blob: 27699a1b9a92cce93bcbe3a8e8737120495e06eb [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/bytecode-branch-analysis.h"
#include "src/interpreter/bytecode-array-iterator.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
namespace compiler {
// The class contains all of the sites that contain
// branches to a particular target (bytecode offset).
class BytecodeBranchInfo final : public ZoneObject {
public:
explicit BytecodeBranchInfo(Zone* zone)
: back_edge_offsets_(zone), fore_edge_offsets_(zone) {}
void AddBranch(int source_offset, int target_offset);
// The offsets of bytecodes that refer to this bytecode as
// a back-edge predecessor.
const ZoneVector<int>* back_edge_offsets() { return &back_edge_offsets_; }
// The offsets of bytecodes that refer to this bytecode as
// a forwards-edge predecessor.
const ZoneVector<int>* fore_edge_offsets() { return &fore_edge_offsets_; }
private:
ZoneVector<int> back_edge_offsets_;
ZoneVector<int> fore_edge_offsets_;
DISALLOW_COPY_AND_ASSIGN(BytecodeBranchInfo);
};
void BytecodeBranchInfo::AddBranch(int source_offset, int target_offset) {
if (source_offset < target_offset) {
fore_edge_offsets_.push_back(source_offset);
} else {
back_edge_offsets_.push_back(source_offset);
}
}
BytecodeBranchAnalysis::BytecodeBranchAnalysis(
Handle<BytecodeArray> bytecode_array, Zone* zone)
: branch_infos_(zone),
bytecode_array_(bytecode_array),
reachable_(bytecode_array->length(), zone),
zone_(zone) {}
void BytecodeBranchAnalysis::Analyze() {
interpreter::BytecodeArrayIterator iterator(bytecode_array());
bool reachable = true;
while (!iterator.done()) {
interpreter::Bytecode bytecode = iterator.current_bytecode();
int current_offset = iterator.current_offset();
// All bytecode basic blocks are generated to be forward reachable
// and may also be backward reachable. Hence if there's a forward
// branch targetting here the code becomes reachable.
reachable = reachable || forward_branches_target(current_offset);
if (reachable) {
reachable_.Add(current_offset);
if (interpreter::Bytecodes::IsConditionalJump(bytecode)) {
// Only the branch is recorded, the forward path falls through
// and is handled as normal bytecode data flow.
AddBranch(current_offset, iterator.GetJumpTargetOffset());
} else if (interpreter::Bytecodes::IsJump(bytecode)) {
// Unless the branch targets the next bytecode it's not
// reachable. If it targets the next bytecode the check at the
// start of the loop will set the reachable flag.
AddBranch(current_offset, iterator.GetJumpTargetOffset());
reachable = false;
} else if (interpreter::Bytecodes::IsJumpOrReturn(bytecode)) {
DCHECK_EQ(bytecode, interpreter::Bytecode::kReturn);
reachable = false;
}
}
iterator.Advance();
}
}
const ZoneVector<int>* BytecodeBranchAnalysis::BackwardBranchesTargetting(
int offset) const {
auto iterator = branch_infos_.find(offset);
if (branch_infos_.end() != iterator) {
return iterator->second->back_edge_offsets();
} else {
return nullptr;
}
}
const ZoneVector<int>* BytecodeBranchAnalysis::ForwardBranchesTargetting(
int offset) const {
auto iterator = branch_infos_.find(offset);
if (branch_infos_.end() != iterator) {
return iterator->second->fore_edge_offsets();
} else {
return nullptr;
}
}
void BytecodeBranchAnalysis::AddBranch(int source_offset, int target_offset) {
BytecodeBranchInfo* branch_info = nullptr;
auto iterator = branch_infos_.find(target_offset);
if (branch_infos_.end() == iterator) {
branch_info = new (zone()) BytecodeBranchInfo(zone());
branch_infos_.insert(std::make_pair(target_offset, branch_info));
} else {
branch_info = iterator->second;
}
branch_info->AddBranch(source_offset, target_offset);
}
} // namespace compiler
} // namespace internal
} // namespace v8