blob: 4c019a27684e73b5e4dca4296af794b1d7d015c7 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_IA32
#include "src/ast/scopes.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/full-codegen/full-codegen.h"
#include "src/ia32/frames-ia32.h"
#include "src/ic/ic.h"
#include "src/parsing/parser.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
class JumpPatchSite BASE_EMBEDDED {
public:
explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
#ifdef DEBUG
info_emitted_ = false;
#endif
}
~JumpPatchSite() {
DCHECK(patch_site_.is_bound() == info_emitted_);
}
void EmitJumpIfNotSmi(Register reg,
Label* target,
Label::Distance distance = Label::kFar) {
__ test(reg, Immediate(kSmiTagMask));
EmitJump(not_carry, target, distance); // Always taken before patched.
}
void EmitJumpIfSmi(Register reg,
Label* target,
Label::Distance distance = Label::kFar) {
__ test(reg, Immediate(kSmiTagMask));
EmitJump(carry, target, distance); // Never taken before patched.
}
void EmitPatchInfo() {
if (patch_site_.is_bound()) {
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
DCHECK(is_uint8(delta_to_patch_site));
__ test(eax, Immediate(delta_to_patch_site));
#ifdef DEBUG
info_emitted_ = true;
#endif
} else {
__ nop(); // Signals no inlined code.
}
}
private:
// jc will be patched with jz, jnc will become jnz.
void EmitJump(Condition cc, Label* target, Label::Distance distance) {
DCHECK(!patch_site_.is_bound() && !info_emitted_);
DCHECK(cc == carry || cc == not_carry);
__ bind(&patch_site_);
__ j(cc, target, distance);
}
MacroAssembler* masm_;
Label patch_site_;
#ifdef DEBUG
bool info_emitted_;
#endif
};
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right, with the
// return address on top of them. The actual argument count matches the
// formal parameter count expected by the function.
//
// The live registers are:
// o edi: the JS function object being called (i.e. ourselves)
// o edx: the new target value
// o esi: our context
// o ebp: our caller's frame pointer
// o esp: stack pointer (pointing to return address)
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-ia32.h for its layout.
void FullCodeGenerator::Generate() {
CompilationInfo* info = info_;
profiling_counter_ = isolate()->factory()->NewCell(
Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
SetFunctionPosition(literal());
Comment cmnt(masm_, "[ function compiled by full code generator");
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
__ int3();
}
#endif
if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
int receiver_offset = (info->scope()->num_parameters() + 1) * kPointerSize;
__ mov(ecx, Operand(esp, receiver_offset));
__ AssertNotSmi(ecx);
__ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ecx);
__ Assert(above_equal, kSloppyFunctionExpectsJSReceiverReceiver);
}
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
info->set_prologue_offset(masm_->pc_offset());
__ Prologue(info->IsCodePreAgingActive());
{ Comment cmnt(masm_, "[ Allocate locals");
int locals_count = info->scope()->num_stack_slots();
// Generators allocate locals, if any, in context slots.
DCHECK(!IsGeneratorFunction(literal()->kind()) || locals_count == 0);
if (locals_count == 1) {
__ push(Immediate(isolate()->factory()->undefined_value()));
} else if (locals_count > 1) {
if (locals_count >= 128) {
Label ok;
__ mov(ecx, esp);
__ sub(ecx, Immediate(locals_count * kPointerSize));
ExternalReference stack_limit =
ExternalReference::address_of_real_stack_limit(isolate());
__ cmp(ecx, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok, Label::kNear);
__ CallRuntime(Runtime::kThrowStackOverflow, 0);
__ bind(&ok);
}
__ mov(eax, Immediate(isolate()->factory()->undefined_value()));
const int kMaxPushes = 32;
if (locals_count >= kMaxPushes) {
int loop_iterations = locals_count / kMaxPushes;
__ mov(ecx, loop_iterations);
Label loop_header;
__ bind(&loop_header);
// Do pushes.
for (int i = 0; i < kMaxPushes; i++) {
__ push(eax);
}
__ dec(ecx);
__ j(not_zero, &loop_header, Label::kNear);
}
int remaining = locals_count % kMaxPushes;
// Emit the remaining pushes.
for (int i = 0; i < remaining; i++) {
__ push(eax);
}
}
}
bool function_in_register = true;
// Possibly allocate a local context.
if (info->scope()->num_heap_slots() > 0) {
Comment cmnt(masm_, "[ Allocate context");
bool need_write_barrier = true;
int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
// Argument to NewContext is the function, which is still in edi.
if (info->scope()->is_script_scope()) {
__ push(edi);
__ Push(info->scope()->GetScopeInfo(info->isolate()));
__ CallRuntime(Runtime::kNewScriptContext, 2);
PrepareForBailoutForId(BailoutId::ScriptContext(), TOS_REG);
// The new target value is not used, clobbering is safe.
DCHECK_NULL(info->scope()->new_target_var());
} else {
if (info->scope()->new_target_var() != nullptr) {
__ push(edx); // Preserve new target.
}
if (slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(isolate(), slots);
__ CallStub(&stub);
// Result of FastNewContextStub is always in new space.
need_write_barrier = false;
} else {
__ push(edi);
__ CallRuntime(Runtime::kNewFunctionContext, 1);
}
if (info->scope()->new_target_var() != nullptr) {
__ pop(edx); // Restore new target.
}
}
function_in_register = false;
// Context is returned in eax. It replaces the context passed to us.
// It's saved in the stack and kept live in esi.
__ mov(esi, eax);
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
// Copy parameters into context if necessary.
int num_parameters = info->scope()->num_parameters();
int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
for (int i = first_parameter; i < num_parameters; i++) {
Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ mov(eax, Operand(ebp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(var->index());
__ mov(Operand(esi, context_offset), eax);
// Update the write barrier. This clobbers eax and ebx.
if (need_write_barrier) {
__ RecordWriteContextSlot(esi,
context_offset,
eax,
ebx,
kDontSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
}
// Register holding this function and new target are both trashed in case we
// bailout here. But since that can happen only when new target is not used
// and we allocate a context, the value of |function_in_register| is correct.
PrepareForBailoutForId(BailoutId::FunctionContext(), NO_REGISTERS);
// Possibly set up a local binding to the this function which is used in
// derived constructors with super calls.
Variable* this_function_var = scope()->this_function_var();
if (this_function_var != nullptr) {
Comment cmnt(masm_, "[ This function");
if (!function_in_register) {
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
// The write barrier clobbers register again, keep it marked as such.
}
SetVar(this_function_var, edi, ebx, ecx);
}
// Possibly set up a local binding to the new target value.
Variable* new_target_var = scope()->new_target_var();
if (new_target_var != nullptr) {
Comment cmnt(masm_, "[ new.target");
SetVar(new_target_var, edx, ebx, ecx);
}
Variable* arguments = scope()->arguments();
if (arguments != NULL) {
// Function uses arguments object.
Comment cmnt(masm_, "[ Allocate arguments object");
DCHECK(edi.is(ArgumentsAccessNewDescriptor::function()));
if (!function_in_register) {
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
}
// Receiver is just before the parameters on the caller's stack.
int num_parameters = info->scope()->num_parameters();
int offset = num_parameters * kPointerSize;
__ mov(ArgumentsAccessNewDescriptor::parameter_count(),
Immediate(Smi::FromInt(num_parameters)));
__ lea(ArgumentsAccessNewDescriptor::parameter_pointer(),
Operand(ebp, StandardFrameConstants::kCallerSPOffset + offset));
// Arguments to ArgumentsAccessStub:
// function, parameter pointer, parameter count.
// The stub will rewrite parameter pointer and parameter count if the
// previous stack frame was an arguments adapter frame.
bool is_unmapped = is_strict(language_mode()) || !has_simple_parameters();
ArgumentsAccessStub::Type type = ArgumentsAccessStub::ComputeType(
is_unmapped, literal()->has_duplicate_parameters());
ArgumentsAccessStub stub(isolate(), type);
__ CallStub(&stub);
SetVar(arguments, eax, ebx, edx);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
// Visit the declarations and body unless there is an illegal
// redeclaration.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ Declarations");
VisitForEffect(scope()->GetIllegalRedeclaration());
} else {
PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
{ Comment cmnt(masm_, "[ Declarations");
VisitDeclarations(scope()->declarations());
}
// Assert that the declarations do not use ICs. Otherwise the debugger
// won't be able to redirect a PC at an IC to the correct IC in newly
// recompiled code.
DCHECK_EQ(0, ic_total_count_);
{ Comment cmnt(masm_, "[ Stack check");
PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
Label ok;
ExternalReference stack_limit
= ExternalReference::address_of_stack_limit(isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok, Label::kNear);
__ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
__ bind(&ok);
}
{ Comment cmnt(masm_, "[ Body");
DCHECK(loop_depth() == 0);
VisitStatements(literal()->body());
DCHECK(loop_depth() == 0);
}
}
// Always emit a 'return undefined' in case control fell off the end of
// the body.
{ Comment cmnt(masm_, "[ return <undefined>;");
__ mov(eax, isolate()->factory()->undefined_value());
EmitReturnSequence();
}
}
void FullCodeGenerator::ClearAccumulator() {
__ Move(eax, Immediate(Smi::FromInt(0)));
}
void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
__ mov(ebx, Immediate(profiling_counter_));
__ sub(FieldOperand(ebx, Cell::kValueOffset),
Immediate(Smi::FromInt(delta)));
}
void FullCodeGenerator::EmitProfilingCounterReset() {
int reset_value = FLAG_interrupt_budget;
__ mov(ebx, Immediate(profiling_counter_));
__ mov(FieldOperand(ebx, Cell::kValueOffset),
Immediate(Smi::FromInt(reset_value)));
}
void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
Label* back_edge_target) {
Comment cmnt(masm_, "[ Back edge bookkeeping");
Label ok;
DCHECK(back_edge_target->is_bound());
int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
int weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kCodeSizeMultiplier));
EmitProfilingCounterDecrement(weight);
__ j(positive, &ok, Label::kNear);
__ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
// Record a mapping of this PC offset to the OSR id. This is used to find
// the AST id from the unoptimized code in order to use it as a key into
// the deoptimization input data found in the optimized code.
RecordBackEdge(stmt->OsrEntryId());
EmitProfilingCounterReset();
__ bind(&ok);
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
// Record a mapping of the OSR id to this PC. This is used if the OSR
// entry becomes the target of a bailout. We don't expect it to be, but
// we want it to work if it is.
PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
}
void FullCodeGenerator::EmitReturnSequence() {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ jmp(&return_label_);
} else {
// Common return label
__ bind(&return_label_);
if (FLAG_trace) {
__ push(eax);
__ CallRuntime(Runtime::kTraceExit, 1);
}
// Pretend that the exit is a backwards jump to the entry.
int weight = 1;
if (info_->ShouldSelfOptimize()) {
weight = FLAG_interrupt_budget / FLAG_self_opt_count;
} else {
int distance = masm_->pc_offset();
weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kCodeSizeMultiplier));
}
EmitProfilingCounterDecrement(weight);
Label ok;
__ j(positive, &ok, Label::kNear);
__ push(eax);
__ call(isolate()->builtins()->InterruptCheck(),
RelocInfo::CODE_TARGET);
__ pop(eax);
EmitProfilingCounterReset();
__ bind(&ok);
SetReturnPosition(literal());
__ leave();
int arg_count = info_->scope()->num_parameters() + 1;
int arguments_bytes = arg_count * kPointerSize;
__ Ret(arguments_bytes, ecx);
}
}
void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
MemOperand operand = codegen()->VarOperand(var, result_register());
// Memory operands can be pushed directly.
__ push(operand);
}
void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
UNREACHABLE(); // Not used on IA32.
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Heap::RootListIndex index) const {
UNREACHABLE(); // Not used on IA32.
}
void FullCodeGenerator::StackValueContext::Plug(
Heap::RootListIndex index) const {
UNREACHABLE(); // Not used on IA32.
}
void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
UNREACHABLE(); // Not used on IA32.
}
void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Handle<Object> lit) const {
if (lit->IsSmi()) {
__ SafeMove(result_register(), Immediate(lit));
} else {
__ Move(result_register(), Immediate(lit));
}
}
void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
if (lit->IsSmi()) {
__ SafePush(Immediate(lit));
} else {
__ push(Immediate(lit));
}
}
void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
if (false_label_ != fall_through_) __ jmp(false_label_);
} else if (lit->IsTrue() || lit->IsJSObject()) {
if (true_label_ != fall_through_) __ jmp(true_label_);
} else if (lit->IsString()) {
if (String::cast(*lit)->length() == 0) {
if (false_label_ != fall_through_) __ jmp(false_label_);
} else {
if (true_label_ != fall_through_) __ jmp(true_label_);
}
} else if (lit->IsSmi()) {
if (Smi::cast(*lit)->value() == 0) {
if (false_label_ != fall_through_) __ jmp(false_label_);
} else {
if (true_label_ != fall_through_) __ jmp(true_label_);
}
} else {
// For simplicity we always test the accumulator register.
__ mov(result_register(), lit);
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
__ Drop(count);
}
void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
int count,
Register reg) const {
DCHECK(count > 0);
__ Drop(count);
__ Move(result_register(), reg);
}
void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
if (count > 1) __ Drop(count - 1);
__ mov(Operand(esp, 0), reg);
}
void FullCodeGenerator::TestContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
// For simplicity we always test the accumulator register.
__ Drop(count);
__ Move(result_register(), reg);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
Label* materialize_false) const {
DCHECK(materialize_true == materialize_false);
__ bind(materialize_true);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ mov(result_register(), isolate()->factory()->true_value());
__ jmp(&done, Label::kNear);
__ bind(materialize_false);
__ mov(result_register(), isolate()->factory()->false_value());
__ bind(&done);
}
void FullCodeGenerator::StackValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ push(Immediate(isolate()->factory()->true_value()));
__ jmp(&done, Label::kNear);
__ bind(materialize_false);
__ push(Immediate(isolate()->factory()->false_value()));
__ bind(&done);
}
void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
Label* materialize_false) const {
DCHECK(materialize_true == true_label_);
DCHECK(materialize_false == false_label_);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
Handle<Object> value = flag
? isolate()->factory()->true_value()
: isolate()->factory()->false_value();
__ mov(result_register(), value);
}
void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
Handle<Object> value = flag
? isolate()->factory()->true_value()
: isolate()->factory()->false_value();
__ push(Immediate(value));
}
void FullCodeGenerator::TestContext::Plug(bool flag) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
if (flag) {
if (true_label_ != fall_through_) __ jmp(true_label_);
} else {
if (false_label_ != fall_through_) __ jmp(false_label_);
}
}
void FullCodeGenerator::DoTest(Expression* condition,
Label* if_true,
Label* if_false,
Label* fall_through) {
Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
CallIC(ic, condition->test_id());
__ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
Split(equal, if_true, if_false, fall_through);
}
void FullCodeGenerator::Split(Condition cc,
Label* if_true,
Label* if_false,
Label* fall_through) {
if (if_false == fall_through) {
__ j(cc, if_true);
} else if (if_true == fall_through) {
__ j(NegateCondition(cc), if_false);
} else {
__ j(cc, if_true);
__ jmp(if_false);
}
}
MemOperand FullCodeGenerator::StackOperand(Variable* var) {
DCHECK(var->IsStackAllocated());
// Offset is negative because higher indexes are at lower addresses.
int offset = -var->index() * kPointerSize;
// Adjust by a (parameter or local) base offset.
if (var->IsParameter()) {
offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
} else {
offset += JavaScriptFrameConstants::kLocal0Offset;
}
return Operand(ebp, offset);
}
MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
if (var->IsContextSlot()) {
int context_chain_length = scope()->ContextChainLength(var->scope());
__ LoadContext(scratch, context_chain_length);
return ContextOperand(scratch, var->index());
} else {
return StackOperand(var);
}
}
void FullCodeGenerator::GetVar(Register dest, Variable* var) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
MemOperand location = VarOperand(var, dest);
__ mov(dest, location);
}
void FullCodeGenerator::SetVar(Variable* var,
Register src,
Register scratch0,
Register scratch1) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
DCHECK(!scratch0.is(src));
DCHECK(!scratch0.is(scratch1));
DCHECK(!scratch1.is(src));
MemOperand location = VarOperand(var, scratch0);
__ mov(location, src);
// Emit the write barrier code if the location is in the heap.
if (var->IsContextSlot()) {
int offset = Context::SlotOffset(var->index());
DCHECK(!scratch0.is(esi) && !src.is(esi) && !scratch1.is(esi));
__ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
}
}
void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
bool should_normalize,
Label* if_true,
Label* if_false) {
// Only prepare for bailouts before splits if we're in a test
// context. Otherwise, we let the Visit function deal with the
// preparation to avoid preparing with the same AST id twice.
if (!context()->IsTest()) return;
Label skip;
if (should_normalize) __ jmp(&skip, Label::kNear);
PrepareForBailout(expr, TOS_REG);
if (should_normalize) {
__ cmp(eax, isolate()->factory()->true_value());
Split(equal, if_true, if_false, NULL);
__ bind(&skip);
}
}
void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
// The variable in the declaration always resides in the current context.
DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
if (generate_debug_code_) {
// Check that we're not inside a with or catch context.
__ mov(ebx, FieldOperand(esi, HeapObject::kMapOffset));
__ cmp(ebx, isolate()->factory()->with_context_map());
__ Check(not_equal, kDeclarationInWithContext);
__ cmp(ebx, isolate()->factory()->catch_context_map());
__ Check(not_equal, kDeclarationInCatchContext);
}
}
void FullCodeGenerator::VisitVariableDeclaration(
VariableDeclaration* declaration) {
// If it was not possible to allocate the variable at compile time, we
// need to "declare" it at runtime to make sure it actually exists in the
// local context.
VariableProxy* proxy = declaration->proxy();
VariableMode mode = declaration->mode();
Variable* variable = proxy->var();
bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
switch (variable->location()) {
case VariableLocation::GLOBAL:
case VariableLocation::UNALLOCATED:
globals_->Add(variable->name(), zone());
globals_->Add(variable->binding_needs_init()
? isolate()->factory()->the_hole_value()
: isolate()->factory()->undefined_value(), zone());
break;
case VariableLocation::PARAMETER:
case VariableLocation::LOCAL:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
__ mov(StackOperand(variable),
Immediate(isolate()->factory()->the_hole_value()));
}
break;
case VariableLocation::CONTEXT:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
EmitDebugCheckDeclarationContext(variable);
__ mov(ContextOperand(esi, variable->index()),
Immediate(isolate()->factory()->the_hole_value()));
// No write barrier since the hole value is in old space.
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
}
break;
case VariableLocation::LOOKUP: {
Comment cmnt(masm_, "[ VariableDeclaration");
__ push(Immediate(variable->name()));
// VariableDeclaration nodes are always introduced in one of four modes.
DCHECK(IsDeclaredVariableMode(mode));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (hole_init) {
__ push(Immediate(isolate()->factory()->the_hole_value()));
} else {
__ push(Immediate(Smi::FromInt(0))); // Indicates no initial value.
}
__ push(
Immediate(Smi::FromInt(variable->DeclarationPropertyAttributes())));
__ CallRuntime(Runtime::kDeclareLookupSlot, 3);
break;
}
}
}
void FullCodeGenerator::VisitFunctionDeclaration(
FunctionDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case VariableLocation::GLOBAL:
case VariableLocation::UNALLOCATED: {
globals_->Add(variable->name(), zone());
Handle<SharedFunctionInfo> function =
Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
// Check for stack-overflow exception.
if (function.is_null()) return SetStackOverflow();
globals_->Add(function, zone());
break;
}
case VariableLocation::PARAMETER:
case VariableLocation::LOCAL: {
Comment cmnt(masm_, "[ FunctionDeclaration");
VisitForAccumulatorValue(declaration->fun());
__ mov(StackOperand(variable), result_register());
break;
}
case VariableLocation::CONTEXT: {
Comment cmnt(masm_, "[ FunctionDeclaration");
EmitDebugCheckDeclarationContext(variable);
VisitForAccumulatorValue(declaration->fun());
__ mov(ContextOperand(esi, variable->index()), result_register());
// We know that we have written a function, which is not a smi.
__ RecordWriteContextSlot(esi,
Context::SlotOffset(variable->index()),
result_register(),
ecx,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
break;
}
case VariableLocation::LOOKUP: {
Comment cmnt(masm_, "[ FunctionDeclaration");
__ push(Immediate(variable->name()));
VisitForStackValue(declaration->fun());
__ push(
Immediate(Smi::FromInt(variable->DeclarationPropertyAttributes())));
__ CallRuntime(Runtime::kDeclareLookupSlot, 3);
break;
}
}
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
__ Push(pairs);
__ Push(Smi::FromInt(DeclareGlobalsFlags()));
__ CallRuntime(Runtime::kDeclareGlobals, 2);
// Return value is ignored.
}
void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
// Call the runtime to declare the modules.
__ Push(descriptions);
__ CallRuntime(Runtime::kDeclareModules, 1);
// Return value is ignored.
}
void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
Comment cmnt(masm_, "[ SwitchStatement");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
// Keep the switch value on the stack until a case matches.
VisitForStackValue(stmt->tag());
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
ZoneList<CaseClause*>* clauses = stmt->cases();
CaseClause* default_clause = NULL; // Can occur anywhere in the list.
Label next_test; // Recycled for each test.
// Compile all the tests with branches to their bodies.
for (int i = 0; i < clauses->length(); i++) {
CaseClause* clause = clauses->at(i);
clause->body_target()->Unuse();
// The default is not a test, but remember it as final fall through.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
__ bind(&next_test);
next_test.Unuse();
// Compile the label expression.
VisitForAccumulatorValue(clause->label());
// Perform the comparison as if via '==='.
__ mov(edx, Operand(esp, 0)); // Switch value.
bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ mov(ecx, edx);
__ or_(ecx, eax);
patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
__ cmp(edx, eax);
__ j(not_equal, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ jmp(clause->body_target());
__ bind(&slow_case);
}
SetExpressionPosition(clause);
Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT,
strength(language_mode())).code();
CallIC(ic, clause->CompareId());
patch_site.EmitPatchInfo();
Label skip;
__ jmp(&skip, Label::kNear);
PrepareForBailout(clause, TOS_REG);
__ cmp(eax, isolate()->factory()->true_value());
__ j(not_equal, &next_test);
__ Drop(1);
__ jmp(clause->body_target());
__ bind(&skip);
__ test(eax, eax);
__ j(not_equal, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ jmp(clause->body_target());
}
// Discard the test value and jump to the default if present, otherwise to
// the end of the statement.
__ bind(&next_test);
__ Drop(1); // Switch value is no longer needed.
if (default_clause == NULL) {
__ jmp(nested_statement.break_label());
} else {
__ jmp(default_clause->body_target());
}
// Compile all the case bodies.
for (int i = 0; i < clauses->length(); i++) {
Comment cmnt(masm_, "[ Case body");
CaseClause* clause = clauses->at(i);
__ bind(clause->body_target());
PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
VisitStatements(clause->statements());
}
__ bind(nested_statement.break_label());
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
}
void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
Comment cmnt(masm_, "[ ForInStatement");
SetStatementPosition(stmt, SKIP_BREAK);
FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
Label loop, exit;
ForIn loop_statement(this, stmt);
increment_loop_depth();
// Get the object to enumerate over. If the object is null or undefined, skip
// over the loop. See ECMA-262 version 5, section 12.6.4.
SetExpressionAsStatementPosition(stmt->enumerable());
VisitForAccumulatorValue(stmt->enumerable());
__ cmp(eax, isolate()->factory()->undefined_value());
__ j(equal, &exit);
__ cmp(eax, isolate()->factory()->null_value());
__ j(equal, &exit);
PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
// Convert the object to a JS object.
Label convert, done_convert;
__ JumpIfSmi(eax, &convert, Label::kNear);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(above_equal, &done_convert, Label::kNear);
__ bind(&convert);
ToObjectStub stub(isolate());
__ CallStub(&stub);
__ bind(&done_convert);
PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
__ push(eax);
// Check for proxies.
Label call_runtime, use_cache, fixed_array;
__ CmpObjectType(eax, JS_PROXY_TYPE, ecx);
__ j(equal, &call_runtime);
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
__ CheckEnumCache(&call_runtime);
__ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
__ jmp(&use_cache, Label::kNear);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(eax);
__ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
isolate()->factory()->meta_map());
__ j(not_equal, &fixed_array);
// We got a map in register eax. Get the enumeration cache from it.
Label no_descriptors;
__ bind(&use_cache);
__ EnumLength(edx, eax);
__ cmp(edx, Immediate(Smi::FromInt(0)));
__ j(equal, &no_descriptors);
__ LoadInstanceDescriptors(eax, ecx);
__ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheOffset));
__ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
// Set up the four remaining stack slots.
__ push(eax); // Map.
__ push(ecx); // Enumeration cache.
__ push(edx); // Number of valid entries for the map in the enum cache.
__ push(Immediate(Smi::FromInt(0))); // Initial index.
__ jmp(&loop);
__ bind(&no_descriptors);
__ add(esp, Immediate(kPointerSize));
__ jmp(&exit);
// We got a fixed array in register eax. Iterate through that.
__ bind(&fixed_array);
// No need for a write barrier, we are storing a Smi in the feedback vector.
__ EmitLoadTypeFeedbackVector(ebx);
int vector_index = SmiFromSlot(slot)->value();
__ mov(FieldOperand(ebx, FixedArray::OffsetOfElementAt(vector_index)),
Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate())));
__ push(Immediate(Smi::FromInt(1))); // Smi(1) indicates slow check
__ push(eax); // Array
__ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
__ push(eax); // Fixed array length (as smi).
__ push(Immediate(Smi::FromInt(0))); // Initial index.
// Generate code for doing the condition check.
__ bind(&loop);
SetExpressionAsStatementPosition(stmt->each());
__ mov(eax, Operand(esp, 0 * kPointerSize)); // Get the current index.
__ cmp(eax, Operand(esp, 1 * kPointerSize)); // Compare to the array length.
__ j(above_equal, loop_statement.break_label());
// Get the current entry of the array into register ebx.
__ mov(ebx, Operand(esp, 2 * kPointerSize));
__ mov(ebx, FieldOperand(ebx, eax, times_2, FixedArray::kHeaderSize));
// Get the expected map from the stack or a smi in the
// permanent slow case into register edx.
__ mov(edx, Operand(esp, 3 * kPointerSize));
// Check if the expected map still matches that of the enumerable.
// If not, we may have to filter the key.
Label update_each;
__ mov(ecx, Operand(esp, 4 * kPointerSize));
__ cmp(edx, FieldOperand(ecx, HeapObject::kMapOffset));
__ j(equal, &update_each, Label::kNear);
// Convert the entry to a string or null if it isn't a property
// anymore. If the property has been removed while iterating, we
// just skip it.
__ push(ecx); // Enumerable.
__ push(ebx); // Current entry.
__ CallRuntime(Runtime::kForInFilter, 2);
PrepareForBailoutForId(stmt->FilterId(), TOS_REG);
__ cmp(eax, isolate()->factory()->undefined_value());
__ j(equal, loop_statement.continue_label());
__ mov(ebx, eax);
// Update the 'each' property or variable from the possibly filtered
// entry in register ebx.
__ bind(&update_each);
__ mov(result_register(), ebx);
// Perform the assignment as if via '='.
{ EffectContext context(this);
EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS);
}
// Both Crankshaft and Turbofan expect BodyId to be right before stmt->body().
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
// Generate code for the body of the loop.
Visit(stmt->body());
// Generate code for going to the next element by incrementing the
// index (smi) stored on top of the stack.
__ bind(loop_statement.continue_label());
__ add(Operand(esp, 0 * kPointerSize), Immediate(Smi::FromInt(1)));
EmitBackEdgeBookkeeping(stmt, &loop);
__ jmp(&loop);
// Remove the pointers stored on the stack.
__ bind(loop_statement.break_label());
__ add(esp, Immediate(5 * kPointerSize));
// Exit and decrement the loop depth.
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(&exit);
decrement_loop_depth();
}
void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
bool pretenure) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning. If
// we're running with the --always-opt or the --prepare-always-opt
// flag, we need to use the runtime function so that the new function
// we are creating here gets a chance to have its code optimized and
// doesn't just get a copy of the existing unoptimized code.
if (!FLAG_always_opt &&
!FLAG_prepare_always_opt &&
!pretenure &&
scope()->is_function_scope() &&
info->num_literals() == 0) {
FastNewClosureStub stub(isolate(), info->language_mode(), info->kind());
__ mov(ebx, Immediate(info));
__ CallStub(&stub);
} else {
__ push(Immediate(info));
__ CallRuntime(
pretenure ? Runtime::kNewClosure_Tenured : Runtime::kNewClosure, 1);
}
context()->Plug(eax);
}
void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
FeedbackVectorSlot slot) {
DCHECK(NeedsHomeObject(initializer));
__ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0));
__ mov(StoreDescriptor::NameRegister(),
Immediate(isolate()->factory()->home_object_symbol()));
__ mov(StoreDescriptor::ValueRegister(), Operand(esp, offset * kPointerSize));
EmitLoadStoreICSlot(slot);
CallStoreIC();
}
void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
int offset,
FeedbackVectorSlot slot) {
DCHECK(NeedsHomeObject(initializer));
__ mov(StoreDescriptor::ReceiverRegister(), eax);
__ mov(StoreDescriptor::NameRegister(),
Immediate(isolate()->factory()->home_object_symbol()));
__ mov(StoreDescriptor::ValueRegister(), Operand(esp, offset * kPointerSize));
EmitLoadStoreICSlot(slot);
CallStoreIC();
}
void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
TypeofMode typeof_mode,
Label* slow) {
Register context = esi;
Register temp = edx;
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is "the hole".
__ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX),
Heap::kTheHoleValueRootIndex, slow);
}
// Load next context in chain.
__ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering esi.
context = temp;
}
// If no outer scope calls eval, we do not need to check more
// context extensions. If we have reached an eval scope, we check
// all extensions from this point.
if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s != NULL && s->is_eval_scope()) {
// Loop up the context chain. There is no frame effect so it is
// safe to use raw labels here.
Label next, fast;
if (!context.is(temp)) {
__ mov(temp, context);
}
__ bind(&next);
// Terminate at native context.
__ cmp(FieldOperand(temp, HeapObject::kMapOffset),
Immediate(isolate()->factory()->native_context_map()));
__ j(equal, &fast, Label::kNear);
// Check that extension is "the hole".
__ JumpIfNotRoot(ContextOperand(temp, Context::EXTENSION_INDEX),
Heap::kTheHoleValueRootIndex, slow);
// Load next context in chain.
__ mov(temp, ContextOperand(temp, Context::PREVIOUS_INDEX));
__ jmp(&next);
__ bind(&fast);
}
// All extension objects were empty and it is safe to use a normal global
// load machinery.
EmitGlobalVariableLoad(proxy, typeof_mode);
}
MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
Label* slow) {
DCHECK(var->IsContextSlot());
Register context = esi;
Register temp = ebx;
for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is "the hole".
__ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX),
Heap::kTheHoleValueRootIndex, slow);
}
__ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering esi.
context = temp;
}
}
// Check that last extension is "the hole".
__ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX),
Heap::kTheHoleValueRootIndex, slow);
// This function is used only for loads, not stores, so it's safe to
// return an esi-based operand (the write barrier cannot be allowed to
// destroy the esi register).
return ContextOperand(context, var->index());
}
void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
TypeofMode typeof_mode,
Label* slow, Label* done) {
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
Variable* var = proxy->var();
if (var->mode() == DYNAMIC_GLOBAL) {
EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
__ jmp(done);
} else if (var->mode() == DYNAMIC_LOCAL) {
Variable* local = var->local_if_not_shadowed();
__ mov(eax, ContextSlotOperandCheckExtensions(local, slow));
if (local->mode() == LET || local->mode() == CONST ||
local->mode() == CONST_LEGACY) {
__ cmp(eax, isolate()->factory()->the_hole_value());
__ j(not_equal, done);
if (local->mode() == CONST_LEGACY) {
__ mov(eax, isolate()->factory()->undefined_value());
} else { // LET || CONST
__ push(Immediate(var->name()));
__ CallRuntime(Runtime::kThrowReferenceError, 1);
}
}
__ jmp(done);
}
}
void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy,
TypeofMode typeof_mode) {
Variable* var = proxy->var();
DCHECK(var->IsUnallocatedOrGlobalSlot() ||
(var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL));
__ mov(LoadDescriptor::ReceiverRegister(), NativeContextOperand());
__ mov(LoadDescriptor::ReceiverRegister(),
ContextOperand(LoadDescriptor::ReceiverRegister(),
Context::EXTENSION_INDEX));
__ mov(LoadDescriptor::NameRegister(), var->name());
__ mov(LoadDescriptor::SlotRegister(),
Immediate(SmiFromSlot(proxy->VariableFeedbackSlot())));
CallLoadIC(typeof_mode);
}
void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
TypeofMode typeof_mode) {
SetExpressionPosition(proxy);
PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS);
Variable* var = proxy->var();
// Three cases: global variables, lookup variables, and all other types of
// variables.
switch (var->location()) {
case VariableLocation::GLOBAL:
case VariableLocation::UNALLOCATED: {
Comment cmnt(masm_, "[ Global variable");
EmitGlobalVariableLoad(proxy, typeof_mode);
context()->Plug(eax);
break;
}
case VariableLocation::PARAMETER:
case VariableLocation::LOCAL:
case VariableLocation::CONTEXT: {
DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
: "[ Stack variable");
if (NeedsHoleCheckForLoad(proxy)) {
// Let and const need a read barrier.
Label done;
GetVar(eax, var);
__ cmp(eax, isolate()->factory()->the_hole_value());
__ j(not_equal, &done, Label::kNear);
if (var->mode() == LET || var->mode() == CONST) {
// Throw a reference error when using an uninitialized let/const
// binding in harmony mode.
__ push(Immediate(var->name()));
__ CallRuntime(Runtime::kThrowReferenceError, 1);
} else {
// Uninitialized legacy const bindings are unholed.
DCHECK(var->mode() == CONST_LEGACY);
__ mov(eax, isolate()->factory()->undefined_value());
}
__ bind(&done);
context()->Plug(eax);
break;
}
context()->Plug(var);
break;
}
case VariableLocation::LOOKUP: {
Comment cmnt(masm_, "[ Lookup variable");
Label done, slow;
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
__ bind(&slow);
__ push(esi); // Context.
__ push(Immediate(var->name()));
Runtime::FunctionId function_id =
typeof_mode == NOT_INSIDE_TYPEOF
? Runtime::kLoadLookupSlot
: Runtime::kLoadLookupSlotNoReferenceError;
__ CallRuntime(function_id, 2);
__ bind(&done);
context()->Plug(eax);
break;
}
}
}
void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExpLiteral");
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ Move(eax, Immediate(Smi::FromInt(expr->literal_index())));
__ Move(ecx, Immediate(expr->pattern()));
__ Move(edx, Immediate(Smi::FromInt(expr->flags())));
FastCloneRegExpStub stub(isolate());
__ CallStub(&stub);
context()->Plug(eax);
}
void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
Expression* expression = (property == NULL) ? NULL : property->value();
if (expression == NULL) {
__ push(Immediate(isolate()->factory()->null_value()));
} else {
VisitForStackValue(expression);
if (NeedsHomeObject(expression)) {
DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
property->kind() == ObjectLiteral::Property::SETTER);
int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
EmitSetHomeObject(expression, offset, property->GetSlot());
}
}
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
Handle<FixedArray> constant_properties = expr->constant_properties();
int flags = expr->ComputeFlags();
// If any of the keys would store to the elements array, then we shouldn't
// allow it.
if (MustCreateObjectLiteralWithRuntime(expr)) {
__ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ push(Immediate(Smi::FromInt(expr->literal_index())));
__ push(Immediate(constant_properties));
__ push(Immediate(Smi::FromInt(flags)));
__ CallRuntime(Runtime::kCreateObjectLiteral, 4);
} else {
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ mov(ebx, Immediate(Smi::FromInt(expr->literal_index())));
__ mov(ecx, Immediate(constant_properties));
__ mov(edx, Immediate(Smi::FromInt(flags)));
FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
__ CallStub(&stub);
}
PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in eax.
bool result_saved = false;
AccessorTable accessor_table(zone());
int property_index = 0;
for (; property_index < expr->properties()->length(); property_index++) {
ObjectLiteral::Property* property = expr->properties()->at(property_index);
if (property->is_computed_name()) break;
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key()->AsLiteral();
Expression* value = property->value();
if (!result_saved) {
__ push(eax); // Save result on the stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
// It is safe to use [[Put]] here because the boilerplate already
// contains computed properties with an uninitialized value.
if (key->value()->IsInternalizedString()) {
if (property->emit_store()) {
VisitForAccumulatorValue(value);
DCHECK(StoreDescriptor::ValueRegister().is(eax));
__ mov(StoreDescriptor::NameRegister(), Immediate(key->value()));
__ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0));
EmitLoadStoreICSlot(property->GetSlot(0));
CallStoreIC();
PrepareForBailoutForId(key->id(), NO_REGISTERS);
if (NeedsHomeObject(value)) {
EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
}
} else {
VisitForEffect(value);
}
break;
}
__ push(Operand(esp, 0)); // Duplicate receiver.
VisitForStackValue(key);
VisitForStackValue(value);
if (property->emit_store()) {
if (NeedsHomeObject(value)) {
EmitSetHomeObject(value, 2, property->GetSlot());
}
__ push(Immediate(Smi::FromInt(SLOPPY))); // Language mode
__ CallRuntime(Runtime::kSetProperty, 4);
} else {
__ Drop(3);
}
break;
case ObjectLiteral::Property::PROTOTYPE:
__ push(Operand(esp, 0)); // Duplicate receiver.
VisitForStackValue(value);
DCHECK(property->emit_store());
__ CallRuntime(Runtime::kInternalSetPrototype, 2);
break;
case ObjectLiteral::Property::GETTER:
if (property->emit_store()) {
accessor_table.lookup(key)->second->getter = property;
}
break;
case ObjectLiteral::Property::SETTER:
if (property->emit_store()) {
accessor_table.lookup(key)->second->setter = property;
}
break;
}
}
// Emit code to define accessors, using only a single call to the runtime for
// each pair of corresponding getters and setters.
for (AccessorTable::Iterator it = accessor_table.begin();
it != accessor_table.end();
++it) {
__ push(Operand(esp, 0)); // Duplicate receiver.
VisitForStackValue(it->first);
EmitAccessor(it->second->getter);
EmitAccessor(it->second->setter);
__ push(Immediate(Smi::FromInt(NONE)));
__ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
}
// Object literals have two parts. The "static" part on the left contains no
// computed property names, and so we can compute its map ahead of time; see
// runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
// starts with the first computed property name, and continues with all
// properties to its right. All the code from above initializes the static
// component of the object literal, and arranges for the map of the result to
// reflect the static order in which the keys appear. For the dynamic
// properties, we compile them into a series of "SetOwnProperty" runtime
// calls. This will preserve insertion order.
for (; property_index < expr->properties()->length(); property_index++) {
ObjectLiteral::Property* property = expr->properties()->at(property_index);
Expression* value = property->value();
if (!result_saved) {
__ push(eax); // Save result on the stack
result_saved = true;
}
__ push(Operand(esp, 0)); // Duplicate receiver.
if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
DCHECK(!property->is_computed_name());
VisitForStackValue(value);
DCHECK(property->emit_store());
__ CallRuntime(Runtime::kInternalSetPrototype, 2);
} else {
EmitPropertyKey(property, expr->GetIdForProperty(property_index));
VisitForStackValue(value);
if (NeedsHomeObject(value)) {
EmitSetHomeObject(value, 2, property->GetSlot());
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
case ObjectLiteral::Property::COMPUTED:
if (property->emit_store()) {
__ push(Immediate(Smi::FromInt(NONE)));
__ CallRuntime(Runtime::kDefineDataPropertyUnchecked, 4);
} else {
__ Drop(3);
}
break;
case ObjectLiteral::Property::PROTOTYPE:
UNREACHABLE();
break;
case ObjectLiteral::Property::GETTER:
__ push(Immediate(Smi::FromInt(NONE)));
__ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4);
break;
case ObjectLiteral::Property::SETTER:
__ push(Immediate(Smi::FromInt(NONE)));
__ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4);
break;
}
}
}
if (expr->has_function()) {
DCHECK(result_saved);
__ push(Operand(esp, 0));
__ CallRuntime(Runtime::kToFastProperties, 1);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(eax);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
Handle<FixedArray> constant_elements = expr->constant_elements();
bool has_constant_fast_elements =
IsFastObjectElementsKind(expr->constant_elements_kind());
AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) {
// If the only customer of allocation sites is transitioning, then
// we can turn it off if we don't have anywhere else to transition to.
allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
}
if (MustCreateArrayLiteralWithRuntime(expr)) {
__ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ push(Immediate(Smi::FromInt(expr->literal_index())));
__ push(Immediate(constant_elements));
__ push(Immediate(Smi::FromInt(expr->ComputeFlags())));
__ CallRuntime(Runtime::kCreateArrayLiteral, 4);
} else {
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ mov(ebx, Immediate(Smi::FromInt(expr->literal_index())));
__ mov(ecx, Immediate(constant_elements));
FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
__ CallStub(&stub);
}
PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
bool result_saved = false; // Is the result saved to the stack?
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
int array_index = 0;
for (; array_index < length; array_index++) {
Expression* subexpr = subexprs->at(array_index);
if (subexpr->IsSpread()) break;
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
if (!result_saved) {
__ push(eax); // array literal.
result_saved = true;
}
VisitForAccumulatorValue(subexpr);
__ mov(StoreDescriptor::NameRegister(),
Immediate(Smi::FromInt(array_index)));
__ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0));
EmitLoadStoreICSlot(expr->LiteralFeedbackSlot());
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
CallIC(ic);
PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
}
// In case the array literal contains spread expressions it has two parts. The
// first part is the "static" array which has a literal index is handled
// above. The second part is the part after the first spread expression
// (inclusive) and these elements gets appended to the array. Note that the
// number elements an iterable produces is unknown ahead of time.
if (array_index < length && result_saved) {
__ Pop(eax);
result_saved = false;
}
for (; array_index < length; array_index++) {
Expression* subexpr = subexprs->at(array_index);
__ Push(eax);
if (subexpr->IsSpread()) {
VisitForStackValue(subexpr->AsSpread()->expression());
__ InvokeBuiltin(Context::CONCAT_ITERABLE_TO_ARRAY_BUILTIN_INDEX,
CALL_FUNCTION);
} else {
VisitForStackValue(subexpr);
__ CallRuntime(Runtime::kAppendElement, 2);
}
PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(eax);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
Comment cmnt(masm_, "[ Assignment");
SetExpressionPosition(expr, INSERT_BREAK);
Property* property = expr->target()->AsProperty();
LhsKind assign_type = Property::GetAssignType(property);
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_SUPER_PROPERTY:
VisitForStackValue(
property->obj()->AsSuperPropertyReference()->this_var());
VisitForAccumulatorValue(
property->obj()->AsSuperPropertyReference()->home_object());
__ push(result_register());
if (expr->is_compound()) {
__ push(MemOperand(esp, kPointerSize));
__ push(result_register());
}
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the register.
VisitForStackValue(property->obj());
__ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
} else {
VisitForStackValue(property->obj());
}
break;
case KEYED_SUPER_PROPERTY:
VisitForStackValue(
property->obj()->AsSuperPropertyReference()->this_var());
VisitForStackValue(
property->obj()->AsSuperPropertyReference()->home_object());
VisitForAccumulatorValue(property->key());
__ Push(result_register());
if (expr->is_compound()) {
__ push(MemOperand(esp, 2 * kPointerSize));
__ push(MemOperand(esp, 2 * kPointerSize));
__ push(result_register());
}
break;
case KEYED_PROPERTY: {
if (expr->is_compound()) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
__ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, kPointerSize));
__ mov(LoadDescriptor::NameRegister(), Operand(esp, 0));
} else {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
}
break;
}
}
// For compound assignments we need another deoptimization point after the
// variable/property load.
if (expr->is_compound()) {
AccumulatorValueContext result_context(this);
{ AccumulatorValueContext left_operand_context(this);
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy());
PrepareForBailout(expr->target(), TOS_REG);
break;
case NAMED_SUPER_PROPERTY:
EmitNamedSuperPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case KEYED_SUPER_PROPERTY:
EmitKeyedSuperPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
}
}
Token::Value op = expr->binary_op();
__ push(eax); // Left operand goes on the stack.
VisitForAccumulatorValue(expr->value());
if (ShouldInlineSmiCase(op)) {
EmitInlineSmiBinaryOp(expr->binary_operation(),
op,
expr->target(),
expr->value());
} else {
EmitBinaryOp(expr->binary_operation(), op);
}
// Deoptimization point in case the binary operation may have side effects.
PrepareForBailout(expr->binary_operation(), TOS_REG);
} else {
VisitForAccumulatorValue(expr->value());
}
SetExpressionPosition(expr);
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
expr->op(), expr->AssignmentSlot());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(eax);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case NAMED_SUPER_PROPERTY:
EmitNamedSuperPropertyStore(property);
context()->Plug(result_register());
break;
case KEYED_SUPER_PROPERTY:
EmitKeyedSuperPropertyStore(property);
context()->Plug(result_register());
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FullCodeGenerator::VisitYield(Yield* expr) {
Comment cmnt(masm_, "[ Yield");
SetExpressionPosition(expr);
// Evaluate yielded value first; the initial iterator definition depends on
// this. It stays on the stack while we update the iterator.
VisitForStackValue(expr->expression());
switch (expr->yield_kind()) {
case Yield::kSuspend:
// Pop value from top-of-stack slot; box result into result register.
EmitCreateIteratorResult(false);
__ push(result_register());
// Fall through.
case Yield::kInitial: {
Label suspend, continuation, post_runtime, resume;
__ jmp(&suspend);
__ bind(&continuation);
__ RecordGeneratorContinuation();
__ jmp(&resume);
__ bind(&suspend);
VisitForAccumulatorValue(expr->generator_object());
DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
__ mov(FieldOperand(eax, JSGeneratorObject::kContinuationOffset),
Immediate(Smi::FromInt(continuation.pos())));
__ mov(FieldOperand(eax, JSGeneratorObject::kContextOffset), esi);
__ mov(ecx, esi);
__ RecordWriteField(eax, JSGeneratorObject::kContextOffset, ecx, edx,
kDontSaveFPRegs);
__ lea(ebx, Operand(ebp, StandardFrameConstants::kExpressionsOffset));
__ cmp(esp, ebx);
__ j(equal, &post_runtime);
__ push(eax); // generator object
__ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
__ mov(context_register(),
Operand(ebp, StandardFrameConstants::kContextOffset));
__ bind(&post_runtime);
__ pop(result_register());
EmitReturnSequence();
__ bind(&resume);
context()->Plug(result_register());
break;
}
case Yield::kFinal: {
VisitForAccumulatorValue(expr->generator_object());
__ mov(FieldOperand(result_register(),
JSGeneratorObject::kContinuationOffset),
Immediate(Smi::FromInt(JSGeneratorObject::kGeneratorClosed)));
// Pop value from top-of-stack slot, box result into result register.
EmitCreateIteratorResult(true);
EmitUnwindBeforeReturn();
EmitReturnSequence();
break;
}
case Yield::kDelegating: {
VisitForStackValue(expr->generator_object());
// Initial stack layout is as follows:
// [sp + 1 * kPointerSize] iter
// [sp + 0 * kPointerSize] g
Label l_catch, l_try, l_suspend, l_continuation, l_resume;
Label l_next, l_call, l_loop;
Register load_receiver = LoadDescriptor::ReceiverRegister();
Register load_name = LoadDescriptor::NameRegister();
// Initial send value is undefined.
__ mov(eax, isolate()->factory()->undefined_value());
__ jmp(&l_next);
// catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
__ bind(&l_catch);
__ mov(load_name, isolate()->factory()->throw_string()); // "throw"
__ push(load_name); // "throw"
__ push(Operand(esp, 2 * kPointerSize)); // iter
__ push(eax); // exception
__ jmp(&l_call);
// try { received = %yield result }
// Shuffle the received result above a try handler and yield it without
// re-boxing.
__ bind(&l_try);
__ pop(eax); // result
int handler_index = NewHandlerTableEntry();
EnterTryBlock(handler_index, &l_catch);
const int try_block_size = TryCatch::kElementCount * kPointerSize;
__ push(eax); // result
__ jmp(&l_suspend);
__ bind(&l_continuation);
__ RecordGeneratorContinuation();
__ jmp(&l_resume);
__ bind(&l_suspend);
const int generator_object_depth = kPointerSize + try_block_size;
__ mov(eax, Operand(esp, generator_object_depth));
__ push(eax); // g
__ push(Immediate(Smi::FromInt(handler_index))); // handler-index
DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
__ mov(FieldOperand(eax, JSGeneratorObject::kContinuationOffset),
Immediate(Smi::FromInt(l_continuation.pos())));
__ mov(FieldOperand(eax, JSGeneratorObject::kContextOffset), esi);
__ mov(ecx, esi);
__ RecordWriteField(eax, JSGeneratorObject::kContextOffset, ecx, edx,
kDontSaveFPRegs);
__ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2);
__ mov(context_register(),
Operand(ebp, StandardFrameConstants::kContextOffset));
__ pop(eax); // result
EmitReturnSequence();
__ bind(&l_resume); // received in eax
ExitTryBlock(handler_index);
// receiver = iter; f = iter.next; arg = received;
__ bind(&l_next);
__ mov(load_name, isolate()->factory()->next_string());
__ push(load_name); // "next"
__ push(Operand(esp, 2 * kPointerSize)); // iter
__ push(eax); // received
// result = receiver[f](arg);
__ bind(&l_call);
__ mov(load_receiver, Operand(esp, kPointerSize));
__ mov(LoadDescriptor::SlotRegister(),
Immediate(SmiFromSlot(expr->KeyedLoadFeedbackSlot())));
Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code();
CallIC(ic, TypeFeedbackId::None());
__ mov(edi, eax);
__ mov(Operand(esp, 2 * kPointerSize), edi);
SetCallPosition(expr);
__ Set(eax, 1);
__ Call(
isolate()->builtins()->Call(ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ Drop(1); // The function is still on the stack; drop it.
// if (!result.done) goto l_try;
__ bind(&l_loop);
__ push(eax); // save result
__ Move(load_receiver, eax); // result
__ mov(load_name,
isolate()->factory()->done_string()); // "done"
__ mov(LoadDescriptor::SlotRegister(),
Immediate(SmiFromSlot(expr->DoneFeedbackSlot())));
CallLoadIC(NOT_INSIDE_TYPEOF); // result.done in eax
Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
CallIC(bool_ic);
__ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
__ j(not_equal, &l_try);
// result.value
__ pop(load_receiver); // result
__ mov(load_name,
isolate()->factory()->value_string()); // "value"
__ mov(LoadDescriptor::SlotRegister(),
Immediate(SmiFromSlot(expr->ValueFeedbackSlot())));
CallLoadIC(NOT_INSIDE_TYPEOF); // result.value in eax
context()->DropAndPlug(2, eax); // drop iter and g
break;
}
}
}
void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
Expression *value,
JSGeneratorObject::ResumeMode resume_mode) {
// The value stays in eax, and is ultimately read by the resumed generator, as
// if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
// is read to throw the value when the resumed generator is already closed.
// ebx will hold the generator object until the activation has been resumed.
VisitForStackValue(generator);
VisitForAccumulatorValue(value);
__ pop(ebx);
// Load suspended function and context.
__ mov(esi, FieldOperand(ebx, JSGeneratorObject::kContextOffset));
__ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset));
// Push receiver.
__ push(FieldOperand(ebx, JSGeneratorObject::kReceiverOffset));
// Push holes for arguments to generator function.
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(edx,
FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(ecx, isolate()->factory()->the_hole_value());
Label push_argument_holes, push_frame;
__ bind(&push_argument_holes);
__ sub(edx, Immediate(Smi::FromInt(1)));
__ j(carry, &push_frame);
__ push(ecx);
__ jmp(&push_argument_holes);
// Enter a new JavaScript frame, and initialize its slots as they were when
// the generator was suspended.
Label resume_frame, done;
__ bind(&push_frame);
__ call(&resume_frame);
__ jmp(&done);
__ bind(&resume_frame);
__ push(ebp); // Caller's frame pointer.
__ mov(ebp, esp);
__ push(esi); // Callee's context.
__ push(edi); // Callee's JS Function.
// Load the operand stack size.
__ mov(edx, FieldOperand(ebx, JSGeneratorObject::kOperandStackOffset));
__ mov(edx, FieldOperand(edx, FixedArray::kLengthOffset));
__ SmiUntag(edx);
// If we are sending a value and there is no operand stack, we can jump back
// in directly.
if (resume_mode == JSGeneratorObject::NEXT) {
Label slow_resume;
__ cmp(edx, Immediate(0));
__ j(not_zero, &slow_resume);
__ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
__ mov(ecx, FieldOperand(ebx, JSGeneratorObject::kContinuationOffset));
__ SmiUntag(ecx);
__ add(edx, ecx);
__ mov(FieldOperand(ebx, JSGeneratorObject::kContinuationOffset),
Immediate(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)));
__ jmp(edx);
__ bind(&slow_resume);
}
// Otherwise, we push holes for the operand stack and call the runtime to fix
// up the stack and the handlers.
Label push_operand_holes, call_resume;
__ bind(&push_operand_holes);
__ sub(edx, Immediate(1));
__ j(carry, &call_resume);
__ push(ecx);
__ jmp(&push_operand_holes);
__ bind(&call_resume);
__ push(ebx);
__ push(result_register());
__ Push(Smi::FromInt(resume_mode));
__ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
// Not reached: the runtime call returns elsewhere.
__ Abort(kGeneratorFailedToResume);
__ bind(&done);
context()->Plug(result_register());
}
void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
Label allocate, done_allocate;
__ Allocate(JSIteratorResult::kSize, eax, ecx, edx, &allocate, TAG_OBJECT);
__ jmp(&done_allocate, Label::kNear);
__ bind(&allocate);
__ Push(Smi::FromInt(JSIteratorResult::kSize));
__ CallRuntime(Runtime::kAllocateInNewSpace, 1);
__ bind(&done_allocate);
__ mov(ebx, NativeContextOperand());
__ mov(ebx, ContextOperand(ebx, Context::ITERATOR_RESULT_MAP_INDEX));
__ mov(FieldOperand(eax, HeapObject::kMapOffset), ebx);
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
isolate()->factory()->empty_fixed_array());
__ mov(FieldOperand(eax, JSObject::kElementsOffset),
isolate()->factory()->empty_fixed_array());
__ pop(FieldOperand(eax, JSIteratorResult::kValueOffset));
__ mov(FieldOperand(eax, JSIteratorResult::kDoneOffset),
isolate()->factory()->ToBoolean(done));
STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
}
void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
SetExpressionPosition(prop);
Literal* key = prop->key()->AsLiteral();
DCHECK(!key->value()->IsSmi());
DCHECK(!prop->IsSuperAccess());
__ mov(LoadDescriptor::NameRegister(), Immediate(key->value()));
__ mov(LoadDescriptor::SlotRegister(),
Immediate(SmiFromSlot(prop->PropertyFeedbackSlot())));
CallLoadIC(NOT_INSIDE_TYPEOF, language_mode());
}
void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
// Stack: receiver, home_object.
SetExpressionPosition(prop);
Literal* key = prop->key()->AsLiteral();
DCHECK(!key->value()->IsSmi());
DCHECK(prop->IsSuperAccess());
__ push(Immediate(key->value()));
__ push(Immediate(Smi::FromInt(language_mode())));
__ CallRuntime(Runtime::kLoadFromSuper, 4);
}
void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
SetExpressionPosition(prop);
Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code();
__ mov(LoadDescriptor::SlotRegister(),
Immediate(SmiFromSlot(prop->PropertyFeedbackSlot())));
CallIC(ic);
}
void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
// Stack: receiver, home_object, key.
SetExpressionPosition(prop);
__ push(Immediate(Smi::FromInt(language_mode())));
__ CallRuntime(Runtime::kLoadKeyedFromSuper, 4);
}
void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
Token::Value op,
Expression* left,
Expression* right) {
// Do combined smi check of the operands. Left operand is on the
// stack. Right operand is in eax.
Label smi_case, done, stub_call;
__ pop(edx);
__ mov(ecx, eax);
__ or_(eax, edx);
JumpPatchSite patch_site(masm_);
patch_site.EmitJumpIfSmi(eax, &smi_case, Label::kNear);
__ bind(&stub_call);
__ mov(eax, ecx);
Handle<Code> code =
CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
CallIC(code, expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
__ jmp(&done, Label::kNear);
// Smi case.
__ bind(&smi_case);
__ mov(eax, edx); // Copy left operand in case of a stub call.
switch (op) {
case Token::SAR:
__ SmiUntag(ecx);
__ sar_cl(eax); // No checks of result necessary
__ and_(eax, Immediate(~kSmiTagMask));
break;
case Token::SHL: {
Label result_ok;
__ SmiUntag(eax);
__ SmiUntag(ecx);
__ shl_cl(eax);
// Check that the *signed* result fits in a smi.
__ cmp(eax, 0xc0000000);
__ j(positive, &result_ok);
__ SmiTag(ecx);
__ jmp(&stub_call);
__ bind(&result_ok);
__ SmiTag(eax);
break;
}
case Token::SHR: {
Label result_ok;
__ SmiUntag(eax);
__ SmiUntag(ecx);
__ shr_cl(eax);
__ test(eax, Immediate(0xc0000000));
__ j(zero, &result_ok);
__ SmiTag(ecx);
__ jmp(&stub_call);
__ bind(&result_ok);
__ SmiTag(eax);
break;
}
case Token::ADD:
__ add(eax, ecx);
__ j(overflow, &stub_call);
break;
case Token::SUB:
__ sub(eax, ecx);
__ j(overflow, &stub_call);
break;
case Token::MUL: {
__ SmiUntag(eax);
__ imul(eax, ecx);
__ j(overflow, &stub_call);
__ test(eax, eax);
__ j(not_zero, &done, Label::kNear);
__ mov(ebx, edx);
__ or_(ebx, ecx);
__ j(negative, &stub_call);
break;
}
case Token::BIT_OR:
__ or_(eax, ecx);
break;
case Token::BIT_AND:
__ and_(eax, ecx);
break;
case Token::BIT_XOR:
__ xor_(eax, ecx);
break;
default:
UNREACHABLE();
}
__ bind(&done);
context()->Plug(eax);
}
void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
// Constructor is in eax.
DCHECK(lit != NULL);
__ push(eax);
// No access check is needed here since the constructor is created by the
// class literal.
Register scratch = ebx;
__ mov(scratch, FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset));
__ Push(scratch);
for (int i = 0; i < lit->properties()->length(); i++) {
ObjectLiteral::Property* property = lit->properties()->at(i);
Expression* value = property->value();
if (property->is_static()) {
__ push(Operand(esp, kPointerSize)); // constructor
} else {
__ push(Operand(esp, 0)); // prototype
}
EmitPropertyKey(property, lit->GetIdForProperty(i));
// The static prototype property is read only. We handle the non computed
// property name case in the parser. Since this is the only case where we
// need to check for an own read only property we special case this so we do
// not need to do this for every property.
if (property->is_static() && property->is_computed_name()) {
__ CallRuntime(Runtime::kThrowIfStaticPrototype, 1);
__ push(eax);
}
VisitForStackValue(value);
if (NeedsHomeObject(value)) {
EmitSetHomeObject(value, 2, property->GetSlot());
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
case ObjectLiteral::Property::PROTOTYPE:
UNREACHABLE();
case ObjectLiteral::Property::COMPUTED:
__ CallRuntime(Runtime::kDefineClassMethod, 3);
break;
case ObjectLiteral::Property::GETTER:
__ push(Immediate(Smi::FromInt(DONT_ENUM)));
__ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4);
break;
case ObjectLiteral::Property::SETTER:
__ push(Immediate(Smi::FromInt(DONT_ENUM)));
__ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4);
break;
}
}
// Set both the prototype and constructor to have fast properties, and also
// freeze them in strong mode.
__ CallRuntime(Runtime::kFinalizeClassDefinition, 2);
}
void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
__ pop(edx);
Handle<Code> code =
CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
CallIC(code, expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
context()->Plug(eax);
}
void FullCodeGenerator::EmitAssignment(Expression* expr,
FeedbackVectorSlot slot) {
DCHECK(expr->IsValidReferenceExpressionOrThis());
Property* prop = expr->AsProperty();
LhsKind assign_type = Property::GetAssignType(prop);
switch (assign_type) {
case VARIABLE: {
Variable* var = expr->AsVariableProxy()->var();
EffectContext context(this);
EmitVariableAssignment(var, Token::ASSIGN, slot);
break;
}
case NAMED_PROPERTY: {
__ push(eax); // Preserve value.
VisitForAccumulatorValue(prop->obj());
__ Move(StoreDescriptor::ReceiverRegister(), eax);
__ pop(StoreDescriptor::ValueRegister()); // Restore value.
__ mov(StoreDescriptor::NameRegister(),
prop->key()->AsLiteral()->value());
EmitLoadStoreICSlot(slot);
CallStoreIC();
break;
}
case NAMED_SUPER_PROPERTY: {
__ push(eax);
VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
VisitForAccumulatorValue(
prop->obj()->AsSuperPropertyReference()->home_object());
// stack: value, this; eax: home_object
Register scratch = ecx;
Register scratch2 = edx;
__ mov(scratch, result_register()); // home_object
__ mov(eax, MemOperand(esp, kPointerSize)); // value
__ mov(scratch2, MemOperand(esp, 0)); // this
__ mov(MemOperand(esp, kPointerSize), scratch2); // this
__ mov(MemOperand(esp, 0), scratch); // home_object
// stack: this, home_object. eax: value
EmitNamedSuperPropertyStore(prop);
break;
}
case KEYED_SUPER_PROPERTY: {
__ push(eax);
VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
VisitForStackValue(
prop->obj()->AsSuperPropertyReference()->home_object());
VisitForAccumulatorValue(prop->key());
Register scratch = ecx;
Register scratch2 = edx;
__ mov(scratch2, MemOperand(esp, 2 * kPointerSize)); // value
// stack: value, this, home_object; eax: key, edx: value
__ mov(scratch, MemOperand(esp, kPointerSize)); // this
__ mov(MemOperand(esp, 2 * kPointerSize), scratch);
__ mov(scratch, MemOperand(esp, 0)); // home_object
__ mov(MemOperand(esp, kPointerSize), scratch);
__ mov(MemOperand(esp, 0), eax);
__ mov(eax, scratch2);
// stack: this, home_object, key; eax: value.
EmitKeyedSuperPropertyStore(prop);
break;
}
case KEYED_PROPERTY: {
__ push(eax); // Preserve value.
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ Move(StoreDescriptor::NameRegister(), eax);
__ pop(StoreDescriptor::ReceiverRegister()); // Receiver.
__ pop(StoreDescriptor::ValueRegister()); // Restore value.
EmitLoadStoreICSlot(slot);
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
CallIC(ic);
break;
}
}
context()->Plug(eax);
}
void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
Variable* var, MemOperand location) {
__ mov(location, eax);
if (var->IsContextSlot()) {
__ mov(edx, eax);
int offset = Context::SlotOffset(var->index());
__ RecordWriteContextSlot(ecx, offset, edx, ebx, kDontSaveFPRegs);
}
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
FeedbackVectorSlot slot) {
if (var->IsUnallocated()) {
// Global var, const, or let.
__ mov(StoreDescriptor::NameRegister(), var->name());
__ mov(StoreDescriptor::ReceiverRegister(), NativeContextOperand());
__ mov(StoreDescriptor::ReceiverRegister(),
ContextOperand(StoreDescriptor::ReceiverRegister(),
Context::EXTENSION_INDEX));
EmitLoadStoreICSlot(slot);
CallStoreIC();
} else if (var->mode() == LET && op != Token::INIT) {
// Non-initializing assignment to let variable needs a write barrier.
DCHECK(!var->IsLookupSlot());
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label assign;
MemOperand location = VarOperand(var, ecx);
__ mov(edx, location);
__ cmp(edx, isolate()->factory()->the_hole_value());
__ j(not_equal, &assign, Label::kNear);
__ push(Immediate(var->name()));
__ CallRuntime(Runtime::kThrowReferenceError, 1);
__ bind(&assign);
EmitStoreToStackLocalOrContextSlot(var, location);
} else if (var->mode() == CONST && op != Token::INIT) {
// Assignment to const variable needs a write barrier.
DCHECK(!var->IsLookupSlot());
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label const_error;
MemOperand location = VarOperand(var, ecx);
__ mov(edx, location);
__ cmp(edx, isolate()->factory()->the_hole_value());
__ j(not_equal, &const_error, Label::kNear);
__ push(Immediate(var->name()));
__ CallRuntime(Runtime::kThrowReferenceError, 1);
__ bind(&const_error);
__ CallRuntime(Runtime::kThrowConstAssignError, 0);
} else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
// Initializing assignment to const {this} needs a write barrier.
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label uninitialized_this;
MemOperand location = VarOperand(var, ecx);
__ mov(edx, location);
__ cmp(edx, isolate()->factory()->the_hole_value());
__ j(equal, &uninitialized_this);
__ push(Immediate(var->name()));
__ CallRuntime(Runtime::kThrowReferenceError, 1);
__ bind(&uninitialized_this);
EmitStoreToStackLocalOrContextSlot(var, location);
} else if (!var->is_const_mode() ||
(var->mode() == CONST && op == Token::INIT)) {
if (var->IsLookupSlot()) {
// Assignment to var.
__ push(eax); // Value.
__ push(esi); // Context.
__ push(Immediate(var->name()));
__ push(Immediate(Smi::FromInt(language_mode())));
__ CallRuntime(Runtime::kStoreLookupSlot, 4);
} else {
// Assignment to var or initializing assignment to let/const in harmony
// mode.
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
MemOperand location = VarOperand(var, ecx);
if (generate_debug_code_ && var->mode() == LET && op == Token::INIT) {
// Check for an uninitialized let binding.
__ mov(edx, location);
__ cmp(edx, isolate()->factory()->the_hole_value());
__ Check(equal, kLetBindingReInitialization);
}
EmitStoreToStackLocalOrContextSlot(var, location);
}
} else if (var->mode() == CONST_LEGACY && op == Token::INIT) {
// Const initializers need a write barrier.
DCHECK(!var->IsParameter()); // No const parameters.
if (var->IsLookupSlot()) {
__ push(eax);
__ push(esi);
__ push(Immediate(var->name()));
__ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
} else {
DCHECK(var->IsStackLocal() || var->IsContextSlot());
Label skip;
MemOperand location = VarOperand(var, ecx);
__ mov(edx, location);
__ cmp(edx, isolate()->factory()->the_hole_value());
__ j(not_equal, &skip, Label::kNear);
EmitStoreToStackLocalOrContextSlot(var, location);
__ bind(&skip);
}
} else {
DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT);
if (is_strict(language_mode())) {
__ CallRuntime(Runtime::kThrowConstAssignError, 0);
}
// Silently ignore store in sloppy mode.
}
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
// eax : value
// esp[0] : receiver
Property* prop = expr->target()->AsProperty();
DCHECK(prop != NULL);
DCHECK(prop->key()->IsLiteral());
__ mov(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value());
__ pop(StoreDescriptor::ReceiverRegister());
EmitLoadStoreICSlot(expr->AssignmentSlot());
CallStoreIC();
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(eax);
}
void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
// Assignment to named property of super.
// eax : value
// stack : receiver ('this'), home_object
DCHECK(prop != NULL);
Literal* key = prop->key()->AsLiteral();
DCHECK(key != NULL);
__ push(Immediate(key->value()));
__ push(eax);
__ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict
: Runtime::kStoreToSuper_Sloppy),
4);
}
void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
// Assignment to named property of super.
// eax : value
// stack : receiver ('this'), home_object, key
__ push(eax);
__ CallRuntime(
(is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict
: Runtime::kStoreKeyedToSuper_Sloppy),
4);
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
// eax : value
// esp[0] : key
// esp[kPointerSize] : receiver
__ pop(StoreDescriptor::NameRegister()); // Key.
__ pop(StoreDescriptor::ReceiverRegister());
DCHECK(StoreDescriptor::ValueRegister().is(eax));
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
EmitLoadStoreICSlot(expr->AssignmentSlot());
CallIC(ic);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(eax);
}
void FullCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
SetExpressionPosition(expr);
Expression* key = expr->key();
if (key->IsPropertyName()) {
if (!expr->IsSuperAccess()) {
VisitForAccumulatorValue(expr->obj());
__ Move(LoadDescriptor::ReceiverRegister(), result_register());
EmitNamedPropertyLoad(expr);
} else {
VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
VisitForStackValue(
expr->obj()->AsSuperPropertyReference()->home_object());
EmitNamedSuperPropertyLoad(expr);
}
} else {
if (!expr->IsSuperAccess()) {
VisitForStackValue(expr->obj());
VisitForAccumulatorValue(expr->key());
__ pop(LoadDescriptor::ReceiverRegister()); // Object.
__ Move(LoadDescriptor::NameRegister(), result_register()); // Key.
EmitKeyedPropertyLoad(expr);
} else {
VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
VisitForStackValue(
expr->obj()->AsSuperPropertyReference()->home_object());
VisitForStackValue(expr->key());
EmitKeyedSuperPropertyLoad(expr);
}
}
PrepareForBailoutForId(expr->LoadId(), TOS_REG);
context()->Plug(eax);
}
void FullCodeGenerator::CallIC(Handle<Code> code,
TypeFeedbackId ast_id) {
ic_total_count_++;
__ call(code, RelocInfo::CODE_TARGET, ast_id);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
Expression* callee = expr->expression();
// Get the target function.
ConvertReceiverMode convert_mode;
if (callee->IsVariableProxy()) {
{ StackValueContext context(this);
EmitVariableLoad(callee->AsVariableProxy());
PrepareForBailout(callee, NO_REGISTERS);
}
// Push undefined as receiver. This is patched in the method prologue if it
// is a sloppy mode method.
__ push(Immediate(isolate()->factory()->undefined_value()));
convert_mode = ConvertReceiverMode::kNullOrUndefined;
} else {
// Load the function from the receiver.
DCHECK(callee->IsProperty());
DCHECK(!callee->AsProperty()->IsSuperAccess());
__ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
EmitNamedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ push(Operand(esp, 0));
__ mov(Operand(esp, kPointerSize), eax);
convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
}
EmitCall(expr, convert_mode);
}
void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
SetExpressionPosition(expr);
Expression* callee = expr->expression();
DCHECK(callee->IsProperty());
Property* prop = callee->AsProperty();
DCHECK(prop->IsSuperAccess());
Literal* key = prop->key()->AsLiteral();
DCHECK(!key->value()->IsSmi());
// Load the function from the receiver.
SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
VisitForStackValue(super_ref->home_object());
VisitForAccumulatorValue(super_ref->this_var());
__ push(eax);
__ push(eax);
__ push(Operand(esp, kPointerSize * 2));
__ push(Immediate(key->value()));
__ push(Immediate(Smi::FromInt(language_mode())));
// Stack here:
// - home_object
// - this (receiver)
// - this (receiver) <-- LoadFromSuper will pop here and below.
// - home_object
// - key
// - language_mode
__ CallRuntime(Runtime::kLoadFromSuper, 4);
// Replace home_object with target function.
__ mov(Operand(esp, kPointerSize), eax);
// Stack here:
// - target function
// - this (receiver)
EmitCall(expr);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
Expression* key) {
// Load the key.
VisitForAccumulatorValue(key);
Expression* callee = expr->expression();
// Load the function from the receiver.
DCHECK(callee->IsProperty());
__ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
__ mov(LoadDescriptor::NameRegister(), eax);
EmitKeyedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ push(Operand(esp, 0));
__ mov(Operand(esp, kPointerSize), eax);
EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
}
void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
Expression* callee = expr->expression();
DCHECK(callee->IsProperty());
Property* prop = callee->AsProperty();
DCHECK(prop->IsSuperAccess());
SetExpressionPosition(prop);
// Load the function from the receiver.
SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
VisitForStackValue(super_ref->home_object());
VisitForAccumulatorValue(super_ref->this_var());
__ push(eax);
__ push(eax);
__ push(Operand(esp, kPointerSize * 2));
VisitForStackValue(prop->key());
__ push(Immediate(Smi::FromInt(language_mode())));
// Stack here:
// - home_object
// - this (receiver)
// - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
// - home_object
// - key
// - language_mode
__ CallRuntime(Runtime::kLoadKeyedFromSuper, 4);
// Replace home_object with target function.
__ mov(Operand(esp, kPointerSize), eax);
// Stack here:
// - target function
// - this (receiver)
EmitCall(expr);
}
void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
// Load the arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
SetCallPosition(expr);
Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, mode).code();
__ Move(edx, Immediate(SmiFromSlot(expr->CallFeedbackICSlot())));
__ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
// Don't assign a type feedback id to the IC, since type feedback is provided
// by the vector above.
CallIC(ic);
RecordJSReturnSite(expr);
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, eax);
}
void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
// Push copy of the first argument or undefined if it doesn't exist.
if (arg_count > 0) {
__ push(Operand(esp, arg_count * kPointerSize));
} else {
__ push(Immediate(isolate()->factory()->undefined_value()));
}
// Push the enclosing function.
__ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
// Push the language mode.
__ push(Immediate(Smi::FromInt(language_mode())));
// Push the start position of the scope the calls resides in.
__ push(Immediate(Smi::FromInt(scope()->start_position())));
// Do the runtime call.
__ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
}
// See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
VariableProxy* callee = expr->expression()->AsVariableProxy();
if (callee->var()->IsLookupSlot()) {
Label slow, done;
SetExpressionPosition(callee);
// Generate code for loading from variables potentially shadowed by
// eval-introduced variables.
EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
__ bind(&slow);
// Call the runtime to find the function to call (returned in eax) and
// the object holding it (returned in edx).
__ push(context_register());
__ push(Immediate(callee->name()));
__ CallRuntime(Runtime::kLoadLookupSlot, 2);
__ push(eax); // Function.
__ push(edx); // Receiver.
PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS);
// If fast case code has been generated, emit code to push the function
// and receiver and have the slow path jump around this code.
if (done.is_linked()) {
Label call;
__ jmp(&call, Label::kNear);
__ bind(&done);
// Push function.
__ push(eax);
// The receiver is implicitly the global receiver. Indicate this by
// passing the hole to the call function stub.
__ push(Immediate(isolate()->factory()->undefined_value()));
__ bind(&call);
}
} else {
VisitForStackValue(callee);
// refEnv.WithBaseObject()
__ push(Immediate(isolate()->factory()->undefined_value()));
}
}
void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) {
// In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
// to resolve the function we need to call. Then we call the resolved
// function using the given arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
PushCalleeAndWithBaseObject(expr);
// Push the arguments.
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Push a copy of the function (found below the arguments) and
// resolve eval.
__ push(Operand(esp, (arg_count + 1) * kPointerSize));
EmitResolvePossiblyDirectEval(arg_count);
// Touch up the stack with the resolved function.
__ mov(Operand(esp, (arg_count + 1) * kPointerSize), eax);
PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS);
SetCallPosition(expr);
__ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
__ Set(eax, arg_count);
__ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
RecordJSReturnSite(expr);
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, eax);
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push constructor on the stack. If it's not a function it's used as
// receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
// ignored.
DCHECK(!expr->expression()->IsSuperPropertyReference());
VisitForStackValue(expr->expression());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetConstructCallPosition(expr);
// Load function and argument count into edi and eax.
__ Move(eax, Immediate(arg_count));
__ mov(edi, Operand(esp, arg_count * kPointerSize));
// Record call targets in unoptimized code.
__ EmitLoadTypeFeedbackVector(ebx);
__ mov(edx, Immediate(SmiFromSlot(expr->CallNewFeedbackSlot())));
CallConstructStub stub(isolate());
__ call(stub.GetCode(), RelocInfo::CODE_TARGET);
PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
context()->Plug(eax);
}
void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
SuperCallReference* super_call_ref =
expr->expression()->AsSuperCallReference();
DCHECK_NOT_NULL(super_call_ref);
// Push the super constructor target on the stack (may be null,
// but the Construct builtin can deal with that properly).
VisitForAccumulatorValue(super_call_ref->this_function_var());
__ AssertFunction(result_register());
__ mov(result_register(),
FieldOperand(result_register(), HeapObject::kMapOffset));
__ Push(FieldOperand(result_register(), Map::kPrototypeOffset));
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetConstructCallPosition(expr);
// Load new target into edx.
VisitForAccumulatorValue(super_call_ref->new_target_var());
__ mov(edx, result_register());
// Load function and argument count into edi and eax.
__ Move(eax, Immediate(arg_count));
__ mov(edi, Operand(esp, arg_count * kPointerSize));
__ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
RecordJSReturnSite(expr);
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
context()->Plug(eax);
}
void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ test(eax, Immediate(kSmiTagMask));
Split(zero, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ebx);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(above_equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsSimdValue(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, SIMD128_VALUE_TYPE, ebx);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
__ CheckMap(eax, map, if_false, DO_SMI_CHECK);
// Check if the exponent half is 0x80000000. Comparing against 1 and
// checking for overflow is the shortest possible encoding.
__ cmp(FieldOperand(eax, HeapNumber::kExponentOffset), Immediate(0x1));
__ j(no_overflow, if_false);
__ cmp(FieldOperand(eax, HeapNumber::kMantissaOffset), Immediate(0x0));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, JS_TYPED_ARRAY_TYPE, ebx);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, JS_REGEXP_TYPE, ebx);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, JS_PROXY_TYPE, ebx);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
// Load the two objects into registers and perform the comparison.
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ pop(ebx);
__ cmp(eax, ebx);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
// ArgumentsAccessStub expects the key in edx and the formal
// parameter count in eax.
VisitForAccumulatorValue(args->at(0));
__ mov(edx, eax);
__ Move(eax, Immediate(Smi::FromInt(info_->scope()->num_parameters())));
ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
__ CallStub(&stub);
context()->Plug(eax);
}
void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 0);
Label exit;
// Get the number of formal parameters.
__ Move(eax, Immediate(Smi::FromInt(info_->scope()->num_parameters())));
// Check if the calling frame is an arguments adaptor frame.
__ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ cmp(Operand(ebx, StandardFrameConstants::kContextOffset),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(not_equal, &exit);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ bind(&exit);
__ AssertSmi(eax);
context()->Plug(eax);
}
void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
Label done, null, function, non_function_constructor;
VisitForAccumulatorValue(args->at(0));
// If the object is a smi, we return null.
__ JumpIfSmi(eax, &null);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
// Assume that there are only two callable types, and one of them is at
// either end of the type range for JS object types. Saves extra comparisons.
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, eax);
// Map is now in eax.
__ j(below, &null);
__ CmpInstanceType(eax, LAST_JS_RECEIVER_TYPE);
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
LAST_JS_RECEIVER_TYPE - 1);
__ j(equal, &function);
// Assume that there is no larger type.
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
// Check if the constructor in the map is a JS function.
__ GetMapConstructor(eax, eax, ebx);
__ CmpInstanceType(ebx, JS_FUNCTION_TYPE);
__ j(not_equal, &non_function_constructor);
// eax now contains the constructor function. Grab the
// instance class name from there.
__ mov(eax, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
__ mov(eax, FieldOperand(eax, SharedFunctionInfo::kInstanceClassNameOffset));
__ jmp(&done);
// Functions have class 'Function'.
__ bind(&function);
__ mov(eax, isolate()->factory()->Function_string());
__ jmp(&done);
// Objects with a non-function constructor have class 'Object'.
__ bind(&non_function_constructor);
__ mov(eax, isolate()->factory()->Object_string());
__ jmp(&done);
// Non-JS objects have class null.
__ bind(&null);
__ mov(eax, isolate()->factory()->null_value());
// All done.
__ bind(&done);
context()->Plug(eax);
}
void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label done;
// If the object is a smi return the object.
__ JumpIfSmi(eax, &done, Label::kNear);
// If the object is not a value type, return the object.
__ CmpObjectType(eax, JS_VALUE_TYPE, ebx);
__ j(not_equal, &done, Label::kNear);
__ mov(eax, FieldOperand(eax, JSValue::kValueOffset));
__ bind(&done);
context()->Plug(eax);
}
void FullCodeGenerator::EmitIsDate(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(1, args->length());
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = nullptr;
Label* if_false = nullptr;
Label* fall_through = nullptr;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, JS_DATE_TYPE, ebx);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
DCHECK_NOT_NULL(args->at(1)->AsLiteral());
Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
VisitForAccumulatorValue(args->at(0)); // Load the object.
Register object = eax;
Register result = eax;
Register scratch = ecx;
if (index->value() == 0) {
__ mov(result, FieldOperand(object, JSDate::kValueOffset));
} else {
Label runtime, done;
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ mov(scratch, Operand::StaticVariable(stamp));
__ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
__ j(not_equal, &runtime, Label::kNear);
__ mov(result, FieldOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ jmp(&done, Label::kNear);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch);
__ mov(Operand(esp, 0), object);
__ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ bind(&done);
}
context()->Plug(result);
}
void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(3, args->length());
Register string = eax;
Register index = ebx;
Register value = ecx;
VisitForStackValue(args->at(0)); // index
VisitForStackValue(args->at(1)); // value
VisitForAccumulatorValue(args->at(2)); // string
__ pop(value);
__ pop(index);
if (FLAG_debug_code) {
__ test(value, Immediate(kSmiTagMask));
__ Check(zero, kNonSmiValue);
__ test(index, Immediate(kSmiTagMask));
__ Check(zero, kNonSmiValue);
}
__ SmiUntag(value);
__ SmiUntag(index);
if (FLAG_debug_code) {
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
__ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
}
__ mov_b(FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize),
value);
context()->Plug(string);
}
void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(3, args->length());
Register string = eax;
Register index = ebx;
Register value = ecx;
VisitForStackValue(args->at(0)); // index
VisitForStackValue(args->at(1)); // value
VisitForAccumulatorValue(args->at(2)); // string
__ pop(value);
__ pop(index);
if (FLAG_debug_code) {
__ test(value, Immediate(kSmiTagMask));
__ Check(zero, kNonSmiValue);
__ test(index, Immediate(kSmiTagMask));
__ Check(zero, kNonSmiValue);
__ SmiUntag(index);
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
__ SmiTag(index);
}
__ SmiUntag(value);
// No need to untag a smi for two-byte addressing.
__ mov_w(FieldOperand(string, index, times_1, SeqTwoByteString::kHeaderSize),
value);
context()->Plug(string);
}
void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0)); // Load the object.
VisitForAccumulatorValue(args->at(1)); // Load the value.
__ pop(ebx); // eax = value. ebx = object.
Label done;
// If the object is a smi, return the value.
__ JumpIfSmi(ebx, &done, Label::kNear);
// If the object is not a value type, return the value.
__ CmpObjectType(ebx, JS_VALUE_TYPE, ecx);
__ j(not_equal, &done, Label::kNear);
// Store the value.
__ mov(FieldOperand(ebx, JSValue::kValueOffset), eax);
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
__ mov(edx, eax);
__ RecordWriteField(ebx, JSValue::kValueOffset, edx, ecx, kDontSaveFPRegs);
__ bind(&done);
context()->Plug(eax);
}
void FullCodeGenerator::EmitToInteger(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(1, args->length());
// Load the argument into eax and convert it.
VisitForAccumulatorValue(args->at(0));
// Convert the object to an integer.
Label done_convert;
__ JumpIfSmi(eax, &done_convert, Label::kNear);
__ Push(eax);
__ CallRuntime(Runtime::kToInteger, 1);
__ bind(&done_convert);
context()->Plug(eax);
}
void FullCodeGenerator::EmitToName(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(1, args->length());
// Load the argument into eax and convert it.
VisitForAccumulatorValue(args->at(0));
// Convert the object to a name.
Label convert, done_convert;
__ JumpIfSmi(eax, &convert, Label::kNear);
STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
__ CmpObjectType(eax, LAST_NAME_TYPE, ecx);
__ j(below_equal, &done_convert, Label::kNear);
__ bind(&convert);
__ Push(eax);
__ CallRuntime(Runtime::kToName, 1);
__ bind(&done_convert);
context()->Plug(eax);
}
void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label done;
StringCharFromCodeGenerator generator(eax, ebx);
generator.GenerateFast(masm_);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(ebx);
}
void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Register object = ebx;
Register index = eax;
Register result = edx;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharCodeAtGenerator generator(object,
index,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// NaN.
__ Move(result, Immediate(isolate()->factory()->nan_value()));
__ jmp(&done);
__ bind(&need_conversion);
// Move the undefined value into the result register, which will
// trigger conversion.
__ Move(result, Immediate(isolate()->factory()->undefined_value()));
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Register object = ebx;
Register index = eax;
Register scratch = edx;
Register result = eax;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharAtGenerator generator(object,
index,
scratch,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// the empty string.
__ Move(result, Immediate(isolate()->factory()->empty_string()));
__ jmp(&done);
__ bind(&need_conversion);
// Move smi zero into the result register, which will trigger
// conversion.
__ Move(result, Immediate(Smi::FromInt(0)));
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitCall(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_LE(2, args->length());
// Push target, receiver and arguments onto the stack.
for (Expression* const arg : *args) {
VisitForStackValue(arg);
}
PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
// Move target to edi.
int const argc = args->length() - 2;
__ mov(edi, Operand(esp, (argc + 1) * kPointerSize));
// Call the target.
__ mov(eax, Immediate(argc));
__ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
// Discard the function left on TOS.
context()->DropAndPlug(1, eax);
}
void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
__ AssertString(eax);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ test(FieldOperand(eax, String::kHashFieldOffset),
Immediate(String::kContainsCachedArrayIndexMask));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(zero, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
__ AssertString(eax);
__ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
__ IndexFromHash(eax, eax);
context()->Plug(eax);
}
void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(1, args->length());
VisitForAccumulatorValue(args->at(0));
__ AssertFunction(eax);
__ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
__ mov(eax, FieldOperand(eax, Map::kPrototypeOffset));
context()->Plug(eax);
}
void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
Label bailout, done, one_char_separator, long_separator,
non_trivial_array, not_size_one_array, loop,
loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
// We will leave the separator on the stack until the end of the function.
VisitForStackValue(args->at(1));
// Load this to eax (= array)
VisitForAccumulatorValue(args->at(0));
// All aliases of the same register have disjoint lifetimes.
Register array = eax;
Register elements = no_reg; // Will be eax.
Register index = edx;
Register string_length = ecx;
Register string = esi;
Register scratch = ebx;
Register array_length = edi;
Register result_pos = no_reg; // Will be edi.
// Separator operand is already pushed.
Operand separator_operand = Operand(esp, 2 * kPointerSize);
Operand result_operand = Operand(esp, 1 * kPointerSize);
Operand array_length_operand = Operand(esp, 0);
__ sub(esp, Immediate(2 * kPointerSize));
__ cld();
// Check that the array is a JSArray
__ JumpIfSmi(array, &bailout);
__ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
__ j(not_equal, &bailout);
// Check that the array has fast elements.
__ CheckFastElements(scratch, &bailout);
// If the array has length zero, return the empty string.
__ mov(array_length, FieldOperand(array, JSArray::kLengthOffset));
__ SmiUntag(array_length);
__ j(not_zero, &non_trivial_array);
__ mov(result_operand, isolate()->factory()->empty_string());
__ jmp(&done);
// Save the array length.
__ bind(&non_trivial_array);
__ mov(array_length_operand, array_length);
// Save the FixedArray containing array's elements.
// End of array's live range.
elements = array;
__ mov(elements, FieldOperand(array, JSArray::kElementsOffset));
array = no_reg;
// Check that all array elements are sequential one-byte strings, and
// accumulate the sum of their lengths, as a smi-encoded value.
__ Move(index, Immediate(0));
__ Move(string_length, Immediate(0));
// Loop condition: while (index < length).
// Live loop registers: index, array_length, string,
// scratch, string_length, elements.
if (generate_debug_code_) {
__ cmp(index, array_length);
__ Assert(less, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
}
__ bind(&loop);
__ mov(string, FieldOperand(elements,
index,
times_pointer_size,
FixedArray::kHeaderSize));
__ JumpIfSmi(string, &bailout);
__ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
__ and_(scratch, Immediate(
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
__ cmp(scratch, kStringTag | kOneByteStringTag | kSeqStringTag);
__ j(not_equal, &bailout);
__ add(string_length,
FieldOperand(string, SeqOneByteString::kLengthOffset));
__ j(overflow, &bailout);
__ add(index, Immediate(1));
__ cmp(index, array_length);
__ j(less, &loop);
// If array_length is 1, return elements[0], a string.
__ cmp(array_length, 1);
__ j(not_equal, &not_size_one_array);
__ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize));
__ mov(result_operand, scratch);
__ jmp(&done);
__ bind(&not_size_one_array);
// End of array_length live range.
result_pos = array_length;
array_length = no_reg;
// Live registers:
// string_length: Sum of string lengths, as a smi.
// elements: FixedArray of strings.
// Check that the separator is a flat one-byte string.
__ mov(string, separator_operand);
__ JumpIfSmi(string, &bailout);
__ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
__ and_(scratch, Immediate(
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
__ cmp(scratch, kStringTag | kOneByteStringTag | kSeqStringTag);
__ j(not_equal, &bailout);
// Add (separator length times array_length) - separator length
// to string_length.
__ mov(scratch, separator_operand);
__ mov(scratch, FieldOperand(scratch, SeqOneByteString::kLengthOffset));
__ sub(string_length, scratch); // May be negative, temporarily.
__ imul(scratch, array_length_operand);
__ j(overflow, &bailout);
__ add(string_length, scratch);
__ j(overflow, &bailout);
__ shr(string_length, 1);
// Bailout for large object allocations.
__ cmp(string_length, Page::kMaxRegularHeapObjectSize);
__ j(greater, &bailout);
// Live registers and stack values:
// string_length
// elements
__ AllocateOneByteString(result_pos, string_length, scratch, index, string,
&bailout);
__ mov(result_operand, result_pos);
__ lea(result_pos, FieldOperand(result_pos, SeqOneByteString::kHeaderSize));
__ mov(string, separator_operand);
__ cmp(FieldOperand(string, SeqOneByteString::kLengthOffset),
Immediate(Smi::FromInt(1)));
__ j(equal, &one_char_separator);
__ j(greater, &long_separator);
// Empty separator case
__ mov(index, Immediate(0));
__ jmp(&loop_1_condition);
// Loop condition: while (index < length).
__ bind(&loop_1);
// Each iteration of the loop concatenates one string to the result.
// Live values in registers:
// index: which element of the elements array we are adding to the result.
// result_pos: the position to which we are currently copying characters.
// elements: the FixedArray of strings we are joining.
// Get string = array[index].
__ mov(string, FieldOperand(elements, index,
times_pointer_size,
FixedArray::kHeaderSize));
__ mov(string_length,
FieldOperand(string, String::kLengthOffset));
__ shr(string_length, 1);
__ lea(string,
FieldOperand(string, SeqOneByteString::kHeaderSize));
__ CopyBytes(string, result_pos, string_length, scratch);
__ add(index, Immediate(1));
__ bind(&loop_1_condition);
__ cmp(index, array_length_operand);
__ j(less, &loop_1); // End while (index < length).
__ jmp(&done);
// One-character separator case
__ bind(&one_char_separator);
// Replace separator with its one-byte character value.
__ mov_b(scratch, FieldOperand(string, SeqOneByteString::kHeaderSize));
__ mov_b(separator_operand, scratch);
__ Move(index, Immediate(0));
// Jump into the loop after the code that copies the separator, so the first
// element is not preceded by a separator
__ jmp(&loop_2_entry);
// Loop condition: while (index < length).
__ bind(&loop_2);
// Each iteration of the loop concatenates one string to the result.
// Live values in registers:
// index: which element of the elements array we are adding to the result.
// result_pos: the position to which we are currently copying characters.
// Copy the separator character to the result.
__ mov_b(scratch, separator_operand);
__ mov_b(Operand(result_pos, 0), scratch);
__ inc(result_pos);
__ bind(&loop_2_entry);
// Get string = array[index].
__ mov(string, FieldOperand(elements, index,
times_pointer_size,
FixedArray::kHeaderSize));
__ mov(string_length,
FieldOperand(string, String::kLengthOffset));
__ shr(string_length, 1);
__ lea(string,
FieldOperand(string, SeqOneByteString::kHeaderSize));
__ CopyBytes(string, result_pos, string_length, scratch);
__ add(index, Immediate(1));
__ cmp(index, array_length_operand);
__ j(less, &loop_2); // End while (index < length).
__ jmp(&done);
// Long separator case (separator is more than one character).
__ bind(&long_separator);
__ Move(index, Immediate(0));
// Jump into the loop after the code that copies the separator, so the first
// element is not preceded by a separator
__ jmp(&loop_3_entry);
// Loop condition: while (index < length).
__ bind(&loop_3);
// Each iteration of the loop concatenates one string to the result.
// Live values in registers:
// index: which element of the elements array we are adding to the result.
// result_pos: the position to which we are currently copying characters.
// Copy the separator to the result.
__ mov(string, separator_operand);
__ mov(string_length,
FieldOperand(string, String::kLengthOffset));
__ shr(string_length, 1);
__ lea(string,
FieldOperand(string, SeqOneByteString::kHeaderSize));
__ CopyBytes(string, result_pos, string_length, scratch);
__ bind(&loop_3_entry);
// Get string = array[index].
__ mov(string, FieldOperand(elements, index,
times_pointer_size,
FixedArray::kHeaderSize));
__ mov(string_length,
FieldOperand(string, String::kLengthOffset));
__ shr(string_length, 1);
__ lea(string,
FieldOperand(string, SeqOneByteString::kHeaderSize));
__ CopyBytes(string, result_pos, string_length, scratch);
__ add(index, Immediate(1));
__ cmp(index, array_length_operand);
__ j(less, &loop_3); // End while (index < length).
__ jmp(&done);
__ bind(&bailout);
__ mov(result_operand, isolate()->factory()->undefined_value());
__ bind(&done);
__ mov(eax, result_operand);
// Drop temp values from the stack, and restore context register.
__ add(esp, Immediate(3 * kPointerSize));
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
context()->Plug(eax);
}
void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 0);
ExternalReference debug_is_active =
ExternalReference::debug_is_active_address(isolate());
__ movzx_b(eax, Operand::StaticVariable(debug_is_active));
__ SmiTag(eax);
context()->Plug(eax);
}
void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
Label runtime, done;
__ Allocate(JSIteratorResult::kSize, eax, ecx, edx, &runtime, TAG_OBJECT);
__ mov(ebx, NativeContextOperand());
__ mov(ebx, ContextOperand(ebx, Context::ITERATOR_RESULT_MAP_INDEX));
__ mov(FieldOperand(eax, HeapObject::kMapOffset), ebx);
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
isolate()->factory()->empty_fixed_array());
__ mov(FieldOperand(eax, JSObject::kElementsOffset),
isolate()->factory()->empty_fixed_array());
__ pop(FieldOperand(eax, JSIteratorResult::kDoneOffset));
__ pop(FieldOperand(eax, JSIteratorResult::kValueOffset));
STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
__ jmp(&done, Label::kNear);
__ bind(&runtime);
__ CallRuntime(Runtime::kCreateIterResultObject, 2);
__ bind(&done);
context()->Plug(eax);
}
void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
// Push undefined as receiver.
__ push(Immediate(isolate()->factory()->undefined_value()));
__ LoadGlobalFunction(expr->context_index(), eax);
}
void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
SetCallPosition(expr);
__ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
__ Set(eax, arg_count);
__ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
RelocInfo::CODE_TARGET);
}
void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
if (expr->is_jsruntime()) {
Comment cmnt(masm_, "[ CallRuntime");
EmitLoadJSRuntimeFunction(expr);
// Push the target function under the receiver.
__ push(Operand(esp, 0));
__ mov(Operand(esp, kPointerSize), eax);
// Push the arguments ("left-to-right").
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
EmitCallJSRuntimeFunction(expr);
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, eax);
} else {
const Runtime::Function* function = expr->function();
switch (function->function_id) {
#define CALL_INTRINSIC_GENERATOR(Name) \
case Runtime::kInline##Name: { \
Comment cmnt(masm_, "[ Inline" #Name); \
return Emit##Name(expr); \
}
FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR)
#undef CALL_INTRINSIC_GENERATOR
default: {
Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic");
// Push the arguments ("left-to-right").
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the C runtime function.
PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
__ CallRuntime(expr->function(), arg_count);
context()->Plug(eax);
}
}
}
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::DELETE: {
Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
Property* property = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (property != NULL) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
__ CallRuntime(is_strict(language_mode())
? Runtime::kDeleteProperty_Strict
: Runtime::kDeleteProperty_Sloppy,
2);
context()->Plug(eax);
} else if (proxy != NULL) {
Variable* var = proxy->var();
// Delete of an unqualified identifier is disallowed in strict mode but
// "delete this" is allowed.
bool is_this = var->HasThisName(isolate());
DCHECK(is_sloppy(language_mode()) || is_this);
if (var->IsUnallocatedOrGlobalSlot()) {
__ mov(eax, NativeContextOperand());
__ push(ContextOperand(eax, Context::EXTENSION_INDEX));
__ push(Immediate(var->name()));
__ CallRuntime(Runtime::kDeleteProperty_Sloppy, 2);
context()->Plug(eax);
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
// Result of deleting non-global variables is false. 'this' is
// not really a variable, though we implement it as one. The
// subexpression does not have side effects.
context()->Plug(is_this);
} else {
// Non-global variable. Call the runtime to try to delete from the
// context where the variable was introduced.
__ push(context_register());
__ push(Immediate(var->name()));
__ CallRuntime(Runtime::kDeleteLookupSlot, 2);
context()->Plug(eax);
}
} else {
// Result of deleting non-property, non-variable reference is true.
// The subexpression may have side effects.
VisitForEffect(expr->expression());
context()->Plug(true);
}
break;
}
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
context()->Plug(isolate()->factory()->undefined_value());
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
if (context()->IsEffect()) {
// Unary NOT has no side effects so it's only necessary to visit the
// subexpression. Match the optimizing compiler by not branching.
VisitForEffect(expr->expression());
} else if (context()->IsTest()) {
const TestContext* test = TestContext::cast(context());
// The labels are swapped for the recursive call.
VisitForControl(expr->expression(),
test->false_label(),
test->true_label(),
test->fall_through());
context()->Plug(test->true_label(), test->false_label());
} else {
// We handle value contexts explicitly rather than simply visiting
// for control and plugging the control flow into the context,
// because we need to prepare a pair of extra administrative AST ids
// for the optimizing compiler.
DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
Label materialize_true, materialize_false, done;
VisitForControl(expr->expression(),
&materialize_false,
&materialize_true,
&materialize_true);
__ bind(&materialize_true);
PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
if (context()->IsAccumulatorValue()) {
__ mov(eax, isolate()->factory()->true_value());
} else {
__ Push(isolate()->factory()->true_value());
}
__ jmp(&done, Label::kNear);
__ bind(&materialize_false);
PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
if (context()->IsAccumulatorValue()) {
__ mov(eax, isolate()->factory()->false_value());
} else {
__ Push(isolate()->factory()->false_value());
}
__ bind(&done);
}
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
{
AccumulatorValueContext context(this);
VisitForTypeofValue(expr->expression());
}
__ mov(ebx, eax);
TypeofStub typeof_stub(isolate());
__ CallStub(&typeof_stub);
context()->Plug(eax);
break;
}
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
Comment cmnt(masm_, "[ CountOperation");
Property* prop = expr->expression()->AsProperty();
LhsKind assign_type = Property::GetAssignType(prop);
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
AccumulatorValueContext context(this);
EmitVariableLoad(expr->expression()->AsVariableProxy());
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && !context()->IsEffect()) {
__ push(Immediate(Smi::FromInt(0)));
}
switch (assign_type) {
case NAMED_PROPERTY: {
// Put the object both on the stack and in the register.
VisitForStackValue(prop->obj());
__ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
EmitNamedPropertyLoad(prop);
break;
}
case NAMED_SUPER_PROPERTY: {
VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
VisitForAccumulatorValue(
prop->obj()->AsSuperPropertyReference()->home_object());
__ push(result_register());
__ push(MemOperand(esp, kPointerSize));
__ push(result_register());
EmitNamedSuperPropertyLoad(prop);
break;
}
case KEYED_SUPER_PROPERTY: {
VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
VisitForStackValue(
prop->obj()->AsSuperPropertyReference()->home_object());
VisitForAccumulatorValue(prop->key());
__ push(result_register());
__ push(MemOperand(esp, 2 * kPointerSize));
__ push(MemOperand(esp, 2 * kPointerSize));
__ push(result_register());
EmitKeyedSuperPropertyLoad(prop);
break;
}
case KEYED_PROPERTY: {
VisitForStackValue(prop->obj());
VisitForStackValue(prop->key());
__ mov(LoadDescriptor::ReceiverRegister(),
Operand(esp, kPointerSize)); // Object.
__ mov(LoadDescriptor::NameRegister(), Operand(esp, 0)); // Key.
EmitKeyedPropertyLoad(prop);
break;
}
case VARIABLE:
UNREACHABLE();
}
}
// We need a second deoptimization point after loading the value
// in case evaluating the property load my have a side effect.
if (assign_type == VARIABLE) {
PrepareForBailout(expr->expression(), TOS_REG);
} else {
PrepareForBailoutForId(prop->LoadId(), TOS_REG);
}
// Inline smi case if we are in a loop.
Label done, stub_call;
JumpPatchSite patch_site(masm_);
if (ShouldInlineSmiCase(expr->op())) {
Label slow;
patch_site.EmitJumpIfNotSmi(eax, &slow, Label::kNear);
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(eax);
break;
case NAMED_PROPERTY:
__ mov(Operand(esp, kPointerSize), eax);
break;
case NAMED_SUPER_PROPERTY:
__ mov(Operand(esp, 2 * kPointerSize), eax);
break;
case KEYED_PROPERTY:
__ mov(Operand(esp, 2 * kPointerSize), eax);
break;
case KEYED_SUPER_PROPERTY:
__ mov(Operand(esp, 3 * kPointerSize), eax);
break;
}
}
}
if (expr->op() == Token::INC) {
__ add(eax, Immediate(Smi::FromInt(1)));
} else {
__ sub(eax, Immediate(Smi::FromInt(1)));
}
__ j(no_overflow, &done, Label::kNear);
// Call stub. Undo operation first.
if (expr->op() == Token::INC) {
__ sub(eax, Immediate(Smi::FromInt(1)));
} else {
__ add(eax, Immediate(Smi::FromInt(1)));
}
__ jmp(&stub_call, Label::kNear);
__ bind(&slow);
}
if (!is_strong(language_mode())) {
ToNumberStub convert_stub(isolate());
__ CallStub(&convert_stub);
PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
}
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(eax);
break;
case NAMED_PROPERTY:
__ mov(Operand(esp, kPointerSize), eax);
break;
case NAMED_SUPER_PROPERTY:
__ mov(Operand(esp, 2 * kPointerSize), eax);
break;
case KEYED_PROPERTY:
__ mov(Operand(esp, 2 * kPointerSize), eax);
break;
case KEYED_SUPER_PROPERTY:
__ mov(Operand(esp, 3 * kPointerSize), eax);
break;
}
}
}
SetExpressionPosition(expr);
// Call stub for +1/-1.
__ bind(&stub_call);
__ mov(edx, eax);
__ mov(eax, Immediate(Smi::FromInt(1)));
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), expr->binary_op(),
strength(language_mode())).code();
CallIC(code, expr->CountBinOpFeedbackId());
patch_site.EmitPatchInfo();
__ bind(&done);
if (is_strong(language_mode())) {
PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
}
// Store the value returned in eax.
switch (assign_type) {
case VARIABLE:
if (expr->is_postfix()) {
// Perform the assignment as if via '='.
{ EffectContext context(this);
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN, expr->CountSlot());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context.Plug(eax);
}
// For all contexts except EffectContext We have the result on
// top of the stack.
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
// Perform the assignment as if via '='.
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN, expr->CountSlot());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(eax);
}
break;
case NAMED_PROPERTY: {
__ mov(StoreDescriptor::NameRegister(),
prop->key()->AsLiteral()->value());
__ pop(StoreDescriptor::ReceiverRegister());
EmitLoadStoreICSlot(expr->CountSlot());
CallStoreIC();
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(eax);
}
break;
}
case NAMED_SUPER_PROPERTY: {
EmitNamedSuperPropertyStore(prop);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(eax);
}
break;
}
case KEYED_SUPER_PROPERTY: {
EmitKeyedSuperPropertyStore(prop);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(eax);
}
break;
}
case KEYED_PROPERTY: {
__ pop(StoreDescriptor::NameRegister());
__ pop(StoreDescriptor::ReceiverRegister());
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
EmitLoadStoreICSlot(expr->CountSlot());
CallIC(ic);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
// Result is on the stack
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(eax);
}
break;
}
}
}
void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
Expression* sub_expr,
Handle<String> check) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
{ AccumulatorValueContext context(this);
VisitForTypeofValue(sub_expr);
}
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Factory* factory = isolate()->factory();
if (String::Equals(check, factory->number_string())) {
__ JumpIfSmi(eax, if_true);
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
Split(equal, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->string_string())) {
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx);
Split(below, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->symbol_string())) {
__ JumpIfSmi(eax, if_false);
__ CmpObjectType(eax, SYMBOL_TYPE, edx);
Split(equal, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->boolean_string())) {
__ cmp(eax, isolate()->factory()->true_value());
__ j(equal, if_true);
__ cmp(eax, isolate()->factory()->false_value());
Split(equal, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->undefined_string())) {
__ cmp(eax, isolate()->factory()->undefined_value());
__ j(equal, if_true);
__ JumpIfSmi(eax, if_false);
// Check for undetectable objects => true.
__ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
__ test_b(FieldOperand(edx, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
Split(not_zero, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->function_string())) {
__ JumpIfSmi(eax, if_false);
// Check for callable and not undetectable objects => true.
__ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(edx, Map::kBitFieldOffset));
__ and_(ecx, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
__ cmp(ecx, 1 << Map::kIsCallable);
Split(equal, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->object_string())) {
__ JumpIfSmi(eax, if_false);
__ cmp(eax, isolate()->factory()->null_value());
__ j(equal, if_true);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, edx);
__ j(below, if_false);
// Check for callable or undetectable objects => false.
__ test_b(FieldOperand(edx, Map::kBitFieldOffset),
(1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
Split(zero, if_true, if_false, fall_through);
// clang-format off
#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
} else if (String::Equals(check, factory->type##_string())) { \
__ JumpIfSmi(eax, if_false); \
__ cmp(FieldOperand(eax, HeapObject::kMapOffset), \
isolate()->factory()->type##_map()); \
Split(equal, if_true, if_false, fall_through);
SIMD128_TYPES(SIMD128_TYPE)
#undef SIMD128_TYPE
// clang-format on
} else {
if (if_false != fall_through) __ jmp(if_false);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
SetExpressionPosition(expr);
// First we try a fast inlined version of the compare when one of
// the operands is a literal.
if (TryLiteralCompare(expr)) return;
// Always perform the comparison for its control flow. Pack the result
// into the expression's context after the comparison is performed.
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
Token::Value op = expr->op();
VisitForStackValue(expr->left());
switch (op) {
case Token::IN:
VisitForStackValue(expr->right());
__ CallRuntime(Runtime::kHasProperty, 2);
PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
__ cmp(eax, isolate()->factory()->true_value());
Split(equal, if_true, if_false, fall_through);
break;
case Token::INSTANCEOF: {
VisitForAccumulatorValue(expr->right());
__ Pop(edx);
InstanceOfStub stub(isolate());
__ CallStub(&stub);
PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
__ cmp(eax, isolate()->factory()->true_value());
Split(equal, if_true, if_false, fall_through);
break;
}
default: {
VisitForAccumulatorValue(expr->right());
Condition cc = CompareIC::ComputeCondition(op);
__ pop(edx);
bool inline_smi_code = ShouldInlineSmiCase(op);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ mov(ecx, edx);
__ or_(ecx, eax);
patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
__ cmp(edx, eax);
Split(cc, if_true, if_false, NULL);
__ bind(&slow_case);
}
Handle<Code> ic = CodeFactory::CompareIC(
isolate(), op, strength(language_mode())).code();
CallIC(ic, expr->CompareOperationFeedbackId());
patch_site.EmitPatchInfo();
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ test(eax, eax);
Split(cc, if_true, if_false, fall_through);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
VisitForAccumulatorValue(sub_expr);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Handle<Object> nil_value = nil == kNullValue
? isolate()->factory()->null_value()
: isolate()->factory()->undefined_value();
if (expr->op() == Token::EQ_STRICT) {
__ cmp(eax, nil_value);
Split(equal, if_true, if_false, fall_through);
} else {
Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
CallIC(ic, expr->CompareOperationFeedbackId());
__ cmp(eax, isolate()->factory()->true_value());
Split(equal, if_true, if_false, fall_through);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
context()->Plug(eax);
}
Register FullCodeGenerator::result_register() {
return eax;
}
Register FullCodeGenerator::context_register() {
return esi;
}
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
__ mov(Operand(ebp, frame_offset), value);
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ mov(dst, ContextOperand(esi, context_index));
}
void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
Scope* closure_scope = scope()->ClosureScope();
if (closure_scope->is_script_scope() ||
closure_scope->is_module_scope()) {
// Contexts nested in the native context have a canonical empty function
// as their closure, not the anonymous closure containing the global
// code.
__ mov(eax, NativeContextOperand());
__ push(ContextOperand(eax, Context::CLOSURE_INDEX));
} else if (closure_scope->is_eval_scope()) {
// Contexts nested inside eval code have the same closure as the context
// calling eval, not the anonymous closure containing the eval code.
// Fetch it from the context.
__ push(ContextOperand(esi, Context::CLOSURE_INDEX));
} else {
DCHECK(closure_scope->is_function_scope());
__ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
}
}
// ----------------------------------------------------------------------------
// Non-local control flow support.
void FullCodeGenerator::EnterFinallyBlock() {
// Cook return address on top of stack (smi encoded Code* delta)
DCHECK(!result_register().is(edx));
__ pop(edx);
__ sub(edx, Immediate(masm_->CodeObject()));
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ SmiTag(edx);
__ push(edx);
// Store result register while executing finally block.
__ push(result_register());
// Store pending message while executing finally block.
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ mov(edx, Operand::StaticVariable(pending_message_obj));
__ push(edx);
ClearPendingMessage();
}
void FullCodeGenerator::ExitFinallyBlock() {
DCHECK(!result_register().is(edx));
// Restore pending message from stack.
__ pop(edx);
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ mov(Operand::StaticVariable(pending_message_obj), edx);
// Restore result register from stack.
__ pop(result_register());
// Uncook return address.
__ pop(edx);
__ SmiUntag(edx);
__ add(edx, Immediate(masm_->CodeObject()));
__ jmp(edx);
}
void FullCodeGenerator::ClearPendingMessage() {
DCHECK(!result_register().is(edx));
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
__ mov(Operand::StaticVariable(pending_message_obj), edx);
}
void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) {
DCHECK(!slot.IsInvalid());
__ mov(VectorStoreICTrampolineDescriptor::SlotRegister(),
Immediate(SmiFromSlot(slot)));
}
#undef __
static const byte kJnsInstruction = 0x79;
static const byte kJnsOffset = 0x11;
static const byte kNopByteOne = 0x66;
static const byte kNopByteTwo = 0x90;
#ifdef DEBUG
static const byte kCallInstruction = 0xe8;
#endif
void BackEdgeTable::PatchAt(Code* unoptimized_code,
Address pc,
BackEdgeState target_state,
Code* replacement_code) {
Address call_target_address = pc - kIntSize;
Address jns_instr_address = call_target_address - 3;
Address jns_offset_address = call_target_address - 2;
switch (target_state) {
case INTERRUPT:
// sub <profiling_counter>, <delta> ;; Not changed
// jns ok
// call <interrupt stub>
// ok:
*jns_instr_address = kJnsInstruction;
*jns_offset_address = kJnsOffset;
break;
case ON_STACK_REPLACEMENT:
case OSR_AFTER_STACK_CHECK:
// sub <profiling_counter>, <delta> ;; Not changed
// nop
// nop
// call <on-stack replacment>
// ok:
*jns_instr_address = kNopByteOne;
*jns_offset_address = kNopByteTwo;
break;
}
Assembler::set_target_address_at(unoptimized_code->GetIsolate(),
call_target_address, unoptimized_code,
replacement_code->entry());
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, call_target_address, replacement_code);
}
BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
Isolate* isolate,
Code* unoptimized_code,
Address pc) {
Address call_target_address = pc - kIntSize;
Address jns_instr_address = call_target_address - 3;
DCHECK_EQ(kCallInstruction, *(call_target_address - 1));
if (*jns_instr_address == kJnsInstruction) {
DCHECK_EQ(kJnsOffset, *(call_target_address - 2));
DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(),
Assembler::target_address_at(call_target_address,
unoptimized_code));
return INTERRUPT;
}
DCHECK_EQ(kNopByteOne, *jns_instr_address);
DCHECK_EQ(kNopByteTwo, *(call_target_address - 2));
if (Assembler::target_address_at(call_target_address, unoptimized_code) ==
isolate->builtins()->OnStackReplacement()->entry()) {
return ON_STACK_REPLACEMENT;
}
DCHECK_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(),
Assembler::target_address_at(call_target_address,
unoptimized_code));
return OSR_AFTER_STACK_CHECK;
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32