blob: 10685b61931bdc8f79a3537790c49683261ab756 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_DEOPTIMIZER_H_
#define V8_DEOPTIMIZER_H_
#include "src/allocation.h"
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {
class FrameDescription;
class TranslationIterator;
class DeoptimizedFrameInfo;
class TranslatedState;
class RegisterValues;
class TranslatedValue {
public:
// Allocation-less getter of the value.
// Returns heap()->arguments_marker() if allocation would be
// necessary to get the value.
Object* GetRawValue() const;
Handle<Object> GetValue();
bool IsMaterializedObject() const;
private:
friend class TranslatedState;
friend class TranslatedFrame;
enum Kind {
kInvalid,
kTagged,
kInt32,
kUInt32,
kBoolBit,
kDouble,
kCapturedObject, // Object captured by the escape analysis.
// The number of nested objects can be obtained
// with the DeferredObjectLength() method
// (the values of the nested objects follow
// this value in the depth-first order.)
kDuplicatedObject, // Duplicated object of a deferred object.
kArgumentsObject // Arguments object - only used to keep indexing
// in sync, it should not be materialized.
};
TranslatedValue(TranslatedState* container, Kind kind)
: kind_(kind), container_(container) {}
Kind kind() const { return kind_; }
void Handlify();
int GetChildrenCount() const;
static TranslatedValue NewArgumentsObject(TranslatedState* container,
int length, int object_index);
static TranslatedValue NewDeferredObject(TranslatedState* container,
int length, int object_index);
static TranslatedValue NewDuplicateObject(TranslatedState* container, int id);
static TranslatedValue NewDouble(TranslatedState* container, double value);
static TranslatedValue NewInt32(TranslatedState* container, int32_t value);
static TranslatedValue NewUInt32(TranslatedState* container, uint32_t value);
static TranslatedValue NewBool(TranslatedState* container, uint32_t value);
static TranslatedValue NewTagged(TranslatedState* container, Object* literal);
static TranslatedValue NewInvalid(TranslatedState* container);
Isolate* isolate() const;
void MaterializeSimple();
Kind kind_;
TranslatedState* container_; // This is only needed for materialization of
// objects and constructing handles (to get
// to the isolate).
MaybeHandle<Object> value_; // Before handlification, this is always null,
// after materialization it is never null,
// in between it is only null if the value needs
// to be materialized.
struct MaterializedObjectInfo {
int id_;
int length_; // Applies only to kArgumentsObject or kCapturedObject kinds.
};
union {
// kind kTagged. After handlification it is always nullptr.
Object* raw_literal_;
// kind is kUInt32 or kBoolBit.
uint32_t uint32_value_;
// kind is kInt32.
int32_t int32_value_;
// kind is kDouble
double double_value_;
// kind is kDuplicatedObject or kArgumentsObject or kCapturedObject.
MaterializedObjectInfo materialization_info_;
};
// Checked accessors for the union members.
Object* raw_literal() const;
int32_t int32_value() const;
uint32_t uint32_value() const;
double double_value() const;
int object_length() const;
int object_index() const;
};
class TranslatedFrame {
public:
enum Kind {
kFunction,
kInterpretedFunction,
kGetter,
kSetter,
kArgumentsAdaptor,
kConstructStub,
kCompiledStub,
kInvalid
};
int GetValueCount();
Kind kind() const { return kind_; }
BailoutId node_id() const { return node_id_; }
Handle<SharedFunctionInfo> shared_info() const { return shared_info_; }
int height() const { return height_; }
class iterator {
public:
iterator& operator++() {
AdvanceIterator(&position_);
return *this;
}
iterator operator++(int) {
iterator original(position_);
AdvanceIterator(&position_);
return original;
}
bool operator==(const iterator& other) const {
return position_ == other.position_;
}
bool operator!=(const iterator& other) const { return !(*this == other); }
TranslatedValue& operator*() { return (*position_); }
TranslatedValue* operator->() { return &(*position_); }
private:
friend TranslatedFrame;
explicit iterator(std::deque<TranslatedValue>::iterator position)
: position_(position) {}
std::deque<TranslatedValue>::iterator position_;
};
typedef TranslatedValue& reference;
typedef TranslatedValue const& const_reference;
iterator begin() { return iterator(values_.begin()); }
iterator end() { return iterator(values_.end()); }
reference front() { return values_.front(); }
const_reference front() const { return values_.front(); }
private:
friend class TranslatedState;
// Constructor static methods.
static TranslatedFrame JSFrame(BailoutId node_id,
SharedFunctionInfo* shared_info, int height);
static TranslatedFrame InterpretedFrame(BailoutId bytecode_offset,
SharedFunctionInfo* shared_info,
int height);
static TranslatedFrame AccessorFrame(Kind kind,
SharedFunctionInfo* shared_info);
static TranslatedFrame ArgumentsAdaptorFrame(SharedFunctionInfo* shared_info,
int height);
static TranslatedFrame ConstructStubFrame(SharedFunctionInfo* shared_info,
int height);
static TranslatedFrame CompiledStubFrame(int height, Isolate* isolate) {
return TranslatedFrame(kCompiledStub, isolate, nullptr, height);
}
static TranslatedFrame InvalidFrame() {
return TranslatedFrame(kInvalid, nullptr);
}
static void AdvanceIterator(std::deque<TranslatedValue>::iterator* iter);
TranslatedFrame(Kind kind, Isolate* isolate,
SharedFunctionInfo* shared_info = nullptr, int height = 0)
: kind_(kind),
node_id_(BailoutId::None()),
raw_shared_info_(shared_info),
height_(height),
isolate_(isolate) {}
void Add(const TranslatedValue& value) { values_.push_back(value); }
void Handlify();
Kind kind_;
BailoutId node_id_;
SharedFunctionInfo* raw_shared_info_;
Handle<SharedFunctionInfo> shared_info_;
int height_;
Isolate* isolate_;
typedef std::deque<TranslatedValue> ValuesContainer;
ValuesContainer values_;
};
// Auxiliary class for translating deoptimization values.
// Typical usage sequence:
//
// 1. Construct the instance. This will involve reading out the translations
// and resolving them to values using the supplied frame pointer and
// machine state (registers). This phase is guaranteed not to allocate
// and not to use any HandleScope. Any object pointers will be stored raw.
//
// 2. Handlify pointers. This will convert all the raw pointers to handles.
//
// 3. Reading out the frame values.
//
// Note: After the instance is constructed, it is possible to iterate over
// the values eagerly.
class TranslatedState {
public:
TranslatedState();
explicit TranslatedState(JavaScriptFrame* frame);
void Prepare(bool has_adapted_arguments, Address stack_frame_pointer);
// Store newly materialized values into the isolate.
void StoreMaterializedValuesAndDeopt();
typedef std::vector<TranslatedFrame>::iterator iterator;
iterator begin() { return frames_.begin(); }
iterator end() { return frames_.end(); }
typedef std::vector<TranslatedFrame>::const_iterator const_iterator;
const_iterator begin() const { return frames_.begin(); }
const_iterator end() const { return frames_.end(); }
std::vector<TranslatedFrame>& frames() { return frames_; }
TranslatedFrame* GetArgumentsInfoFromJSFrameIndex(int jsframe_index,
int* arguments_count);
Isolate* isolate() { return isolate_; }
void Init(Address input_frame_pointer, TranslationIterator* iterator,
FixedArray* literal_array, RegisterValues* registers,
FILE* trace_file);
private:
friend TranslatedValue;
TranslatedFrame CreateNextTranslatedFrame(TranslationIterator* iterator,
FixedArray* literal_array,
Address fp,
FILE* trace_file);
TranslatedValue CreateNextTranslatedValue(int frame_index, int value_index,
TranslationIterator* iterator,
FixedArray* literal_array,
Address fp,
RegisterValues* registers,
FILE* trace_file);
void UpdateFromPreviouslyMaterializedObjects();
Handle<Object> MaterializeAt(int frame_index, int* value_index);
Handle<Object> MaterializeObjectAt(int object_index);
bool GetAdaptedArguments(Handle<JSObject>* result, int frame_index);
static uint32_t GetUInt32Slot(Address fp, int slot_index);
std::vector<TranslatedFrame> frames_;
Isolate* isolate_;
Address stack_frame_pointer_;
bool has_adapted_arguments_;
struct ObjectPosition {
int frame_index_;
int value_index_;
};
std::deque<ObjectPosition> object_positions_;
};
class OptimizedFunctionVisitor BASE_EMBEDDED {
public:
virtual ~OptimizedFunctionVisitor() {}
// Function which is called before iteration of any optimized functions
// from given native context.
virtual void EnterContext(Context* context) = 0;
virtual void VisitFunction(JSFunction* function) = 0;
// Function which is called after iteration of all optimized functions
// from given native context.
virtual void LeaveContext(Context* context) = 0;
};
#define DEOPT_MESSAGES_LIST(V) \
V(kAccessCheck, "Access check needed") \
V(kNoReason, "no reason") \
V(kConstantGlobalVariableAssignment, "Constant global variable assignment") \
V(kConversionOverflow, "conversion overflow") \
V(kDivisionByZero, "division by zero") \
V(kElementsKindUnhandledInKeyedLoadGenericStub, \
"ElementsKind unhandled in KeyedLoadGenericStub") \
V(kExpectedHeapNumber, "Expected heap number") \
V(kExpectedSmi, "Expected smi") \
V(kForcedDeoptToRuntime, "Forced deopt to runtime") \
V(kHole, "hole") \
V(kHoleyArrayDespitePackedElements_kindFeedback, \
"Holey array despite packed elements_kind feedback") \
V(kInstanceMigrationFailed, "instance migration failed") \
V(kInsufficientTypeFeedbackForCallWithArguments, \
"Insufficient type feedback for call with arguments") \
V(kInsufficientTypeFeedbackForCombinedTypeOfBinaryOperation, \
"Insufficient type feedback for combined type of binary operation") \
V(kInsufficientTypeFeedbackForGenericNamedAccess, \
"Insufficient type feedback for generic named access") \
V(kInsufficientTypeFeedbackForKeyedLoad, \
"Insufficient type feedback for keyed load") \
V(kInsufficientTypeFeedbackForKeyedStore, \
"Insufficient type feedback for keyed store") \
V(kInsufficientTypeFeedbackForLHSOfBinaryOperation, \
"Insufficient type feedback for LHS of binary operation") \
V(kInsufficientTypeFeedbackForRHSOfBinaryOperation, \
"Insufficient type feedback for RHS of binary operation") \
V(kKeyIsNegative, "key is negative") \
V(kLiteralsWereDisposed, "literals have been disposed") \
V(kLostPrecision, "lost precision") \
V(kLostPrecisionOrNaN, "lost precision or NaN") \
V(kMementoFound, "memento found") \
V(kMinusZero, "minus zero") \
V(kNaN, "NaN") \
V(kNegativeKeyEncountered, "Negative key encountered") \
V(kNegativeValue, "negative value") \
V(kNoCache, "no cache") \
V(kNonStrictElementsInKeyedLoadGenericStub, \
"non-strict elements in KeyedLoadGenericStub") \
V(kNotADateObject, "not a date object") \
V(kNotAHeapNumber, "not a heap number") \
V(kNotAHeapNumberUndefinedBoolean, "not a heap number/undefined/true/false") \
V(kNotAHeapNumberUndefined, "not a heap number/undefined") \
V(kNotAJavaScriptObject, "not a JavaScript object") \
V(kNotASmi, "not a Smi") \
V(kNull, "null") \
V(kOutOfBounds, "out of bounds") \
V(kOutsideOfRange, "Outside of range") \
V(kOverflow, "overflow") \
V(kProxy, "proxy") \
V(kReceiverWasAGlobalObject, "receiver was a global object") \
V(kSmi, "Smi") \
V(kTooManyArguments, "too many arguments") \
V(kTooManyUndetectableTypes, "Too many undetectable types") \
V(kTracingElementsTransitions, "Tracing elements transitions") \
V(kTypeMismatchBetweenFeedbackAndConstant, \
"Type mismatch between feedback and constant") \
V(kUndefined, "undefined") \
V(kUnexpectedCellContentsInConstantGlobalStore, \
"Unexpected cell contents in constant global store") \
V(kUnexpectedCellContentsInGlobalStore, \
"Unexpected cell contents in global store") \
V(kUnexpectedObject, "unexpected object") \
V(kUnexpectedRHSOfBinaryOperation, "Unexpected RHS of binary operation") \
V(kUninitializedBoilerplateInFastClone, \
"Uninitialized boilerplate in fast clone") \
V(kUninitializedBoilerplateLiterals, "Uninitialized boilerplate literals") \
V(kUnknownMapInPolymorphicAccess, "Unknown map in polymorphic access") \
V(kUnknownMapInPolymorphicCall, "Unknown map in polymorphic call") \
V(kUnknownMapInPolymorphicElementAccess, \
"Unknown map in polymorphic element access") \
V(kUnknownMap, "Unknown map") \
V(kValueMismatch, "value mismatch") \
V(kWrongInstanceType, "wrong instance type") \
V(kWrongMap, "wrong map") \
V(kUndefinedOrNullInForIn, "null or undefined in for-in") \
V(kUndefinedOrNullInToObject, "null or undefined in ToObject")
class Deoptimizer : public Malloced {
public:
enum BailoutType {
EAGER,
LAZY,
SOFT,
// This last bailout type is not really a bailout, but used by the
// debugger to deoptimize stack frames to allow inspection.
DEBUGGER,
kBailoutTypesWithCodeEntry = SOFT + 1
};
#define DEOPT_MESSAGES_CONSTANTS(C, T) C,
enum DeoptReason {
DEOPT_MESSAGES_LIST(DEOPT_MESSAGES_CONSTANTS) kLastDeoptReason
};
#undef DEOPT_MESSAGES_CONSTANTS
static const char* GetDeoptReason(DeoptReason deopt_reason);
struct DeoptInfo {
DeoptInfo(SourcePosition position, const char* m, DeoptReason d)
: position(position), mnemonic(m), deopt_reason(d), inlining_id(0) {}
SourcePosition position;
const char* mnemonic;
DeoptReason deopt_reason;
int inlining_id;
};
static DeoptInfo GetDeoptInfo(Code* code, byte* from);
struct JumpTableEntry : public ZoneObject {
inline JumpTableEntry(Address entry, const DeoptInfo& deopt_info,
Deoptimizer::BailoutType type, bool frame)
: label(),
address(entry),
deopt_info(deopt_info),
bailout_type(type),
needs_frame(frame) {}
bool IsEquivalentTo(const JumpTableEntry& other) const {
return address == other.address && bailout_type == other.bailout_type &&
needs_frame == other.needs_frame;
}
Label label;
Address address;
DeoptInfo deopt_info;
Deoptimizer::BailoutType bailout_type;
bool needs_frame;
};
static bool TraceEnabledFor(BailoutType deopt_type,
StackFrame::Type frame_type);
static const char* MessageFor(BailoutType type);
int output_count() const { return output_count_; }
Handle<JSFunction> function() const { return Handle<JSFunction>(function_); }
Handle<Code> compiled_code() const { return Handle<Code>(compiled_code_); }
BailoutType bailout_type() const { return bailout_type_; }
// Number of created JS frames. Not all created frames are necessarily JS.
int jsframe_count() const { return jsframe_count_; }
static Deoptimizer* New(JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Isolate* isolate);
static Deoptimizer* Grab(Isolate* isolate);
// The returned object with information on the optimized frame needs to be
// freed before another one can be generated.
static DeoptimizedFrameInfo* DebuggerInspectableFrame(JavaScriptFrame* frame,
int jsframe_index,
Isolate* isolate);
static void DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
Isolate* isolate);
// Makes sure that there is enough room in the relocation
// information of a code object to perform lazy deoptimization
// patching. If there is not enough room a new relocation
// information object is allocated and comments are added until it
// is big enough.
static void EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code);
// Deoptimize the function now. Its current optimized code will never be run
// again and any activations of the optimized code will get deoptimized when
// execution returns.
static void DeoptimizeFunction(JSFunction* function);
// Deoptimize all code in the given isolate.
static void DeoptimizeAll(Isolate* isolate);
// Deoptimizes all optimized code that has been previously marked
// (via code->set_marked_for_deoptimization) and unlinks all functions that
// refer to that code.
static void DeoptimizeMarkedCode(Isolate* isolate);
// Visit all the known optimized functions in a given isolate.
static void VisitAllOptimizedFunctions(
Isolate* isolate, OptimizedFunctionVisitor* visitor);
// The size in bytes of the code required at a lazy deopt patch site.
static int patch_size();
~Deoptimizer();
void MaterializeHeapObjects(JavaScriptFrameIterator* it);
void MaterializeHeapNumbersForDebuggerInspectableFrame(
int frame_index, int parameter_count, int expression_count,
DeoptimizedFrameInfo* info);
static void ComputeOutputFrames(Deoptimizer* deoptimizer);
enum GetEntryMode {
CALCULATE_ENTRY_ADDRESS,
ENSURE_ENTRY_CODE
};
static Address GetDeoptimizationEntry(
Isolate* isolate,
int id,
BailoutType type,
GetEntryMode mode = ENSURE_ENTRY_CODE);
static int GetDeoptimizationId(Isolate* isolate,
Address addr,
BailoutType type);
static int GetOutputInfo(DeoptimizationOutputData* data,
BailoutId node_id,
SharedFunctionInfo* shared);
// Code generation support.
static int input_offset() { return OFFSET_OF(Deoptimizer, input_); }
static int output_count_offset() {
return OFFSET_OF(Deoptimizer, output_count_);
}
static int output_offset() { return OFFSET_OF(Deoptimizer, output_); }
static int has_alignment_padding_offset() {
return OFFSET_OF(Deoptimizer, has_alignment_padding_);
}
static int GetDeoptimizedCodeCount(Isolate* isolate);
static const int kNotDeoptimizationEntry = -1;
// Generators for the deoptimization entry code.
class TableEntryGenerator BASE_EMBEDDED {
public:
TableEntryGenerator(MacroAssembler* masm, BailoutType type, int count)
: masm_(masm), type_(type), count_(count) {}
void Generate();
protected:
MacroAssembler* masm() const { return masm_; }
BailoutType type() const { return type_; }
Isolate* isolate() const { return masm_->isolate(); }
void GeneratePrologue();
private:
int count() const { return count_; }
MacroAssembler* masm_;
Deoptimizer::BailoutType type_;
int count_;
};
int ConvertJSFrameIndexToFrameIndex(int jsframe_index);
static size_t GetMaxDeoptTableSize();
static void EnsureCodeForDeoptimizationEntry(Isolate* isolate,
BailoutType type,
int max_entry_id);
Isolate* isolate() const { return isolate_; }
private:
static const int kMinNumberOfEntries = 64;
static const int kMaxNumberOfEntries = 16384;
Deoptimizer(Isolate* isolate,
JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Code* optimized_code);
Code* FindOptimizedCode(JSFunction* function, Code* optimized_code);
void PrintFunctionName();
void DeleteFrameDescriptions();
void DoComputeOutputFrames();
void DoComputeJSFrame(int frame_index);
void DoComputeInterpretedFrame(int frame_index);
void DoComputeArgumentsAdaptorFrame(int frame_index);
void DoComputeConstructStubFrame(int frame_index);
void DoComputeAccessorStubFrame(int frame_index, bool is_setter_stub_frame);
void DoComputeCompiledStubFrame(int frame_index);
void WriteTranslatedValueToOutput(
TranslatedFrame::iterator* iterator, int* input_index, int frame_index,
unsigned output_offset, const char* debug_hint_string = nullptr,
Address output_address_for_materialization = nullptr);
void WriteValueToOutput(Object* value, int input_index, int frame_index,
unsigned output_offset,
const char* debug_hint_string);
void DebugPrintOutputSlot(intptr_t value, int frame_index,
unsigned output_offset,
const char* debug_hint_string);
unsigned ComputeInputFrameSize() const;
unsigned ComputeJavascriptFixedSize(JSFunction* function) const;
unsigned ComputeInterpretedFixedSize(JSFunction* function) const;
unsigned ComputeIncomingArgumentSize(JSFunction* function) const;
static unsigned ComputeOutgoingArgumentSize(Code* code, unsigned bailout_id);
Object* ComputeLiteral(int index) const;
static void GenerateDeoptimizationEntries(
MacroAssembler* masm, int count, BailoutType type);
// Marks all the code in the given context for deoptimization.
static void MarkAllCodeForContext(Context* native_context);
// Visit all the known optimized functions in a given context.
static void VisitAllOptimizedFunctionsForContext(
Context* context, OptimizedFunctionVisitor* visitor);
// Deoptimizes all code marked in the given context.
static void DeoptimizeMarkedCodeForContext(Context* native_context);
// Patch the given code so that it will deoptimize itself.
static void PatchCodeForDeoptimization(Isolate* isolate, Code* code);
// Searches the list of known deoptimizing code for a Code object
// containing the given address (which is supposedly faster than
// searching all code objects).
Code* FindDeoptimizingCode(Address addr);
// Fill the input from from a JavaScript frame. This is used when
// the debugger needs to inspect an optimized frame. For normal
// deoptimizations the input frame is filled in generated code.
void FillInputFrame(Address tos, JavaScriptFrame* frame);
// Fill the given output frame's registers to contain the failure handler
// address and the number of parameters for a stub failure trampoline.
void SetPlatformCompiledStubRegisters(FrameDescription* output_frame,
CodeStubDescriptor* desc);
// Fill the given output frame's double registers with the original values
// from the input frame's double registers.
void CopyDoubleRegisters(FrameDescription* output_frame);
// Determines whether the input frame contains alignment padding by looking
// at the dynamic alignment state slot inside the frame.
bool HasAlignmentPadding(JSFunction* function);
Isolate* isolate_;
JSFunction* function_;
Code* compiled_code_;
unsigned bailout_id_;
BailoutType bailout_type_;
Address from_;
int fp_to_sp_delta_;
int has_alignment_padding_;
// Input frame description.
FrameDescription* input_;
// Number of output frames.
int output_count_;
// Number of output js frames.
int jsframe_count_;
// Array of output frame descriptions.
FrameDescription** output_;
// Key for lookup of previously materialized objects
Address stack_fp_;
TranslatedState translated_state_;
struct ValueToMaterialize {
Address output_slot_address_;
TranslatedFrame::iterator value_;
};
std::vector<ValueToMaterialize> values_to_materialize_;
#ifdef DEBUG
DisallowHeapAllocation* disallow_heap_allocation_;
#endif // DEBUG
CodeTracer::Scope* trace_scope_;
static const int table_entry_size_;
friend class FrameDescription;
friend class DeoptimizedFrameInfo;
};
class RegisterValues {
public:
intptr_t GetRegister(unsigned n) const {
#if DEBUG
// This convoluted DCHECK is needed to work around a gcc problem that
// improperly detects an array bounds overflow in optimized debug builds
// when using a plain DCHECK.
if (n >= arraysize(registers_)) {
DCHECK(false);
return 0;
}
#endif
return registers_[n];
}
double GetDoubleRegister(unsigned n) const {
DCHECK(n < arraysize(double_registers_));
return double_registers_[n];
}
void SetRegister(unsigned n, intptr_t value) {
DCHECK(n < arraysize(registers_));
registers_[n] = value;
}
void SetDoubleRegister(unsigned n, double value) {
DCHECK(n < arraysize(double_registers_));
double_registers_[n] = value;
}
intptr_t registers_[Register::kNumRegisters];
double double_registers_[DoubleRegister::kMaxNumRegisters];
};
class FrameDescription {
public:
FrameDescription(uint32_t frame_size,
JSFunction* function);
void* operator new(size_t size, uint32_t frame_size) {
// Subtracts kPointerSize, as the member frame_content_ already supplies
// the first element of the area to store the frame.
return malloc(size + frame_size - kPointerSize);
}
void operator delete(void* pointer, uint32_t frame_size) {
free(pointer);
}
void operator delete(void* description) {
free(description);
}
uint32_t GetFrameSize() const {
DCHECK(static_cast<uint32_t>(frame_size_) == frame_size_);
return static_cast<uint32_t>(frame_size_);
}
JSFunction* GetFunction() const { return function_; }
unsigned GetOffsetFromSlotIndex(int slot_index);
intptr_t GetFrameSlot(unsigned offset) {
return *GetFrameSlotPointer(offset);
}
Address GetFramePointerAddress() {
int fp_offset = GetFrameSize() -
(ComputeParametersCount() + 1) * kPointerSize -
StandardFrameConstants::kCallerSPOffset;
return reinterpret_cast<Address>(GetFrameSlotPointer(fp_offset));
}
RegisterValues* GetRegisterValues() { return &register_values_; }
void SetFrameSlot(unsigned offset, intptr_t value) {
*GetFrameSlotPointer(offset) = value;
}
void SetCallerPc(unsigned offset, intptr_t value);
void SetCallerFp(unsigned offset, intptr_t value);
void SetCallerConstantPool(unsigned offset, intptr_t value);
intptr_t GetRegister(unsigned n) const {
return register_values_.GetRegister(n);
}
double GetDoubleRegister(unsigned n) const {
return register_values_.GetDoubleRegister(n);
}
void SetRegister(unsigned n, intptr_t value) {
register_values_.SetRegister(n, value);
}
void SetDoubleRegister(unsigned n, double value) {
register_values_.SetDoubleRegister(n, value);
}
intptr_t GetTop() const { return top_; }
void SetTop(intptr_t top) { top_ = top; }
intptr_t GetPc() const { return pc_; }
void SetPc(intptr_t pc) { pc_ = pc; }
intptr_t GetFp() const { return fp_; }
void SetFp(intptr_t fp) { fp_ = fp; }
intptr_t GetContext() const { return context_; }
void SetContext(intptr_t context) { context_ = context; }
intptr_t GetConstantPool() const { return constant_pool_; }
void SetConstantPool(intptr_t constant_pool) {
constant_pool_ = constant_pool;
}
Smi* GetState() const { return state_; }
void SetState(Smi* state) { state_ = state; }
void SetContinuation(intptr_t pc) { continuation_ = pc; }
StackFrame::Type GetFrameType() const { return type_; }
void SetFrameType(StackFrame::Type type) { type_ = type; }
// Get the incoming arguments count.
int ComputeParametersCount();
// Get a parameter value for an unoptimized frame.
Object* GetParameter(int index);
// Get the expression stack height for a unoptimized frame.
unsigned GetExpressionCount();
// Get the expression stack value for an unoptimized frame.
Object* GetExpression(int index);
static int registers_offset() {
return OFFSET_OF(FrameDescription, register_values_.registers_);
}
static int double_registers_offset() {
return OFFSET_OF(FrameDescription, register_values_.double_registers_);
}
static int frame_size_offset() {
return offsetof(FrameDescription, frame_size_);
}
static int pc_offset() { return offsetof(FrameDescription, pc_); }
static int state_offset() { return offsetof(FrameDescription, state_); }
static int continuation_offset() {
return offsetof(FrameDescription, continuation_);
}
static int frame_content_offset() {
return offsetof(FrameDescription, frame_content_);
}
private:
static const uint32_t kZapUint32 = 0xbeeddead;
// Frame_size_ must hold a uint32_t value. It is only a uintptr_t to
// keep the variable-size array frame_content_ of type intptr_t at
// the end of the structure aligned.
uintptr_t frame_size_; // Number of bytes.
JSFunction* function_;
RegisterValues register_values_;
intptr_t top_;
intptr_t pc_;
intptr_t fp_;
intptr_t context_;
intptr_t constant_pool_;
StackFrame::Type type_;
Smi* state_;
// Continuation is the PC where the execution continues after
// deoptimizing.
intptr_t continuation_;
// This must be at the end of the object as the object is allocated larger
// than it's definition indicate to extend this array.
intptr_t frame_content_[1];
intptr_t* GetFrameSlotPointer(unsigned offset) {
DCHECK(offset < frame_size_);
return reinterpret_cast<intptr_t*>(
reinterpret_cast<Address>(this) + frame_content_offset() + offset);
}
int ComputeFixedSize();
};
class DeoptimizerData {
public:
explicit DeoptimizerData(MemoryAllocator* allocator);
~DeoptimizerData();
void Iterate(ObjectVisitor* v);
private:
MemoryAllocator* allocator_;
int deopt_entry_code_entries_[Deoptimizer::kBailoutTypesWithCodeEntry];
MemoryChunk* deopt_entry_code_[Deoptimizer::kBailoutTypesWithCodeEntry];
DeoptimizedFrameInfo* deoptimized_frame_info_;
Deoptimizer* current_;
friend class Deoptimizer;
DISALLOW_COPY_AND_ASSIGN(DeoptimizerData);
};
class TranslationBuffer BASE_EMBEDDED {
public:
explicit TranslationBuffer(Zone* zone) : contents_(256, zone) { }
int CurrentIndex() const { return contents_.length(); }
void Add(int32_t value, Zone* zone);
Handle<ByteArray> CreateByteArray(Factory* factory);
private:
ZoneList<uint8_t> contents_;
};
class TranslationIterator BASE_EMBEDDED {
public:
TranslationIterator(ByteArray* buffer, int index)
: buffer_(buffer), index_(index) {
DCHECK(index >= 0 && index < buffer->length());
}
int32_t Next();
bool HasNext() const { return index_ < buffer_->length(); }
void Skip(int n) {
for (int i = 0; i < n; i++) Next();
}
private:
ByteArray* buffer_;
int index_;
};
#define TRANSLATION_OPCODE_LIST(V) \
V(BEGIN) \
V(JS_FRAME) \
V(INTERPRETED_FRAME) \
V(CONSTRUCT_STUB_FRAME) \
V(GETTER_STUB_FRAME) \
V(SETTER_STUB_FRAME) \
V(ARGUMENTS_ADAPTOR_FRAME) \
V(COMPILED_STUB_FRAME) \
V(DUPLICATED_OBJECT) \
V(ARGUMENTS_OBJECT) \
V(CAPTURED_OBJECT) \
V(REGISTER) \
V(INT32_REGISTER) \
V(UINT32_REGISTER) \
V(BOOL_REGISTER) \
V(DOUBLE_REGISTER) \
V(STACK_SLOT) \
V(INT32_STACK_SLOT) \
V(UINT32_STACK_SLOT) \
V(BOOL_STACK_SLOT) \
V(DOUBLE_STACK_SLOT) \
V(LITERAL) \
V(JS_FRAME_FUNCTION)
class Translation BASE_EMBEDDED {
public:
#define DECLARE_TRANSLATION_OPCODE_ENUM(item) item,
enum Opcode {
TRANSLATION_OPCODE_LIST(DECLARE_TRANSLATION_OPCODE_ENUM)
LAST = LITERAL
};
#undef DECLARE_TRANSLATION_OPCODE_ENUM
Translation(TranslationBuffer* buffer, int frame_count, int jsframe_count,
Zone* zone)
: buffer_(buffer),
index_(buffer->CurrentIndex()),
zone_(zone) {
buffer_->Add(BEGIN, zone);
buffer_->Add(frame_count, zone);
buffer_->Add(jsframe_count, zone);
}
int index() const { return index_; }
// Commands.
void BeginJSFrame(BailoutId node_id, int literal_id, unsigned height);
void BeginInterpretedFrame(BailoutId bytecode_offset, int literal_id,
unsigned height);
void BeginCompiledStubFrame(int height);
void BeginArgumentsAdaptorFrame(int literal_id, unsigned height);
void BeginConstructStubFrame(int literal_id, unsigned height);
void BeginGetterStubFrame(int literal_id);
void BeginSetterStubFrame(int literal_id);
void BeginArgumentsObject(int args_length);
void BeginCapturedObject(int length);
void DuplicateObject(int object_index);
void StoreRegister(Register reg);
void StoreInt32Register(Register reg);
void StoreUint32Register(Register reg);
void StoreBoolRegister(Register reg);
void StoreDoubleRegister(DoubleRegister reg);
void StoreStackSlot(int index);
void StoreInt32StackSlot(int index);
void StoreUint32StackSlot(int index);
void StoreBoolStackSlot(int index);
void StoreDoubleStackSlot(int index);
void StoreLiteral(int literal_id);
void StoreArgumentsObject(bool args_known, int args_index, int args_length);
void StoreJSFrameFunction();
Zone* zone() const { return zone_; }
static int NumberOfOperandsFor(Opcode opcode);
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
static const char* StringFor(Opcode opcode);
#endif
private:
TranslationBuffer* buffer_;
int index_;
Zone* zone_;
};
class MaterializedObjectStore {
public:
explicit MaterializedObjectStore(Isolate* isolate) : isolate_(isolate) {
}
Handle<FixedArray> Get(Address fp);
void Set(Address fp, Handle<FixedArray> materialized_objects);
bool Remove(Address fp);
private:
Isolate* isolate() { return isolate_; }
Handle<FixedArray> GetStackEntries();
Handle<FixedArray> EnsureStackEntries(int size);
int StackIdToIndex(Address fp);
Isolate* isolate_;
List<Address> frame_fps_;
};
// Class used to represent an unoptimized frame when the debugger
// needs to inspect a frame that is part of an optimized frame. The
// internally used FrameDescription objects are not GC safe so for use
// by the debugger frame information is copied to an object of this type.
// Represents parameters in unadapted form so their number might mismatch
// formal parameter count.
class DeoptimizedFrameInfo : public Malloced {
public:
DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
int frame_index,
bool has_arguments_adaptor,
bool has_construct_stub);
virtual ~DeoptimizedFrameInfo();
// GC support.
void Iterate(ObjectVisitor* v);
// Return the number of incoming arguments.
int parameters_count() { return parameters_count_; }
// Return the height of the expression stack.
int expression_count() { return expression_count_; }
// Get the frame function.
JSFunction* GetFunction() {
return function_;
}
// Get the frame context.
Object* GetContext() { return context_; }
// Check if this frame is preceded by construct stub frame. The bottom-most
// inlined frame might still be called by an uninlined construct stub.
bool HasConstructStub() {
return has_construct_stub_;
}
// Get an incoming argument.
Object* GetParameter(int index) {
DCHECK(0 <= index && index < parameters_count());
return parameters_[index];
}
// Get an expression from the expression stack.
Object* GetExpression(int index) {
DCHECK(0 <= index && index < expression_count());
return expression_stack_[index];
}
int GetSourcePosition() {
return source_position_;
}
private:
// Set an incoming argument.
void SetParameter(int index, Object* obj) {
DCHECK(0 <= index && index < parameters_count());
parameters_[index] = obj;
}
// Set an expression on the expression stack.
void SetExpression(int index, Object* obj) {
DCHECK(0 <= index && index < expression_count());
expression_stack_[index] = obj;
}
JSFunction* function_;
Object* context_;
bool has_construct_stub_;
int parameters_count_;
int expression_count_;
Object** parameters_;
Object** expression_stack_;
int source_position_;
friend class Deoptimizer;
};
} // namespace internal
} // namespace v8
#endif // V8_DEOPTIMIZER_H_