blob: 392ed430e8a8a3ef5a65510fb96789cc7c530fcf [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_IA32
#include "src/code-factory.h"
#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/ia32/frames-ia32.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- eax : number of arguments excluding receiver
// -- edi : called function (only guaranteed when
// extra_args requires it)
// -- esi : context
// -- esp[0] : return address
// -- esp[4] : last argument
// -- ...
// -- esp[4 * argc] : first argument (argc == eax)
// -- esp[4 * (argc +1)] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
Register scratch = ebx;
__ pop(scratch); // Save return address.
__ push(edi);
__ push(scratch); // Restore return address.
} else {
DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects eax to contain the number of arguments
// including the receiver and the extra arguments.
__ add(eax, Immediate(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
static void CallRuntimePassFunction(
MacroAssembler* masm, Runtime::FunctionId function_id) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function.
__ push(edi);
// Function is also the parameter to the runtime call.
__ push(edi);
__ CallRuntime(function_id, 1);
// Restore receiver.
__ pop(edi);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(eax, FieldOperand(eax, SharedFunctionInfo::kCodeOffset));
__ lea(eax, FieldOperand(eax, Code::kHeaderSize));
__ jmp(eax);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
__ lea(eax, FieldOperand(eax, Code::kHeaderSize));
__ jmp(eax);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(masm->isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok, Label::kNear);
CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
GenerateTailCallToReturnedCode(masm);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool create_memento) {
// ----------- S t a t e -------------
// -- eax: number of arguments
// -- edi: constructor function
// -- ebx: allocation site or undefined
// -- edx: original constructor
// -----------------------------------
// Should never create mementos for api functions.
DCHECK(!is_api_function || !create_memento);
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ AssertUndefinedOrAllocationSite(ebx);
__ push(ebx);
__ SmiTag(eax);
__ push(eax);
__ push(edi);
__ push(edx);
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
__ j(not_equal, &rt_call);
// Fall back to runtime if the original constructor and function differ.
__ cmp(edx, edi);
__ j(not_equal, &rt_call);
// Verified that the constructor is a JSFunction.
// Load the initial map and verify that it is in fact a map.
// edi: constructor
__ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
__ JumpIfSmi(eax, &rt_call);
// edi: constructor
// eax: initial map (if proven valid below)
__ CmpObjectType(eax, MAP_TYPE, ebx);
__ j(not_equal, &rt_call);
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the
// initial map's instance type would be JS_FUNCTION_TYPE.
// edi: constructor
// eax: initial map
__ CmpInstanceType(eax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
if (!is_api_function) {
Label allocate;
// The code below relies on these assumptions.
STATIC_ASSERT(Map::Counter::kShift + Map::Counter::kSize == 32);
// Check if slack tracking is enabled.
__ mov(esi, FieldOperand(eax, Map::kBitField3Offset));
__ shr(esi, Map::Counter::kShift);
__ cmp(esi, Map::kSlackTrackingCounterEnd);
__ j(less, &allocate);
// Decrease generous allocation count.
__ sub(FieldOperand(eax, Map::kBitField3Offset),
Immediate(1 << Map::Counter::kShift));
__ cmp(esi, Map::kSlackTrackingCounterEnd);
__ j(not_equal, &allocate);
__ push(eax);
__ push(edx);
__ push(edi);
__ push(edi); // constructor
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ pop(edi);
__ pop(edx);
__ pop(eax);
__ mov(esi, Map::kSlackTrackingCounterEnd - 1);
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
// edi: constructor
// eax: initial map
__ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
__ shl(edi, kPointerSizeLog2);
if (create_memento) {
__ add(edi, Immediate(AllocationMemento::kSize));
}
__ Allocate(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
Factory* factory = masm->isolate()->factory();
// Allocated the JSObject, now initialize the fields.
// eax: initial map
// ebx: JSObject
// edi: start of next object (including memento if create_memento)
__ mov(Operand(ebx, JSObject::kMapOffset), eax);
__ mov(ecx, factory->empty_fixed_array());
__ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
__ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
// Set extra fields in the newly allocated object.
// eax: initial map
// ebx: JSObject
// edi: start of next object (including memento if create_memento)
// esi: slack tracking counter (non-API function case)
__ mov(edx, factory->undefined_value());
__ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
if (!is_api_function) {
Label no_inobject_slack_tracking;
// Check if slack tracking is enabled.
__ cmp(esi, Map::kSlackTrackingCounterEnd);
__ j(less, &no_inobject_slack_tracking);
// Allocate object with a slack.
__ movzx_b(
esi,
FieldOperand(
eax, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset));
__ movzx_b(eax, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
__ sub(esi, eax);
__ lea(esi,
Operand(ebx, esi, times_pointer_size, JSObject::kHeaderSize));
// esi: offset of first field after pre-allocated fields
if (FLAG_debug_code) {
__ cmp(esi, edi);
__ Assert(less_equal,
kUnexpectedNumberOfPreAllocatedPropertyFields);
}
__ InitializeFieldsWithFiller(ecx, esi, edx);
__ mov(edx, factory->one_pointer_filler_map());
// Fill the remaining fields with one pointer filler map.
__ bind(&no_inobject_slack_tracking);
}
if (create_memento) {
__ lea(esi, Operand(edi, -AllocationMemento::kSize));
__ InitializeFieldsWithFiller(ecx, esi, edx);
// Fill in memento fields if necessary.
// esi: points to the allocated but uninitialized memento.
__ mov(Operand(esi, AllocationMemento::kMapOffset),
factory->allocation_memento_map());
// Get the cell or undefined.
__ mov(edx, Operand(esp, 3 * kPointerSize));
__ AssertUndefinedOrAllocationSite(edx);
__ mov(Operand(esi, AllocationMemento::kAllocationSiteOffset),
edx);
} else {
__ InitializeFieldsWithFiller(ecx, edi, edx);
}
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on.
// ebx: JSObject (untagged)
__ or_(ebx, Immediate(kHeapObjectTag));
// Continue with JSObject being successfully allocated
// ebx: JSObject (tagged)
__ jmp(&allocated);
}
// Allocate the new receiver object using the runtime call.
// edx: original constructor
__ bind(&rt_call);
int offset = kPointerSize;
if (create_memento) {
// Get the cell or allocation site.
__ mov(edi, Operand(esp, kPointerSize * 3));
__ push(edi); // argument 1: allocation site
offset += kPointerSize;
}
// Must restore esi (context) and edi (constructor) before calling
// runtime.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ mov(edi, Operand(esp, offset));
__ push(edi); // argument 2/1: constructor function
__ push(edx); // argument 3/2: original constructor
if (create_memento) {
__ CallRuntime(Runtime::kNewObjectWithAllocationSite, 3);
} else {
__ CallRuntime(Runtime::kNewObject, 2);
}
__ mov(ebx, eax); // store result in ebx
// Runtime_NewObjectWithAllocationSite increments allocation count.
// Skip the increment.
Label count_incremented;
if (create_memento) {
__ jmp(&count_incremented);
}
// New object allocated.
// ebx: newly allocated object
__ bind(&allocated);
if (create_memento) {
__ mov(ecx, Operand(esp, 3 * kPointerSize));
__ cmp(ecx, masm->isolate()->factory()->undefined_value());
__ j(equal, &count_incremented);
// ecx is an AllocationSite. We are creating a memento from it, so we
// need to increment the memento create count.
__ add(FieldOperand(ecx, AllocationSite::kPretenureCreateCountOffset),
Immediate(Smi::FromInt(1)));
__ bind(&count_incremented);
}
// Restore the parameters.
__ pop(edx); // new.target
__ pop(edi); // Constructor function.
// Retrieve smi-tagged arguments count from the stack.
__ mov(eax, Operand(esp, 0));
__ SmiUntag(eax);
// Push new.target onto the construct frame. This is stored just below the
// receiver on the stack.
__ push(edx);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(ebx);
__ push(ebx);
// Set up pointer to last argument.
__ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(ecx, eax);
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(ebx, ecx, times_4, 0));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Call the function.
if (is_api_function) {
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
__ call(code, RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(eax);
__ InvokeFunction(edi, actual, CALL_FUNCTION,
NullCallWrapper());
}
// Store offset of return address for deoptimizer.
if (!is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(eax, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
__ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(above_equal, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ mov(eax, Operand(esp, 0));
// Restore the arguments count and leave the construct frame. The arguments
// count is stored below the reciever and the new.target.
__ bind(&exit);
__ mov(ebx, Operand(esp, 2 * kPointerSize));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
__ ret(0);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments
// -- edi: constructor function
// -- ebx: allocation site or undefined
// -- edx: original constructor
// -----------------------------------
{
FrameScope frame_scope(masm, StackFrame::CONSTRUCT);
// Preserve allocation site.
__ AssertUndefinedOrAllocationSite(ebx);
__ push(ebx);
// Preserve actual arguments count.
__ SmiTag(eax);
__ push(eax);
__ SmiUntag(eax);
// Push new.target.
__ push(edx);
// receiver is the hole.
__ push(Immediate(masm->isolate()->factory()->the_hole_value()));
// Set up pointer to last argument.
__ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(ecx, eax);
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(ebx, ecx, times_4, 0));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Handle step in.
Label skip_step_in;
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
__ j(equal, &skip_step_in);
__ push(eax);
__ push(edi);
__ push(edi);
__ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1);
__ pop(edi);
__ pop(eax);
__ bind(&skip_step_in);
// Invoke function.
ParameterCount actual(eax);
__ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper());
// Restore context from the frame.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
// Get arguments count, skipping over new.target.
__ mov(ebx, Operand(esp, kPointerSize));
}
__ pop(ecx); // Return address.
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));
__ push(ecx);
__ ret(0);
}
enum IsTagged { kEaxIsSmiTagged, kEaxIsUntaggedInt };
// Clobbers ecx, edx, edi; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm,
const int calleeOffset,
IsTagged eax_is_tagged) {
// eax : the number of items to be pushed to the stack
//
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
ExternalReference real_stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
__ mov(edi, Operand::StaticVariable(real_stack_limit));
// Make ecx the space we have left. The stack might already be overflowed
// here which will cause ecx to become negative.
__ mov(ecx, esp);
__ sub(ecx, edi);
// Make edx the space we need for the array when it is unrolled onto the
// stack.
__ mov(edx, eax);
int smi_tag = eax_is_tagged == kEaxIsSmiTagged ? kSmiTagSize : 0;
__ shl(edx, kPointerSizeLog2 - smi_tag);
// Check if the arguments will overflow the stack.
__ cmp(ecx, edx);
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ push(Operand(ebp, calleeOffset)); // push this
if (eax_is_tagged == kEaxIsUntaggedInt) {
__ SmiTag(eax);
}
__ push(eax);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Clear the context before we push it when entering the internal frame.
__ Move(esi, Immediate(0));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Load the previous frame pointer (ebx) to access C arguments
__ mov(ebx, Operand(ebp, 0));
// Get the function from the frame and setup the context.
__ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
__ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ push(ecx);
__ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
// Load the number of arguments and setup pointer to the arguments.
__ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
__ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
// Check if we have enough stack space to push all arguments.
// The function is the first thing that was pushed above after entering
// the internal frame.
const int kFunctionOffset =
InternalFrameConstants::kCodeOffset - kPointerSize;
// Expects argument count in eax. Clobbers ecx, edx, edi.
Generate_CheckStackOverflow(masm, kFunctionOffset, kEaxIsUntaggedInt);
// Copy arguments to the stack in a loop.
Label loop, entry;
__ Move(ecx, Immediate(0));
__ jmp(&entry);
__ bind(&loop);
__ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv
__ push(Operand(edx, 0)); // dereference handle
__ inc(ecx);
__ bind(&entry);
__ cmp(ecx, eax);
__ j(not_equal, &loop);
// Get the function from the stack and call it.
// kPointerSize for the receiver.
__ mov(edi, Operand(esp, eax, times_4, kPointerSize));
// Invoke the code.
if (is_construct) {
// No type feedback cell is available
__ mov(ebx, masm->isolate()->factory()->undefined_value());
CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
__ CallStub(&stub);
} else {
ParameterCount actual(eax);
__ InvokeFunction(edi, actual, CALL_FUNCTION,
NullCallWrapper());
}
// Exit the internal frame. Notice that this also removes the empty.
// context and the function left on the stack by the code
// invocation.
}
__ ret(kPointerSize); // Remove receiver.
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o edi: the JS function object being called
// o esi: our context
// o ebp: the caller's frame pointer
// o esp: stack pointer (pointing to return address)
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-ia32.h for its layout.
// TODO(rmcilroy): We will need to include the current bytecode pointer in the
// frame.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ push(ebp); // Caller's frame pointer.
__ mov(ebp, esp);
__ push(esi); // Callee's context.
__ push(edi); // Callee's JS function.
// Get the bytecode array from the function object and load the pointer to the
// first entry into edi (InterpreterBytecodeRegister).
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(kInterpreterBytecodeArrayRegister,
FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
eax);
__ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ mov(ebx, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ mov(ecx, esp);
__ sub(ecx, ebx);
ExternalReference stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
__ cmp(ecx, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ mov(eax, Immediate(masm->isolate()->factory()->undefined_value()));
__ jmp(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(eax);
// Continue loop if not done.
__ bind(&loop_check);
__ sub(ebx, Immediate(kPointerSize));
__ j(greater_equal, &loop_header);
}
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's prologue:
// - Support profiler (specifically profiling_counter).
// - Call ProfileEntryHookStub when isolate has a function_entry_hook.
// - Allow simulator stop operations if FLAG_stop_at is set.
// - Deal with sloppy mode functions which need to replace the
// receiver with the global proxy when called as functions (without an
// explicit receiver object).
// - Code aging of the BytecodeArray object.
// - Supporting FLAG_trace.
//
// The following items are also not done here, and will probably be done using
// explicit bytecodes instead:
// - Allocating a new local context if applicable.
// - Setting up a local binding to the this function, which is used in
// derived constructors with super calls.
// - Setting new.target if required.
// - Dealing with REST parameters (only if
// https://codereview.chromium.org/1235153006 doesn't land by then).
// - Dealing with argument objects.
// Perform stack guard check.
{
Label ok;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(masm->isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok);
__ CallRuntime(Runtime::kStackGuard, 0);
__ bind(&ok);
}
// Load accumulator, register file, bytecode offset, dispatch table into
// registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ mov(kInterpreterRegisterFileRegister, ebp);
__ sub(
kInterpreterRegisterFileRegister,
Immediate(kPointerSize + StandardFrameConstants::kFixedFrameSizeFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Since the dispatch table root might be set after builtins are generated,
// load directly from the roots table.
__ LoadRoot(kInterpreterDispatchTableRegister,
Heap::kInterpreterTableRootIndex);
__ add(kInterpreterDispatchTableRegister,
Immediate(FixedArray::kHeaderSize - kHeapObjectTag));
// Push context as a stack located parameter to the bytecode handler.
DCHECK_EQ(-1, kInterpreterContextSpillSlot);
__ push(esi);
// Dispatch to the first bytecode handler for the function.
__ movzx_b(esi, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ mov(esi, Operand(kInterpreterDispatchTableRegister, esi,
times_pointer_size, 0));
// TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging
// and header removal.
__ add(esi, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(esi);
}
void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) {
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's EmitReturnSequence.
// - Supporting FLAG_trace for Runtime::TraceExit.
// - Support profiler (specifically decrementing profiling_counter
// appropriately and calling out to HandleInterrupts if necessary).
// The return value is in accumulator, which is already in rax.
// Leave the frame (also dropping the register file).
__ leave();
// Return droping receiver + arguments.
// TODO(rmcilroy): Get number of arguments from BytecodeArray.
__ Ret(1 * kPointerSize, ecx);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileLazy);
GenerateTailCallToReturnedCode(masm);
}
static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function.
__ push(edi);
// Function is also the parameter to the runtime call.
__ push(edi);
// Whether to compile in a background thread.
__ Push(masm->isolate()->factory()->ToBoolean(concurrent));
__ CallRuntime(Runtime::kCompileOptimized, 2);
// Restore receiver.
__ pop(edi);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
CallCompileOptimized(masm, false);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
CallCompileOptimized(masm, true);
GenerateTailCallToReturnedCode(masm);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Re-execute the code that was patched back to the young age when
// the stub returns.
__ sub(Operand(esp, 0), Immediate(5));
__ pushad();
__ mov(eax, Operand(esp, 8 * kPointerSize));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2, ebx);
__ mov(Operand(esp, 1 * kPointerSize),
Immediate(ExternalReference::isolate_address(masm->isolate())));
__ mov(Operand(esp, 0), eax);
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
}
__ popad();
__ ret(0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
__ pushad();
__ mov(eax, Operand(esp, 8 * kPointerSize));
__ sub(eax, Immediate(Assembler::kCallInstructionLength));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2, ebx);
__ mov(Operand(esp, 1 * kPointerSize),
Immediate(ExternalReference::isolate_address(masm->isolate())));
__ mov(Operand(esp, 0), eax);
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
}
__ popad();
// Perform prologue operations usually performed by the young code stub.
__ pop(eax); // Pop return address into scratch register.
__ push(ebp); // Caller's frame pointer.
__ mov(ebp, esp);
__ push(esi); // Callee's context.
__ push(edi); // Callee's JS Function.
__ push(eax); // Push return address after frame prologue.
// Jump to point after the code-age stub.
__ ret(0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ pushad();
__ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
__ popad();
// Tear down internal frame.
}
__ pop(MemOperand(esp, 0)); // Ignore state offset
__ ret(0); // Return to IC Miss stub, continuation still on stack.
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass deoptimization type to the runtime system.
__ push(Immediate(Smi::FromInt(static_cast<int>(type))));
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
// Tear down internal frame.
}
// Get the full codegen state from the stack and untag it.
__ mov(ecx, Operand(esp, 1 * kPointerSize));
__ SmiUntag(ecx);
// Switch on the state.
Label not_no_registers, not_tos_eax;
__ cmp(ecx, FullCodeGenerator::NO_REGISTERS);
__ j(not_equal, &not_no_registers, Label::kNear);
__ ret(1 * kPointerSize); // Remove state.
__ bind(&not_no_registers);
__ mov(eax, Operand(esp, 2 * kPointerSize));
__ cmp(ecx, FullCodeGenerator::TOS_REG);
__ j(not_equal, &not_tos_eax, Label::kNear);
__ ret(2 * kPointerSize); // Remove state, eax.
__ bind(&not_tos_eax);
__ Abort(kNoCasesLeft);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
Factory* factory = masm->isolate()->factory();
// 1. Make sure we have at least one argument.
{ Label done;
__ test(eax, eax);
__ j(not_zero, &done);
__ pop(ebx);
__ push(Immediate(factory->undefined_value()));
__ push(ebx);
__ inc(eax);
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
Label slow, non_function;
// 1 ~ return address.
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
__ JumpIfSmi(edi, &non_function);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &slow);
// 3a. Patch the first argument if necessary when calling a function.
Label shift_arguments;
__ Move(edx, Immediate(0)); // indicate regular JS_FUNCTION
{ Label convert_to_object, use_global_proxy, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset),
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
__ j(not_equal, &shift_arguments);
// Do not transform the receiver for natives (shared already in ebx).
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset),
1 << SharedFunctionInfo::kNativeBitWithinByte);
__ j(not_equal, &shift_arguments);
// Compute the receiver in sloppy mode.
__ mov(ebx, Operand(esp, eax, times_4, 0)); // First argument.
// Call ToObject on the receiver if it is not an object, or use the
// global object if it is null or undefined.
__ JumpIfSmi(ebx, &convert_to_object);
__ cmp(ebx, factory->null_value());
__ j(equal, &use_global_proxy);
__ cmp(ebx, factory->undefined_value());
__ j(equal, &use_global_proxy);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(above_equal, &shift_arguments);
__ bind(&convert_to_object);
{ // In order to preserve argument count.
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(eax);
__ push(eax);
__ mov(eax, ebx);
ToObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ mov(ebx, eax);
__ Move(edx, Immediate(0)); // restore
__ pop(eax);
__ SmiUntag(eax);
}
// Restore the function to edi.
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
__ jmp(&patch_receiver);
__ bind(&use_global_proxy);
__ mov(ebx,
Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalProxyOffset));
__ bind(&patch_receiver);
__ mov(Operand(esp, eax, times_4, 0), ebx);
__ jmp(&shift_arguments);
}
// 3b. Check for function proxy.
__ bind(&slow);
__ Move(edx, Immediate(1)); // indicate function proxy
__ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
__ j(equal, &shift_arguments);
__ bind(&non_function);
__ Move(edx, Immediate(2)); // indicate non-function
// 3c. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
__ mov(Operand(esp, eax, times_4, 0), edi);
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
__ bind(&shift_arguments);
{ Label loop;
__ mov(ecx, eax);
__ bind(&loop);
__ mov(ebx, Operand(esp, ecx, times_4, 0));
__ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
__ dec(ecx);
__ j(not_sign, &loop); // While non-negative (to copy return address).
__ pop(ebx); // Discard copy of return address.
__ dec(eax); // One fewer argument (first argument is new receiver).
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
// or a function proxy via CALL_FUNCTION_PROXY.
{ Label function, non_proxy;
__ test(edx, edx);
__ j(zero, &function);
__ Move(ebx, Immediate(0));
__ cmp(edx, Immediate(1));
__ j(not_equal, &non_proxy);
__ pop(edx); // return address
__ push(edi); // re-add proxy object as additional argument
__ push(edx);
__ inc(eax);
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&non_proxy);
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx,
FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
__ SmiUntag(ebx);
__ cmp(eax, ebx);
__ j(not_equal,
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline());
ParameterCount expected(0);
__ InvokeCode(edx, expected, expected, JUMP_FUNCTION, NullCallWrapper());
}
static void Generate_PushAppliedArguments(MacroAssembler* masm,
const int argumentsOffset,
const int indexOffset,
const int limitOffset) {
// Copy all arguments from the array to the stack.
Label entry, loop;
Register receiver = LoadDescriptor::ReceiverRegister();
Register key = LoadDescriptor::NameRegister();
Register slot = LoadDescriptor::SlotRegister();
Register vector = LoadWithVectorDescriptor::VectorRegister();
__ mov(key, Operand(ebp, indexOffset));
__ jmp(&entry);
__ bind(&loop);
__ mov(receiver, Operand(ebp, argumentsOffset)); // load arguments
// Use inline caching to speed up access to arguments.
Code::Kind kinds[] = {Code::KEYED_LOAD_IC};
FeedbackVectorSpec spec(0, 1, kinds);
Handle<TypeFeedbackVector> feedback_vector =
masm->isolate()->factory()->NewTypeFeedbackVector(&spec);
int index = feedback_vector->GetIndex(FeedbackVectorICSlot(0));
__ mov(slot, Immediate(Smi::FromInt(index)));
__ mov(vector, Immediate(feedback_vector));
Handle<Code> ic =
KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode();
__ call(ic, RelocInfo::CODE_TARGET);
// It is important that we do not have a test instruction after the
// call. A test instruction after the call is used to indicate that
// we have generated an inline version of the keyed load. In this
// case, we know that we are not generating a test instruction next.
// Push the nth argument.
__ push(eax);
// Update the index on the stack and in register key.
__ mov(key, Operand(ebp, indexOffset));
__ add(key, Immediate(1 << kSmiTagSize));
__ mov(Operand(ebp, indexOffset), key);
__ bind(&entry);
__ cmp(key, Operand(ebp, limitOffset));
__ j(not_equal, &loop);
// On exit, the pushed arguments count is in eax, untagged
__ Move(eax, key);
__ SmiUntag(eax);
}
// Used by FunctionApply and ReflectApply
static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) {
const int kFormalParameters = targetIsArgument ? 3 : 2;
const int kStackSize = kFormalParameters + 1;
// Stack at entry:
// esp : return address
// esp[4] : arguments
// esp[8] : receiver ("this")
// esp[12] : function
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
// Stack frame:
// ebp : Old base pointer
// ebp[4] : return address
// ebp[8] : function arguments
// ebp[12] : receiver
// ebp[16] : function
static const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
static const int kReceiverOffset = kArgumentsOffset + kPointerSize;
static const int kFunctionOffset = kReceiverOffset + kPointerSize;
__ push(Operand(ebp, kFunctionOffset)); // push this
__ push(Operand(ebp, kArgumentsOffset)); // push arguments
if (targetIsArgument) {
__ InvokeBuiltin(Builtins::REFLECT_APPLY_PREPARE, CALL_FUNCTION);
} else {
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
}
Generate_CheckStackOverflow(masm, kFunctionOffset, kEaxIsSmiTagged);
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ push(eax); // limit
__ push(Immediate(0)); // index
// Get the receiver.
__ mov(ebx, Operand(ebp, kReceiverOffset));
// Check that the function is a JS function (otherwise it must be a proxy).
Label push_receiver, use_global_proxy;
__ mov(edi, Operand(ebp, kFunctionOffset));
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &push_receiver);
// Change context eagerly to get the right global object if necessary.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Compute the receiver.
// Do not transform the receiver for strict mode functions.
Label call_to_object;
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
__ j(not_equal, &push_receiver);
Factory* factory = masm->isolate()->factory();
// Do not transform the receiver for natives (shared already in ecx).
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
1 << SharedFunctionInfo::kNativeBitWithinByte);
__ j(not_equal, &push_receiver);
// Compute the receiver in sloppy mode.
// Call ToObject on the receiver if it is not an object, or use the
// global object if it is null or undefined.
__ JumpIfSmi(ebx, &call_to_object);
__ cmp(ebx, factory->null_value());
__ j(equal, &use_global_proxy);
__ cmp(ebx, factory->undefined_value());
__ j(equal, &use_global_proxy);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(above_equal, &push_receiver);
__ bind(&call_to_object);
__ mov(eax, ebx);
ToObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ mov(ebx, eax);
__ jmp(&push_receiver);
__ bind(&use_global_proxy);
__ mov(ebx,
Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalProxyOffset));
// Push the receiver.
__ bind(&push_receiver);
__ push(ebx);
// Loop over the arguments array, pushing each value to the stack
Generate_PushAppliedArguments(
masm, kArgumentsOffset, kIndexOffset, kLimitOffset);
// Call the function.
Label call_proxy;
ParameterCount actual(eax);
__ mov(edi, Operand(ebp, kFunctionOffset));
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &call_proxy);
__ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper());
frame_scope.GenerateLeaveFrame();
__ ret(kStackSize * kPointerSize); // remove this, receiver, and arguments
// Call the function proxy.
__ bind(&call_proxy);
__ push(edi); // add function proxy as last argument
__ inc(eax);
__ Move(ebx, Immediate(0));
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
__ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ ret(kStackSize * kPointerSize); // remove this, receiver, and arguments
}
// Used by ReflectConstruct
static void Generate_ConstructHelper(MacroAssembler* masm) {
const int kFormalParameters = 3;
const int kStackSize = kFormalParameters + 1;
// Stack at entry:
// esp : return address
// esp[4] : original constructor (new.target)
// esp[8] : arguments
// esp[16] : constructor
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
// Stack frame:
// ebp : Old base pointer
// ebp[4] : return address
// ebp[8] : original constructor (new.target)
// ebp[12] : arguments
// ebp[16] : constructor
static const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize;
static const int kArgumentsOffset = kNewTargetOffset + kPointerSize;
static const int kFunctionOffset = kArgumentsOffset + kPointerSize;
// If newTarget is not supplied, set it to constructor
Label validate_arguments;
__ mov(eax, Operand(ebp, kNewTargetOffset));
__ CompareRoot(eax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &validate_arguments, Label::kNear);
__ mov(eax, Operand(ebp, kFunctionOffset));
__ mov(Operand(ebp, kNewTargetOffset), eax);
// Validate arguments
__ bind(&validate_arguments);
__ push(Operand(ebp, kFunctionOffset));
__ push(Operand(ebp, kArgumentsOffset));
__ push(Operand(ebp, kNewTargetOffset));
__ InvokeBuiltin(Builtins::REFLECT_CONSTRUCT_PREPARE, CALL_FUNCTION);
Generate_CheckStackOverflow(masm, kFunctionOffset, kEaxIsSmiTagged);
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ Push(eax); // limit
__ push(Immediate(0)); // index
// Push the constructor function as callee.
__ push(Operand(ebp, kFunctionOffset));
// Loop over the arguments array, pushing each value to the stack
Generate_PushAppliedArguments(
masm, kArgumentsOffset, kIndexOffset, kLimitOffset);
// Use undefined feedback vector
__ LoadRoot(ebx, Heap::kUndefinedValueRootIndex);
__ mov(edi, Operand(ebp, kFunctionOffset));
__ mov(ecx, Operand(ebp, kNewTargetOffset));
// Call the function.
CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL);
__ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
// Leave internal frame.
}
// remove this, target, arguments, and newTarget
__ ret(kStackSize * kPointerSize);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, false);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, true);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
Generate_ConstructHelper(masm);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_array_code;
// Get the InternalArray function.
__ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray function should be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction);
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
__ mov(edx, edi);
if (FLAG_debug_code) {
// Initial map for the builtin Array function should be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, kUnexpectedInitialMapForArrayFunction);
}
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ mov(ebx, masm->isolate()->factory()->undefined_value());
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : number of arguments
// -- edi : constructor function
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_ctor_calls(), 1);
if (FLAG_debug_code) {
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx);
__ cmp(edi, ecx);
__ Assert(equal, kUnexpectedStringFunction);
}
// Load the first argument into eax and get rid of the rest
// (including the receiver).
Label no_arguments;
__ test(eax, eax);
__ j(zero, &no_arguments);
__ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
__ pop(ecx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ push(ecx);
__ mov(eax, ebx);
// Lookup the argument in the number to string cache.
Label not_cached, argument_is_string;
__ LookupNumberStringCache(eax, // Input.
ebx, // Result.
ecx, // Scratch 1.
edx, // Scratch 2.
&not_cached);
__ IncrementCounter(counters->string_ctor_cached_number(), 1);
__ bind(&argument_is_string);
// ----------- S t a t e -------------
// -- ebx : argument converted to string
// -- edi : constructor function
// -- esp[0] : return address
// -----------------------------------
// Allocate a JSValue and put the tagged pointer into eax.
Label gc_required;
__ Allocate(JSValue::kSize,
eax, // Result.
ecx, // New allocation top (we ignore it).
no_reg,
&gc_required,
TAG_OBJECT);
// Set the map.
__ LoadGlobalFunctionInitialMap(edi, ecx);
if (FLAG_debug_code) {
__ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset),
JSValue::kSize >> kPointerSizeLog2);
__ Assert(equal, kUnexpectedStringWrapperInstanceSize);
__ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0);
__ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper);
}
__ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx);
// Set properties and elements.
Factory* factory = masm->isolate()->factory();
__ Move(ecx, Immediate(factory->empty_fixed_array()));
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
__ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx);
// Set the value.
__ mov(FieldOperand(eax, JSValue::kValueOffset), ebx);
// Ensure the object is fully initialized.
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
// We're done. Return.
__ ret(0);
// The argument was not found in the number to string cache. Check
// if it's a string already before calling the conversion builtin.
Label convert_argument;
__ bind(&not_cached);
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(eax, &convert_argument);
Condition is_string = masm->IsObjectStringType(eax, ebx, ecx);
__ j(NegateCondition(is_string), &convert_argument);
__ mov(ebx, eax);
__ IncrementCounter(counters->string_ctor_string_value(), 1);
__ jmp(&argument_is_string);
// Invoke the conversion builtin and put the result into ebx.
__ bind(&convert_argument);
__ IncrementCounter(counters->string_ctor_conversions(), 1);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(edi); // Preserve the function.
__ push(eax);
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
__ pop(edi);
}
__ mov(ebx, eax);
__ jmp(&argument_is_string);
// Load the empty string into ebx, remove the receiver from the
// stack, and jump back to the case where the argument is a string.
__ bind(&no_arguments);
__ Move(ebx, Immediate(factory->empty_string()));
__ pop(ecx);
__ lea(esp, Operand(esp, kPointerSize));
__ push(ecx);
__ jmp(&argument_is_string);
// At this point the argument is already a string. Call runtime to
// create a string wrapper.
__ bind(&gc_required);
__ IncrementCounter(counters->string_ctor_gc_required(), 1);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(ebx);
__ CallRuntime(Runtime::kNewStringWrapper, 1);
}
__ ret(0);
}
static void ArgumentsAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- eax : actual number of arguments
// -- ebx : expected number of arguments
// -- edi : function (passed through to callee)
// -----------------------------------
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
ExternalReference real_stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
__ mov(edx, Operand::StaticVariable(real_stack_limit));
// Make ecx the space we have left. The stack might already be overflowed
// here which will cause ecx to become negative.
__ mov(ecx, esp);
__ sub(ecx, edx);
// Make edx the space we need for the array when it is unrolled onto the
// stack.
__ mov(edx, ebx);
__ shl(edx, kPointerSizeLog2);
// Check if the arguments will overflow the stack.
__ cmp(ecx, edx);
__ j(less_equal, stack_overflow); // Signed comparison.
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(ebp);
__ mov(ebp, esp);
// Store the arguments adaptor context sentinel.
__ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Push the function on the stack.
__ push(edi);
// Preserve the number of arguments on the stack. Must preserve eax,
// ebx and ecx because these registers are used when copying the
// arguments and the receiver.
STATIC_ASSERT(kSmiTagSize == 1);
__ lea(edi, Operand(eax, eax, times_1, kSmiTag));
__ push(edi);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack.
__ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ leave();
// Remove caller arguments from the stack.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : actual number of arguments
// -- ebx : expected number of arguments
// -- edi : function (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments;
__ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
Label stack_overflow;
ArgumentsAdaptorStackCheck(masm, &stack_overflow);
Label enough, too_few;
__ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
__ cmp(eax, ebx);
__ j(less, &too_few);
__ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(eax, Operand(ebp, eax, times_4, offset));
__ mov(edi, -1); // account for receiver
Label copy;
__ bind(&copy);
__ inc(edi);
__ push(Operand(eax, 0));
__ sub(eax, Immediate(kPointerSize));
__ cmp(edi, ebx);
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
// If the function is strong we need to throw an error.
Label no_strong_error;
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrongModeByteOffset),
1 << SharedFunctionInfo::kStrongModeBitWithinByte);
__ j(equal, &no_strong_error, Label::kNear);
// What we really care about is the required number of arguments.
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kLengthOffset));
__ SmiUntag(ecx);
__ cmp(eax, ecx);
__ j(greater_equal, &no_strong_error, Label::kNear);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0);
}
__ bind(&no_strong_error);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, eax, times_4, offset));
// ebx = expected - actual.
__ sub(ebx, eax);
// eax = -actual - 1
__ neg(eax);
__ sub(eax, Immediate(1));
Label copy;
__ bind(&copy);
__ inc(eax);
__ push(Operand(edi, 0));
__ sub(edi, Immediate(kPointerSize));
__ test(eax, eax);
__ j(not_zero, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ bind(&fill);
__ inc(eax);
__ push(Immediate(masm->isolate()->factory()->undefined_value()));
__ cmp(eax, ebx);
__ j(less, &fill);
}
// Call the entry point.
__ bind(&invoke);
// Restore function pointer.
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ call(edx);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ jmp(edx);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
__ int3();
}
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(eax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
Label skip;
// If the code object is null, just return to the unoptimized code.
__ cmp(eax, Immediate(0));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
__ bind(&skip);
// Load deoptimization data from the code object.
__ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
__ SmiUntag(ebx);
// Compute the target address = code_obj + header_size + osr_offset
__ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag));
// Overwrite the return address on the stack.
__ mov(Operand(esp, 0), eax);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
// We check the stack limit as indicator that recompilation might be done.
Label ok;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(masm->isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok, Label::kNear);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kStackGuard, 0);
}
__ jmp(masm->isolate()->builtins()->OnStackReplacement(),
RelocInfo::CODE_TARGET);
__ bind(&ok);
__ ret(0);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32