blob: 905bc0155ef0cfafc2e39c1c6705279ac64d97be [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins.h"
#include "src/api.h"
#include "src/api-natives.h"
#include "src/arguments.h"
#include "src/base/once.h"
#include "src/bootstrapper.h"
#include "src/elements.h"
#include "src/frames-inl.h"
#include "src/gdb-jit.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/isolate-inl.h"
#include "src/messages.h"
#include "src/profiler/cpu-profiler.h"
#include "src/property-descriptor.h"
#include "src/prototype.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
namespace {
// Arguments object passed to C++ builtins.
template <BuiltinExtraArguments extra_args>
class BuiltinArguments : public Arguments {
public:
BuiltinArguments(int length, Object** arguments)
: Arguments(length, arguments) {
// Check we have at least the receiver.
DCHECK_LE(1, this->length());
}
Object*& operator[] (int index) {
DCHECK(index < length());
return Arguments::operator[](index);
}
template <class S> Handle<S> at(int index) {
DCHECK(index < length());
return Arguments::at<S>(index);
}
Handle<Object> receiver() {
return Arguments::at<Object>(0);
}
Handle<JSFunction> target();
Handle<HeapObject> new_target();
// Gets the total number of arguments including the receiver (but
// excluding extra arguments).
int length() const;
};
// Specialize BuiltinArguments for the extra arguments.
template <>
int BuiltinArguments<BuiltinExtraArguments::kNone>::length() const {
return Arguments::length();
}
template <>
int BuiltinArguments<BuiltinExtraArguments::kTarget>::length() const {
return Arguments::length() - 1;
}
template <>
Handle<JSFunction> BuiltinArguments<BuiltinExtraArguments::kTarget>::target() {
return Arguments::at<JSFunction>(Arguments::length() - 1);
}
template <>
int BuiltinArguments<BuiltinExtraArguments::kNewTarget>::length() const {
return Arguments::length() - 1;
}
template <>
Handle<HeapObject>
BuiltinArguments<BuiltinExtraArguments::kNewTarget>::new_target() {
return Arguments::at<HeapObject>(Arguments::length() - 1);
}
template <>
int BuiltinArguments<BuiltinExtraArguments::kTargetAndNewTarget>::length()
const {
return Arguments::length() - 2;
}
template <>
Handle<JSFunction>
BuiltinArguments<BuiltinExtraArguments::kTargetAndNewTarget>::target() {
return Arguments::at<JSFunction>(Arguments::length() - 2);
}
template <>
Handle<HeapObject>
BuiltinArguments<BuiltinExtraArguments::kTargetAndNewTarget>::new_target() {
return Arguments::at<HeapObject>(Arguments::length() - 1);
}
#define DEF_ARG_TYPE(name, spec) \
typedef BuiltinArguments<BuiltinExtraArguments::spec> name##ArgumentsType;
BUILTIN_LIST_C(DEF_ARG_TYPE)
#undef DEF_ARG_TYPE
// ----------------------------------------------------------------------------
// Support macro for defining builtins in C++.
// ----------------------------------------------------------------------------
//
// A builtin function is defined by writing:
//
// BUILTIN(name) {
// ...
// }
//
// In the body of the builtin function the arguments can be accessed
// through the BuiltinArguments object args.
#define BUILTIN(name) \
MUST_USE_RESULT static Object* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate); \
MUST_USE_RESULT static Object* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
name##ArgumentsType args(args_length, args_object); \
return Builtin_Impl_##name(args, isolate); \
} \
MUST_USE_RESULT static Object* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate)
// ----------------------------------------------------------------------------
inline bool ClampedToInteger(Object* object, int* out) {
// This is an extended version of ECMA-262 7.1.11 handling signed values
// Try to convert object to a number and clamp values to [kMinInt, kMaxInt]
if (object->IsSmi()) {
*out = Smi::cast(object)->value();
return true;
} else if (object->IsHeapNumber()) {
double value = HeapNumber::cast(object)->value();
if (std::isnan(value)) {
*out = 0;
} else if (value > kMaxInt) {
*out = kMaxInt;
} else if (value < kMinInt) {
*out = kMinInt;
} else {
*out = static_cast<int>(value);
}
return true;
} else if (object->IsUndefined() || object->IsNull()) {
*out = 0;
return true;
} else if (object->IsBoolean()) {
*out = object->IsTrue();
return true;
}
return false;
}
inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object,
int* out) {
Map* arguments_map = isolate->native_context()->sloppy_arguments_map();
if (object->map() != arguments_map) return false;
DCHECK(object->HasFastElements());
Object* len_obj = object->InObjectPropertyAt(Heap::kArgumentsLengthIndex);
if (!len_obj->IsSmi()) return false;
*out = Max(0, Smi::cast(len_obj)->value());
return *out <= object->elements()->length();
}
inline bool PrototypeHasNoElements(PrototypeIterator* iter) {
DisallowHeapAllocation no_gc;
for (; !iter->IsAtEnd(); iter->Advance()) {
if (iter->GetCurrent()->IsJSProxy()) return false;
JSObject* current = iter->GetCurrent<JSObject>();
if (current->IsAccessCheckNeeded()) return false;
if (current->HasIndexedInterceptor()) return false;
if (current->elements()->length() != 0) return false;
}
return true;
}
inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate,
JSArray* receiver) {
DisallowHeapAllocation no_gc;
// If the array prototype chain is intact (and free of elements), and if the
// receiver's prototype is the array prototype, then we are done.
Object* prototype = receiver->map()->prototype();
if (prototype->IsJSArray() &&
isolate->is_initial_array_prototype(JSArray::cast(prototype)) &&
isolate->IsFastArrayConstructorPrototypeChainIntact()) {
return true;
}
// Slow case.
PrototypeIterator iter(isolate, receiver);
return PrototypeHasNoElements(&iter);
}
// Returns empty handle if not applicable.
MUST_USE_RESULT
inline MaybeHandle<FixedArrayBase> EnsureJSArrayWithWritableFastElements(
Isolate* isolate, Handle<Object> receiver, Arguments* args,
int first_added_arg) {
if (!receiver->IsJSArray()) return MaybeHandle<FixedArrayBase>();
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
// If there may be elements accessors in the prototype chain, the fast path
// cannot be used if there arguments to add to the array.
Heap* heap = isolate->heap();
if (args != NULL && !IsJSArrayFastElementMovingAllowed(isolate, *array)) {
return MaybeHandle<FixedArrayBase>();
}
if (array->map()->is_observed()) return MaybeHandle<FixedArrayBase>();
if (!array->map()->is_extensible()) return MaybeHandle<FixedArrayBase>();
Handle<FixedArrayBase> elms(array->elements(), isolate);
Map* map = elms->map();
if (map == heap->fixed_array_map()) {
if (args == NULL || array->HasFastObjectElements()) return elms;
} else if (map == heap->fixed_cow_array_map()) {
elms = JSObject::EnsureWritableFastElements(array);
if (args == NULL || array->HasFastObjectElements()) return elms;
} else if (map == heap->fixed_double_array_map()) {
if (args == NULL) return elms;
} else {
return MaybeHandle<FixedArrayBase>();
}
// Adding elements to the array prototype would break code that makes sure
// it has no elements. Handle that elsewhere.
if (isolate->IsAnyInitialArrayPrototype(array)) {
return MaybeHandle<FixedArrayBase>();
}
// Need to ensure that the arguments passed in args can be contained in
// the array.
int args_length = args->length();
if (first_added_arg >= args_length) return handle(array->elements(), isolate);
ElementsKind origin_kind = array->map()->elements_kind();
DCHECK(!IsFastObjectElementsKind(origin_kind));
ElementsKind target_kind = origin_kind;
{
DisallowHeapAllocation no_gc;
int arg_count = args_length - first_added_arg;
Object** arguments = args->arguments() - first_added_arg - (arg_count - 1);
for (int i = 0; i < arg_count; i++) {
Object* arg = arguments[i];
if (arg->IsHeapObject()) {
if (arg->IsHeapNumber()) {
target_kind = FAST_DOUBLE_ELEMENTS;
} else {
target_kind = FAST_ELEMENTS;
break;
}
}
}
}
if (target_kind != origin_kind) {
JSObject::TransitionElementsKind(array, target_kind);
return handle(array->elements(), isolate);
}
return elms;
}
MUST_USE_RESULT static Object* CallJsIntrinsic(
Isolate* isolate, Handle<JSFunction> function,
BuiltinArguments<BuiltinExtraArguments::kNone> args) {
HandleScope handleScope(isolate);
int argc = args.length() - 1;
ScopedVector<Handle<Object> > argv(argc);
for (int i = 0; i < argc; ++i) {
argv[i] = args.at<Object>(i + 1);
}
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Execution::Call(isolate,
function,
args.receiver(),
argc,
argv.start()));
return *result;
}
} // namespace
BUILTIN(Illegal) {
UNREACHABLE();
return isolate->heap()->undefined_value(); // Make compiler happy.
}
BUILTIN(EmptyFunction) { return isolate->heap()->undefined_value(); }
BUILTIN(ArrayPush) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsIntrinsic(isolate, isolate->array_push(), args);
}
// Fast Elements Path
int push_size = args.length() - 1;
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
int len = Smi::cast(array->length())->value();
if (push_size == 0) {
return Smi::FromInt(len);
}
if (push_size > 0 &&
JSArray::WouldChangeReadOnlyLength(array, len + push_size)) {
return CallJsIntrinsic(isolate, isolate->array_push(), args);
}
DCHECK(!array->map()->is_observed());
ElementsAccessor* accessor = array->GetElementsAccessor();
int new_length = accessor->Push(array, elms_obj, &args, push_size);
return Smi::FromInt(new_length);
}
BUILTIN(ArrayPop) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsIntrinsic(isolate, isolate->array_pop(), args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
DCHECK(!array->map()->is_observed());
uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value());
if (len == 0) return isolate->heap()->undefined_value();
if (JSArray::HasReadOnlyLength(array)) {
return CallJsIntrinsic(isolate, isolate->array_pop(), args);
}
Handle<Object> result;
if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
// Fast Elements Path
result = array->GetElementsAccessor()->Pop(array, elms_obj);
} else {
// Use Slow Lookup otherwise
uint32_t new_length = len - 1;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, Object::GetElement(isolate, array, new_length));
JSArray::SetLength(array, new_length);
}
return *result;
}
BUILTIN(ArrayShift) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj) ||
!IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
return CallJsIntrinsic(isolate, isolate->array_shift(), args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
DCHECK(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
if (len == 0) return heap->undefined_value();
if (JSArray::HasReadOnlyLength(array)) {
return CallJsIntrinsic(isolate, isolate->array_shift(), args);
}
Handle<Object> first = array->GetElementsAccessor()->Shift(array, elms_obj);
return *first;
}
BUILTIN(ArrayUnshift) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
DCHECK(!array->map()->is_observed());
int to_add = args.length() - 1;
if (to_add == 0) {
return array->length();
}
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
DCHECK(to_add <= (Smi::kMaxValue - Smi::cast(array->length())->value()));
if (to_add > 0 && JSArray::HasReadOnlyLength(array)) {
return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
}
ElementsAccessor* accessor = array->GetElementsAccessor();
int new_length = accessor->Unshift(array, elms_obj, &args, to_add);
return Smi::FromInt(new_length);
}
BUILTIN(ArraySlice) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
Handle<JSObject> object;
Handle<FixedArrayBase> elms_obj;
int len = -1;
int relative_start = 0;
int relative_end = 0;
bool is_sloppy_arguments = false;
if (receiver->IsJSArray()) {
DisallowHeapAllocation no_gc;
JSArray* array = JSArray::cast(*receiver);
if (!array->HasFastElements() ||
!IsJSArrayFastElementMovingAllowed(isolate, array)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_slice(), args);
}
len = Smi::cast(array->length())->value();
object = Handle<JSObject>::cast(receiver);
elms_obj = handle(array->elements(), isolate);
} else if (receiver->IsJSObject() &&
GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver),
&len)) {
// Array.prototype.slice(arguments, ...) is quite a common idiom
// (notably more than 50% of invocations in Web apps).
// Treat it in C++ as well.
is_sloppy_arguments = true;
object = Handle<JSObject>::cast(receiver);
elms_obj = handle(object->elements(), isolate);
} else {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_slice(), args);
}
DCHECK(len >= 0);
int argument_count = args.length() - 1;
// Note carefully chosen defaults---if argument is missing,
// it's undefined which gets converted to 0 for relative_start
// and to len for relative_end.
relative_start = 0;
relative_end = len;
if (argument_count > 0) {
DisallowHeapAllocation no_gc;
if (!ClampedToInteger(args[1], &relative_start)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_slice(), args);
}
if (argument_count > 1) {
Object* end_arg = args[2];
// slice handles the end_arg specially
if (end_arg->IsUndefined()) {
relative_end = len;
} else if (!ClampedToInteger(end_arg, &relative_end)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_slice(), args);
}
}
}
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
uint32_t actual_end =
(relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len);
if (actual_end <= actual_start) {
Handle<JSArray> result_array = isolate->factory()->NewJSArray(
GetPackedElementsKind(object->GetElementsKind()), 0, 0);
return *result_array;
}
ElementsAccessor* accessor = object->GetElementsAccessor();
if (is_sloppy_arguments &&
!accessor->IsPacked(object, elms_obj, actual_start, actual_end)) {
// Don't deal with arguments with holes in C++
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_slice(), args);
}
Handle<JSArray> result_array =
accessor->Slice(object, elms_obj, actual_start, actual_end);
return *result_array;
}
BUILTIN(ArraySplice) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsIntrinsic(isolate, isolate->array_splice(), args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
DCHECK(!array->map()->is_observed());
int argument_count = args.length() - 1;
int relative_start = 0;
if (argument_count > 0) {
DisallowHeapAllocation no_gc;
if (!ClampedToInteger(args[1], &relative_start)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_splice(), args);
}
}
int len = Smi::cast(array->length())->value();
// clip relative start to [0, len]
int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
int actual_delete_count;
if (argument_count == 1) {
// SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
// given as a request to delete all the elements from the start.
// And it differs from the case of undefined delete count.
// This does not follow ECMA-262, but we do the same for compatibility.
DCHECK(len - actual_start >= 0);
actual_delete_count = len - actual_start;
} else {
int delete_count = 0;
DisallowHeapAllocation no_gc;
if (argument_count > 1) {
if (!ClampedToInteger(args[2], &delete_count)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_splice(), args);
}
}
actual_delete_count = Min(Max(delete_count, 0), len - actual_start);
}
int add_count = (argument_count > 1) ? (argument_count - 2) : 0;
int new_length = len - actual_delete_count + add_count;
if (new_length != len && JSArray::HasReadOnlyLength(array)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_splice(), args);
}
ElementsAccessor* accessor = array->GetElementsAccessor();
Handle<JSArray> result_array = accessor->Splice(
array, elms_obj, actual_start, actual_delete_count, &args, add_count);
return *result_array;
}
// Array Concat -------------------------------------------------------------
namespace {
/**
* A simple visitor visits every element of Array's.
* The backend storage can be a fixed array for fast elements case,
* or a dictionary for sparse array. Since Dictionary is a subtype
* of FixedArray, the class can be used by both fast and slow cases.
* The second parameter of the constructor, fast_elements, specifies
* whether the storage is a FixedArray or Dictionary.
*
* An index limit is used to deal with the situation that a result array
* length overflows 32-bit non-negative integer.
*/
class ArrayConcatVisitor {
public:
ArrayConcatVisitor(Isolate* isolate, Handle<FixedArray> storage,
bool fast_elements)
: isolate_(isolate),
storage_(Handle<FixedArray>::cast(
isolate->global_handles()->Create(*storage))),
index_offset_(0u),
bit_field_(FastElementsField::encode(fast_elements) |
ExceedsLimitField::encode(false)) {}
~ArrayConcatVisitor() { clear_storage(); }
void visit(uint32_t i, Handle<Object> elm) {
if (i >= JSObject::kMaxElementCount - index_offset_) {
set_exceeds_array_limit(true);
return;
}
uint32_t index = index_offset_ + i;
if (fast_elements()) {
if (index < static_cast<uint32_t>(storage_->length())) {
storage_->set(index, *elm);
return;
}
// Our initial estimate of length was foiled, possibly by
// getters on the arrays increasing the length of later arrays
// during iteration.
// This shouldn't happen in anything but pathological cases.
SetDictionaryMode();
// Fall-through to dictionary mode.
}
DCHECK(!fast_elements());
Handle<SeededNumberDictionary> dict(
SeededNumberDictionary::cast(*storage_));
// The object holding this backing store has just been allocated, so
// it cannot yet be used as a prototype.
Handle<SeededNumberDictionary> result =
SeededNumberDictionary::AtNumberPut(dict, index, elm, false);
if (!result.is_identical_to(dict)) {
// Dictionary needed to grow.
clear_storage();
set_storage(*result);
}
}
void increase_index_offset(uint32_t delta) {
if (JSObject::kMaxElementCount - index_offset_ < delta) {
index_offset_ = JSObject::kMaxElementCount;
} else {
index_offset_ += delta;
}
// If the initial length estimate was off (see special case in visit()),
// but the array blowing the limit didn't contain elements beyond the
// provided-for index range, go to dictionary mode now.
if (fast_elements() &&
index_offset_ >
static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
SetDictionaryMode();
}
}
bool exceeds_array_limit() const {
return ExceedsLimitField::decode(bit_field_);
}
Handle<JSArray> ToArray() {
Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
Handle<Object> length =
isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
Handle<Map> map = JSObject::GetElementsTransitionMap(
array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
array->set_map(*map);
array->set_length(*length);
array->set_elements(*storage_);
return array;
}
private:
// Convert storage to dictionary mode.
void SetDictionaryMode() {
DCHECK(fast_elements());
Handle<FixedArray> current_storage(*storage_);
Handle<SeededNumberDictionary> slow_storage(
SeededNumberDictionary::New(isolate_, current_storage->length()));
uint32_t current_length = static_cast<uint32_t>(current_storage->length());
for (uint32_t i = 0; i < current_length; i++) {
HandleScope loop_scope(isolate_);
Handle<Object> element(current_storage->get(i), isolate_);
if (!element->IsTheHole()) {
// The object holding this backing store has just been allocated, so
// it cannot yet be used as a prototype.
Handle<SeededNumberDictionary> new_storage =
SeededNumberDictionary::AtNumberPut(slow_storage, i, element,
false);
if (!new_storage.is_identical_to(slow_storage)) {
slow_storage = loop_scope.CloseAndEscape(new_storage);
}
}
}
clear_storage();
set_storage(*slow_storage);
set_fast_elements(false);
}
inline void clear_storage() {
GlobalHandles::Destroy(Handle<Object>::cast(storage_).location());
}
inline void set_storage(FixedArray* storage) {
storage_ =
Handle<FixedArray>::cast(isolate_->global_handles()->Create(storage));
}
class FastElementsField : public BitField<bool, 0, 1> {};
class ExceedsLimitField : public BitField<bool, 1, 1> {};
bool fast_elements() const { return FastElementsField::decode(bit_field_); }
void set_fast_elements(bool fast) {
bit_field_ = FastElementsField::update(bit_field_, fast);
}
void set_exceeds_array_limit(bool exceeds) {
bit_field_ = ExceedsLimitField::update(bit_field_, exceeds);
}
Isolate* isolate_;
Handle<FixedArray> storage_; // Always a global handle.
// Index after last seen index. Always less than or equal to
// JSObject::kMaxElementCount.
uint32_t index_offset_;
uint32_t bit_field_;
};
uint32_t EstimateElementCount(Handle<JSArray> array) {
uint32_t length = static_cast<uint32_t>(array->length()->Number());
int element_count = 0;
switch (array->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
// Fast elements can't have lengths that are not representable by
// a 32-bit signed integer.
DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
int fast_length = static_cast<int>(length);
Handle<FixedArray> elements(FixedArray::cast(array->elements()));
for (int i = 0; i < fast_length; i++) {
if (!elements->get(i)->IsTheHole()) element_count++;
}
break;
}
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS: {
// Fast elements can't have lengths that are not representable by
// a 32-bit signed integer.
DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
int fast_length = static_cast<int>(length);
if (array->elements()->IsFixedArray()) {
DCHECK(FixedArray::cast(array->elements())->length() == 0);
break;
}
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(array->elements()));
for (int i = 0; i < fast_length; i++) {
if (!elements->is_the_hole(i)) element_count++;
}
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> dictionary(
SeededNumberDictionary::cast(array->elements()));
int capacity = dictionary->Capacity();
for (int i = 0; i < capacity; i++) {
Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate());
if (dictionary->IsKey(*key)) {
element_count++;
}
}
break;
}
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
// External arrays are always dense.
return length;
}
// As an estimate, we assume that the prototype doesn't contain any
// inherited elements.
return element_count;
}
template <class ExternalArrayClass, class ElementType>
void IterateTypedArrayElements(Isolate* isolate, Handle<JSObject> receiver,
bool elements_are_ints,
bool elements_are_guaranteed_smis,
ArrayConcatVisitor* visitor) {
Handle<ExternalArrayClass> array(
ExternalArrayClass::cast(receiver->elements()));
uint32_t len = static_cast<uint32_t>(array->length());
DCHECK(visitor != NULL);
if (elements_are_ints) {
if (elements_are_guaranteed_smis) {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope(isolate);
Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))),
isolate);
visitor->visit(j, e);
}
} else {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope(isolate);
int64_t val = static_cast<int64_t>(array->get_scalar(j));
if (Smi::IsValid(static_cast<intptr_t>(val))) {
Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate);
visitor->visit(j, e);
} else {
Handle<Object> e =
isolate->factory()->NewNumber(static_cast<ElementType>(val));
visitor->visit(j, e);
}
}
}
} else {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope(isolate);
Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j));
visitor->visit(j, e);
}
}
}
// Used for sorting indices in a List<uint32_t>.
int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
uint32_t a = *ap;
uint32_t b = *bp;
return (a == b) ? 0 : (a < b) ? -1 : 1;
}
void CollectElementIndices(Handle<JSObject> object, uint32_t range,
List<uint32_t>* indices) {
Isolate* isolate = object->GetIsolate();
ElementsKind kind = object->GetElementsKind();
switch (kind) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
Handle<FixedArray> elements(FixedArray::cast(object->elements()));
uint32_t length = static_cast<uint32_t>(elements->length());
if (range < length) length = range;
for (uint32_t i = 0; i < length; i++) {
if (!elements->get(i)->IsTheHole()) {
indices->Add(i);
}
}
break;
}
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
if (object->elements()->IsFixedArray()) {
DCHECK(object->elements()->length() == 0);
break;
}
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(object->elements()));
uint32_t length = static_cast<uint32_t>(elements->length());
if (range < length) length = range;
for (uint32_t i = 0; i < length; i++) {
if (!elements->is_the_hole(i)) {
indices->Add(i);
}
}
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> dict(
SeededNumberDictionary::cast(object->elements()));
uint32_t capacity = dict->Capacity();
for (uint32_t j = 0; j < capacity; j++) {
HandleScope loop_scope(isolate);
Handle<Object> k(dict->KeyAt(j), isolate);
if (dict->IsKey(*k)) {
DCHECK(k->IsNumber());
uint32_t index = static_cast<uint32_t>(k->Number());
if (index < range) {
indices->Add(index);
}
}
}
break;
}
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
{
uint32_t length = static_cast<uint32_t>(
FixedArrayBase::cast(object->elements())->length());
if (range <= length) {
length = range;
// We will add all indices, so we might as well clear it first
// and avoid duplicates.
indices->Clear();
}
for (uint32_t i = 0; i < length; i++) {
indices->Add(i);
}
if (length == range) return; // All indices accounted for already.
break;
}
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
ElementsAccessor* accessor = object->GetElementsAccessor();
for (uint32_t i = 0; i < range; i++) {
if (accessor->HasElement(object, i)) {
indices->Add(i);
}
}
break;
}
}
PrototypeIterator iter(isolate, object);
if (!iter.IsAtEnd()) {
// The prototype will usually have no inherited element indices,
// but we have to check.
CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range,
indices);
}
}
bool IterateElementsSlow(Isolate* isolate, Handle<JSObject> receiver,
uint32_t length, ArrayConcatVisitor* visitor) {
for (uint32_t i = 0; i < length; ++i) {
HandleScope loop_scope(isolate);
Maybe<bool> maybe = JSReceiver::HasElement(receiver, i);
if (!maybe.IsJust()) return false;
if (maybe.FromJust()) {
Handle<Object> element_value;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, element_value,
Object::GetElement(isolate, receiver, i),
false);
visitor->visit(i, element_value);
}
}
visitor->increase_index_offset(length);
return true;
}
/**
* A helper function that visits elements of a JSObject in numerical
* order.
*
* The visitor argument called for each existing element in the array
* with the element index and the element's value.
* Afterwards it increments the base-index of the visitor by the array
* length.
* Returns false if any access threw an exception, otherwise true.
*/
bool IterateElements(Isolate* isolate, Handle<JSObject> receiver,
ArrayConcatVisitor* visitor) {
uint32_t length = 0;
if (receiver->IsJSArray()) {
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
length = static_cast<uint32_t>(array->length()->Number());
} else {
Handle<Object> val;
Handle<Object> key = isolate->factory()->length_string();
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, val, Runtime::GetObjectProperty(isolate, receiver, key),
false);
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, val,
Object::ToLength(isolate, val), false);
// TODO(caitp): Support larger element indexes (up to 2^53-1).
if (!val->ToUint32(&length)) {
length = 0;
}
}
if (!(receiver->IsJSArray() || receiver->IsJSTypedArray())) {
// For classes which are not known to be safe to access via elements alone,
// use the slow case.
return IterateElementsSlow(isolate, receiver, length, visitor);
}
switch (receiver->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
// Run through the elements FixedArray and use HasElement and GetElement
// to check the prototype for missing elements.
Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
int fast_length = static_cast<int>(length);
DCHECK(fast_length <= elements->length());
for (int j = 0; j < fast_length; j++) {
HandleScope loop_scope(isolate);
Handle<Object> element_value(elements->get(j), isolate);
if (!element_value->IsTheHole()) {
visitor->visit(j, element_value);
} else {
Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
if (!maybe.IsJust()) return false;
if (maybe.FromJust()) {
// Call GetElement on receiver, not its prototype, or getters won't
// have the correct receiver.
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element_value,
Object::GetElement(isolate, receiver, j), false);
visitor->visit(j, element_value);
}
}
}
break;
}
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
// Empty array is FixedArray but not FixedDoubleArray.
if (length == 0) break;
// Run through the elements FixedArray and use HasElement and GetElement
// to check the prototype for missing elements.
if (receiver->elements()->IsFixedArray()) {
DCHECK(receiver->elements()->length() == 0);
break;
}
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(receiver->elements()));
int fast_length = static_cast<int>(length);
DCHECK(fast_length <= elements->length());
for (int j = 0; j < fast_length; j++) {
HandleScope loop_scope(isolate);
if (!elements->is_the_hole(j)) {
double double_value = elements->get_scalar(j);
Handle<Object> element_value =
isolate->factory()->NewNumber(double_value);
visitor->visit(j, element_value);
} else {
Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
if (!maybe.IsJust()) return false;
if (maybe.FromJust()) {
// Call GetElement on receiver, not its prototype, or getters won't
// have the correct receiver.
Handle<Object> element_value;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element_value,
Object::GetElement(isolate, receiver, j), false);
visitor->visit(j, element_value);
}
}
}
break;
}
case DICTIONARY_ELEMENTS: {
// CollectElementIndices() can't be called when there's a JSProxy
// on the prototype chain.
for (PrototypeIterator iter(isolate, receiver); !iter.IsAtEnd();
iter.Advance()) {
if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
return IterateElementsSlow(isolate, receiver, length, visitor);
}
}
Handle<SeededNumberDictionary> dict(receiver->element_dictionary());
List<uint32_t> indices(dict->Capacity() / 2);
// Collect all indices in the object and the prototypes less
// than length. This might introduce duplicates in the indices list.
CollectElementIndices(receiver, length, &indices);
indices.Sort(&compareUInt32);
int j = 0;
int n = indices.length();
while (j < n) {
HandleScope loop_scope(isolate);
uint32_t index = indices[j];
Handle<Object> element;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element, Object::GetElement(isolate, receiver, index),
false);
visitor->visit(index, element);
// Skip to next different index (i.e., omit duplicates).
do {
j++;
} while (j < n && indices[j] == index);
}
break;
}
case UINT8_CLAMPED_ELEMENTS: {
Handle<FixedUint8ClampedArray> pixels(
FixedUint8ClampedArray::cast(receiver->elements()));
for (uint32_t j = 0; j < length; j++) {
Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
visitor->visit(j, e);
}
break;
}
case INT8_ELEMENTS: {
IterateTypedArrayElements<FixedInt8Array, int8_t>(isolate, receiver, true,
true, visitor);
break;
}
case UINT8_ELEMENTS: {
IterateTypedArrayElements<FixedUint8Array, uint8_t>(isolate, receiver,
true, true, visitor);
break;
}
case INT16_ELEMENTS: {
IterateTypedArrayElements<FixedInt16Array, int16_t>(isolate, receiver,
true, true, visitor);
break;
}
case UINT16_ELEMENTS: {
IterateTypedArrayElements<FixedUint16Array, uint16_t>(
isolate, receiver, true, true, visitor);
break;
}
case INT32_ELEMENTS: {
IterateTypedArrayElements<FixedInt32Array, int32_t>(isolate, receiver,
true, false, visitor);
break;
}
case UINT32_ELEMENTS: {
IterateTypedArrayElements<FixedUint32Array, uint32_t>(
isolate, receiver, true, false, visitor);
break;
}
case FLOAT32_ELEMENTS: {
IterateTypedArrayElements<FixedFloat32Array, float>(
isolate, receiver, false, false, visitor);
break;
}
case FLOAT64_ELEMENTS: {
IterateTypedArrayElements<FixedFloat64Array, double>(
isolate, receiver, false, false, visitor);
break;
}
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
for (uint32_t index = 0; index < length; index++) {
HandleScope loop_scope(isolate);
Handle<Object> element;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element, Object::GetElement(isolate, receiver, index),
false);
visitor->visit(index, element);
}
break;
}
}
visitor->increase_index_offset(length);
return true;
}
bool HasConcatSpreadableModifier(Isolate* isolate, Handle<JSArray> obj) {
if (!FLAG_harmony_concat_spreadable) return false;
Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol());
Maybe<bool> maybe =
JSReceiver::HasProperty(Handle<JSReceiver>::cast(obj), key);
if (!maybe.IsJust()) return false;
return maybe.FromJust();
}
bool IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) {
HandleScope handle_scope(isolate);
if (!obj->IsJSReceiver()) return false;
if (FLAG_harmony_concat_spreadable) {
Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol());
Handle<Object> value;
MaybeHandle<Object> maybeValue =
i::Runtime::GetObjectProperty(isolate, obj, key);
if (maybeValue.ToHandle(&value) && !value->IsUndefined()) {
return value->BooleanValue();
}
}
return obj->IsJSArray();
}
/**
* Array::concat implementation.
* See ECMAScript 262, 15.4.4.4.
* TODO(581): Fix non-compliance for very large concatenations and update to
* following the ECMAScript 5 specification.
*/
Object* Slow_ArrayConcat(Arguments* args, Isolate* isolate) {
int argument_count = args->length();
// Pass 1: estimate the length and number of elements of the result.
// The actual length can be larger if any of the arguments have getters
// that mutate other arguments (but will otherwise be precise).
// The number of elements is precise if there are no inherited elements.
ElementsKind kind = FAST_SMI_ELEMENTS;
uint32_t estimate_result_length = 0;
uint32_t estimate_nof_elements = 0;
for (int i = 0; i < argument_count; i++) {
HandleScope loop_scope(isolate);
Handle<Object> obj((*args)[i], isolate);
uint32_t length_estimate;
uint32_t element_estimate;
if (obj->IsJSArray()) {
Handle<JSArray> array(Handle<JSArray>::cast(obj));
length_estimate = static_cast<uint32_t>(array->length()->Number());
if (length_estimate != 0) {
ElementsKind array_kind =
GetPackedElementsKind(array->map()->elements_kind());
kind = GetMoreGeneralElementsKind(kind, array_kind);
}
element_estimate = EstimateElementCount(array);
} else {
if (obj->IsHeapObject()) {
if (obj->IsNumber()) {
kind = GetMoreGeneralElementsKind(kind, FAST_DOUBLE_ELEMENTS);
} else {
kind = GetMoreGeneralElementsKind(kind, FAST_ELEMENTS);
}
}
length_estimate = 1;
element_estimate = 1;
}
// Avoid overflows by capping at kMaxElementCount.
if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) {
estimate_result_length = JSObject::kMaxElementCount;
} else {
estimate_result_length += length_estimate;
}
if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) {
estimate_nof_elements = JSObject::kMaxElementCount;
} else {
estimate_nof_elements += element_estimate;
}
}
// If estimated number of elements is more than half of length, a
// fixed array (fast case) is more time and space-efficient than a
// dictionary.
bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
Handle<FixedArrayBase> storage =
isolate->factory()->NewFixedDoubleArray(estimate_result_length);
int j = 0;
bool failure = false;
if (estimate_result_length > 0) {
Handle<FixedDoubleArray> double_storage =
Handle<FixedDoubleArray>::cast(storage);
for (int i = 0; i < argument_count; i++) {
Handle<Object> obj((*args)[i], isolate);
if (obj->IsSmi()) {
double_storage->set(j, Smi::cast(*obj)->value());
j++;
} else if (obj->IsNumber()) {
double_storage->set(j, obj->Number());
j++;
} else {
JSArray* array = JSArray::cast(*obj);
uint32_t length = static_cast<uint32_t>(array->length()->Number());
switch (array->map()->elements_kind()) {
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
// Empty array is FixedArray but not FixedDoubleArray.
if (length == 0) break;
FixedDoubleArray* elements =
FixedDoubleArray::cast(array->elements());
for (uint32_t i = 0; i < length; i++) {
if (elements->is_the_hole(i)) {
// TODO(jkummerow/verwaest): We could be a bit more clever
// here: Check if there are no elements/getters on the
// prototype chain, and if so, allow creation of a holey
// result array.
// Same thing below (holey smi case).
failure = true;
break;
}
double double_value = elements->get_scalar(i);
double_storage->set(j, double_value);
j++;
}
break;
}
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_SMI_ELEMENTS: {
FixedArray* elements(FixedArray::cast(array->elements()));
for (uint32_t i = 0; i < length; i++) {
Object* element = elements->get(i);
if (element->IsTheHole()) {
failure = true;
break;
}
int32_t int_value = Smi::cast(element)->value();
double_storage->set(j, int_value);
j++;
}
break;
}
case FAST_HOLEY_ELEMENTS:
case FAST_ELEMENTS:
case DICTIONARY_ELEMENTS:
DCHECK_EQ(0u, length);
break;
default:
UNREACHABLE();
}
}
if (failure) break;
}
}
if (!failure) {
Handle<JSArray> array = isolate->factory()->NewJSArray(0);
Smi* length = Smi::FromInt(j);
Handle<Map> map;
map = JSObject::GetElementsTransitionMap(array, kind);
array->set_map(*map);
array->set_length(length);
array->set_elements(*storage);
return *array;
}
// In case of failure, fall through.
}
Handle<FixedArray> storage;
if (fast_case) {
// The backing storage array must have non-existing elements to preserve
// holes across concat operations.
storage =
isolate->factory()->NewFixedArrayWithHoles(estimate_result_length);
} else {
// TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
uint32_t at_least_space_for =
estimate_nof_elements + (estimate_nof_elements >> 2);
storage = Handle<FixedArray>::cast(
SeededNumberDictionary::New(isolate, at_least_space_for));
}
ArrayConcatVisitor visitor(isolate, storage, fast_case);
for (int i = 0; i < argument_count; i++) {
Handle<Object> obj((*args)[i], isolate);
bool spreadable = IsConcatSpreadable(isolate, obj);
if (isolate->has_pending_exception()) return isolate->heap()->exception();
if (spreadable) {
Handle<JSObject> object = Handle<JSObject>::cast(obj);
if (!IterateElements(isolate, object, &visitor)) {
return isolate->heap()->exception();
}
} else {
visitor.visit(0, obj);
visitor.increase_index_offset(1);
}
}
if (visitor.exceeds_array_limit()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidArrayLength));
}
return *visitor.ToArray();
}
MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate, Arguments* args) {
if (!isolate->IsFastArrayConstructorPrototypeChainIntact()) {
return MaybeHandle<JSArray>();
}
int n_arguments = args->length();
int result_len = 0;
{
DisallowHeapAllocation no_gc;
Object* array_proto = isolate->array_function()->prototype();
// Iterate through all the arguments performing checks
// and calculating total length.
for (int i = 0; i < n_arguments; i++) {
Object* arg = (*args)[i];
if (!arg->IsJSArray()) return MaybeHandle<JSArray>();
Handle<JSArray> array(JSArray::cast(arg), isolate);
if (!array->HasFastElements()) return MaybeHandle<JSArray>();
PrototypeIterator iter(isolate, arg);
if (iter.GetCurrent() != array_proto) return MaybeHandle<JSArray>();
if (HasConcatSpreadableModifier(isolate, array)) {
return MaybeHandle<JSArray>();
}
int len = Smi::cast(array->length())->value();
// We shouldn't overflow when adding another len.
const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
USE(kHalfOfMaxInt);
result_len += len;
DCHECK(result_len >= 0);
// Throw an Error if we overflow the FixedArray limits
if (FixedArray::kMaxLength < result_len) {
THROW_NEW_ERROR(isolate,
NewRangeError(MessageTemplate::kInvalidArrayLength),
JSArray);
}
}
}
return ElementsAccessor::Concat(isolate, args, n_arguments);
}
} // namespace
BUILTIN(ArrayConcat) {
HandleScope scope(isolate);
Handle<Object> receiver;
if (!Object::ToObject(isolate, handle(args[0], isolate))
.ToHandle(&receiver)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
isolate->factory()->NewStringFromAsciiChecked(
"Array.prototype.concat")));
}
args[0] = *receiver;
Handle<JSArray> result_array;
if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
return *result_array;
}
if (isolate->has_pending_exception()) return isolate->heap()->exception();
return Slow_ArrayConcat(&args, isolate);
}
// ES6 section 22.1.2.2 Array.isArray
BUILTIN(ArrayIsArray) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> object = args.at<Object>(1);
Maybe<bool> result = Object::IsArray(object);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 19.1.2.1 Object.assign
BUILTIN(ObjectAssign) {
HandleScope scope(isolate);
Handle<Object> target =
args.length() > 1
? args.at<Object>(1)
: Handle<Object>::cast(isolate->factory()->undefined_value());
// 1. Let to be ? ToObject(target).
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target,
Execution::ToObject(isolate, target));
Handle<JSReceiver> to = Handle<JSReceiver>::cast(target);
// 2. If only one argument was passed, return to.
if (args.length() == 2) return *to;
// 3. Let sources be the List of argument values starting with the
// second argument.
// 4. For each element nextSource of sources, in ascending index order,
for (int i = 2; i < args.length(); ++i) {
Handle<Object> next_source = args.at<Object>(i);
// 4a. If nextSource is undefined or null, let keys be an empty List.
if (next_source->IsUndefined() || next_source->IsNull()) continue;
// 4b. Else,
// 4b i. Let from be ToObject(nextSource).
Handle<JSReceiver> from =
Object::ToObject(isolate, next_source).ToHandleChecked();
// 4b ii. Let keys be ? from.[[OwnPropertyKeys]]().
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys, JSReceiver::GetKeys(from, JSReceiver::OWN_ONLY,
ALL_PROPERTIES, KEEP_NUMBERS));
// 4c. Repeat for each element nextKey of keys in List order,
for (int j = 0; j < keys->length(); ++j) {
Handle<Object> next_key(keys->get(j), isolate);
// 4c i. Let desc be ? from.[[GetOwnProperty]](nextKey).
PropertyDescriptor desc;
Maybe<bool> found =
JSReceiver::GetOwnPropertyDescriptor(isolate, from, next_key, &desc);
if (found.IsNothing()) return isolate->heap()->exception();
// 4c ii. If desc is not undefined and desc.[[Enumerable]] is true, then
if (found.FromJust() && desc.enumerable()) {
// 4c ii 1. Let propValue be ? Get(from, nextKey).
Handle<Object> prop_value;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, prop_value,
Runtime::GetObjectProperty(isolate, from, next_key, STRICT));
// 4c ii 2. Let status be ? Set(to, nextKey, propValue, true).
Handle<Object> status;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, status, Runtime::SetObjectProperty(isolate, to, next_key,
prop_value, STRICT));
}
}
}
// 5. Return to.
return *to;
}
// ES6 section 26.1.3 Reflect.defineProperty
BUILTIN(ReflectDefineProperty) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
Handle<Object> attributes = args.at<Object>(3);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.defineProperty")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
PropertyDescriptor desc;
if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) {
return isolate->heap()->exception();
}
Maybe<bool> result =
JSReceiver::DefineOwnProperty(isolate, Handle<JSReceiver>::cast(target),
name, &desc, Object::DONT_THROW);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.4 Reflect.deleteProperty
BUILTIN(ReflectDeleteProperty) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.deleteProperty")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
Maybe<bool> result = JSReceiver::DeletePropertyOrElement(
Handle<JSReceiver>::cast(target), name, SLOPPY);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.6 Reflect.get
BUILTIN(ReflectGet) {
HandleScope scope(isolate);
Handle<Object> undef = isolate->factory()->undefined_value();
Handle<Object> target = args.length() > 1 ? args.at<Object>(1) : undef;
Handle<Object> key = args.length() > 2 ? args.at<Object>(2) : undef;
Handle<Object> receiver = args.length() > 3 ? args.at<Object>(3) : target;
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.get")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, Object::GetPropertyOrElement(
Handle<JSReceiver>::cast(target), name, receiver));
return *result;
}
// ES6 section 26.1.7 Reflect.getOwnPropertyDescriptor
BUILTIN(ReflectGetOwnPropertyDescriptor) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.getOwnPropertyDescriptor")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
PropertyDescriptor desc;
Maybe<bool> found = JSReceiver::GetOwnPropertyDescriptor(
isolate, Handle<JSReceiver>::cast(target), name, &desc);
MAYBE_RETURN(found, isolate->heap()->exception());
if (!found.FromJust()) return isolate->heap()->undefined_value();
return *desc.ToObject(isolate);
}
// ES6 section 26.1.8 Reflect.getPrototypeOf
BUILTIN(ReflectGetPrototypeOf) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.getPrototypeOf")));
}
Handle<Object> prototype;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, prototype,
Object::GetPrototype(isolate, target));
return *prototype;
}
// ES6 section 26.1.9 Reflect.has
BUILTIN(ReflectHas) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.has")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
Maybe<bool> result =
JSReceiver::HasProperty(Handle<JSReceiver>::cast(target), name);
return result.IsJust() ? *isolate->factory()->ToBoolean(result.FromJust())
: isolate->heap()->exception();
}
// ES6 section 26.1.10 Reflect.isExtensible
BUILTIN(ReflectIsExtensible) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.isExtensible")));
}
Maybe<bool> result =
JSReceiver::IsExtensible(Handle<JSReceiver>::cast(target));
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.11 Reflect.ownKeys
BUILTIN(ReflectOwnKeys) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.ownKeys")));
}
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys, JSReceiver::GetKeys(Handle<JSReceiver>::cast(target),
JSReceiver::OWN_ONLY, ALL_PROPERTIES,
CONVERT_TO_STRING));
return *isolate->factory()->NewJSArrayWithElements(keys);
}
// ES6 section 26.1.12 Reflect.preventExtensions
BUILTIN(ReflectPreventExtensions) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.preventExtensions")));
}
Maybe<bool> result = JSReceiver::PreventExtensions(
Handle<JSReceiver>::cast(target), Object::DONT_THROW);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.13 Reflect.set
BUILTIN(ReflectSet) {
HandleScope scope(isolate);
Handle<Object> undef = isolate->factory()->undefined_value();
Handle<Object> target = args.length() > 1 ? args.at<Object>(1) : undef;
Handle<Object> key = args.length() > 2 ? args.at<Object>(2) : undef;
Handle<Object> value = args.length() > 3 ? args.at<Object>(3) : undef;
Handle<Object> receiver = args.length() > 4 ? args.at<Object>(4) : target;
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.set")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
LookupIterator it = LookupIterator::PropertyOrElement(
isolate, receiver, name, Handle<JSReceiver>::cast(target));
Maybe<bool> result = Object::SetSuperProperty(
&it, value, SLOPPY, Object::MAY_BE_STORE_FROM_KEYED);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.14 Reflect.setPrototypeOf
BUILTIN(ReflectSetPrototypeOf) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> proto = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.setPrototypeOf")));
}
if (!proto->IsJSReceiver() && !proto->IsNull()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kProtoObjectOrNull, proto));
}
Maybe<bool> result = JSReceiver::SetPrototype(
Handle<JSReceiver>::cast(target), proto, true, Object::DONT_THROW);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 20.3.4.45 Date.prototype [ @@toPrimitive ] ( hint )
BUILTIN(DateToPrimitive) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
if (!args.receiver()->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kIncompatibleMethodReceiver,
isolate->factory()->NewStringFromAsciiChecked(
"Date.prototype [ @@toPrimitive ]"),
args.receiver()));
}
Handle<JSReceiver> receiver = args.at<JSReceiver>(0);
Handle<Object> hint = args.at<Object>(1);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
JSDate::ToPrimitive(receiver, hint));
return *result;
}
// ES6 section 19.4.1.1 Symbol ( [ description ] ) for the [[Call]] case.
BUILTIN(SymbolConstructor) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Symbol> result = isolate->factory()->NewSymbol();
Handle<Object> description = args.at<Object>(1);
if (!description->IsUndefined()) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, description,
Object::ToString(isolate, description));
result->set_name(*description);
}
return *result;
}
// ES6 section 19.4.1.1 Symbol ( [ description ] ) for the [[Construct]] case.
BUILTIN(SymbolConstructor_ConstructStub) {
HandleScope scope(isolate);
// The ConstructStub is executed in the context of the caller, so we need
// to enter the callee context first before raising an exception.
isolate->set_context(args.target()->context());
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotConstructor,
isolate->factory()->Symbol_string()));
}
// ES6 19.1.3.6 Object.prototype.toString
BUILTIN(ObjectProtoToString) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
Handle<String> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, JSObject::ObjectProtoToString(isolate, object));
return *result;
}
namespace {
// ES6 section 9.5.15 ProxyCreate (target, handler)
MaybeHandle<JSProxy> ProxyCreate(Isolate* isolate, Handle<Object> target,
Handle<Object> handler) {
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR(
isolate, NewTypeError(MessageTemplate::kProxyTargetNonObject), JSProxy);
}
if (target->IsJSProxy() && JSProxy::cast(*target)->IsRevoked()) {
THROW_NEW_ERROR(isolate,
NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
JSProxy);
}
if (!handler->IsJSReceiver()) {
THROW_NEW_ERROR(isolate,
NewTypeError(MessageTemplate::kProxyHandlerNonObject),
JSProxy);
}
if (handler->IsJSProxy() && JSProxy::cast(*handler)->IsRevoked()) {
THROW_NEW_ERROR(isolate,
NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
JSProxy);
}
return isolate->factory()->NewJSProxy(Handle<JSReceiver>::cast(target),
Handle<JSReceiver>::cast(handler));
}
} // namespace
// ES6 section 26.2.1.1 Proxy ( target, handler ) for the [[Call]] case.
BUILTIN(ProxyConstructor) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError(MessageTemplate::kConstructorNotFunction,
isolate->factory()->NewStringFromAsciiChecked("Proxy")));
}
// ES6 section 26.2.1.1 Proxy ( target, handler ) for the [[Construct]] case.
BUILTIN(ProxyConstructor_ConstructStub) {
HandleScope scope(isolate);
DCHECK(isolate->proxy_function()->IsConstructor());
Handle<Object> target;
if (args.length() < 2) {
target = isolate->factory()->undefined_value();
} else {
target = args.at<Object>(1);
}
Handle<Object> handler;
if (args.length() < 3) {
handler = isolate->factory()->undefined_value();
} else {
handler = args.at<Object>(2);
}
// The ConstructStub is executed in the context of the caller, so we need
// to enter the callee context first before raising an exception.
isolate->set_context(args.target()->context());
Handle<JSProxy> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
ProxyCreate(isolate, target, handler));
return *result;
}
// -----------------------------------------------------------------------------
// Throwers for restricted function properties and strict arguments object
// properties
BUILTIN(RestrictedFunctionPropertiesThrower) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kRestrictedFunctionProperties));
}
BUILTIN(RestrictedStrictArgumentsPropertiesThrower) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kStrictPoisonPill));
}
// -----------------------------------------------------------------------------
//
namespace {
template <bool is_construct>
MUST_USE_RESULT MaybeHandle<Object> HandleApiCallHelper(
Isolate* isolate, BuiltinArguments<BuiltinExtraArguments::kTarget> args) {
HandleScope scope(isolate);
Handle<JSFunction> function = args.target();
// TODO(ishell): turn this back to a DCHECK.
CHECK(function->shared()->IsApiFunction());
Handle<FunctionTemplateInfo> fun_data(
function->shared()->get_api_func_data(), isolate);
if (is_construct) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate, fun_data,
ApiNatives::ConfigureInstance(isolate, fun_data,
Handle<JSObject>::cast(args.receiver())),
Object);
}
DCHECK(!args[0]->IsNull());
if (args[0]->IsUndefined()) args[0] = function->global_proxy();
if (!is_construct && !fun_data->accept_any_receiver()) {
Handle<Object> receiver(&args[0]);
if (receiver->IsJSObject() && receiver->IsAccessCheckNeeded()) {
Handle<JSObject> js_receiver = Handle<JSObject>::cast(receiver);
if (!isolate->MayAccess(handle(isolate->context()), js_receiver)) {
isolate->ReportFailedAccessCheck(js_receiver);
RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
}
}
}
Object* raw_holder = fun_data->GetCompatibleReceiver(isolate, args[0]);
if (raw_holder->IsNull()) {
// This function cannot be called with the given receiver. Abort!
THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kIllegalInvocation),
Object);
}
Object* raw_call_data = fun_data->call_code();
if (!raw_call_data->IsUndefined()) {
// TODO(ishell): remove this debugging code.
CHECK(raw_call_data->IsCallHandlerInfo());
CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
Object* data_obj = call_data->data();
LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver())));
DCHECK(raw_holder->IsJSObject());
FunctionCallbackArguments custom(isolate,
data_obj,
*function,
raw_holder,
&args[0] - 1,
args.length() - 1,
is_construct);
v8::Local<v8::Value> value = custom.Call(callback);
Handle<Object> result;
if (value.IsEmpty()) {
result = isolate->factory()->undefined_value();
} else {
result = v8::Utils::OpenHandle(*value);
result->VerifyApiCallResultType();
}
RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (!is_construct || result->IsJSObject()) {
return scope.CloseAndEscape(result);
}
}
return scope.CloseAndEscape(args.receiver());
}
} // namespace
BUILTIN(HandleApiCall) {
HandleScope scope(isolate);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
HandleApiCallHelper<false>(isolate, args));
return *result;
}
BUILTIN(HandleApiCallConstruct) {
HandleScope scope(isolate);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
HandleApiCallHelper<true>(isolate, args));
return *result;
}
Handle<Code> Builtins::CallFunction(ConvertReceiverMode mode) {
switch (mode) {
case ConvertReceiverMode::kNullOrUndefined:
return CallFunction_ReceiverIsNullOrUndefined();
case ConvertReceiverMode::kNotNullOrUndefined:
return CallFunction_ReceiverIsNotNullOrUndefined();
case ConvertReceiverMode::kAny:
return CallFunction_ReceiverIsAny();
}
UNREACHABLE();
return Handle<Code>::null();
}
Handle<Code> Builtins::Call(ConvertReceiverMode mode) {
switch (mode) {
case ConvertReceiverMode::kNullOrUndefined:
return Call_ReceiverIsNullOrUndefined();
case ConvertReceiverMode::kNotNullOrUndefined:
return Call_ReceiverIsNotNullOrUndefined();
case ConvertReceiverMode::kAny:
return Call_ReceiverIsAny();
}
UNREACHABLE();
return Handle<Code>::null();
}
namespace {
class RelocatableArguments
: public BuiltinArguments<BuiltinExtraArguments::kTarget>,
public Relocatable {
public:
RelocatableArguments(Isolate* isolate, int length, Object** arguments)
: BuiltinArguments<BuiltinExtraArguments::kTarget>(length, arguments),
Relocatable(isolate) {}
virtual inline void IterateInstance(ObjectVisitor* v) {
if (length() == 0) return;
v->VisitPointers(lowest_address(), highest_address() + 1);
}
private:
DISALLOW_COPY_AND_ASSIGN(RelocatableArguments);
};
} // namespace
MaybeHandle<Object> Builtins::InvokeApiFunction(Handle<JSFunction> function,
Handle<Object> receiver,
int argc,
Handle<Object> args[]) {
// Construct BuiltinArguments object: function, arguments reversed, receiver.
const int kBufferSize = 32;
Object* small_argv[kBufferSize];
Object** argv;
if (argc + 2 <= kBufferSize) {
argv = small_argv;
} else {
argv = new Object* [argc + 2];
}
argv[argc + 1] = *receiver;
for (int i = 0; i < argc; ++i) {
argv[argc - i] = *args[i];
}
argv[0] = *function;
MaybeHandle<Object> result;
{
auto isolate = function->GetIsolate();
RelocatableArguments arguments(isolate, argc + 2, &argv[argc + 1]);
result = HandleApiCallHelper<false>(isolate, arguments);
}
if (argv != small_argv) {
delete[] argv;
}
return result;
}
// Helper function to handle calls to non-function objects created through the
// API. The object can be called as either a constructor (using new) or just as
// a function (without new).
MUST_USE_RESULT static Object* HandleApiCallAsFunctionOrConstructor(
Isolate* isolate, bool is_construct_call,
BuiltinArguments<BuiltinExtraArguments::kNone> args) {
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
// Get the object called.
JSObject* obj = JSObject::cast(*receiver);
// Get the invocation callback from the function descriptor that was
// used to create the called object.
DCHECK(obj->map()->is_callable());
JSFunction* constructor = JSFunction::cast(obj->map()->GetConstructor());
// TODO(ishell): turn this back to a DCHECK.
CHECK(constructor->shared()->IsApiFunction());
Object* handler =
constructor->shared()->get_api_func_data()->instance_call_handler();
DCHECK(!handler->IsUndefined());
// TODO(ishell): remove this debugging code.
CHECK(handler->IsCallHandlerInfo());
CallHandlerInfo* call_data = CallHandlerInfo::cast(handler);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
// Get the data for the call and perform the callback.
Object* result;
{
HandleScope scope(isolate);
LOG(isolate, ApiObjectAccess("call non-function", obj));
FunctionCallbackArguments custom(isolate,
call_data->data(),
constructor,
obj,
&args[0] - 1,
args.length() - 1,
is_construct_call);
v8::Local<v8::Value> value = custom.Call(callback);
if (value.IsEmpty()) {
result = heap->undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
result->VerifyApiCallResultType();
}
}
// Check for exceptions and return result.
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return result;
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a normal function call.
BUILTIN(HandleApiCallAsFunction) {
return HandleApiCallAsFunctionOrConstructor(isolate, false, args);
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a construct call.
BUILTIN(HandleApiCallAsConstructor) {
return HandleApiCallAsFunctionOrConstructor(isolate, true, args);
}
static void Generate_LoadIC_Miss(MacroAssembler* masm) {
LoadIC::GenerateMiss(masm);
}
static void Generate_LoadIC_Normal(MacroAssembler* masm) {
LoadIC::GenerateNormal(masm, SLOPPY);
}
static void Generate_LoadIC_Normal_Strong(MacroAssembler* masm) {
LoadIC::GenerateNormal(masm, STRONG);
}
static void Generate_LoadIC_Getter_ForDeopt(MacroAssembler* masm) {
NamedLoadHandlerCompiler::GenerateLoadViaGetterForDeopt(masm);
}
static void Generate_LoadIC_Slow(MacroAssembler* masm) {
LoadIC::GenerateRuntimeGetProperty(masm, SLOPPY);
}
static void Generate_LoadIC_Slow_Strong(MacroAssembler* masm) {
LoadIC::GenerateRuntimeGetProperty(masm, STRONG);
}
static void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) {
KeyedLoadIC::GenerateRuntimeGetProperty(masm, SLOPPY);
}
static void Generate_KeyedLoadIC_Slow_Strong(MacroAssembler* masm) {
KeyedLoadIC::GenerateRuntimeGetProperty(masm, STRONG);
}
static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm);
}
static void Generate_KeyedLoadIC_Megamorphic(MacroAssembler* masm) {
KeyedLoadIC::GenerateMegamorphic(masm, SLOPPY);
}
static void Generate_KeyedLoadIC_Megamorphic_Strong(MacroAssembler* masm) {
KeyedLoadIC::GenerateMegamorphic(masm, STRONG);
}
static void Generate_StoreIC_Miss(MacroAssembler* masm) {
StoreIC::GenerateMiss(masm);
}
static void Generate_StoreIC_Normal(MacroAssembler* masm) {
StoreIC::GenerateNormal(masm);
}
static void Generate_StoreIC_Slow(MacroAssembler* masm) {
NamedStoreHandlerCompiler::GenerateSlow(masm);
}
static void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) {
ElementHandlerCompiler::GenerateStoreSlow(masm);
}
static void Generate_StoreIC_Setter_ForDeopt(MacroAssembler* masm) {
NamedStoreHandlerCompiler::GenerateStoreViaSetterForDeopt(masm);
}
static void Generate_KeyedStoreIC_Megamorphic(MacroAssembler* masm) {
KeyedStoreIC::GenerateMegamorphic(masm, SLOPPY);
}
static void Generate_KeyedStoreIC_Megamorphic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateMegamorphic(masm, STRICT);
}
static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm);
}
static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_Initialize_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_Return_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateDebugBreakStub(masm,
DebugCodegen::SAVE_RESULT_REGISTER);
}
static void Generate_Slot_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateDebugBreakStub(masm,
DebugCodegen::IGNORE_RESULT_REGISTER);
}
static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) {
DebugCodegen::GenerateFrameDropperLiveEdit(masm);
}
Builtins::Builtins() : initialized_(false) {
memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count);
memset(names_, 0, sizeof(names_[0]) * builtin_count);
}
Builtins::~Builtins() {
}
#define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name),
Address const Builtins::c_functions_[cfunction_count] = {
BUILTIN_LIST_C(DEF_ENUM_C)
};
#undef DEF_ENUM_C
struct BuiltinDesc {
byte* generator;
byte* c_code;
const char* s_name; // name is only used for generating log information.
int name;
Code::Flags flags;
BuiltinExtraArguments extra_args;
};
#define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} }
class BuiltinFunctionTable {
public:
BuiltinDesc* functions() {
base::CallOnce(&once_, &Builtins::InitBuiltinFunctionTable);
return functions_;
}
base::OnceType once_;
BuiltinDesc functions_[Builtins::builtin_count + 1];
friend class Builtins;
};
static BuiltinFunctionTable builtin_function_table =
BUILTIN_FUNCTION_TABLE_INIT;
// Define array of pointers to generators and C builtin functions.
// We do this in a sort of roundabout way so that we can do the initialization
// within the lexical scope of Builtins:: and within a context where
// Code::Flags names a non-abstract type.
void Builtins::InitBuiltinFunctionTable() {
BuiltinDesc* functions = builtin_function_table.functions_;
functions[builtin_count].generator = NULL;
functions[builtin_count].c_code = NULL;
functions[builtin_count].s_name = NULL;
functions[builtin_count].name = builtin_count;
functions[builtin_count].flags = static_cast<Code::Flags>(0);
functions[builtin_count].extra_args = BuiltinExtraArguments::kNone;
#define DEF_FUNCTION_PTR_C(aname, aextra_args) \
functions->generator = FUNCTION_ADDR(Generate_Adaptor); \
functions->c_code = FUNCTION_ADDR(Builtin_##aname); \
functions->s_name = #aname; \
functions->name = c_##aname; \
functions->flags = Code::ComputeFlags(Code::BUILTIN); \
functions->extra_args = BuiltinExtraArguments::aextra_args; \
++functions;
#define DEF_FUNCTION_PTR_A(aname, kind, state, extra) \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeFlags(Code::kind, state, extra); \
functions->extra_args = BuiltinExtraArguments::kNone; \
++functions;
#define DEF_FUNCTION_PTR_H(aname, kind) \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeHandlerFlags(Code::kind); \
functions->extra_args = BuiltinExtraArguments::kNone; \
++functions;
BUILTIN_LIST_C(DEF_FUNCTION_PTR_C)
BUILTIN_LIST_A(DEF_FUNCTION_PTR_A)
BUILTIN_LIST_H(DEF_FUNCTION_PTR_H)
BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A)
#undef DEF_FUNCTION_PTR_C
#undef DEF_FUNCTION_PTR_A
}
void Builtins::SetUp(Isolate* isolate, bool create_heap_objects) {
DCHECK(!initialized_);
// Create a scope for the handles in the builtins.
HandleScope scope(isolate);
const BuiltinDesc* functions = builtin_function_table.functions();
// For now we generate builtin adaptor code into a stack-allocated
// buffer, before copying it into individual code objects. Be careful
// with alignment, some platforms don't like unaligned code.
#ifdef DEBUG
// We can generate a lot of debug code on Arm64.
const size_t buffer_size = 32*KB;
#elif V8_TARGET_ARCH_PPC64
// 8 KB is insufficient on PPC64 when FLAG_debug_code is on.
const size_t buffer_size = 10 * KB;
#else
const size_t buffer_size = 8*KB;
#endif
union { int force_alignment; byte buffer[buffer_size]; } u;
// Traverse the list of builtins and generate an adaptor in a
// separate code object for each one.
for (int i = 0; i < builtin_count; i++) {
if (create_heap_objects) {
MacroAssembler masm(isolate, u.buffer, sizeof u.buffer,
CodeObjectRequired::kYes);
// Generate the code/adaptor.
typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments);
Generator g = FUNCTION_CAST<Generator>(functions[i].generator);
// We pass all arguments to the generator, but it may not use all of
// them. This works because the first arguments are on top of the
// stack.
DCHECK(!masm.has_frame());
g(&masm, functions[i].name, functions[i].extra_args);
// Move the code into the object heap.
CodeDesc desc;
masm.GetCode(&desc);
Code::Flags flags = functions[i].flags;
Handle<Code> code =
isolate->factory()->NewCode(desc, flags, masm.CodeObject());
// Log the event and add the code to the builtins array.
PROFILE(isolate,
CodeCreateEvent(Logger::BUILTIN_TAG, *code, functions[i].s_name));
builtins_[i] = *code;
code->set_builtin_index(i);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_builtin_code) {
CodeTracer::Scope trace_scope(isolate->GetCodeTracer());
OFStream os(trace_scope.file());
os << "Builtin: " << functions[i].s_name << "\n";
code->Disassemble(functions[i].s_name, os);
os << "\n";
}
#endif
} else {
// Deserializing. The values will be filled in during IterateBuiltins.
builtins_[i] = NULL;
}
names_[i] = functions[i].s_name;
}
// Mark as initialized.
initialized_ = true;
}
void Builtins::TearDown() {
initialized_ = false;
}
void Builtins::IterateBuiltins(ObjectVisitor* v) {
v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count);
}
const char* Builtins::Lookup(byte* pc) {
// may be called during initialization (disassembler!)
if (initialized_) {
for (int i = 0; i < builtin_count; i++) {
Code* entry = Code::cast(builtins_[i]);
if (entry->contains(pc)) {
return names_[i];
}
}
}
return NULL;
}
void Builtins::Generate_InterruptCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kInterrupt, 0, 1);
}
void Builtins::Generate_StackCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
#define DEFINE_BUILTIN_ACCESSOR_C(name, ignore) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_A(name, kind, state, extra) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_H(name, kind) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C)
BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A)
BUILTIN_LIST_H(DEFINE_BUILTIN_ACCESSOR_H)
BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A)
#undef DEFINE_BUILTIN_ACCESSOR_C
#undef DEFINE_BUILTIN_ACCESSOR_A
} // namespace internal
} // namespace v8