)
: IsSupported(ATOM) ? g.UseRegister(node) : g.Use(node);
Emit(kIA32Push, g.NoOutput(), value);
}
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject:
opcode = kArchCallCodeObject;
break;
case CallDescriptor::kCallJSFunction:
opcode = kArchCallJSFunction;
break;
default:
UNREACHABLE();
return;
}
opcode |= MiscField::encode(descriptor->flags());
// Emit the call instruction.
size_t output_count = buffer.outputs.size();
auto* outputs = &buffer.outputs.front();
Emit(opcode, output_count, outputs, buffer.instruction_args.size(),
&buffer.instruction_args.front())->MarkAsCall();
Emit(kArchRet, 0, nullptr, output_count, outputs);
}
}
namespace {
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
if (cont->IsBranch()) {
selector->Emit(cont->Encode(opcode), g.NoOutput(), left, right,
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else {
DCHECK(cont->IsSet());
selector->Emit(cont->Encode(opcode), g.DefineAsByteRegister(cont->result()),
left, right);
}
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
Node* left, Node* right, FlagsContinuation* cont,
bool commutative) {
IA32OperandGenerator g(selector);
if (commutative && g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont);
}
// Shared routine for multiple float32 compare operations (inputs commuted).
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
VisitCompare(selector, kSSEFloat32Cmp, right, left, cont, false);
}
// Shared routine for multiple float64 compare operations (inputs commuted).
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
VisitCompare(selector, kSSEFloat64Cmp, right, left, cont, false);
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right)) {
VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right), cont);
} else if (g.CanBeImmediate(left)) {
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
VisitCompare(selector, opcode, g.Use(right), g.UseImmediate(left), cont);
} else {
VisitCompare(selector, opcode, left, right, cont,
node->op()->HasProperty(Operator::kCommutative));
}
}
void VisitWordCompare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
Int32BinopMatcher m(node);
if (m.left().IsLoad() && m.right().IsLoadStackPointer()) {
LoadMatcher<ExternalReferenceMatcher> mleft(m.left().node());
ExternalReference js_stack_limit =
ExternalReference::address_of_stack_limit(selector->isolate());
if (mleft.object().Is(js_stack_limit) && mleft.index().Is(0)) {
// Compare(Load(js_stack_limit), LoadStackPointer)
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
InstructionCode opcode = cont->Encode(kIA32StackCheck);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), g.Label(cont->true_block()),
g.Label(cont->false_block()));
} else {
DCHECK(cont->IsSet());
selector->Emit(opcode, g.DefineAsRegister(cont->result()));
}
return;
}
}
VisitWordCompare(selector, node, kIA32Cmp, cont);
}
// Shared routine for word comparison with zero.
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
// Try to combine the branch with a comparison.
while (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal: {
// Try to combine with comparisons against 0 by simply inverting the
// continuation.
Int32BinopMatcher m(value);
if (m.right().Is(0)) {
user = value;
value = m.left().node();
cont->Negate();
continue;
}
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWordCompare(selector, value, cont);
}
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either NULL, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == NULL || selector->IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kIA32Add, cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kIA32Sub, cont);
default:
break;
}
}
}
break;
case IrOpcode::kInt32Sub:
return VisitWordCompare(selector, value, cont);
case IrOpcode::kWord32And:
return VisitWordCompare(selector, value, kIA32Test, cont);
default:
break;
}
break;
}
// Continuation could not be combined with a compare, emit compare against 0.
IA32OperandGenerator g(selector);
VisitCompare(selector, kIA32Cmp, g.Use(value), g.TempImmediate(0), cont);
}
} // namespace
void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
BasicBlock* fbranch) {
FlagsContinuation cont(kNotEqual, tbranch, fbranch);
VisitWordCompareZero(this, branch, branch->InputAt(0), &cont);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
IA32OperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchLookupSwitch.
size_t table_space_cost = 4 + sw.value_range;
size_t table_time_cost = 3;
size_t lookup_space_cost = 3 + 2 * sw.case_count;
size_t lookup_time_cost = sw.case_count;
if (sw.case_count > 4 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value > std::numeric_limits<int32_t>::min()) {
InstructionOperand index_operand = value_operand;
if (sw.min_value) {
index_operand = g.TempRegister();
Emit(kIA32Lea | AddressingModeField::encode(kMode_MRI), index_operand,
value_operand, g.TempImmediate(-sw.min_value));
}
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
// Generate a sequence of conditional jumps.
return EmitLookupSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
FlagsContinuation cont(kEqual, node);
Int32BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWordCompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont(kSignedLessThan, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont(kSignedLessThanOrEqual, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont(kUnsignedLessThan, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont(kOverflow, ovf);
return VisitBinop(this, node, kIA32Add, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kIA32Add, &cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont(kOverflow, ovf);
return VisitBinop(this, node, kIA32Sub, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kIA32Sub, &cont);
}
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont(kUnorderedEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont(kUnsignedGreaterThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont(kUnsignedGreaterThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont(kUnorderedEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont(kUnsignedGreaterThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont(kUnsignedGreaterThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64ExtractLowWord32, g.DefineAsRegister(node),
g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64ExtractHighWord32, g.DefineAsRegister(node),
g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
IA32OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Float64Matcher mleft(left);
if (mleft.HasValue() && (bit_cast<uint64_t>(mleft.Value()) >> 32) == 0u) {
Emit(kSSEFloat64LoadLowWord32, g.DefineAsRegister(node), g.Use(right));
return;
}
Emit(kSSEFloat64InsertLowWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.Use(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
IA32OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Emit(kSSEFloat64InsertHighWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.Use(right));
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
MachineOperatorBuilder::Flags flags =
MachineOperatorBuilder::kFloat32Max |
MachineOperatorBuilder::kFloat32Min |
MachineOperatorBuilder::kFloat64Max |
MachineOperatorBuilder::kFloat64Min |
MachineOperatorBuilder::kWord32ShiftIsSafe;
if (CpuFeatures::IsSupported(SSE4_1)) {
flags |= MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat64RoundTruncate;
}
return flags;
}
} // namespace compiler
} // namespace internal
} // namespace v8