blob: 6eb9a7799accc409fbeb88d9873c199ce8864d94 [file] [log] [blame]
# Author: Google
# See the LICENSE file for legal information regarding use of this file.
import os
p = (
115792089210356248762697446949407573530086143415290314195533631308867097853951)
order = (
115792089210356248762697446949407573529996955224135760342422259061068512044369)
p256B = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
baseX = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
baseY = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5
basePoint = (baseX, baseY)
def _pointAdd(a, b):
Z1Z1 = (a[2] * a[2]) % p
Z2Z2 = (b[2] * b[2]) % p
U1 = (a[0] * Z2Z2) % p
U2 = (b[0] * Z1Z1) % p
S1 = (a[1] * b[2] * Z2Z2) % p
S2 = (b[1] * a[2] * Z1Z1) % p
if U1 == U2 and S1 == S2:
return pointDouble(a)
H = (U2 - U1) % p
I = (4 * H * H) % p
J = (H * I) % p
r = (2 * (S2 - S1)) % p
V = (U1 * I) % p
X3 = (r * r - J - 2 * V) % p
Y3 = (r * (V - X3) - 2 * S1 * J) % p
Z3 = (((a[2] + b[2]) * (a[2] + b[2]) - Z1Z1 - Z2Z2) * H) % p
return (X3, Y3, Z3)
def _pointDouble(a):
delta = (a[2] * a[2]) % p
gamma = (a[1] * a[1]) % p
beta = (a[0] * gamma) % p
alpha = (3 * (a[0] - delta) * (a[0] + delta)) % p
X3 = (alpha * alpha - 8 * beta) % p
Z3 = ((a[1] + a[2]) * (a[1] + a[2]) - gamma - delta) % p
Y3 = (alpha * (4 * beta - X3) - 8 * gamma * gamma) % p
return (X3, Y3, Z3)
def _square(n):
return (n * n)
def _modpow(a, n, p):
if n == 0:
return 1
if n == 1:
return a
r = _square(_modpow(a, n >> 1, p)) % p
if n & 1 == 1:
r = (r * a) % p
return r
def _scalarMult(k, point):
accum = (0, 0, 0)
accumIsInfinity = True
jacobianPoint = (point[0], point[1], 1)
for bit in range(255, -1, -1):
if not accumIsInfinity:
accum = _pointDouble(accum)
if (k >> bit) & 1 == 1:
if accumIsInfinity:
accum = jacobianPoint
accumIsInfinity = False
else:
accum = _pointAdd(accum, jacobianPoint)
if accumIsInfinity:
return (0, 0)
zInv = _modpow(accum[2], p - 2, p)
return ((accum[0] * zInv * zInv) % p, (accum[1] * zInv * zInv * zInv) % p)
def _scalarBaseMult(k):
return _scalarMult(k, basePoint)
def _decodeBigEndian(b):
return sum([ord(b[len(b) - i - 1]) << 8 * i for i in range(len(b))])
def _encodeBigEndian(n):
b = []
while n != 0:
b.append(chr(n & 0xff))
n >>= 8
if len(b) == 0:
b.append(0)
b.reverse()
return "".join(b)
def _zeroPad(b, length):
if len(b) < length:
return ("\x00" * (length - len(b))) + b
return b
def _encodePoint(point):
x = point[0]
y = point[1]
if (y * y) % p != (x * x * x - 3 * x + p256B) % p:
raise "point not on curve"
return "\x04" + _zeroPad(_encodeBigEndian(point[0]), 32) + _zeroPad(
_encodeBigEndian(point[1]), 32)
def _decodePoint(b):
if len(b) != 1 + 32 + 32 or ord(b[0]) != 4:
raise "invalid encoded ec point"
x = _decodeBigEndian(b[1:33])
y = _decodeBigEndian(b[33:65])
if (y * y) % p != (x * x * x - 3 * x + p256B) % p:
raise "point not on curve"
return (x, y)
def generatePublicPrivate():
"""generatePublicPrivate returns a tuple of (X9.62 encoded public point,
private value), where the private value is generated from os.urandom."""
private = _decodeBigEndian(os.urandom(40)) % order
return _encodePoint(_scalarBaseMult(private)), private
def generateSharedValue(theirPublic, private):
"""generateSharedValue returns the encoded x-coordinate of the
multiplication of a peer's X9.62 encoded point and a private value."""
return _zeroPad(
_encodeBigEndian(_scalarMult(private, _decodePoint(theirPublic))[0]),
32)
if __name__ == "__main__":
alice, alicePrivate = generatePublicPrivate()
bob, bobPrivate = generatePublicPrivate()
if generateSharedValue(alice, bobPrivate) != generateSharedValue(
bob, alicePrivate):
raise "simple DH test failed"
(x, _) = _scalarBaseMult(1)
for i in range(1000):
(x, _) = _scalarBaseMult(x)
if x != 2428281965257598569040586318034812501729437946720808289049534492833635302706:
raise "loop test failed"