blob: 94ab284d46f5df62629ca42075d47b3051176e08 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/code-factory.h"
#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- rax : number of arguments excluding receiver
// (only guaranteed when the called function
// is not marked as DontAdaptArguments)
// -- rdi : called function
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -- ...
// -- rsp[8 * argc] : first argument
// -- rsp[8 * (argc + 1)] : receiver
// -----------------------------------
__ AssertFunction(rdi);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
// TODO(bmeurer): Can we make this more robust?
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
__ PopReturnAddressTo(kScratchRegister);
__ Push(rdi);
__ PushReturnAddressFrom(kScratchRegister);
} else {
DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects rax to contain the number of arguments
// including the receiver and the extra arguments. But rax is only valid
// if the called function is marked as DontAdaptArguments, otherwise we
// need to load the argument count from the SharedFunctionInfo.
Label argc, done_argc;
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ LoadSharedFunctionInfoSpecialField(
rbx, rdx, SharedFunctionInfo::kFormalParameterCountOffset);
__ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ j(equal, &argc, Label::kNear);
__ leap(rax, Operand(rbx, num_extra_args + 1));
__ jmp(&done_argc, Label::kNear);
__ bind(&argc);
__ addp(rax, Immediate(num_extra_args + 1));
__ bind(&done_argc);
__ JumpToExternalReference(ExternalReference(id, masm->isolate()), 1);
}
static void CallRuntimePassFunction(
MacroAssembler* masm, Runtime::FunctionId function_id) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
__ Push(rdi);
// Function is also the parameter to the runtime call.
__ Push(rdi);
__ CallRuntime(function_id, 1);
// Restore receiver.
__ Pop(rdi);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ movp(kScratchRegister,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(kScratchRegister,
FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset));
__ leap(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize));
__ jmp(kScratchRegister);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
__ leap(rax, FieldOperand(rax, Code::kHeaderSize));
__ jmp(rax);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
GenerateTailCallToReturnedCode(masm);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function) {
// ----------- S t a t e -------------
// -- rax: number of arguments
// -- rdi: constructor function
// -- rbx: allocation site or undefined
// -- rdx: original constructor
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ AssertUndefinedOrAllocationSite(rbx);
__ Push(rbx);
__ Integer32ToSmi(rax, rax);
__ Push(rax);
__ Push(rdi);
__ Push(rdx);
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ Move(kScratchRegister, debug_step_in_fp);
__ cmpp(Operand(kScratchRegister, 0), Immediate(0));
__ j(not_equal, &rt_call);
// Fall back to runtime if the original constructor and function differ.
__ cmpp(rdx, rdi);
__ j(not_equal, &rt_call);
// Verified that the constructor is a JSFunction.
// Load the initial map and verify that it is in fact a map.
// rdi: constructor
__ movp(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
DCHECK(kSmiTag == 0);
__ JumpIfSmi(rax, &rt_call);
// rdi: constructor
// rax: initial map (if proven valid below)
__ CmpObjectType(rax, MAP_TYPE, rbx);
__ j(not_equal, &rt_call);
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the
// initial map's instance type would be JS_FUNCTION_TYPE.
// rdi: constructor
// rax: initial map
__ CmpInstanceType(rax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
if (!is_api_function) {
Label allocate;
// The code below relies on these assumptions.
STATIC_ASSERT(Map::Counter::kShift + Map::Counter::kSize == 32);
// Check if slack tracking is enabled.
__ movl(rsi, FieldOperand(rax, Map::kBitField3Offset));
__ shrl(rsi, Immediate(Map::Counter::kShift));
__ cmpl(rsi, Immediate(Map::kSlackTrackingCounterEnd));
__ j(less, &allocate);
// Decrease generous allocation count.
__ subl(FieldOperand(rax, Map::kBitField3Offset),
Immediate(1 << Map::Counter::kShift));
__ cmpl(rsi, Immediate(Map::kSlackTrackingCounterEnd));
__ j(not_equal, &allocate);
__ Push(rax);
__ Push(rdx);
__ Push(rdi);
__ Push(rdi); // constructor
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ Pop(rdi);
__ Pop(rdx);
__ Pop(rax);
__ movl(rsi, Immediate(Map::kSlackTrackingCounterEnd - 1));
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
__ movzxbp(rdi, FieldOperand(rax, Map::kInstanceSizeOffset));
__ shlp(rdi, Immediate(kPointerSizeLog2));
// rdi: size of new object
__ Allocate(rdi,
rbx,
rdi,
no_reg,
&rt_call,
NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields.
// rax: initial map
// rbx: JSObject (not HeapObject tagged - the actual address).
// rdi: start of next object
__ movp(Operand(rbx, JSObject::kMapOffset), rax);
__ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
__ movp(Operand(rbx, JSObject::kPropertiesOffset), rcx);
__ movp(Operand(rbx, JSObject::kElementsOffset), rcx);
// Set extra fields in the newly allocated object.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
// rsi: slack tracking counter (non-API function case)
__ leap(rcx, Operand(rbx, JSObject::kHeaderSize));
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
if (!is_api_function) {
Label no_inobject_slack_tracking;
// Check if slack tracking is enabled.
__ cmpl(rsi, Immediate(Map::kSlackTrackingCounterEnd));
__ j(less, &no_inobject_slack_tracking);
// Allocate object with a slack.
__ movzxbp(
rsi,
FieldOperand(
rax, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset));
__ movzxbp(rax, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
__ subp(rsi, rax);
__ leap(rsi,
Operand(rbx, rsi, times_pointer_size, JSObject::kHeaderSize));
// rsi: offset of first field after pre-allocated fields
if (FLAG_debug_code) {
__ cmpp(rsi, rdi);
__ Assert(less_equal,
kUnexpectedNumberOfPreAllocatedPropertyFields);
}
__ InitializeFieldsWithFiller(rcx, rsi, rdx);
__ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
// Fill the remaining fields with one pointer filler map.
__ bind(&no_inobject_slack_tracking);
}
__ InitializeFieldsWithFiller(rcx, rdi, rdx);
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on.
// rbx: JSObject (untagged)
__ orp(rbx, Immediate(kHeapObjectTag));
// Continue with JSObject being successfully allocated
// rbx: JSObject (tagged)
__ jmp(&allocated);
}
// Allocate the new receiver object using the runtime call.
// rdx: original constructor
__ bind(&rt_call);
int offset = kPointerSize;
// Must restore rsi (context) and rdi (constructor) before calling runtime.
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ movp(rdi, Operand(rsp, offset));
__ Push(rdi); // constructor function
__ Push(rdx); // original constructor
__ CallRuntime(Runtime::kNewObject, 2);
__ movp(rbx, rax); // store result in rbx
// New object allocated.
// rbx: newly allocated object
__ bind(&allocated);
// Restore the parameters.
__ Pop(rdx);
__ Pop(rdi);
// Retrieve smi-tagged arguments count from the stack.
__ movp(rax, Operand(rsp, 0));
__ SmiToInteger32(rax, rax);
// Push new.target onto the construct frame. This is stored just below the
// receiver on the stack.
__ Push(rdx);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(rbx);
__ Push(rbx);
// Set up pointer to last argument.
__ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movp(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ Push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decp(rcx);
__ j(greater_equal, &loop);
// Call the function.
if (is_api_function) {
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
__ Call(code, RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(rax);
__ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper());
}
// Store offset of return address for deoptimizer.
if (!is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(rax, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
__ j(above_equal, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ movp(rax, Operand(rsp, 0));
// Restore the arguments count and leave the construct frame. The arguments
// count is stored below the reciever and the new.target.
__ bind(&exit);
__ movp(rbx, Operand(rsp, 2 * kPointerSize));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->constructed_objects(), 1);
__ ret(0);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true);
}
void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax: number of arguments
// -- rdi: constructor function
// -- rbx: allocation site or undefined
// -- rdx: original constructor
// -----------------------------------
{
FrameScope frame_scope(masm, StackFrame::CONSTRUCT);
// Preserve allocation site.
__ AssertUndefinedOrAllocationSite(rbx);
__ Push(rbx);
// Store a smi-tagged arguments count on the stack.
__ Integer32ToSmi(rax, rax);
__ Push(rax);
__ SmiToInteger32(rax, rax);
// Push new.target
__ Push(rdx);
// receiver is the hole.
__ Push(masm->isolate()->factory()->the_hole_value());
// Set up pointer to last argument.
__ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movp(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ Push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decp(rcx);
__ j(greater_equal, &loop);
// Handle step in.
Label skip_step_in;
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ Move(kScratchRegister, debug_step_in_fp);
__ cmpp(Operand(kScratchRegister, 0), Immediate(0));
__ j(equal, &skip_step_in);
__ Push(rax);
__ Push(rdi);
__ Push(rdi);
__ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1);
__ Pop(rdi);
__ Pop(rax);
__ bind(&skip_step_in);
// Call the function.
ParameterCount actual(rax);
__ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper());
// Restore context from the frame.
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// Get arguments count, skipping over new.target.
__ movp(rbx, Operand(rsp, kPointerSize)); // Get arguments count.
} // Leave construct frame.
// Remove caller arguments from the stack and return.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
__ ret(0);
}
enum IsTagged { kRaxIsSmiTagged, kRaxIsUntaggedInt };
// Clobbers rcx, r11, kScratchRegister; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm,
IsTagged rax_is_tagged) {
// rax : the number of items to be pushed to the stack
//
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movp(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subp(rcx, kScratchRegister);
// Make r11 the space we need for the array when it is unrolled onto the
// stack.
if (rax_is_tagged == kRaxIsSmiTagged) {
__ PositiveSmiTimesPowerOfTwoToInteger64(r11, rax, kPointerSizeLog2);
} else {
DCHECK(rax_is_tagged == kRaxIsUntaggedInt);
__ movp(r11, rax);
__ shlq(r11, Immediate(kPointerSizeLog2));
}
// Check if the arguments will overflow the stack.
__ cmpp(rcx, r11);
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Expects five C++ function parameters.
// - Object* new_target
// - JSFunction* function
// - Object* receiver
// - int argc
// - Object*** argv
// (see Handle::Invoke in execution.cc).
// Open a C++ scope for the FrameScope.
{
// Platform specific argument handling. After this, the stack contains
// an internal frame and the pushed function and receiver, and
// register rax and rbx holds the argument count and argument array,
// while rdi holds the function pointer, rsi the context, and rdx the
// new.target.
#ifdef _WIN64
// MSVC parameters in:
// rcx : new_target
// rdx : function
// r8 : receiver
// r9 : argc
// [rsp+0x20] : argv
// Clear the context before we push it when entering the internal frame.
__ Set(rsi, 0);
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ movp(rsi, masm->ExternalOperand(context_address));
// Push the function and the receiver onto the stack.
__ Push(rdx);
__ Push(r8);
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, r9);
// Load the previous frame pointer to access C argument on stack
__ movp(kScratchRegister, Operand(rbp, 0));
__ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
// Load the function pointer into rdi.
__ movp(rdi, rdx);
// Load the new.target into rdx.
__ movp(rdx, rcx);
#else // _WIN64
// GCC parameters in:
// rdi : new_target
// rsi : function
// rdx : receiver
// rcx : argc
// r8 : argv
__ movp(r11, rdi);
__ movp(rdi, rsi);
// rdi : function
// r11 : new_target
// Clear the context before we push it when entering the internal frame.
__ Set(rsi, 0);
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ movp(rsi, masm->ExternalOperand(context_address));
// Push the function and receiver onto the stack.
__ Push(rdi);
__ Push(rdx);
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, rcx);
__ movp(rbx, r8);
// Load the new.target into rdx.
__ movp(rdx, r11);
#endif // _WIN64
// Current stack contents:
// [rsp + 2 * kPointerSize ... ] : Internal frame
// [rsp + kPointerSize] : function
// [rsp] : receiver
// Current register contents:
// rax : argc
// rbx : argv
// rsi : context
// rdi : function
// rdx : new.target
// Check if we have enough stack space to push all arguments.
// Expects argument count in rax. Clobbers rcx, r11.
Generate_CheckStackOverflow(masm, kRaxIsUntaggedInt);
// Copy arguments to the stack in a loop.
// Register rbx points to array of pointers to handle locations.
// Push the values of these handles.
Label loop, entry;
__ Set(rcx, 0); // Set loop variable to 0.
__ jmp(&entry, Label::kNear);
__ bind(&loop);
__ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ Push(Operand(kScratchRegister, 0)); // dereference handle
__ addp(rcx, Immediate(1));
__ bind(&entry);
__ cmpp(rcx, rax);
__ j(not_equal, &loop);
// Invoke the builtin code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the internal frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
}
// TODO(X64): Is argument correct? Is there a receiver to remove?
__ ret(1 * kPointerSize); // Remove receiver.
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o rdi: the JS function object being called
// o rsi: our context
// o rbp: the caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-x64.h for its layout.
// TODO(rmcilroy): We will need to include the current bytecode pointer in the
// frame.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ pushq(rbp); // Caller's frame pointer.
__ movp(rbp, rsp);
__ Push(rsi); // Callee's context.
__ Push(rdi); // Callee's JS function.
// Get the bytecode array from the function object and load the pointer to the
// first entry into edi (InterpreterBytecodeRegister).
__ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(kInterpreterBytecodeArrayRegister,
FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
rax);
__ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ movp(rdx, rsp);
__ subp(rdx, rcx);
__ CompareRoot(rdx, Heap::kRealStackLimitRootIndex);
__ j(above_equal, &ok, Label::kNear);
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(always, &loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ Push(rdx);
// Continue loop if not done.
__ bind(&loop_check);
__ subp(rcx, Immediate(kPointerSize));
__ j(greater_equal, &loop_header, Label::kNear);
}
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's prologue:
// - Support profiler (specifically profiling_counter).
// - Call ProfileEntryHookStub when isolate has a function_entry_hook.
// - Allow simulator stop operations if FLAG_stop_at is set.
// - Deal with sloppy mode functions which need to replace the
// receiver with the global proxy when called as functions (without an
// explicit receiver object).
// - Code aging of the BytecodeArray object.
// Perform stack guard check.
{
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok, Label::kNear);
__ Push(kInterpreterBytecodeArrayRegister);
__ CallRuntime(Runtime::kStackGuard, 0);
__ Pop(kInterpreterBytecodeArrayRegister);
__ bind(&ok);
}
// Load accumulator, register file, bytecode offset, dispatch table into
// registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ movp(kInterpreterRegisterFileRegister, rbp);
__ subp(
kInterpreterRegisterFileRegister,
Immediate(kPointerSize + StandardFrameConstants::kFixedFrameSizeFromFp));
__ movp(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ LoadRoot(kInterpreterDispatchTableRegister,
Heap::kInterpreterTableRootIndex);
__ addp(kInterpreterDispatchTableRegister,
Immediate(FixedArray::kHeaderSize - kHeapObjectTag));
// Dispatch to the first bytecode handler for the function.
__ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx,
times_pointer_size, 0));
// TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging
// and header removal.
__ addp(rbx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(rbx);
}
void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) {
// TODO(rmcilroy): List of things not currently dealt with here but done in
// fullcodegen's EmitReturnSequence.
// - Supporting FLAG_trace for Runtime::TraceExit.
// - Support profiler (specifically decrementing profiling_counter
// appropriately and calling out to HandleInterrupts if necessary).
// The return value is in accumulator, which is already in rax.
// Leave the frame (also dropping the register file).
__ leave();
// Drop receiver + arguments and return.
__ movl(rbx, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kParameterSizeOffset));
__ PopReturnAddressTo(rcx);
__ addp(rsp, rbx);
__ PushReturnAddressFrom(rcx);
__ ret(0);
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
bool push_receiver) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rbx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
// Find the address of the last argument.
__ movp(rcx, rax);
if (push_receiver) {
__ addp(rcx, Immediate(1)); // Add one for receiver.
}
__ shlp(rcx, Immediate(kPointerSizeLog2));
__ negp(rcx);
__ addp(rcx, rbx);
// Push the arguments.
Label loop_header, loop_check;
__ j(always, &loop_check);
__ bind(&loop_header);
__ Push(Operand(rbx, 0));
__ subp(rbx, Immediate(kPointerSize));
__ bind(&loop_check);
__ cmpp(rbx, rcx);
__ j(greater, &loop_header, Label::kNear);
}
// static
void Builtins::Generate_InterpreterPushArgsAndCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rbx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- rdi : the target to call (can be any Object).
// -----------------------------------
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
Generate_InterpreterPushArgs(masm, true);
// Call the target.
__ PushReturnAddressFrom(kScratchRegister); // Re-push return address.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the original constructor (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -- rbx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
// Push slot for the receiver to be constructed.
__ Push(Immediate(0));
Generate_InterpreterPushArgs(masm, false);
// Push return address in preparation for the tail-call.
__ PushReturnAddressFrom(kScratchRegister);
// Call the constructor (rax, rdx, rdi passed on).
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CONSTRUCT_CALL);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileLazy);
GenerateTailCallToReturnedCode(masm);
}
static void CallCompileOptimized(MacroAssembler* masm,
bool concurrent) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
__ Push(rdi);
// Function is also the parameter to the runtime call.
__ Push(rdi);
// Whether to compile in a background thread.
__ Push(masm->isolate()->factory()->ToBoolean(concurrent));
__ CallRuntime(Runtime::kCompileOptimized, 2);
// Restore receiver.
__ Pop(rdi);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
CallCompileOptimized(masm, false);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
CallCompileOptimized(masm, true);
GenerateTailCallToReturnedCode(masm);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Re-execute the code that was patched back to the young age when
// the stub returns.
__ subp(Operand(rsp, 0), Immediate(5));
__ Pushad();
__ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
__ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
}
__ Popad();
__ ret(0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
__ Pushad();
__ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
__ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
__ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
}
__ Popad();
// Perform prologue operations usually performed by the young code stub.
__ PopReturnAddressTo(kScratchRegister);
__ pushq(rbp); // Caller's frame pointer.
__ movp(rbp, rsp);
__ Push(rsi); // Callee's context.
__ Push(rdi); // Callee's JS Function.
__ PushReturnAddressFrom(kScratchRegister);
// Jump to point after the code-age stub.
__ ret(0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ Pushad();
__ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
__ Popad();
// Tear down internal frame.
}
__ DropUnderReturnAddress(1); // Ignore state offset
__ ret(0); // Return to IC Miss stub, continuation still on stack.
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the deoptimization type to the runtime system.
__ Push(Smi::FromInt(static_cast<int>(type)));
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
// Tear down internal frame.
}
// Get the full codegen state from the stack and untag it.
__ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize));
// Switch on the state.
Label not_no_registers, not_tos_rax;
__ cmpp(kScratchRegister, Immediate(FullCodeGenerator::NO_REGISTERS));
__ j(not_equal, &not_no_registers, Label::kNear);
__ ret(1 * kPointerSize); // Remove state.
__ bind(&not_no_registers);
__ movp(rax, Operand(rsp, kPCOnStackSize + kPointerSize));
__ cmpp(kScratchRegister, Immediate(FullCodeGenerator::TOS_REG));
__ j(not_equal, &not_tos_rax, Label::kNear);
__ ret(2 * kPointerSize); // Remove state, rax.
__ bind(&not_tos_rax);
__ Abort(kNoCasesLeft);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
// static
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// Stack Layout:
// rsp[0] : Return address
// rsp[8] : Argument n
// rsp[16] : Argument n-1
// ...
// rsp[8 * n] : Argument 1
// rsp[8 * (n + 1)] : Receiver (callable to call)
//
// rax contains the number of arguments, n, not counting the receiver.
//
// 1. Make sure we have at least one argument.
{
Label done;
__ testp(rax, rax);
__ j(not_zero, &done, Label::kNear);
__ PopReturnAddressTo(rbx);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ PushReturnAddressFrom(rbx);
__ incp(rax);
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
{
StackArgumentsAccessor args(rsp, rax);
__ movp(rdi, args.GetReceiverOperand());
}
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
{
Label loop;
__ movp(rcx, rax);
StackArgumentsAccessor args(rsp, rcx);
__ bind(&loop);
__ movp(rbx, args.GetArgumentOperand(1));
__ movp(args.GetArgumentOperand(0), rbx);
__ decp(rcx);
__ j(not_zero, &loop); // While non-zero.
__ DropUnderReturnAddress(1, rbx); // Drop one slot under return address.
__ decp(rax); // One fewer argument (first argument is new receiver).
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
static void Generate_PushAppliedArguments(MacroAssembler* masm,
const int vectorOffset,
const int argumentsOffset,
const int indexOffset,
const int limitOffset) {
Register receiver = LoadDescriptor::ReceiverRegister();
Register key = LoadDescriptor::NameRegister();
Register slot = LoadDescriptor::SlotRegister();
Register vector = LoadWithVectorDescriptor::VectorRegister();
// Copy all arguments from the array to the stack.
Label entry, loop;
__ movp(key, Operand(rbp, indexOffset));
__ jmp(&entry);
__ bind(&loop);
__ movp(receiver, Operand(rbp, argumentsOffset)); // load arguments
// Use inline caching to speed up access to arguments.
int slot_index = TypeFeedbackVector::PushAppliedArgumentsIndex();
__ Move(slot, Smi::FromInt(slot_index));
__ movp(vector, Operand(rbp, vectorOffset));
Handle<Code> ic =
KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode();
__ Call(ic, RelocInfo::CODE_TARGET);
// It is important that we do not have a test instruction after the
// call. A test instruction after the call is used to indicate that
// we have generated an inline version of the keyed load. In this
// case, we know that we are not generating a test instruction next.
// Push the nth argument.
__ Push(rax);
// Update the index on the stack and in register key.
__ movp(key, Operand(rbp, indexOffset));
__ SmiAddConstant(key, key, Smi::FromInt(1));
__ movp(Operand(rbp, indexOffset), key);
__ bind(&entry);
__ cmpp(key, Operand(rbp, limitOffset));
__ j(not_equal, &loop);
// On exit, the pushed arguments count is in rax, untagged
__ SmiToInteger64(rax, key);
}
// Used by FunctionApply and ReflectApply
static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) {
const int kFormalParameters = targetIsArgument ? 3 : 2;
const int kStackSize = kFormalParameters + 1;
// Stack at entry:
// rsp : return address
// rsp[8] : arguments
// rsp[16] : receiver ("this")
// rsp[24] : function
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
// Stack frame:
// rbp : Old base pointer
// rbp[8] : return address
// rbp[16] : function arguments
// rbp[24] : receiver
// rbp[32] : function
static const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
static const int kReceiverOffset = kArgumentsOffset + kPointerSize;
static const int kFunctionOffset = kReceiverOffset + kPointerSize;
static const int kVectorOffset =
InternalFrameConstants::kCodeOffset - 1 * kPointerSize;
// Push the vector.
__ movp(rdi, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rdi, FieldOperand(rdi, SharedFunctionInfo::kFeedbackVectorOffset));
__ Push(rdi);
__ Push(Operand(rbp, kFunctionOffset));
__ Push(Operand(rbp, kArgumentsOffset));
if (targetIsArgument) {
__ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX,
CALL_FUNCTION);
} else {
__ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION);
}
Generate_CheckStackOverflow(masm, kRaxIsSmiTagged);
// Push current index and limit, and receiver.
const int kLimitOffset = kVectorOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ Push(rax); // limit
__ Push(Immediate(0)); // index
__ Push(Operand(rbp, kReceiverOffset)); // receiver
// Loop over the arguments array, pushing each value to the stack
Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset,
kIndexOffset, kLimitOffset);
// Call the callable.
// TODO(bmeurer): This should be a tail call according to ES6.
__ movp(rdi, Operand(rbp, kFunctionOffset));
__ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ ret(kStackSize * kPointerSize); // remove this, receiver, and arguments
}
// Used by ReflectConstruct
static void Generate_ConstructHelper(MacroAssembler* masm) {
const int kFormalParameters = 3;
const int kStackSize = kFormalParameters + 1;
// Stack at entry:
// rsp : return address
// rsp[8] : original constructor (new.target)
// rsp[16] : arguments
// rsp[24] : constructor
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
// Stack frame:
// rbp : Old base pointer
// rbp[8] : return address
// rbp[16] : original constructor (new.target)
// rbp[24] : arguments
// rbp[32] : constructor
static const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize;
static const int kArgumentsOffset = kNewTargetOffset + kPointerSize;
static const int kFunctionOffset = kArgumentsOffset + kPointerSize;
static const int kVectorOffset =
InternalFrameConstants::kCodeOffset - 1 * kPointerSize;
// Push the vector.
__ movp(rdi, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rdi, FieldOperand(rdi, SharedFunctionInfo::kFeedbackVectorOffset));
__ Push(rdi);
// If newTarget is not supplied, set it to constructor
Label validate_arguments;
__ movp(rax, Operand(rbp, kNewTargetOffset));
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &validate_arguments, Label::kNear);
__ movp(rax, Operand(rbp, kFunctionOffset));
__ movp(Operand(rbp, kNewTargetOffset), rax);
// Validate arguments
__ bind(&validate_arguments);
__ Push(Operand(rbp, kFunctionOffset));
__ Push(Operand(rbp, kArgumentsOffset));
__ Push(Operand(rbp, kNewTargetOffset));
__ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX,
CALL_FUNCTION);
Generate_CheckStackOverflow(masm, kRaxIsSmiTagged);
// Push current index and limit.
const int kLimitOffset = kVectorOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ Push(rax); // limit
__ Push(Immediate(0)); // index
// Push the constructor function as callee.
__ Push(Operand(rbp, kFunctionOffset));
// Loop over the arguments array, pushing each value to the stack
Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset,
kIndexOffset, kLimitOffset);
// Use undefined feedback vector
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
__ movp(rdi, Operand(rbp, kFunctionOffset));
__ movp(rcx, Operand(rbp, kNewTargetOffset));
// Call the function.
CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL);
__ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
// Leave internal frame.
}
// remove this, target, arguments and newTarget
__ ret(kStackSize * kPointerSize);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, false);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
Generate_ApplyHelper(masm, true);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
Generate_ConstructHelper(masm);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the InternalArray function.
__ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
}
__ movp(rdx, rdi);
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Load the first argument into rax and get rid of the rest (including the
// receiver).
Label no_arguments;
{
StackArgumentsAccessor args(rsp, rax);
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(1));
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ movp(rax, rbx);
}
// 2a. At least one argument, return rax if it's a string, otherwise
// dispatch to appropriate conversion.
Label to_string, symbol_descriptive_string;
{
__ JumpIfSmi(rax, &to_string, Label::kNear);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx);
__ j(above, &to_string, Label::kNear);
__ j(equal, &symbol_descriptive_string, Label::kNear);
__ Ret();
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(rax, Heap::kempty_stringRootIndex);
__ ret(1 * kPointerSize);
}
// 3a. Convert rax to a string.
__ bind(&to_string);
{
ToStringStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// 3b. Convert symbol in rax to a string.
__ bind(&symbol_descriptive_string);
{
__ PopReturnAddressTo(rcx);
__ Push(rax);
__ PushReturnAddressFrom(rcx);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString, 1, 1);
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rdx : original constructor
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Load the first argument into rbx and get rid of the rest (including the
// receiver).
{
StackArgumentsAccessor args(rsp, rax);
Label no_arguments, done;
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(1));
__ jmp(&done, Label::kNear);
__ bind(&no_arguments);
__ LoadRoot(rbx, Heap::kempty_stringRootIndex);
__ bind(&done);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
}
// 2. Make sure rbx is a string.
{
Label convert, done_convert;
__ JumpIfSmi(rbx, &convert, Label::kNear);
__ CmpObjectType(rbx, FIRST_NONSTRING_TYPE, rcx);
__ j(below, &done_convert);
__ bind(&convert);
{
FrameScope scope(masm, StackFrame::INTERNAL);
ToStringStub stub(masm->isolate());
__ Push(rdx);
__ Push(rdi);
__ Move(rax, rbx);
__ CallStub(&stub);
__ Move(rbx, rax);
__ Pop(rdi);
__ Pop(rdx);
}
__ bind(&done_convert);
}
// 3. Allocate a JSValue wrapper for the string.
{
// ----------- S t a t e -------------
// -- rbx : the first argument
// -- rdi : constructor function
// -- rdx : original constructor
// -----------------------------------
Label allocate, done_allocate, rt_call;
// Fall back to runtime if the original constructor and constructor differ.
__ cmpp(rdx, rdi);
__ j(not_equal, &rt_call);
__ Allocate(JSValue::kSize, rax, rcx, no_reg, &allocate, TAG_OBJECT);
__ bind(&done_allocate);
// Initialize the JSValue in rax.
__ LoadGlobalFunctionInitialMap(rdi, rcx);
__ movp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
__ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
__ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rcx);
__ movp(FieldOperand(rax, JSObject::kElementsOffset), rcx);
__ movp(FieldOperand(rax, JSValue::kValueOffset), rbx);
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
__ Ret();
// Fallback to the runtime to allocate in new space.
__ bind(&allocate);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rbx);
__ Push(rdi);
__ Push(Smi::FromInt(JSValue::kSize));
__ CallRuntime(Runtime::kAllocateInNewSpace, 1);
__ Pop(rdi);
__ Pop(rbx);
}
__ jmp(&done_allocate);
// Fallback to the runtime to create new object.
__ bind(&rt_call);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rbx);
__ Push(rdi);
__ Push(rdi); // constructor function
__ Push(rdx); // original constructor
__ CallRuntime(Runtime::kNewObject, 2);
__ Pop(rdi);
__ Pop(rbx);
}
__ movp(FieldOperand(rax, JSValue::kValueOffset), rbx);
__ Ret();
}
}
static void ArgumentsAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdi: function (passed through to callee)
// -----------------------------------
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(rdx, Heap::kRealStackLimitRootIndex);
__ movp(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subp(rcx, rdx);
// Make rdx the space we need for the array when it is unrolled onto the
// stack.
__ movp(rdx, rbx);
__ shlp(rdx, Immediate(kPointerSizeLog2));
// Check if the arguments will overflow the stack.
__ cmpp(rcx, rdx);
__ j(less_equal, stack_overflow); // Signed comparison.
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ pushq(rbp);
__ movp(rbp, rsp);
// Store the arguments adaptor context sentinel.
__ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
// Push the function on the stack.
__ Push(rdi);
// Preserve the number of arguments on the stack. Must preserve rax,
// rbx and rcx because these registers are used when copying the
// arguments and the receiver.
__ Integer32ToSmi(r8, rax);
__ Push(r8);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack. Number is a Smi.
__ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ movp(rsp, rbp);
__ popq(rbp);
// Remove caller arguments from the stack.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdi: function (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->arguments_adaptors(), 1);
Label stack_overflow;
ArgumentsAdaptorStackCheck(masm, &stack_overflow);
Label enough, too_few;
__ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ cmpp(rax, rbx);
__ j(less, &too_few);
__ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rax, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(&copy);
__ incp(r8);
__ Push(Operand(rax, 0));
__ subp(rax, Immediate(kPointerSize));
__ cmpp(r8, rbx);
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
// If the function is strong we need to throw an error.
Label no_strong_error;
__ movp(kScratchRegister,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(kScratchRegister,
SharedFunctionInfo::kStrongModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrongModeBitWithinByte));
__ j(equal, &no_strong_error, Label::kNear);
// What we really care about is the required number of arguments.
if (kPointerSize == kInt32Size) {
__ movp(
kScratchRegister,
FieldOperand(kScratchRegister, SharedFunctionInfo::kLengthOffset));
__ SmiToInteger32(kScratchRegister, kScratchRegister);
} else {
// See comment near kLengthOffset in src/objects.h
__ movsxlq(
kScratchRegister,
FieldOperand(kScratchRegister, SharedFunctionInfo::kLengthOffset));
__ shrq(kScratchRegister, Immediate(1));
}
__ cmpp(rax, kScratchRegister);
__ j(greater_equal, &no_strong_error, Label::kNear);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0);
}
__ bind(&no_strong_error);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rdi, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(&copy);
__ incp(r8);
__ Push(Operand(rdi, 0));
__ subp(rdi, Immediate(kPointerSize));
__ cmpp(r8, rax);
__ j(less, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ bind(&fill);
__ incp(r8);
__ Push(kScratchRegister);
__ cmpp(r8, rbx);
__ j(less, &fill);
// Restore function pointer.
__ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ movp(rax, rbx);
// rax : expected number of arguments
// rdi: function (passed through to callee)
__ call(rdx);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ jmp(rdx);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ int3();
}
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the function to call (checked to be a JSFunction)
// -----------------------------------
Label convert, convert_global_proxy, convert_to_object, done_convert;
StackArgumentsAccessor args(rsp, rax);
__ AssertFunction(rdi);
// TODO(bmeurer): Throw a TypeError if function's [[FunctionKind]] internal
// slot is "classConstructor".
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
SharedFunctionInfo::kStrictModeByteOffset);
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
// We need to convert the receiver for non-native sloppy mode functions.
__ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset),
Immediate((1 << SharedFunctionInfo::kNativeBitWithinByte) |
(1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
__ j(not_zero, &done_convert);
{
__ movp(rcx, args.GetReceiverOperand());
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rcx : the receiver
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
Label convert_receiver;
__ JumpIfSmi(rcx, &convert_to_object, Label::kNear);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx);
__ j(above_equal, &done_convert);
__ JumpIfRoot(rcx, Heap::kUndefinedValueRootIndex, &convert_global_proxy,
Label::kNear);
__ JumpIfNotRoot(rcx, Heap::kNullValueRootIndex, &convert_to_object,
Label::kNear);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(rcx);
}
__ jmp(&convert_receiver);
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ Integer32ToSmi(rax, rax);
__ Push(rax);
__ Push(rdi);
__ movp(rax, rcx);
ToObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ movp(rcx, rax);
__ Pop(rdi);
__ Pop(rax);
__ SmiToInteger32(rax, rax);
}
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
__ movp(args.GetReceiverOperand(), rcx);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
__ LoadSharedFunctionInfoSpecialField(
rbx, rdx, SharedFunctionInfo::kFormalParameterCountOffset);
__ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
ParameterCount actual(rax);
ParameterCount expected(rbx);
__ InvokeCode(rdx, expected, actual, JUMP_FUNCTION, NullCallWrapper());
}
// static
void Builtins::Generate_Call(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the target to call (can be any Object)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
Label non_callable, non_function, non_smi;
__ JumpIfSmi(rdi, &non_callable);
__ bind(&non_smi);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(equal, masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
__ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
__ j(not_equal, &non_function);
// 1. Call to function proxy.
// TODO(neis): This doesn't match the ES6 spec for [[Call]] on proxies.
__ movp(rdi, FieldOperand(rdi, JSFunctionProxy::kCallTrapOffset));
__ AssertNotSmi(rdi);
__ jmp(&non_smi);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Check if target has a [[Call]] internal method.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsCallable));
__ j(zero, &non_callable, Label::kNear);
// Overwrite the original receiver with the (original) target.
__ movp(args.GetReceiverOperand(), rdi);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi);
__ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowCalledNonCallable, 1);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the original constructor (checked to be a JSFunction)
// -- rdi : the constructor to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(rdx);
__ AssertFunction(rdi);
// Calling convention for function specific ConstructStubs require
// rbx to contain either an AllocationSite or undefined.
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the original constructor (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (checked to be a JSFunctionProxy)
// -----------------------------------
// TODO(neis): This doesn't match the ES6 spec for [[Construct]] on proxies.
__ movp(rdi, FieldOperand(rdi, JSFunctionProxy::kConstructTrapOffset));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the original constructor (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
// Check if target has a [[Construct]] internal method.
Label non_constructor;
__ JumpIfSmi(rdi, &non_constructor, Label::kNear);
__ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset));
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsConstructor));
__ j(zero, &non_constructor, Label::kNear);
// Dispatch based on instance type.
__ CmpInstanceType(rcx, JS_FUNCTION_TYPE);
__ j(equal, masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET);
__ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
__ j(equal, masm->isolate()->builtins()->ConstructProxy(),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ movp(args.GetReceiverOperand(), rdi);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowCalledNonCallable, 1);
}
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ Push(rax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
Label skip;
// If the code object is null, just return to the unoptimized code.
__ cmpp(rax, Immediate(0));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
__ bind(&skip);
// Load deoptimization data from the code object.
__ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ SmiToInteger32(rbx, Operand(rbx, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
// Compute the target address = code_obj + header_size + osr_offset
__ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag));
// Overwrite the return address on the stack.
__ movq(StackOperandForReturnAddress(0), rax);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
// We check the stack limit as indicator that recompilation might be done.
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kStackGuard, 0);
}
__ jmp(masm->isolate()->builtins()->OnStackReplacement(),
RelocInfo::CODE_TARGET);
__ bind(&ok);
__ ret(0);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64