blob: 95d6c785f0e05978f97c2ee2af89a2cb3294bdba [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
#include "src/assembler.h"
#include "src/globals.h"
#include "src/mips64/assembler-mips64.h"
namespace v8 {
namespace internal {
// Forward declaration.
class JumpTarget;
// Reserved Register Usage Summary.
//
// Registers t8, t9, and at are reserved for use by the MacroAssembler.
//
// The programmer should know that the MacroAssembler may clobber these three,
// but won't touch other registers except in special cases.
//
// Per the MIPS ABI, register t9 must be used for indirect function call
// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
// trying to update gp register for position-independent-code. Whenever
// MIPS generated code calls C code, it must be via t9 register.
// Flags used for LeaveExitFrame function.
enum LeaveExitFrameMode {
EMIT_RETURN = true,
NO_EMIT_RETURN = false
};
// Flags used for AllocateHeapNumber
enum TaggingMode {
// Tag the result.
TAG_RESULT,
// Don't tag
DONT_TAG_RESULT
};
// Flags used for the ObjectToDoubleFPURegister function.
enum ObjectToDoubleFlags {
// No special flags.
NO_OBJECT_TO_DOUBLE_FLAGS = 0,
// Object is known to be a non smi.
OBJECT_NOT_SMI = 1 << 0,
// Don't load NaNs or infinities, branch to the non number case instead.
AVOID_NANS_AND_INFINITIES = 1 << 1
};
// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
enum BranchDelaySlot {
USE_DELAY_SLOT,
PROTECT
};
// Flags used for the li macro-assembler function.
enum LiFlags {
// If the constant value can be represented in just 16 bits, then
// optimize the li to use a single instruction, rather than lui/ori/dsll
// sequence.
OPTIMIZE_SIZE = 0,
// Always use 6 instructions (lui/ori/dsll sequence), even if the constant
// could be loaded with just one, so that this value is patchable later.
CONSTANT_SIZE = 1,
// For address loads only 4 instruction are required. Used to mark
// constant load that will be used as address without relocation
// information. It ensures predictable code size, so specific sites
// in code are patchable.
ADDRESS_LOAD = 2
};
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
kPointersToHereMaybeInteresting,
kPointersToHereAreAlwaysInteresting
};
enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
Register GetRegisterThatIsNotOneOf(Register reg1,
Register reg2 = no_reg,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg);
bool AreAliased(Register reg1,
Register reg2,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg,
Register reg7 = no_reg,
Register reg8 = no_reg);
// -----------------------------------------------------------------------------
// Static helper functions.
inline MemOperand ContextOperand(Register context, int index) {
return MemOperand(context, Context::SlotOffset(index));
}
inline MemOperand GlobalObjectOperand() {
return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
}
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
// Assumes that Smis are shifted by 32 bits and little endianness.
STATIC_ASSERT(kSmiShift == 32);
return MemOperand(rm, offset + (kSmiShift / kBitsPerByte));
}
inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
}
// Generate a MemOperand for storing arguments 5..N on the stack
// when calling CallCFunction().
// TODO(plind): Currently ONLY used for O32. Should be fixed for
// n64, and used in RegExp code, and other places
// with more than 8 arguments.
inline MemOperand CFunctionArgumentOperand(int index) {
DCHECK(index > kCArgSlotCount);
// Argument 5 takes the slot just past the four Arg-slots.
int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
return MemOperand(sp, offset);
}
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
// The isolate parameter can be NULL if the macro assembler should
// not use isolate-dependent functionality. In this case, it's the
// responsibility of the caller to never invoke such function on the
// macro assembler.
MacroAssembler(Isolate* isolate, void* buffer, int size);
// Arguments macros.
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
#define COND_ARGS cond, r1, r2
// Cases when relocation is not needed.
#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
void Name(target_type target, BranchDelaySlot bd = PROTECT); \
inline void Name(BranchDelaySlot bd, target_type target) { \
Name(target, bd); \
} \
void Name(target_type target, \
COND_TYPED_ARGS, \
BranchDelaySlot bd = PROTECT); \
inline void Name(BranchDelaySlot bd, \
target_type target, \
COND_TYPED_ARGS) { \
Name(target, COND_ARGS, bd); \
}
#define DECLARE_BRANCH_PROTOTYPES(Name) \
DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
DECLARE_BRANCH_PROTOTYPES(Branch)
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
DECLARE_BRANCH_PROTOTYPES(BranchShort)
#undef DECLARE_BRANCH_PROTOTYPES
#undef COND_TYPED_ARGS
#undef COND_ARGS
// Jump, Call, and Ret pseudo instructions implementing inter-working.
#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
void Jump(Register target, COND_ARGS);
void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
static int CallSize(Register target, COND_ARGS);
void Call(Register target, COND_ARGS);
static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
int CallSize(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None(),
COND_ARGS);
void Call(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None(),
COND_ARGS);
void Ret(COND_ARGS);
inline void Ret(BranchDelaySlot bd, Condition cond = al,
Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
Ret(cond, rs, rt, bd);
}
void Branch(Label* L,
Condition cond,
Register rs,
Heap::RootListIndex index,
BranchDelaySlot bdslot = PROTECT);
#undef COND_ARGS
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count,
Condition cond = cc_always,
Register reg = no_reg,
const Operand& op = Operand(no_reg));
// Trivial case of DropAndRet that utilizes the delay slot and only emits
// 2 instructions.
void DropAndRet(int drop);
void DropAndRet(int drop,
Condition cond,
Register reg,
const Operand& op);
// Swap two registers. If the scratch register is omitted then a slightly
// less efficient form using xor instead of mov is emitted.
void Swap(Register reg1, Register reg2, Register scratch = no_reg);
void Call(Label* target);
inline void Move(Register dst, Register src) {
if (!dst.is(src)) {
mov(dst, src);
}
}
inline void Move(FPURegister dst, FPURegister src) {
if (!dst.is(src)) {
mov_d(dst, src);
}
}
inline void Move(Register dst_low, Register dst_high, FPURegister src) {
mfc1(dst_low, src);
mfhc1(dst_high, src);
}
inline void FmoveHigh(Register dst_high, FPURegister src) {
mfhc1(dst_high, src);
}
inline void FmoveLow(Register dst_low, FPURegister src) {
mfc1(dst_low, src);
}
inline void Move(FPURegister dst, Register src_low, Register src_high) {
mtc1(src_low, dst);
mthc1(src_high, dst);
}
// Conditional move.
void Move(FPURegister dst, double imm);
void Movz(Register rd, Register rs, Register rt);
void Movn(Register rd, Register rs, Register rt);
void Movt(Register rd, Register rs, uint16_t cc = 0);
void Movf(Register rd, Register rs, uint16_t cc = 0);
void Clz(Register rd, Register rs);
// Jump unconditionally to given label.
// We NEED a nop in the branch delay slot, as it used by v8, for example in
// CodeGenerator::ProcessDeferred().
// Currently the branch delay slot is filled by the MacroAssembler.
// Use rather b(Label) for code generation.
void jmp(Label* L) {
Branch(L);
}
void Load(Register dst, const MemOperand& src, Representation r);
void Store(Register src, const MemOperand& dst, Representation r);
// Load an object from the root table.
void LoadRoot(Register destination,
Heap::RootListIndex index);
void LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond, Register src1, const Operand& src2);
// Store an object to the root table.
void StoreRoot(Register source,
Heap::RootListIndex index);
void StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond, Register src1, const Operand& src2);
// ---------------------------------------------------------------------------
// GC Support
void IncrementalMarkingRecordWriteHelper(Register object,
Register value,
Register address);
enum RememberedSetFinalAction {
kReturnAtEnd,
kFallThroughAtEnd
};
// Record in the remembered set the fact that we have a pointer to new space
// at the address pointed to by the addr register. Only works if addr is not
// in new space.
void RememberedSetHelper(Register object, // Used for debug code.
Register addr,
Register scratch,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then);
void CheckPageFlag(Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met);
void CheckMapDeprecated(Handle<Map> map,
Register scratch,
Label* if_deprecated);
// Check if object is in new space. Jumps if the object is not in new space.
// The register scratch can be object itself, but it will be clobbered.
void JumpIfNotInNewSpace(Register object,
Register scratch,
Label* branch) {
InNewSpace(object, scratch, ne, branch);
}
// Check if object is in new space. Jumps if the object is in new space.
// The register scratch can be object itself, but scratch will be clobbered.
void JumpIfInNewSpace(Register object,
Register scratch,
Label* branch) {
InNewSpace(object, scratch, eq, branch);
}
// Check if an object has a given incremental marking color.
void HasColor(Register object,
Register scratch0,
Register scratch1,
Label* has_color,
int first_bit,
int second_bit);
void JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black);
// Checks the color of an object. If the object is already grey or black
// then we just fall through, since it is already live. If it is white and
// we can determine that it doesn't need to be scanned, then we just mark it
// black and fall through. For the rest we jump to the label so the
// incremental marker can fix its assumptions.
void EnsureNotWhite(Register object,
Register scratch1,
Register scratch2,
Register scratch3,
Label* object_is_white_and_not_data);
// Detects conservatively whether an object is data-only, i.e. it does need to
// be scanned by the garbage collector.
void JumpIfDataObject(Register value,
Register scratch,
Label* not_data_object);
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object,
int offset,
Register value,
Register scratch,
RAStatus ra_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// As above, but the offset has the tag presubtracted. For use with
// MemOperand(reg, off).
inline void RecordWriteContextSlot(
Register context,
int offset,
Register value,
Register scratch,
RAStatus ra_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting) {
RecordWriteField(context,
offset + kHeapObjectTag,
value,
scratch,
ra_status,
save_fp,
remembered_set_action,
smi_check,
pointers_to_here_check_for_value);
}
void RecordWriteForMap(
Register object,
Register map,
Register dst,
RAStatus ra_status,
SaveFPRegsMode save_fp);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object,
Register address,
Register value,
RAStatus ra_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// ---------------------------------------------------------------------------
// Inline caching support.
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, whereas both scratch registers are clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss);
void GetNumberHash(Register reg0, Register scratch);
void LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register result,
Register reg0,
Register reg1,
Register reg2);
inline void MarkCode(NopMarkerTypes type) {
nop(type);
}
// Check if the given instruction is a 'type' marker.
// i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
// nop(type)). These instructions are generated to mark special location in
// the code, like some special IC code.
static inline bool IsMarkedCode(Instr instr, int type) {
DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
return IsNop(instr, type);
}
static inline int GetCodeMarker(Instr instr) {
uint32_t opcode = ((instr & kOpcodeMask));
uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
// Return <n> if we have a sll zero_reg, zero_reg, n
// else return -1.
bool sllzz = (opcode == SLL &&
rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
rs == static_cast<uint32_t>(ToNumber(zero_reg)));
int type =
(sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
DCHECK((type == -1) ||
((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
return type;
}
// ---------------------------------------------------------------------------
// Allocation support.
// Allocate an object in new space or old pointer space. The object_size is
// specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
// is passed. If the space is exhausted control continues at the gc_required
// label. The allocated object is returned in result. If the flag
// tag_allocated_object is true the result is tagged as as a heap object.
// All registers are clobbered also when control continues at the gc_required
// label.
void Allocate(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
void Allocate(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. The caller must make sure that no pointers
// are left to the object(s) no longer allocated as they would be invalid when
// allocation is undone.
void UndoAllocationInNewSpace(Register object, Register scratch);
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3, Label* gc_required);
void AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateOneByteConsString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
void AllocateTwoByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateOneByteSlicedString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
// Allocates a heap number or jumps to the gc_required label if the young
// space is full and a scavenge is needed. All registers are clobbered also
// when control continues at the gc_required label.
void AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required,
TaggingMode tagging_mode = TAG_RESULT,
MutableMode mode = IMMUTABLE);
void AllocateHeapNumberWithValue(Register result,
FPURegister value,
Register scratch1,
Register scratch2,
Label* gc_required);
// ---------------------------------------------------------------------------
// Instruction macros.
#define DEFINE_INSTRUCTION(instr) \
void instr(Register rd, Register rs, const Operand& rt); \
void instr(Register rd, Register rs, Register rt) { \
instr(rd, rs, Operand(rt)); \
} \
void instr(Register rs, Register rt, int32_t j) { \
instr(rs, rt, Operand(j)); \
}
#define DEFINE_INSTRUCTION2(instr) \
void instr(Register rs, const Operand& rt); \
void instr(Register rs, Register rt) { \
instr(rs, Operand(rt)); \
} \
void instr(Register rs, int32_t j) { \
instr(rs, Operand(j)); \
}
DEFINE_INSTRUCTION(Addu);
DEFINE_INSTRUCTION(Daddu);
DEFINE_INSTRUCTION(Div);
DEFINE_INSTRUCTION(Divu);
DEFINE_INSTRUCTION(Ddivu);
DEFINE_INSTRUCTION(Mod);
DEFINE_INSTRUCTION(Modu);
DEFINE_INSTRUCTION(Ddiv);
DEFINE_INSTRUCTION(Subu);
DEFINE_INSTRUCTION(Dsubu);
DEFINE_INSTRUCTION(Dmod);
DEFINE_INSTRUCTION(Dmodu);
DEFINE_INSTRUCTION(Mul);
DEFINE_INSTRUCTION(Mulh);
DEFINE_INSTRUCTION(Mulhu);
DEFINE_INSTRUCTION(Dmul);
DEFINE_INSTRUCTION(Dmulh);
DEFINE_INSTRUCTION2(Mult);
DEFINE_INSTRUCTION2(Dmult);
DEFINE_INSTRUCTION2(Multu);
DEFINE_INSTRUCTION2(Dmultu);
DEFINE_INSTRUCTION2(Div);
DEFINE_INSTRUCTION2(Ddiv);
DEFINE_INSTRUCTION2(Divu);
DEFINE_INSTRUCTION2(Ddivu);
DEFINE_INSTRUCTION(And);
DEFINE_INSTRUCTION(Or);
DEFINE_INSTRUCTION(Xor);
DEFINE_INSTRUCTION(Nor);
DEFINE_INSTRUCTION2(Neg);
DEFINE_INSTRUCTION(Slt);
DEFINE_INSTRUCTION(Sltu);
// MIPS32 R2 instruction macro.
DEFINE_INSTRUCTION(Ror);
DEFINE_INSTRUCTION(Dror);
#undef DEFINE_INSTRUCTION
#undef DEFINE_INSTRUCTION2
void Pref(int32_t hint, const MemOperand& rs);
// ---------------------------------------------------------------------------
// Pseudo-instructions.
void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
void Ulw(Register rd, const MemOperand& rs);
void Usw(Register rd, const MemOperand& rs);
void Uld(Register rd, const MemOperand& rs, Register scratch = at);
void Usd(Register rd, const MemOperand& rs, Register scratch = at);
// Load int32 in the rd register.
void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
li(rd, Operand(j), mode);
}
void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
// Push multiple registers on the stack.
// Registers are saved in numerical order, with higher numbered registers
// saved in higher memory addresses.
void MultiPush(RegList regs);
void MultiPushReversed(RegList regs);
void MultiPushFPU(RegList regs);
void MultiPushReversedFPU(RegList regs);
void push(Register src) {
Daddu(sp, sp, Operand(-kPointerSize));
sd(src, MemOperand(sp, 0));
}
void Push(Register src) { push(src); }
// Push a handle.
void Push(Handle<Object> handle);
void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2) {
Dsubu(sp, sp, Operand(2 * kPointerSize));
sd(src1, MemOperand(sp, 1 * kPointerSize));
sd(src2, MemOperand(sp, 0 * kPointerSize));
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3) {
Dsubu(sp, sp, Operand(3 * kPointerSize));
sd(src1, MemOperand(sp, 2 * kPointerSize));
sd(src2, MemOperand(sp, 1 * kPointerSize));
sd(src3, MemOperand(sp, 0 * kPointerSize));
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4) {
Dsubu(sp, sp, Operand(4 * kPointerSize));
sd(src1, MemOperand(sp, 3 * kPointerSize));
sd(src2, MemOperand(sp, 2 * kPointerSize));
sd(src3, MemOperand(sp, 1 * kPointerSize));
sd(src4, MemOperand(sp, 0 * kPointerSize));
}
void Push(Register src, Condition cond, Register tst1, Register tst2) {
// Since we don't have conditional execution we use a Branch.
Branch(3, cond, tst1, Operand(tst2));
Dsubu(sp, sp, Operand(kPointerSize));
sd(src, MemOperand(sp, 0));
}
void PushRegisterAsTwoSmis(Register src, Register scratch = at);
void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
// Pops multiple values from the stack and load them in the
// registers specified in regs. Pop order is the opposite as in MultiPush.
void MultiPop(RegList regs);
void MultiPopReversed(RegList regs);
void MultiPopFPU(RegList regs);
void MultiPopReversedFPU(RegList regs);
void pop(Register dst) {
ld(dst, MemOperand(sp, 0));
Daddu(sp, sp, Operand(kPointerSize));
}
void Pop(Register dst) { pop(dst); }
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2) {
DCHECK(!src1.is(src2));
ld(src2, MemOperand(sp, 0 * kPointerSize));
ld(src1, MemOperand(sp, 1 * kPointerSize));
Daddu(sp, sp, 2 * kPointerSize);
}
// Pop three registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3) {
ld(src3, MemOperand(sp, 0 * kPointerSize));
ld(src2, MemOperand(sp, 1 * kPointerSize));
ld(src1, MemOperand(sp, 2 * kPointerSize));
Daddu(sp, sp, 3 * kPointerSize);
}
void Pop(uint32_t count = 1) {
Daddu(sp, sp, Operand(count * kPointerSize));
}
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters();
void PopSafepointRegisters();
// Store value in register src in the safepoint stack slot for
// register dst.
void StoreToSafepointRegisterSlot(Register src, Register dst);
// Load the value of the src register from its safepoint stack slot
// into register dst.
void LoadFromSafepointRegisterSlot(Register dst, Register src);
// Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
// from C.
// Does not handle errors.
void FlushICache(Register address, unsigned instructions);
// MIPS64 R2 instruction macro.
void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
// ---------------------------------------------------------------------------
// FPU macros. These do not handle special cases like NaN or +- inf.
// Convert unsigned word to double.
void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
// Convert double to unsigned long.
void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
void Trunc_l_d(FPURegister fd, FPURegister fs);
void Round_l_d(FPURegister fd, FPURegister fs);
void Floor_l_d(FPURegister fd, FPURegister fs);
void Ceil_l_d(FPURegister fd, FPURegister fs);
// Convert double to unsigned word.
void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
void Trunc_w_d(FPURegister fd, FPURegister fs);
void Round_w_d(FPURegister fd, FPURegister fs);
void Floor_w_d(FPURegister fd, FPURegister fs);
void Ceil_w_d(FPURegister fd, FPURegister fs);
void Madd_d(FPURegister fd,
FPURegister fr,
FPURegister fs,
FPURegister ft,
FPURegister scratch);
// Wrapper function for the different cmp/branch types.
void BranchF(Label* target,
Label* nan,
Condition cc,
FPURegister cmp1,
FPURegister cmp2,
BranchDelaySlot bd = PROTECT);
// Alternate (inline) version for better readability with USE_DELAY_SLOT.
inline void BranchF(BranchDelaySlot bd,
Label* target,
Label* nan,
Condition cc,
FPURegister cmp1,
FPURegister cmp2) {
BranchF(target, nan, cc, cmp1, cmp2, bd);
}
// Truncates a double using a specific rounding mode, and writes the value
// to the result register.
// The except_flag will contain any exceptions caused by the instruction.
// If check_inexact is kDontCheckForInexactConversion, then the inexact
// exception is masked.
void EmitFPUTruncate(FPURoundingMode rounding_mode,
Register result,
DoubleRegister double_input,
Register scratch,
DoubleRegister double_scratch,
Register except_flag,
CheckForInexactConversion check_inexact
= kDontCheckForInexactConversion);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
// succeeds, otherwise falls through if result is saturated. On return
// 'result' either holds answer, or is clobbered on fall through.
//
// Only public for the test code in test-code-stubs-arm.cc.
void TryInlineTruncateDoubleToI(Register result,
DoubleRegister input,
Label* done);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer.
void TruncateDoubleToI(Register result, DoubleRegister double_input);
// Performs a truncating conversion of a heap number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
// must be different registers. Exits with 'result' holding the answer.
void TruncateHeapNumberToI(Register result, Register object);
// Converts the smi or heap number in object to an int32 using the rules
// for ToInt32 as described in ECMAScript 9.5.: the value is truncated
// and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
// different registers.
void TruncateNumberToI(Register object,
Register result,
Register heap_number_map,
Register scratch,
Label* not_int32);
// Loads the number from object into dst register.
// If |object| is neither smi nor heap number, |not_number| is jumped to
// with |object| still intact.
void LoadNumber(Register object,
FPURegister dst,
Register heap_number_map,
Register scratch,
Label* not_number);
// Loads the number from object into double_dst in the double format.
// Control will jump to not_int32 if the value cannot be exactly represented
// by a 32-bit integer.
// Floating point value in the 32-bit integer range that are not exact integer
// won't be loaded.
void LoadNumberAsInt32Double(Register object,
DoubleRegister double_dst,
Register heap_number_map,
Register scratch1,
Register scratch2,
FPURegister double_scratch,
Label* not_int32);
// Loads the number from object into dst as a 32-bit integer.
// Control will jump to not_int32 if the object cannot be exactly represented
// by a 32-bit integer.
// Floating point value in the 32-bit integer range that are not exact integer
// won't be converted.
void LoadNumberAsInt32(Register object,
Register dst,
Register heap_number_map,
Register scratch1,
Register scratch2,
FPURegister double_scratch0,
FPURegister double_scratch1,
Label* not_int32);
// Enter exit frame.
// argc - argument count to be dropped by LeaveExitFrame.
// save_doubles - saves FPU registers on stack, currently disabled.
// stack_space - extra stack space.
void EnterExitFrame(bool save_doubles,
int stack_space = 0);
// Leave the current exit frame.
void LeaveExitFrame(bool save_doubles,
Register arg_count,
bool restore_context,
bool do_return = NO_EMIT_RETURN);
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
// Make sure the stack is aligned. Only emits code in debug mode.
void AssertStackIsAligned();
void LoadContext(Register dst, int context_chain_length);
// Conditionally load the cached Array transitioned map of type
// transitioned_kind from the native context if the map in register
// map_in_out is the cached Array map in the native context of
// expected_kind.
void LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match);
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers
// function and map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch);
void InitializeRootRegister() {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
li(kRootRegister, Operand(roots_array_start));
}
// -------------------------------------------------------------------------
// JavaScript invokes.
// Invoke the JavaScript function code by either calling or jumping.
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Register function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail);
void IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail);
void IsObjectJSStringType(Register object,
Register scratch,
Label* fail);
void IsObjectNameType(Register object,
Register scratch,
Label* fail);
// -------------------------------------------------------------------------
// Debugger Support.
void DebugBreak();
// -------------------------------------------------------------------------
// Exception handling.
// Push a new try handler and link into try handler chain.
void PushTryHandler(StackHandler::Kind kind, int handler_index);
// Unlink the stack handler on top of the stack from the try handler chain.
// Must preserve the result register.
void PopTryHandler();
// Passes thrown value to the handler of top of the try handler chain.
void Throw(Register value);
// Propagates an uncatchable exception to the top of the current JS stack's
// handler chain.
void ThrowUncatchable(Register value);
// Copies a fixed number of fields of heap objects from src to dst.
void CopyFields(Register dst, Register src, RegList temps, int field_count);
// Copies a number of bytes from src to dst. All registers are clobbered. On
// exit src and dst will point to the place just after where the last byte was
// read or written and length will be zero.
void CopyBytes(Register src,
Register dst,
Register length,
Register scratch);
// Initialize fields with filler values. Fields starting at |start_offset|
// not including end_offset are overwritten with the value in |filler|. At
// the end the loop, |start_offset| takes the value of |end_offset|.
void InitializeFieldsWithFiller(Register start_offset,
Register end_offset,
Register filler);
// -------------------------------------------------------------------------
// Support functions.
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other registers may be
// clobbered.
void TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss,
bool miss_on_bound_function = false);
void GetObjectType(Register function,
Register map,
Register type_reg);
// Check if a map for a JSObject indicates that the object has fast elements.
// Jump to the specified label if it does not.
void CheckFastElements(Register map,
Register scratch,
Label* fail);
// Check if a map for a JSObject indicates that the object can have both smi
// and HeapObject elements. Jump to the specified label if it does not.
void CheckFastObjectElements(Register map,
Register scratch,
Label* fail);
// Check if a map for a JSObject indicates that the object has fast smi only
// elements. Jump to the specified label if it does not.
void CheckFastSmiElements(Register map,
Register scratch,
Label* fail);
// Check to see if maybe_number can be stored as a double in
// FastDoubleElements. If it can, store it at the index specified by key in
// the FastDoubleElements array elements. Otherwise jump to fail.
void StoreNumberToDoubleElements(Register value_reg,
Register key_reg,
Register elements_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Label* fail,
int elements_offset = 0);
// Compare an object's map with the specified map and its transitioned
// elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
// "branch_to" if the result of the comparison is "cond". If multiple map
// compares are required, the compare sequences branches to early_success.
void CompareMapAndBranch(Register obj,
Register scratch,
Handle<Map> map,
Label* early_success,
Condition cond,
Label* branch_to);
// As above, but the map of the object is already loaded into the register
// which is preserved by the code generated.
void CompareMapAndBranch(Register obj_map,
Handle<Map> map,
Label* early_success,
Condition cond,
Label* branch_to);
// Check if the map of an object is equal to a specified map and branch to
// label if not. Skip the smi check if not required (object is known to be a
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
// against maps that are ElementsKind transition maps of the specificed map.
void CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type);
void CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type);
// Check if the map of an object is equal to a specified map and branch to a
// specified target if equal. Skip the smi check if not required (object is
// known to be a heap object)
void DispatchMap(Register obj,
Register scratch,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type);
// Load and check the instance type of an object for being a string.
// Loads the type into the second argument register.
// Returns a condition that will be enabled if the object was a string.
Condition IsObjectStringType(Register obj,
Register type,
Register result) {
ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
And(type, type, Operand(kIsNotStringMask));
DCHECK_EQ(0, kStringTag);
return eq;
}
// Picks out an array index from the hash field.
// Register use:
// hash - holds the index's hash. Clobbered.
// index - holds the overwritten index on exit.
void IndexFromHash(Register hash, Register index);
// Get the number of least significant bits from a register.
void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
// Load the value of a number object into a FPU double register. If the
// object is not a number a jump to the label not_number is performed
// and the FPU double register is unchanged.
void ObjectToDoubleFPURegister(
Register object,
FPURegister value,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* not_number,
ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
// Load the value of a smi object into a FPU double register. The register
// scratch1 can be the same register as smi in which case smi will hold the
// untagged value afterwards.
void SmiToDoubleFPURegister(Register smi,
FPURegister value,
Register scratch1);
// -------------------------------------------------------------------------
// Overflow handling functions.
// Usage: first call the appropriate arithmetic function, then call one of the
// jump functions with the overflow_dst register as the second parameter.
void AdduAndCheckForOverflow(Register dst,
Register left,
Register right,
Register overflow_dst,
Register scratch = at);
void AdduAndCheckForOverflow(Register dst, Register left,
const Operand& right, Register overflow_dst,
Register scratch = at);
void SubuAndCheckForOverflow(Register dst,
Register left,
Register right,
Register overflow_dst,
Register scratch = at);
void SubuAndCheckForOverflow(Register dst, Register left,
const Operand& right, Register overflow_dst,
Register scratch = at);
void BranchOnOverflow(Label* label,
Register overflow_check,
BranchDelaySlot bd = PROTECT) {
Branch(label, lt, overflow_check, Operand(zero_reg), bd);
}
void BranchOnNoOverflow(Label* label,
Register overflow_check,
BranchDelaySlot bd = PROTECT) {
Branch(label, ge, overflow_check, Operand(zero_reg), bd);
}
void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
Ret(lt, overflow_check, Operand(zero_reg), bd);
}
void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
Ret(ge, overflow_check, Operand(zero_reg), bd);
}
// -------------------------------------------------------------------------
// Runtime calls.
// See comments at the beginning of CEntryStub::Generate.
inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
inline void PrepareCEntryFunction(const ExternalReference& ref) {
li(a1, Operand(ref));
}
#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
// Call a code stub.
void CallStub(CodeStub* stub,
TypeFeedbackId ast_id = TypeFeedbackId::None(),
COND_ARGS);
// Tail call a code stub (jump).
void TailCallStub(CodeStub* stub, COND_ARGS);
#undef COND_ARGS
void CallJSExitStub(CodeStub* stub);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
const Runtime::Function* function = Runtime::FunctionForId(id);
CallRuntime(function, function->nargs, kSaveFPRegs);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId id,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
}
// Convenience function: call an external reference.
void CallExternalReference(const ExternalReference& ext,
int num_arguments,
BranchDelaySlot bd = PROTECT);
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
void TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size);
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
int CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments);
// Before calling a C-function from generated code, align arguments on stack
// and add space for the four mips argument slots.
// After aligning the frame, non-register arguments must be stored on the
// stack, after the argument-slots using helper: CFunctionArgumentOperand().
// The argument count assumes all arguments are word sized.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_reg_arguments,
int num_double_registers,
Register scratch);
void PrepareCallCFunction(int num_reg_arguments,
Register scratch);
// Arguments 1-4 are placed in registers a0 thru a3 respectively.
// Arguments 5..n are stored to stack using following:
// sw(a4, CFunctionArgumentOperand(5));
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
void CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function,
int num_reg_arguments,
int num_double_arguments);
void MovFromFloatResult(DoubleRegister dst);
void MovFromFloatParameter(DoubleRegister dst);
// There are two ways of passing double arguments on MIPS, depending on
// whether soft or hard floating point ABI is used. These functions
// abstract parameter passing for the three different ways we call
// C functions from generated code.
void MovToFloatParameter(DoubleRegister src);
void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
void MovToFloatResult(DoubleRegister src);
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
void CallApiFunctionAndReturn(Register function_address,
ExternalReference thunk_ref,
int stack_space,
MemOperand return_value_operand,
MemOperand* context_restore_operand);
// Jump to the builtin routine.
void JumpToExternalReference(const ExternalReference& builtin,
BranchDelaySlot bd = PROTECT);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper = NullCallWrapper());
// Store the code object for the given builtin in the target register and
// setup the function in a1.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
// Store the function for the given builtin in the target register.
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
struct Unresolved {
int pc;
uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
const char* name;
};
Handle<Object> CodeObject() {
DCHECK(!code_object_.is_null());
return code_object_;
}
// Emit code for a truncating division by a constant. The dividend register is
// unchanged and at gets clobbered. Dividend and result must be different.
void TruncatingDiv(Register result, Register dividend, int32_t divisor);
// -------------------------------------------------------------------------
// StatsCounter support.
void SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
// -------------------------------------------------------------------------
// Debugging.
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
// Print a message to stdout and abort execution.
void Abort(BailoutReason msg);
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() { return has_frame_; }
inline bool AllowThisStubCall(CodeStub* stub);
// ---------------------------------------------------------------------------
// Number utilities.
// Check whether the value of reg is a power of two and not zero. If not
// control continues at the label not_power_of_two. If reg is a power of two
// the register scratch contains the value of (reg - 1) when control falls
// through.
void JumpIfNotPowerOfTwoOrZero(Register reg,
Register scratch,
Label* not_power_of_two_or_zero);
// -------------------------------------------------------------------------
// Smi utilities.
// Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
void SmiTagCheckOverflow(Register reg, Register overflow);
void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
void SmiTag(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (SmiValuesAre32Bits()) {
STATIC_ASSERT(kSmiShift == 32);
dsll32(dst, src, 0);
} else {
Addu(dst, src, src);
}
}
void SmiTag(Register reg) {
SmiTag(reg, reg);
}
// Try to convert int32 to smi. If the value is to large, preserve
// the original value and jump to not_a_smi. Destroys scratch and
// sets flags.
void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
TrySmiTag(reg, reg, scratch, not_a_smi);
}
void TrySmiTag(Register dst,
Register src,
Register scratch,
Label* not_a_smi) {
if (SmiValuesAre32Bits()) {
SmiTag(dst, src);
} else {
SmiTagCheckOverflow(at, src, scratch);
BranchOnOverflow(not_a_smi, scratch);
mov(dst, at);
}
}
void SmiUntag(Register dst, Register src) {
if (SmiValuesAre32Bits()) {
STATIC_ASSERT(kSmiShift == 32);
dsra32(dst, src, 0);
} else {
sra(dst, src, kSmiTagSize);
}
}
void SmiUntag(Register reg) {
SmiUntag(reg, reg);
}
// Left-shifted from int32 equivalent of Smi.
void SmiScale(Register dst, Register src, int scale) {
if (SmiValuesAre32Bits()) {
// The int portion is upper 32-bits of 64-bit word.
dsra(dst, src, kSmiShift - scale);
} else {
DCHECK(scale >= kSmiTagSize);
sll(dst, src, scale - kSmiTagSize);
}
}
// Combine load with untagging or scaling.
void SmiLoadUntag(Register dst, MemOperand src);
void SmiLoadScale(Register dst, MemOperand src, int scale);
// Returns 2 values: the Smi and a scaled version of the int within the Smi.
void SmiLoadWithScale(Register d_smi,
Register d_scaled,
MemOperand src,
int scale);
// Returns 2 values: the untagged Smi (int32) and scaled version of that int.
void SmiLoadUntagWithScale(Register d_int,
Register d_scaled,
MemOperand src,
int scale);
// Test if the register contains a smi.
inline void SmiTst(Register value, Register scratch) {
And(scratch, value, Operand(kSmiTagMask));
}
inline void NonNegativeSmiTst(Register value, Register scratch) {
And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
}
// Untag the source value into destination and jump if source is a smi.
// Source and destination can be the same register.
void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
// Untag the source value into destination and jump if source is not a smi.
// Source and destination can be the same register.
void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
// Jump the register contains a smi.
void JumpIfSmi(Register value,
Label* smi_label,
Register scratch = at,
BranchDelaySlot bd = PROTECT);
// Jump if the register contains a non-smi.
void JumpIfNotSmi(Register value,
Label* not_smi_label,
Register scratch = at,
BranchDelaySlot bd = PROTECT);
// Jump if either of the registers contain a non-smi.
void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
// Jump if either of the registers contain a smi.
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
void AssertSmi(Register object);
// Abort execution if argument is not a string, enabled via --debug-code.
void AssertString(Register object);
// Abort execution if argument is not a name, enabled via --debug-code.
void AssertName(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
// Abort execution if reg is not the root value with the given index,
// enabled via --debug-code.
void AssertIsRoot(Register reg, Heap::RootListIndex index);
// ---------------------------------------------------------------------------
// HeapNumber utilities.
void JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number);
// -------------------------------------------------------------------------
// String utilities.
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
void LookupNumberStringCache(Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
Label* not_found);
// Checks if both instance types are sequential one-byte strings and jumps to
// label if either is not.
void JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* failure);
// Check if instance type is sequential one-byte string and jump to label if
// it is not.
void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
Label* failure);
void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
void EmitSeqStringSetCharCheck(Register string,
Register index,
Register value,
Register scratch,
uint32_t encoding_mask);
// Checks if both objects are sequential one-byte strings and jumps to label
// if either is not. Assumes that neither object is a smi.
void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure);
// Checks if both objects are sequential one-byte strings and jumps to label
// if either is not.
void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
Register scratch1,
Register scratch2,
Label* not_flat_one_byte_strings);
void ClampUint8(Register output_reg, Register input_reg);
void ClampDoubleToUint8(Register result_reg,
DoubleRegister input_reg,
DoubleRegister temp_double_reg);
void LoadInstanceDescriptors(Register map, Register descriptors);
void EnumLength(Register dst, Register map);
void NumberOfOwnDescriptors(Register dst, Register map);
template<typename Field>
void DecodeField(Register dst, Register src) {
Ext(dst, src, Field::kShift, Field::kSize);
}
template<typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
template<typename Field>
void DecodeFieldToSmi(Register dst, Register src) {
static const int shift = Field::kShift;
static const int mask = Field::kMask >> shift;
dsrl(dst, src, shift);
And(dst, dst, Operand(mask));
dsll32(dst, dst, 0);
}
template<typename Field>
void DecodeFieldToSmi(Register reg) {
DecodeField<Field>(reg, reg);
}
// Generates function and stub prologue code.
void StubPrologue();
void Prologue(bool code_pre_aging);
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
void LeaveFrame(StackFrame::Type type);
// Patch the relocated value (lui/ori pair).
void PatchRelocatedValue(Register li_location,
Register scratch,
Register new_value);
// Get the relocatad value (loaded data) from the lui/ori pair.
void GetRelocatedValue(Register li_location,
Register value,
Register scratch);
// Expects object in a0 and returns map with validated enum cache
// in a0. Assumes that any other register can be used as a scratch.
void CheckEnumCache(Register null_value, Label* call_runtime);
// AllocationMemento support. Arrays may have an associated
// AllocationMemento object that can be checked for in order to pretransition
// to another type.
// On entry, receiver_reg should point to the array object.
// scratch_reg gets clobbered.
// If allocation info is present, jump to allocation_memento_present.
void TestJSArrayForAllocationMemento(
Register receiver_reg,
Register scratch_reg,
Label* no_memento_found,
Condition cond = al,
Label* allocation_memento_present = NULL);
void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
Register scratch_reg,
Label* memento_found) {
Label no_memento_found;
TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
&no_memento_found, eq, memento_found);
bind(&no_memento_found);
}
// Jumps to found label if a prototype map has dictionary elements.
void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
Register scratch1, Label* found);
private:
void CallCFunctionHelper(Register function,
int num_reg_arguments,
int num_double_arguments);
void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot = PROTECT);
void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
void BranchAndLinkShort(Label* L, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot = PROTECT);
void J(Label* L, BranchDelaySlot bdslot);
void Jr(Label* L, BranchDelaySlot bdslot);
void Jalr(Label* L, BranchDelaySlot bdslot);
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
const CallWrapper& call_wrapper);
// Get the code for the given builtin. Returns if able to resolve
// the function in the 'resolved' flag.
Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
void InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2);
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object,
Register scratch,
Condition cond, // eq for new space, ne otherwise.
Label* branch);
// Helper for finding the mark bits for an address. Afterwards, the
// bitmap register points at the word with the mark bits and the mask
// the position of the first bit. Leaves addr_reg unchanged.
inline void GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg);
// Helper for throwing exceptions. Compute a handler address and jump to
// it. See the implementation for register usage.
void JumpToHandlerEntry();
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
MemOperand SafepointRegisterSlot(Register reg);
MemOperand SafepointRegistersAndDoublesSlot(Register reg);
bool generating_stub_;
bool has_frame_;
bool has_double_zero_reg_set_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class StandardFrame;
};
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
public:
enum FlushICache {
FLUSH,
DONT_FLUSH
};
CodePatcher(byte* address,
int instructions,
FlushICache flush_cache = FLUSH);
virtual ~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
// Emit an instruction directly.
void Emit(Instr instr);
// Emit an address directly.
void Emit(Address addr);
// Change the condition part of an instruction leaving the rest of the current
// instruction unchanged.
void ChangeBranchCondition(Condition cond);
private:
byte* address_; // The address of the code being patched.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
FlushICache flush_cache_; // Whether to flush the I cache after patching.
};
#ifdef GENERATED_CODE_COVERAGE
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
} } // namespace v8::internal
#endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_