blob: 7052d2531cff56b9212f964efb6b82df33900301 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGpuDevice.h"
#include "GrBlurUtils.h"
#include "GrContext.h"
#include "GrDrawContext.h"
#include "GrFontScaler.h"
#include "GrGpu.h"
#include "GrGpuResourcePriv.h"
#include "GrLayerHoister.h"
#include "GrRecordReplaceDraw.h"
#include "GrStrokeInfo.h"
#include "GrTextContext.h"
#include "GrTracing.h"
#include "SkCanvasPriv.h"
#include "SkDrawProcs.h"
#include "SkErrorInternals.h"
#include "SkGlyphCache.h"
#include "SkGrTexturePixelRef.h"
#include "SkImage_Base.h"
#include "SkImageFilter.h"
#include "SkLayerInfo.h"
#include "SkMaskFilter.h"
#include "SkPathEffect.h"
#include "SkPicture.h"
#include "SkPictureData.h"
#include "SkRRect.h"
#include "SkRecord.h"
#include "SkStroke.h"
#include "SkSurface.h"
#include "SkSurface_Gpu.h"
#include "SkTLazy.h"
#include "SkUtils.h"
#include "SkVertState.h"
#include "SkXfermode.h"
#include "batches/GrRectBatchFactory.h"
#include "effects/GrBicubicEffect.h"
#include "effects/GrDashingEffect.h"
#include "effects/GrSimpleTextureEffect.h"
#include "effects/GrTextureDomain.h"
#if SK_SUPPORT_GPU
enum { kDefaultImageFilterCacheSize = 32 * 1024 * 1024 };
#if 0
extern bool (*gShouldDrawProc)();
#define CHECK_SHOULD_DRAW(draw) \
do { \
if (gShouldDrawProc && !gShouldDrawProc()) return; \
this->prepareDraw(draw); \
} while (0)
#else
#define CHECK_SHOULD_DRAW(draw) this->prepareDraw(draw)
#endif
// This constant represents the screen alignment criterion in texels for
// requiring texture domain clamping to prevent color bleeding when drawing
// a sub region of a larger source image.
#define COLOR_BLEED_TOLERANCE 0.001f
#define DO_DEFERRED_CLEAR() \
do { \
if (fNeedClear) { \
this->clearAll(); \
} \
} while (false) \
///////////////////////////////////////////////////////////////////////////////
#define CHECK_FOR_ANNOTATION(paint) \
do { if (paint.getAnnotation()) { return; } } while (0)
///////////////////////////////////////////////////////////////////////////////
// Helper for turning a bitmap into a texture. If the bitmap is GrTexture backed this
// just accesses the backing GrTexture. Otherwise, it creates a cached texture
// representation and releases it in the destructor.
class AutoBitmapTexture : public SkNoncopyable {
public:
AutoBitmapTexture() {}
AutoBitmapTexture(GrContext* context,
const SkBitmap& bitmap,
const GrTextureParams* params,
GrTexture** texture) {
SkASSERT(texture);
*texture = this->set(context, bitmap, params);
}
GrTexture* set(GrContext* context,
const SkBitmap& bitmap,
const GrTextureParams* params) {
// Either get the texture directly from the bitmap, or else use the cache and
// remember to unref it.
if (GrTexture* bmpTexture = bitmap.getTexture()) {
fTexture.reset(NULL);
return bmpTexture;
} else {
fTexture.reset(GrRefCachedBitmapTexture(context, bitmap, params));
return fTexture.get();
}
}
private:
SkAutoTUnref<GrTexture> fTexture;
};
///////////////////////////////////////////////////////////////////////////////
struct GrSkDrawProcs : public SkDrawProcs {
public:
GrContext* fContext;
GrTextContext* fTextContext;
GrFontScaler* fFontScaler; // cached in the skia glyphcache
};
///////////////////////////////////////////////////////////////////////////////
/** Checks that the alpha type is legal and gets constructor flags. Returns false if device creation
should fail. */
bool SkGpuDevice::CheckAlphaTypeAndGetFlags(
const SkImageInfo* info, SkGpuDevice::InitContents init, unsigned* flags) {
*flags = 0;
if (info) {
switch (info->alphaType()) {
case kPremul_SkAlphaType:
break;
case kOpaque_SkAlphaType:
*flags |= SkGpuDevice::kIsOpaque_Flag;
break;
default: // If it is unpremul or unknown don't try to render
return false;
}
}
if (kClear_InitContents == init) {
*flags |= kNeedClear_Flag;
}
return true;
}
SkGpuDevice* SkGpuDevice::Create(GrRenderTarget* rt, const SkSurfaceProps* props,
InitContents init) {
return SkGpuDevice::Create(rt, rt->width(), rt->height(), props, init);
}
SkGpuDevice* SkGpuDevice::Create(GrRenderTarget* rt, int width, int height,
const SkSurfaceProps* props, InitContents init) {
if (!rt || rt->wasDestroyed()) {
return NULL;
}
unsigned flags;
if (!CheckAlphaTypeAndGetFlags(NULL, init, &flags)) {
return NULL;
}
return SkNEW_ARGS(SkGpuDevice, (rt, width, height, props, flags));
}
SkGpuDevice* SkGpuDevice::Create(GrContext* context, SkSurface::Budgeted budgeted,
const SkImageInfo& info, int sampleCount,
const SkSurfaceProps* props, InitContents init) {
unsigned flags;
if (!CheckAlphaTypeAndGetFlags(&info, init, &flags)) {
return NULL;
}
SkAutoTUnref<GrRenderTarget> rt(CreateRenderTarget(context, budgeted, info, sampleCount));
if (NULL == rt) {
return NULL;
}
return SkNEW_ARGS(SkGpuDevice, (rt, info.width(), info.height(), props, flags));
}
SkGpuDevice::SkGpuDevice(GrRenderTarget* rt, int width, int height,
const SkSurfaceProps* props, unsigned flags)
: INHERITED(SkSurfacePropsCopyOrDefault(props))
{
fDrawProcs = NULL;
fContext = SkRef(rt->getContext());
fNeedClear = SkToBool(flags & kNeedClear_Flag);
fOpaque = SkToBool(flags & kIsOpaque_Flag);
fRenderTarget = SkRef(rt);
SkAlphaType at = fOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType;
SkImageInfo info = rt->surfacePriv().info(at).makeWH(width, height);
SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (info, rt));
fLegacyBitmap.setInfo(info);
fLegacyBitmap.setPixelRef(pr)->unref();
fDrawContext.reset(SkRef(fContext->drawContext(&this->surfaceProps())));
}
GrRenderTarget* SkGpuDevice::CreateRenderTarget(GrContext* context, SkSurface::Budgeted budgeted,
const SkImageInfo& origInfo, int sampleCount) {
if (kUnknown_SkColorType == origInfo.colorType() ||
origInfo.width() < 0 || origInfo.height() < 0) {
return NULL;
}
if (!context) {
return NULL;
}
SkColorType ct = origInfo.colorType();
SkAlphaType at = origInfo.alphaType();
if (kRGB_565_SkColorType == ct) {
at = kOpaque_SkAlphaType; // force this setting
} else if (ct != kBGRA_8888_SkColorType && ct != kRGBA_8888_SkColorType) {
// Fall back from whatever ct was to default of kRGBA or kBGRA which is aliased as kN32
ct = kN32_SkColorType;
}
if (kOpaque_SkAlphaType != at) {
at = kPremul_SkAlphaType; // force this setting
}
const SkImageInfo info = SkImageInfo::Make(origInfo.width(), origInfo.height(), ct, at);
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fWidth = info.width();
desc.fHeight = info.height();
desc.fConfig = SkImageInfo2GrPixelConfig(info);
desc.fSampleCnt = sampleCount;
GrTexture* texture = context->textureProvider()->createTexture(
desc, SkToBool(budgeted), NULL, 0);
if (NULL == texture) {
return NULL;
}
SkASSERT(NULL != texture->asRenderTarget());
return texture->asRenderTarget();
}
SkGpuDevice::~SkGpuDevice() {
if (fDrawProcs) {
delete fDrawProcs;
}
fRenderTarget->unref();
fContext->unref();
}
///////////////////////////////////////////////////////////////////////////////
bool SkGpuDevice::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes,
int x, int y) {
DO_DEFERRED_CLEAR();
// TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels
GrPixelConfig config = SkImageInfo2GrPixelConfig(dstInfo);
if (kUnknown_GrPixelConfig == config) {
return false;
}
uint32_t flags = 0;
if (kUnpremul_SkAlphaType == dstInfo.alphaType()) {
flags = GrContext::kUnpremul_PixelOpsFlag;
}
return fRenderTarget->readPixels(x, y, dstInfo.width(), dstInfo.height(), config, dstPixels,
dstRowBytes, flags);
}
bool SkGpuDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes,
int x, int y) {
// TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels
GrPixelConfig config = SkImageInfo2GrPixelConfig(info);
if (kUnknown_GrPixelConfig == config) {
return false;
}
uint32_t flags = 0;
if (kUnpremul_SkAlphaType == info.alphaType()) {
flags = GrContext::kUnpremul_PixelOpsFlag;
}
fRenderTarget->writePixels(x, y, info.width(), info.height(), config, pixels, rowBytes, flags);
// need to bump our genID for compatibility with clients that "know" we have a bitmap
fLegacyBitmap.notifyPixelsChanged();
return true;
}
const SkBitmap& SkGpuDevice::onAccessBitmap() {
DO_DEFERRED_CLEAR();
return fLegacyBitmap;
}
bool SkGpuDevice::onAccessPixels(SkPixmap* pmap) {
DO_DEFERRED_CLEAR();
// For compatibility with clients the know we're backed w/ a bitmap, and want to inspect its
// genID. When we can hide/remove that fact, we can eliminate this call to notify.
// ... ugh.
fLegacyBitmap.notifyPixelsChanged();
return false;
}
void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) {
INHERITED::onAttachToCanvas(canvas);
// Canvas promises that this ptr is valid until onDetachFromCanvas is called
fClipStack.reset(SkRef(canvas->getClipStack()));
}
void SkGpuDevice::onDetachFromCanvas() {
INHERITED::onDetachFromCanvas();
fClip.reset();
fClipStack.reset(NULL);
}
// call this every draw call, to ensure that the context reflects our state,
// and not the state from some other canvas/device
void SkGpuDevice::prepareDraw(const SkDraw& draw) {
SkASSERT(fClipStack.get());
SkASSERT(draw.fClipStack && draw.fClipStack == fClipStack);
fClip.setClipStack(fClipStack, &this->getOrigin());
DO_DEFERRED_CLEAR();
}
GrRenderTarget* SkGpuDevice::accessRenderTarget() {
DO_DEFERRED_CLEAR();
return fRenderTarget;
}
void SkGpuDevice::clearAll() {
GrColor color = 0;
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::clearAll", fContext);
SkIRect rect = SkIRect::MakeWH(this->width(), this->height());
fDrawContext->clear(fRenderTarget, &rect, color, true);
fNeedClear = false;
}
void SkGpuDevice::replaceRenderTarget(bool shouldRetainContent) {
// Caller must have accessed the render target, because it knows the rt must be replaced.
SkASSERT(!fNeedClear);
SkSurface::Budgeted budgeted =
fRenderTarget->resourcePriv().isBudgeted() ? SkSurface::kYes_Budgeted
: SkSurface::kNo_Budgeted;
SkAutoTUnref<GrRenderTarget> newRT(CreateRenderTarget(
fRenderTarget->getContext(), budgeted, this->imageInfo(), fRenderTarget->desc().fSampleCnt));
if (NULL == newRT) {
return;
}
if (shouldRetainContent) {
if (fRenderTarget->wasDestroyed()) {
return;
}
this->context()->copySurface(newRT, fRenderTarget);
}
SkASSERT(fRenderTarget != newRT);
fRenderTarget->unref();
fRenderTarget = newRT.detach();
#ifdef SK_DEBUG
SkImageInfo info = fRenderTarget->surfacePriv().info(fOpaque ? kOpaque_SkAlphaType :
kPremul_SkAlphaType);
SkASSERT(info == fLegacyBitmap.info());
#endif
SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (fLegacyBitmap.info(), fRenderTarget));
fLegacyBitmap.setPixelRef(pr)->unref();
fDrawContext.reset(SkRef(fRenderTarget->getContext()->drawContext(&this->surfaceProps())));
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPaint", fContext);
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix, true, &grPaint)) {
return;
}
fDrawContext->drawPaint(fRenderTarget, fClip, grPaint, *draw.fMatrix);
}
// must be in SkCanvas::PointMode order
static const GrPrimitiveType gPointMode2PrimtiveType[] = {
kPoints_GrPrimitiveType,
kLines_GrPrimitiveType,
kLineStrip_GrPrimitiveType
};
// suppress antialiasing on axis-aligned integer-coordinate lines
static bool needs_antialiasing(SkCanvas::PointMode mode, size_t count, const SkPoint pts[]) {
if (mode == SkCanvas::PointMode::kPoints_PointMode) {
return false;
}
if (count == 2) {
// We do not antialias as long as the primary axis of the line is integer-aligned, even if
// the other coordinates are not. This does mean the two end pixels of the line will be
// sharp even when they shouldn't be, but turning antialiasing on (as things stand
// currently) means that the line will turn into a two-pixel-wide blur. While obviously a
// more complete fix is possible down the road, for the time being we accept the error on
// the two end pixels as being the lesser of two evils.
if (pts[0].fX == pts[1].fX) {
return ((int) pts[0].fX) != pts[0].fX;
}
if (pts[0].fY == pts[1].fY) {
return ((int) pts[0].fY) != pts[0].fY;
}
}
return true;
}
void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode,
size_t count, const SkPoint pts[], const SkPaint& paint) {
CHECK_FOR_ANNOTATION(paint);
CHECK_SHOULD_DRAW(draw);
SkScalar width = paint.getStrokeWidth();
if (width < 0) {
return;
}
if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) {
GrStrokeInfo strokeInfo(paint, SkPaint::kStroke_Style);
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix, true,
&grPaint)) {
return;
}
SkPath path;
path.setIsVolatile(true);
path.moveTo(pts[0]);
path.lineTo(pts[1]);
fDrawContext->drawPath(fRenderTarget, fClip, grPaint, *draw.fMatrix, path, strokeInfo);
return;
}
// we only handle non-antialiased hairlines and paints without path effects or mask filters,
// else we let the SkDraw call our drawPath()
if (width > 0 || paint.getPathEffect() || paint.getMaskFilter() ||
(paint.isAntiAlias() && needs_antialiasing(mode, count, pts))) {
draw.drawPoints(mode, count, pts, paint, true);
return;
}
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix, true, &grPaint)) {
return;
}
fDrawContext->drawVertices(fRenderTarget,
fClip,
grPaint,
*draw.fMatrix,
gPointMode2PrimtiveType[mode],
SkToS32(count),
(SkPoint*)pts,
NULL,
NULL,
NULL,
0);
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect,
const SkPaint& paint) {
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRect", fContext);
CHECK_FOR_ANNOTATION(paint);
CHECK_SHOULD_DRAW(draw);
bool doStroke = paint.getStyle() != SkPaint::kFill_Style;
SkScalar width = paint.getStrokeWidth();
/*
We have special code for hairline strokes, miter-strokes, bevel-stroke
and fills. Anything else we just call our path code.
*/
bool usePath = doStroke && width > 0 &&
(paint.getStrokeJoin() == SkPaint::kRound_Join ||
(paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty()));
// a few other reasons we might need to call drawPath...
if (paint.getMaskFilter() ||
paint.getStyle() == SkPaint::kStrokeAndFill_Style) { // we can't both stroke and fill rects
usePath = true;
}
if (!usePath && paint.isAntiAlias() && !draw.fMatrix->rectStaysRect()) {
usePath = true;
}
GrStrokeInfo strokeInfo(paint);
const SkPathEffect* pe = paint.getPathEffect();
if (!usePath && pe && !strokeInfo.isDashed()) {
usePath = true;
}
if (usePath) {
SkPath path;
path.setIsVolatile(true);
path.addRect(rect);
this->drawPath(draw, path, paint, NULL, true);
return;
}
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix, true, &grPaint)) {
return;
}
fDrawContext->drawRect(fRenderTarget, fClip, grPaint, *draw.fMatrix, rect, &strokeInfo);
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect,
const SkPaint& paint) {
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRRect", fContext);
CHECK_FOR_ANNOTATION(paint);
CHECK_SHOULD_DRAW(draw);
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix, true, &grPaint)) {
return;
}
GrStrokeInfo strokeInfo(paint);
if (paint.getMaskFilter()) {
// try to hit the fast path for drawing filtered round rects
SkRRect devRRect;
if (rect.transform(*draw.fMatrix, &devRRect)) {
if (devRRect.allCornersCircular()) {
SkRect maskRect;
if (paint.getMaskFilter()->canFilterMaskGPU(devRRect.rect(),
draw.fClip->getBounds(),
*draw.fMatrix,
&maskRect)) {
SkIRect finalIRect;
maskRect.roundOut(&finalIRect);
if (draw.fClip->quickReject(finalIRect)) {
// clipped out
return;
}
if (paint.getMaskFilter()->directFilterRRectMaskGPU(fContext->textureProvider(),
fDrawContext,
fRenderTarget,
&grPaint,
fClip,
*draw.fMatrix,
strokeInfo,
devRRect)) {
return;
}
}
}
}
}
bool usePath = false;
if (paint.getMaskFilter()) {
usePath = true;
} else {
const SkPathEffect* pe = paint.getPathEffect();
if (pe && !strokeInfo.isDashed()) {
usePath = true;
}
}
if (usePath) {
SkPath path;
path.setIsVolatile(true);
path.addRRect(rect);
this->drawPath(draw, path, paint, NULL, true);
return;
}
fDrawContext->drawRRect(fRenderTarget, fClip, grPaint, *draw.fMatrix, rect, strokeInfo);
}
void SkGpuDevice::drawDRRect(const SkDraw& draw, const SkRRect& outer,
const SkRRect& inner, const SkPaint& paint) {
SkStrokeRec stroke(paint);
if (stroke.isFillStyle()) {
CHECK_FOR_ANNOTATION(paint);
CHECK_SHOULD_DRAW(draw);
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix, true,
&grPaint)) {
return;
}
if (NULL == paint.getMaskFilter() && NULL == paint.getPathEffect()) {
fDrawContext->drawDRRect(fRenderTarget, fClip, grPaint, *draw.fMatrix, outer, inner);
return;
}
}
SkPath path;
path.setIsVolatile(true);
path.addRRect(outer);
path.addRRect(inner);
path.setFillType(SkPath::kEvenOdd_FillType);
this->drawPath(draw, path, paint, NULL, true);
}
/////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval,
const SkPaint& paint) {
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawOval", fContext);
CHECK_FOR_ANNOTATION(paint);
CHECK_SHOULD_DRAW(draw);
GrStrokeInfo strokeInfo(paint);
bool usePath = false;
// some basic reasons we might need to call drawPath...
if (paint.getMaskFilter()) {
usePath = true;
} else {
const SkPathEffect* pe = paint.getPathEffect();
if (pe && !strokeInfo.isDashed()) {
usePath = true;
}
}
if (usePath) {
SkPath path;
path.setIsVolatile(true);
path.addOval(oval);
this->drawPath(draw, path, paint, NULL, true);
return;
}
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix, true, &grPaint)) {
return;
}
fDrawContext->drawOval(fRenderTarget, fClip, grPaint, *draw.fMatrix, oval, strokeInfo);
}
#include "SkMaskFilter.h"
///////////////////////////////////////////////////////////////////////////////
static SkBitmap wrap_texture(GrTexture* texture, int width, int height) {
SkBitmap result;
result.setInfo(SkImageInfo::MakeN32Premul(width, height));
result.setPixelRef(SkNEW_ARGS(SkGrPixelRef, (result.info(), texture)))->unref();
return result;
}
void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath,
const SkPaint& paint, const SkMatrix* prePathMatrix,
bool pathIsMutable) {
CHECK_FOR_ANNOTATION(paint);
CHECK_SHOULD_DRAW(draw);
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPath", fContext);
GrBlurUtils::drawPathWithMaskFilter(fContext, fDrawContext, fRenderTarget,
fClip, origSrcPath, paint,
*draw.fMatrix, prePathMatrix,
draw.fClip->getBounds(), pathIsMutable);
}
static const int kBmpSmallTileSize = 1 << 10;
static inline int get_tile_count(const SkIRect& srcRect, int tileSize) {
int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1;
int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1;
return tilesX * tilesY;
}
static int determine_tile_size(const SkBitmap& bitmap, const SkIRect& src, int maxTileSize) {
if (maxTileSize <= kBmpSmallTileSize) {
return maxTileSize;
}
size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize);
size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize);
maxTileTotalTileSize *= maxTileSize * maxTileSize;
smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize;
if (maxTileTotalTileSize > 2 * smallTotalTileSize) {
return kBmpSmallTileSize;
} else {
return maxTileSize;
}
}
// Given a bitmap, an optional src rect, and a context with a clip and matrix determine what
// pixels from the bitmap are necessary.
static void determine_clipped_src_rect(const GrRenderTarget* rt,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkBitmap& bitmap,
const SkRect* srcRectPtr,
SkIRect* clippedSrcIRect) {
clip.getConservativeBounds(rt, clippedSrcIRect, NULL);
SkMatrix inv;
if (!viewMatrix.invert(&inv)) {
clippedSrcIRect->setEmpty();
return;
}
SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect);
inv.mapRect(&clippedSrcRect);
if (srcRectPtr) {
// we've setup src space 0,0 to map to the top left of the src rect.
clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop);
if (!clippedSrcRect.intersect(*srcRectPtr)) {
clippedSrcIRect->setEmpty();
return;
}
}
clippedSrcRect.roundOut(clippedSrcIRect);
SkIRect bmpBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height());
if (!clippedSrcIRect->intersect(bmpBounds)) {
clippedSrcIRect->setEmpty();
}
}
bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap,
const SkMatrix& viewMatrix,
const GrTextureParams& params,
const SkRect* srcRectPtr,
int maxTileSize,
int* tileSize,
SkIRect* clippedSrcRect) const {
// if bitmap is explictly texture backed then just use the texture
if (bitmap.getTexture()) {
return false;
}
// if it's larger than the max tile size, then we have no choice but tiling.
if (bitmap.width() > maxTileSize || bitmap.height() > maxTileSize) {
determine_clipped_src_rect(fRenderTarget, fClip, viewMatrix, bitmap,
srcRectPtr, clippedSrcRect);
*tileSize = determine_tile_size(bitmap, *clippedSrcRect, maxTileSize);
return true;
}
if (bitmap.width() * bitmap.height() < 4 * kBmpSmallTileSize * kBmpSmallTileSize) {
return false;
}
// if the entire texture is already in our cache then no reason to tile it
if (GrIsBitmapInCache(fContext, bitmap, &params)) {
return false;
}
// At this point we know we could do the draw by uploading the entire bitmap
// as a texture. However, if the texture would be large compared to the
// cache size and we don't require most of it for this draw then tile to
// reduce the amount of upload and cache spill.
// assumption here is that sw bitmap size is a good proxy for its size as
// a texture
size_t bmpSize = bitmap.getSize();
size_t cacheSize;
fContext->getResourceCacheLimits(NULL, &cacheSize);
if (bmpSize < cacheSize / 2) {
return false;
}
// Figure out how much of the src we will need based on the src rect and clipping.
determine_clipped_src_rect(fRenderTarget, fClip, viewMatrix, bitmap, srcRectPtr,
clippedSrcRect);
*tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile.
size_t usedTileBytes = get_tile_count(*clippedSrcRect, kBmpSmallTileSize) *
kBmpSmallTileSize * kBmpSmallTileSize;
return usedTileBytes < 2 * bmpSize;
}
void SkGpuDevice::drawBitmap(const SkDraw& origDraw,
const SkBitmap& bitmap,
const SkMatrix& m,
const SkPaint& paint) {
SkMatrix concat;
SkTCopyOnFirstWrite<SkDraw> draw(origDraw);
if (!m.isIdentity()) {
concat.setConcat(*draw->fMatrix, m);
draw.writable()->fMatrix = &concat;
}
this->drawBitmapCommon(*draw, bitmap, NULL, NULL, paint, SkCanvas::kStrict_SrcRectConstraint);
}
// This method outsets 'iRect' by 'outset' all around and then clamps its extents to
// 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner
// of 'iRect' for all possible outsets/clamps.
static inline void clamped_outset_with_offset(SkIRect* iRect,
int outset,
SkPoint* offset,
const SkIRect& clamp) {
iRect->outset(outset, outset);
int leftClampDelta = clamp.fLeft - iRect->fLeft;
if (leftClampDelta > 0) {
offset->fX -= outset - leftClampDelta;
iRect->fLeft = clamp.fLeft;
} else {
offset->fX -= outset;
}
int topClampDelta = clamp.fTop - iRect->fTop;
if (topClampDelta > 0) {
offset->fY -= outset - topClampDelta;
iRect->fTop = clamp.fTop;
} else {
offset->fY -= outset;
}
if (iRect->fRight > clamp.fRight) {
iRect->fRight = clamp.fRight;
}
if (iRect->fBottom > clamp.fBottom) {
iRect->fBottom = clamp.fBottom;
}
}
static bool has_aligned_samples(const SkRect& srcRect,
const SkRect& transformedRect) {
// detect pixel disalignment
if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) -
transformedRect.left()) < COLOR_BLEED_TOLERANCE &&
SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) -
transformedRect.top()) < COLOR_BLEED_TOLERANCE &&
SkScalarAbs(transformedRect.width() - srcRect.width()) <
COLOR_BLEED_TOLERANCE &&
SkScalarAbs(transformedRect.height() - srcRect.height()) <
COLOR_BLEED_TOLERANCE) {
return true;
}
return false;
}
static bool may_color_bleed(const SkRect& srcRect,
const SkRect& transformedRect,
const SkMatrix& m,
bool isMSAA) {
// Only gets called if has_aligned_samples returned false.
// So we can assume that sampling is axis aligned but not texel aligned.
SkASSERT(!has_aligned_samples(srcRect, transformedRect));
SkRect innerSrcRect(srcRect), innerTransformedRect,
outerTransformedRect(transformedRect);
if (isMSAA) {
innerSrcRect.inset(SK_Scalar1, SK_Scalar1);
} else {
innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf);
}
m.mapRect(&innerTransformedRect, innerSrcRect);
// The gap between outerTransformedRect and innerTransformedRect
// represents the projection of the source border area, which is
// problematic for color bleeding. We must check whether any
// destination pixels sample the border area.
outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
SkIRect outer, inner;
outerTransformedRect.round(&outer);
innerTransformedRect.round(&inner);
// If the inner and outer rects round to the same result, it means the
// border does not overlap any pixel centers. Yay!
return inner != outer;
}
static bool needs_texture_domain(const SkBitmap& bitmap,
const SkRect& srcRect,
GrTextureParams &params,
const SkMatrix& contextMatrix,
bool bicubic,
bool isMSAA) {
bool needsTextureDomain = false;
GrTexture* tex = bitmap.getTexture();
int width = tex ? tex->width() : bitmap.width();
int height = tex ? tex->height() : bitmap.height();
if (bicubic || params.filterMode() != GrTextureParams::kNone_FilterMode) {
// Need texture domain if drawing a sub rect
needsTextureDomain = srcRect.width() < width ||
srcRect.height() < height;
if (!bicubic && needsTextureDomain && contextMatrix.rectStaysRect()) {
// sampling is axis-aligned
SkRect transformedRect;
contextMatrix.mapRect(&transformedRect, srcRect);
if (has_aligned_samples(srcRect, transformedRect)) {
params.setFilterMode(GrTextureParams::kNone_FilterMode);
needsTextureDomain = false;
} else {
needsTextureDomain = may_color_bleed(srcRect, transformedRect,
contextMatrix, isMSAA);
}
}
}
return needsTextureDomain;
}
static void draw_aa_bitmap(GrDrawContext* drawContext, GrContext* context,
GrRenderTarget* renderTarget, const GrClip& clip,
const SkMatrix& viewMatrix, const SkMatrix& srcRectToDstRect,
const SkPaint& paint, const SkBitmap* bitmapPtr, const SkSize& dstSize) {
SkShader::TileMode tm[] = {
SkShader::kClamp_TileMode,
SkShader::kClamp_TileMode,
};
bool doBicubic;
GrTextureParams::FilterMode textureFilterMode =
GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), viewMatrix,
srcRectToDstRect,
&doBicubic);
// Setup texture to wrap bitmap
GrTextureParams params(tm, textureFilterMode);
SkAutoTUnref<GrTexture> texture(GrRefCachedBitmapTexture(context, *bitmapPtr, &params));
if (!texture) {
SkErrorInternals::SetError(kInternalError_SkError,
"Couldn't convert bitmap to texture.");
return;
}
// Setup paint
GrColor paintColor = (kAlpha_8_SkColorType == bitmapPtr->colorType()) ?
SkColor2GrColor(paint.getColor()) :
SkColor2GrColorJustAlpha(paint.getColor());
GrPaint grPaint;
// Create and insert texture effect
SkAutoTUnref<const GrFragmentProcessor> fp;
if (doBicubic) {
fp.reset(GrBicubicEffect::Create(grPaint.getProcessorDataManager(), texture,
SkMatrix::I(),
tm));
} else {
fp.reset(GrSimpleTextureEffect::Create(grPaint.getProcessorDataManager(), texture,
SkMatrix::I(), params));
}
// The bitmap read has to be first
grPaint.addColorProcessor(fp);
if (!SkPaint2GrPaintNoShader(context, renderTarget, paint, SkColor2GrColor(paint.getColor()),
false, &grPaint)) {
return;
}
grPaint.setColor(paintColor);
// Setup dst rect and final matrix
SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight};
SkRect devRect;
viewMatrix.mapRect(&devRect, dstRect);
SkMatrix matrix;
matrix.setIDiv(bitmapPtr->width(), bitmapPtr->height());
SkMatrix dstRectToSrcRect;
if (!srcRectToDstRect.invert(&dstRectToSrcRect)) {
return;
}
matrix.preConcat(dstRectToSrcRect);
SkAutoTUnref<GrDrawBatch> batch(GrRectBatchFactory::CreateFillAA(grPaint.getColor(),
viewMatrix,
matrix,
dstRect,
devRect));
drawContext->drawBatch(renderTarget, clip, grPaint, batch);
}
void SkGpuDevice::drawBitmapCommon(const SkDraw& draw,
const SkBitmap& bitmap,
const SkRect* srcRectPtr,
const SkSize* dstSizePtr,
const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
CHECK_SHOULD_DRAW(draw);
SkRect srcRect;
SkSize dstSize;
// If there is no src rect, or the src rect contains the entire bitmap then we're effectively
// in the (easier) bleed case, so update flags.
if (NULL == srcRectPtr) {
SkScalar w = SkIntToScalar(bitmap.width());
SkScalar h = SkIntToScalar(bitmap.height());
dstSize.fWidth = w;
dstSize.fHeight = h;
srcRect.set(0, 0, w, h);
} else {
SkASSERT(dstSizePtr);
srcRect = *srcRectPtr;
dstSize = *dstSizePtr;
}
GrTexture* tex = bitmap.getTexture();
int width = tex ? tex->width() : bitmap.width();
int height = tex ? tex->height() : bitmap.height();
if (srcRect.fLeft <= 0 && srcRect.fTop <= 0 &&
srcRect.fRight >= width && srcRect.fBottom >= height) {
constraint = SkCanvas::kFast_SrcRectConstraint;
}
// If the render target is not msaa and draw is antialiased, we call
// drawRect instead of drawing on the render target directly.
// FIXME: the tiled bitmap code path doesn't currently support
// anti-aliased edges, we work around that for now by drawing directly
// if the image size exceeds maximum texture size.
int maxTextureSize = fContext->caps()->maxTextureSize();
bool directDraw = fRenderTarget->isUnifiedMultisampled() ||
!paint.isAntiAlias() ||
bitmap.width() > maxTextureSize ||
bitmap.height() > maxTextureSize;
// we check whether dst rect are pixel aligned
if (!directDraw) {
bool staysRect = draw.fMatrix->rectStaysRect();
if (staysRect) {
SkRect rect;
SkRect dstRect = SkRect::MakeXYWH(0, 0, dstSize.fWidth, dstSize.fHeight);
draw.fMatrix->mapRect(&rect, dstRect);
const SkScalar *scalars = rect.asScalars();
bool isDstPixelAligned = true;
for (int i = 0; i < 4; i++) {
if (!SkScalarIsInt(scalars[i])) {
isDstPixelAligned = false;
break;
}
}
if (isDstPixelAligned)
directDraw = true;
}
}
if (paint.getMaskFilter() || !directDraw) {
// Convert the bitmap to a shader so that the rect can be drawn
// through drawRect, which supports mask filters.
SkBitmap tmp; // subset of bitmap, if necessary
const SkBitmap* bitmapPtr = &bitmap;
SkMatrix srcRectToDstRect;
if (srcRectPtr) {
srcRectToDstRect.setTranslate(-srcRectPtr->fLeft, -srcRectPtr->fTop);
srcRectToDstRect.postScale(dstSize.fWidth / srcRectPtr->width(),
dstSize.fHeight / srcRectPtr->height());
// In bleed mode we position and trim the bitmap based on the src rect which is
// already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out
// the desired portion of the bitmap and then update 'm' and 'srcRect' to
// compensate.
if (SkCanvas::kStrict_SrcRectConstraint == constraint) {
SkIRect iSrc;
srcRect.roundOut(&iSrc);
SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft),
SkIntToScalar(iSrc.fTop));
if (!bitmap.extractSubset(&tmp, iSrc)) {
return; // extraction failed
}
bitmapPtr = &tmp;
srcRect.offset(-offset.fX, -offset.fY);
// The source rect has changed so update the matrix
srcRectToDstRect.preTranslate(offset.fX, offset.fY);
}
} else {
srcRectToDstRect.reset();
}
// If we have a maskfilter then we can't batch, so we take a slow path. However, we fast
// path the case where we are drawing an AA rect so we can batch many drawImageRect calls
if (paint.getMaskFilter()) {
SkPaint paintWithShader(paint);
paintWithShader.setShader(SkShader::CreateBitmapShader(*bitmapPtr,
SkShader::kClamp_TileMode, SkShader::kClamp_TileMode,
&srcRectToDstRect))->unref();
SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight};
this->drawRect(draw, dstRect, paintWithShader);
} else {
draw_aa_bitmap(fDrawContext, fContext, fRenderTarget, fClip, *draw.fMatrix,
srcRectToDstRect, paint, bitmapPtr, dstSize);
}
return;
}
// If there is no mask filter than it is OK to handle the src rect -> dst rect scaling using
// the view matrix rather than a local matrix.
SkMatrix m;
m.setScale(dstSize.fWidth / srcRect.width(),
dstSize.fHeight / srcRect.height());
SkMatrix viewM = *draw.fMatrix;
viewM.preConcat(m);
GrTextureParams params;
bool doBicubic;
GrTextureParams::FilterMode textureFilterMode =
GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), viewM, SkMatrix::I(),
&doBicubic);
int tileFilterPad;
if (doBicubic) {
tileFilterPad = GrBicubicEffect::kFilterTexelPad;
} else if (GrTextureParams::kNone_FilterMode == textureFilterMode) {
tileFilterPad = 0;
} else {
tileFilterPad = 1;
}
params.setFilterMode(textureFilterMode);
int maxTileSize = fContext->caps()->maxTextureSize() - 2 * tileFilterPad;
int tileSize;
SkIRect clippedSrcRect;
if (this->shouldTileBitmap(bitmap, viewM, params, srcRectPtr, maxTileSize, &tileSize,
&clippedSrcRect)) {
this->drawTiledBitmap(bitmap, viewM, srcRect, clippedSrcRect, params, paint, constraint,
tileSize, doBicubic);
} else {
// take the simple case
bool needsTextureDomain = needs_texture_domain(bitmap,
srcRect,
params,
viewM,
doBicubic,
fRenderTarget->isUnifiedMultisampled());
this->internalDrawBitmap(bitmap,
viewM,
srcRect,
params,
paint,
constraint,
doBicubic,
needsTextureDomain);
}
}
// Break 'bitmap' into several tiles to draw it since it has already
// been determined to be too large to fit in VRAM
void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap,
const SkMatrix& viewMatrix,
const SkRect& srcRect,
const SkIRect& clippedSrcIRect,
const GrTextureParams& params,
const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint,
int tileSize,
bool bicubic) {
// The following pixel lock is technically redundant, but it is desirable
// to lock outside of the tile loop to prevent redecoding the whole image
// at each tile in cases where 'bitmap' holds an SkDiscardablePixelRef that
// is larger than the limit of the discardable memory pool.
SkAutoLockPixels alp(bitmap);
SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);
int nx = bitmap.width() / tileSize;
int ny = bitmap.height() / tileSize;
for (int x = 0; x <= nx; x++) {
for (int y = 0; y <= ny; y++) {
SkRect tileR;
tileR.set(SkIntToScalar(x * tileSize),
SkIntToScalar(y * tileSize),
SkIntToScalar((x + 1) * tileSize),
SkIntToScalar((y + 1) * tileSize));
if (!SkRect::Intersects(tileR, clippedSrcRect)) {
continue;
}
if (!tileR.intersect(srcRect)) {
continue;
}
SkBitmap tmpB;
SkIRect iTileR;
tileR.roundOut(&iTileR);
SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft),
SkIntToScalar(iTileR.fTop));
// Adjust the context matrix to draw at the right x,y in device space
SkMatrix viewM = viewMatrix;
SkMatrix tmpM;
tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop);
viewM.preConcat(tmpM);
if (GrTextureParams::kNone_FilterMode != params.filterMode() || bicubic) {
SkIRect iClampRect;
if (SkCanvas::kFast_SrcRectConstraint == constraint) {
// In bleed mode we want to always expand the tile on all edges
// but stay within the bitmap bounds
iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height());
} else {
// In texture-domain/clamp mode we only want to expand the
// tile on edges interior to "srcRect" (i.e., we want to
// not bleed across the original clamped edges)
srcRect.roundOut(&iClampRect);
}
int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1;
clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect);
}
if (bitmap.extractSubset(&tmpB, iTileR)) {
// now offset it to make it "local" to our tmp bitmap
tileR.offset(-offset.fX, -offset.fY);
GrTextureParams paramsTemp = params;
bool needsTextureDomain = needs_texture_domain(
bitmap, srcRect, paramsTemp,
viewM, bicubic,
fRenderTarget->isUnifiedMultisampled());
this->internalDrawBitmap(tmpB,
viewM,
tileR,
paramsTemp,
paint,
constraint,
bicubic,
needsTextureDomain);
}
}
}
}
/*
* This is called by drawBitmap(), which has to handle images that may be too
* large to be represented by a single texture.
*
* internalDrawBitmap assumes that the specified bitmap will fit in a texture
* and that non-texture portion of the GrPaint has already been setup.
*/
void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap,
const SkMatrix& viewMatrix,
const SkRect& srcRect,
const GrTextureParams& params,
const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint,
bool bicubic,
bool needsTextureDomain) {
SkASSERT(bitmap.width() <= fContext->caps()->maxTextureSize() &&
bitmap.height() <= fContext->caps()->maxTextureSize());
GrTexture* texture;
AutoBitmapTexture abt(fContext, bitmap, &params, &texture);
if (NULL == texture) {
return;
}
SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() };
SkRect paintRect;
SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width()));
SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height()));
paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv),
SkScalarMul(srcRect.fTop, hInv),
SkScalarMul(srcRect.fRight, wInv),
SkScalarMul(srcRect.fBottom, hInv));
SkRect textureDomain = SkRect::MakeEmpty();
// Construct a GrPaint by setting the bitmap texture as the first effect and then configuring
// the rest from the SkPaint.
GrPaint grPaint;
SkAutoTUnref<GrFragmentProcessor> fp;
if (needsTextureDomain && (SkCanvas::kStrict_SrcRectConstraint == constraint)) {
// Use a constrained texture domain to avoid color bleeding
SkScalar left, top, right, bottom;
if (srcRect.width() > SK_Scalar1) {
SkScalar border = SK_ScalarHalf / texture->width();
left = paintRect.left() + border;
right = paintRect.right() - border;
} else {
left = right = SkScalarHalf(paintRect.left() + paintRect.right());
}
if (srcRect.height() > SK_Scalar1) {
SkScalar border = SK_ScalarHalf / texture->height();
top = paintRect.top() + border;
bottom = paintRect.bottom() - border;
} else {
top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom());
}
textureDomain.setLTRB(left, top, right, bottom);
if (bicubic) {
fp.reset(GrBicubicEffect::Create(grPaint.getProcessorDataManager(), texture,
SkMatrix::I(), textureDomain));
} else {
fp.reset(GrTextureDomainEffect::Create(grPaint.getProcessorDataManager(),
texture,
SkMatrix::I(),
textureDomain,
GrTextureDomain::kClamp_Mode,
params.filterMode()));
}
} else if (bicubic) {
SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode());
SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() };
fp.reset(GrBicubicEffect::Create(grPaint.getProcessorDataManager(), texture, SkMatrix::I(),
tileModes));
} else {
fp.reset(GrSimpleTextureEffect::Create(grPaint.getProcessorDataManager(), texture,
SkMatrix::I(), params));
}
grPaint.addColorProcessor(fp);
bool alphaOnly = !(kAlpha_8_SkColorType == bitmap.colorType());
GrColor paintColor = (alphaOnly) ? SkColor2GrColorJustAlpha(paint.getColor()) :
SkColor2GrColor(paint.getColor());
if (!SkPaint2GrPaintNoShader(this->context(), fRenderTarget, paint, paintColor, false,
&grPaint)) {
return;
}
fDrawContext->drawNonAARectToRect(fRenderTarget, fClip, grPaint, viewMatrix, dstRect,
paintRect);
}
bool SkGpuDevice::filterTexture(GrContext* context, GrTexture* texture,
int width, int height,
const SkImageFilter* filter,
const SkImageFilter::Context& ctx,
SkBitmap* result, SkIPoint* offset) {
SkASSERT(filter);
SkImageFilter::Proxy proxy(this);
if (filter->canFilterImageGPU()) {
return filter->filterImageGPU(&proxy, wrap_texture(texture, width, height),
ctx, result, offset);
} else {
return false;
}
}
void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap,
int left, int top, const SkPaint& paint) {
// drawSprite is defined to be in device coords.
CHECK_SHOULD_DRAW(draw);
SkAutoLockPixels alp(bitmap, !bitmap.getTexture());
if (!bitmap.getTexture() && !bitmap.readyToDraw()) {
return;
}
int w = bitmap.width();
int h = bitmap.height();
GrTexture* texture;
// draw sprite uses the default texture params
AutoBitmapTexture abt(fContext, bitmap, NULL, &texture);
if (!texture) {
return;
}
SkImageFilter* filter = paint.getImageFilter();
// This bitmap will own the filtered result as a texture.
SkBitmap filteredBitmap;
if (filter) {
SkIPoint offset = SkIPoint::Make(0, 0);
SkMatrix matrix(*draw.fMatrix);
matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top));
SkIRect clipBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height());
SkAutoTUnref<SkImageFilter::Cache> cache(getImageFilterCache());
// This cache is transient, and is freed (along with all its contained
// textures) when it goes out of scope.
SkImageFilter::Context ctx(matrix, clipBounds, cache);
if (this->filterTexture(fContext, texture, w, h, filter, ctx, &filteredBitmap,
&offset)) {
texture = (GrTexture*) filteredBitmap.getTexture();
w = filteredBitmap.width();
h = filteredBitmap.height();
left += offset.x();
top += offset.y();
} else {
return;
}
}
GrPaint grPaint;
grPaint.addColorTextureProcessor(texture, SkMatrix::I());
if (!SkPaint2GrPaintNoShader(this->context(), fRenderTarget, paint,
SkColor2GrColorJustAlpha(paint.getColor()), false, &grPaint)) {
return;
}
fDrawContext->drawNonAARectToRect(fRenderTarget,
fClip,
grPaint,
SkMatrix::I(),
SkRect::MakeXYWH(SkIntToScalar(left),
SkIntToScalar(top),
SkIntToScalar(w),
SkIntToScalar(h)),
SkRect::MakeXYWH(0,
0,
SK_Scalar1 * w / texture->width(),
SK_Scalar1 * h / texture->height()));
}
void SkGpuDevice::drawBitmapRect(const SkDraw& origDraw, const SkBitmap& bitmap,
const SkRect* src, const SkRect& dst,
const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) {
SkMatrix matrix;
SkRect bitmapBounds, tmpSrc;
bitmapBounds.set(0, 0,
SkIntToScalar(bitmap.width()),
SkIntToScalar(bitmap.height()));
// Compute matrix from the two rectangles
if (src) {
tmpSrc = *src;
} else {
tmpSrc = bitmapBounds;
}
matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit);
// clip the tmpSrc to the bounds of the bitmap. No check needed if src==null.
if (src) {
if (!bitmapBounds.contains(tmpSrc)) {
if (!tmpSrc.intersect(bitmapBounds)) {
return; // nothing to draw
}
}
}
SkRect tmpDst;
matrix.mapRect(&tmpDst, tmpSrc);
SkTCopyOnFirstWrite<SkDraw> draw(origDraw);
if (0 != tmpDst.fLeft || 0 != tmpDst.fTop) {
// Translate so that tempDst's top left is at the origin.
matrix = *origDraw.fMatrix;
matrix.preTranslate(tmpDst.fLeft, tmpDst.fTop);
draw.writable()->fMatrix = &matrix;
}
SkSize dstSize;
dstSize.fWidth = tmpDst.width();
dstSize.fHeight = tmpDst.height();
this->drawBitmapCommon(*draw, bitmap, &tmpSrc, &dstSize, paint, constraint);
}
void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device,
int x, int y, const SkPaint& paint) {
// clear of the source device must occur before CHECK_SHOULD_DRAW
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawDevice", fContext);
SkGpuDevice* dev = static_cast<SkGpuDevice*>(device);
// TODO: If the source device covers the whole of this device, we could
// omit fNeedsClear -related flushing.
// TODO: if source needs clear, we could maybe omit the draw fully.
// drawDevice is defined to be in device coords.
CHECK_SHOULD_DRAW(draw);
GrRenderTarget* devRT = dev->accessRenderTarget();
GrTexture* devTex;
if (NULL == (devTex = devRT->asTexture())) {
return;
}
const SkImageInfo ii = dev->imageInfo();
int w = ii.width();
int h = ii.height();
SkImageFilter* filter = paint.getImageFilter();
// This bitmap will own the filtered result as a texture.
SkBitmap filteredBitmap;
if (filter) {
SkIPoint offset = SkIPoint::Make(0, 0);
SkMatrix matrix(*draw.fMatrix);
matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y));
SkIRect clipBounds = SkIRect::MakeWH(devTex->width(), devTex->height());
// This cache is transient, and is freed (along with all its contained
// textures) when it goes out of scope.
SkAutoTUnref<SkImageFilter::Cache> cache(getImageFilterCache());
SkImageFilter::Context ctx(matrix, clipBounds, cache);
if (this->filterTexture(fContext, devTex, device->width(), device->height(),
filter, ctx, &filteredBitmap, &offset)) {
devTex = filteredBitmap.getTexture();
w = filteredBitmap.width();
h = filteredBitmap.height();
x += offset.fX;
y += offset.fY;
} else {
return;
}
}
GrPaint grPaint;
grPaint.addColorTextureProcessor(devTex, SkMatrix::I());
if (!SkPaint2GrPaintNoShader(this->context(), fRenderTarget, paint,
SkColor2GrColorJustAlpha(paint.getColor()), false, &grPaint)) {
return;
}
SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x),
SkIntToScalar(y),
SkIntToScalar(w),
SkIntToScalar(h));
// The device being drawn may not fill up its texture (e.g. saveLayer uses approximate
// scratch texture).
SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(),
SK_Scalar1 * h / devTex->height());
fDrawContext->drawNonAARectToRect(fRenderTarget, fClip, grPaint, SkMatrix::I(), dstRect,
srcRect);
}
bool SkGpuDevice::canHandleImageFilter(const SkImageFilter* filter) {
return filter->canFilterImageGPU();
}
bool SkGpuDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src,
const SkImageFilter::Context& ctx,
SkBitmap* result, SkIPoint* offset) {
// want explicitly our impl, so guard against a subclass of us overriding it
if (!this->SkGpuDevice::canHandleImageFilter(filter)) {
return false;
}
SkAutoLockPixels alp(src, !src.getTexture());
if (!src.getTexture() && !src.readyToDraw()) {
return false;
}
GrTexture* texture;
// We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup
// must be pushed upstack.
AutoBitmapTexture abt(fContext, src, NULL, &texture);
if (!texture) {
return false;
}
return this->filterTexture(fContext, texture, src.width(), src.height(),
filter, ctx, result, offset);
}
static bool wrap_as_bm(const SkImage* image, SkBitmap* bm) {
GrTexture* tex = as_IB(image)->getTexture();
if (tex) {
GrWrapTextureInBitmap(tex, image->width(), image->height(), image->isOpaque(), bm);
return true;
} else {
return as_IB(image)->getROPixels(bm);
}
}
void SkGpuDevice::drawImage(const SkDraw& draw, const SkImage* image, SkScalar x, SkScalar y,
const SkPaint& paint) {
SkBitmap bm;
if (wrap_as_bm(image, &bm)) {
this->drawBitmap(draw, bm, SkMatrix::MakeTrans(x, y), paint);
}
}
void SkGpuDevice::drawImageRect(const SkDraw& draw, const SkImage* image, const SkRect* src,
const SkRect& dst, const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
SkBitmap bm;
if (wrap_as_bm(image, &bm)) {
this->drawBitmapRect(draw, bm, src, dst, paint, constraint);
}
}
///////////////////////////////////////////////////////////////////////////////
// must be in SkCanvas::VertexMode order
static const GrPrimitiveType gVertexMode2PrimitiveType[] = {
kTriangles_GrPrimitiveType,
kTriangleStrip_GrPrimitiveType,
kTriangleFan_GrPrimitiveType,
};
void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode,
int vertexCount, const SkPoint vertices[],
const SkPoint texs[], const SkColor colors[],
SkXfermode* xmode,
const uint16_t indices[], int indexCount,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawVertices", fContext);
const uint16_t* outIndices;
SkAutoTDeleteArray<uint16_t> outAlloc(NULL);
GrPrimitiveType primType;
GrPaint grPaint;
// If both textures and vertex-colors are NULL, strokes hairlines with the paint's color.
if ((NULL == texs || NULL == paint.getShader()) && NULL == colors) {
texs = NULL;
SkPaint copy(paint);
copy.setStyle(SkPaint::kStroke_Style);
copy.setStrokeWidth(0);
// we ignore the shader if texs is null.
if (!SkPaint2GrPaintNoShader(this->context(), fRenderTarget, copy,
SkColor2GrColor(copy.getColor()), NULL == colors, &grPaint)) {
return;
}
primType = kLines_GrPrimitiveType;
int triangleCount = 0;
int n = (NULL == indices) ? vertexCount : indexCount;
switch (vmode) {
case SkCanvas::kTriangles_VertexMode:
triangleCount = n / 3;
break;
case SkCanvas::kTriangleStrip_VertexMode:
case SkCanvas::kTriangleFan_VertexMode:
triangleCount = n - 2;
break;
}
VertState state(vertexCount, indices, indexCount);
VertState::Proc vertProc = state.chooseProc(vmode);
//number of indices for lines per triangle with kLines
indexCount = triangleCount * 6;
outAlloc.reset(SkNEW_ARRAY(uint16_t, indexCount));
outIndices = outAlloc.get();
uint16_t* auxIndices = outAlloc.get();
int i = 0;
while (vertProc(&state)) {
auxIndices[i] = state.f0;
auxIndices[i + 1] = state.f1;
auxIndices[i + 2] = state.f1;
auxIndices[i + 3] = state.f2;
auxIndices[i + 4] = state.f2;
auxIndices[i + 5] = state.f0;
i += 6;
}
} else {
outIndices = indices;
primType = gVertexMode2PrimitiveType[vmode];
if (NULL == texs || NULL == paint.getShader()) {
if (!SkPaint2GrPaintNoShader(this->context(), fRenderTarget, paint,
SkColor2GrColor(paint.getColor()),
NULL == colors, &grPaint)) {
return;
}
} else {
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix,
NULL == colors, &grPaint)) {
return;
}
}
}
#if 0
if (xmode && texs && colors) {
if (!SkXfermode::IsMode(xmode, SkXfermode::kModulate_Mode)) {
SkDebugf("Unsupported vertex-color/texture xfer mode.\n");
return;
}
}
#endif
SkAutoSTMalloc<128, GrColor> convertedColors(0);
if (colors) {
// need to convert byte order and from non-PM to PM
convertedColors.reset(vertexCount);
SkColor color;
for (int i = 0; i < vertexCount; ++i) {
color = colors[i];
if (paint.getAlpha() != 255) {
color = SkColorSetA(color, SkMulDiv255Round(SkColorGetA(color), paint.getAlpha()));
}
convertedColors[i] = SkColor2GrColor(color);
}
colors = convertedColors.get();
}
fDrawContext->drawVertices(fRenderTarget,
fClip,
grPaint,
*draw.fMatrix,
primType,
vertexCount,
vertices,
texs,
colors,
outIndices,
indexCount);
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawAtlas(const SkDraw& draw, const SkImage* atlas, const SkRSXform xform[],
const SkRect texRect[], const SkColor colors[], int count,
SkXfermode::Mode mode, const SkPaint& paint) {
if (paint.isAntiAlias()) {
this->INHERITED::drawAtlas(draw, atlas, xform, texRect, colors, count, mode, paint);
return;
}
CHECK_SHOULD_DRAW(draw);
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawText", fContext);
SkPaint p(paint);
p.setShader(atlas->newShader(SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref();
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, p, *draw.fMatrix, !colors, &grPaint)) {
return;
}
SkDEBUGCODE(this->validate();)
#if 0
if (colors) {
if (SkXfermode::kModulate_Mode != mode) {
SkDebugf("Unsupported vertex-color/texture xfer mode.\n");
return;
}
}
#endif
fDrawContext->drawAtlas(fRenderTarget, fClip, grPaint, *draw.fMatrix,
count, xform, texRect, colors);
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawText(const SkDraw& draw, const void* text,
size_t byteLength, SkScalar x, SkScalar y,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw);
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawText", fContext);
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix, true, &grPaint)) {
return;
}
SkDEBUGCODE(this->validate();)
fDrawContext->drawText(fRenderTarget, fClip, grPaint, paint, *draw.fMatrix,
(const char *)text, byteLength, x, y, draw.fClip->getBounds());
}
void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, size_t byteLength,
const SkScalar pos[], int scalarsPerPos,
const SkPoint& offset, const SkPaint& paint) {
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPosText", fContext);
CHECK_SHOULD_DRAW(draw);
GrPaint grPaint;
if (!SkPaint2GrPaint(this->context(), fRenderTarget, paint, *draw.fMatrix, true, &grPaint)) {
return;
}
SkDEBUGCODE(this->validate();)
fDrawContext->drawPosText(fRenderTarget, fClip, grPaint, paint, *draw.fMatrix,
(const char *)text, byteLength, pos, scalarsPerPos, offset,
draw.fClip->getBounds());
}
void SkGpuDevice::drawTextBlob(const SkDraw& draw, const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint, SkDrawFilter* drawFilter) {
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawTextBlob", fContext);
CHECK_SHOULD_DRAW(draw);
SkDEBUGCODE(this->validate();)
fDrawContext->drawTextBlob(fRenderTarget, fClip, paint, *draw.fMatrix,
blob, x, y, drawFilter, draw.fClip->getBounds());
}
///////////////////////////////////////////////////////////////////////////////
bool SkGpuDevice::onShouldDisableLCD(const SkPaint& paint) const {
return GrTextContext::ShouldDisableLCD(paint);
}
void SkGpuDevice::flush() {
DO_DEFERRED_CLEAR();
fRenderTarget->prepareForExternalIO();
}
///////////////////////////////////////////////////////////////////////////////
SkBaseDevice* SkGpuDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint*) {
GrSurfaceDesc desc;
desc.fConfig = fRenderTarget->config();
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fWidth = cinfo.fInfo.width();
desc.fHeight = cinfo.fInfo.height();
desc.fSampleCnt = fRenderTarget->desc().fSampleCnt;
SkAutoTUnref<GrTexture> texture;
// Skia's convention is to only clear a device if it is non-opaque.
InitContents init = cinfo.fInfo.isOpaque() ? kUninit_InitContents : kClear_InitContents;
// layers are never draw in repeat modes, so we can request an approx
// match and ignore any padding.
if (kNever_TileUsage == cinfo.fTileUsage) {
texture.reset(fContext->textureProvider()->createApproxTexture(desc));
} else {
texture.reset(fContext->textureProvider()->createTexture(desc, true));
}
if (texture) {
SkSurfaceProps props(this->surfaceProps().flags(), cinfo.fPixelGeometry);
return SkGpuDevice::Create(
texture->asRenderTarget(), cinfo.fInfo.width(), cinfo.fInfo.height(), &props, init);
} else {
SkErrorInternals::SetError( kInternalError_SkError,
"---- failed to create gpu device texture [%d %d]\n",
cinfo.fInfo.width(), cinfo.fInfo.height());
return NULL;
}
}
SkSurface* SkGpuDevice::newSurface(const SkImageInfo& info, const SkSurfaceProps& props) {
// TODO: Change the signature of newSurface to take a budgeted parameter.
static const SkSurface::Budgeted kBudgeted = SkSurface::kNo_Budgeted;
return SkSurface::NewRenderTarget(fContext, kBudgeted, info, fRenderTarget->desc().fSampleCnt,
&props);
}
bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* mainCanvas, const SkPicture* mainPicture,
const SkMatrix* matrix, const SkPaint* paint) {
#ifndef SK_IGNORE_GPU_LAYER_HOISTING
// todo: should handle this natively
if (paint) {
return false;
}
const SkBigPicture::AccelData* data = NULL;
if (const SkBigPicture* bp = mainPicture->asSkBigPicture()) {
data = bp->accelData();
}
if (!data) {
return false;
}
const SkLayerInfo *gpuData = static_cast<const SkLayerInfo*>(data);
if (0 == gpuData->numBlocks()) {
return false;
}
SkTDArray<GrHoistedLayer> atlasedNeedRendering, atlasedRecycled;
SkIRect iBounds;
if (!mainCanvas->getClipDeviceBounds(&iBounds)) {
return false;
}
SkRect clipBounds = SkRect::Make(iBounds);
SkMatrix initialMatrix = mainCanvas->getTotalMatrix();
GrLayerHoister::FindLayersToAtlas(fContext, mainPicture,
initialMatrix,
clipBounds,
&atlasedNeedRendering, &atlasedRecycled,
fRenderTarget->numColorSamples());
GrLayerHoister::DrawLayersToAtlas(fContext, atlasedNeedRendering);
SkTDArray<GrHoistedLayer> needRendering, recycled;
SkAutoCanvasMatrixPaint acmp(mainCanvas, matrix, paint, mainPicture->cullRect());
GrLayerHoister::FindLayersToHoist(fContext, mainPicture,
initialMatrix,
clipBounds,
&needRendering, &recycled,
fRenderTarget->numColorSamples());
GrLayerHoister::DrawLayers(fContext, needRendering);
// Render the entire picture using new layers
GrRecordReplaceDraw(mainPicture, mainCanvas, fContext->getLayerCache(),
initialMatrix, NULL);
GrLayerHoister::UnlockLayers(fContext, needRendering);
GrLayerHoister::UnlockLayers(fContext, recycled);
GrLayerHoister::UnlockLayers(fContext, atlasedNeedRendering);
GrLayerHoister::UnlockLayers(fContext, atlasedRecycled);
return true;
#else
return false;
#endif
}
SkImageFilter::Cache* SkGpuDevice::getImageFilterCache() {
// We always return a transient cache, so it is freed after each
// filter traversal.
return SkImageFilter::Cache::Create(kDefaultImageFilterCacheSize);
}
#endif