blob: b13070e6807e8b5180b2730bfb7a3eb743f94424 [file] [log] [blame]
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
namespace array {
type LoadJoinElementFn = builtin(Context, JSReceiver, Number) => Object;
// Fast C call to write a fixed array (see Buffer.fixedArray) to a single
// string.
extern macro
ArrayBuiltinsAssembler::CallJSArrayArrayJoinConcatToSequentialString(
FixedArray, intptr, String, String): String;
transitioning builtin LoadJoinElement<T: type>(
context: Context, receiver: JSReceiver, k: Number): Object {
return GetProperty(receiver, k);
}
LoadJoinElement<DictionaryElements>(
context: Context, receiver: JSReceiver, k: Number): Object {
const array: JSArray = UnsafeCast<JSArray>(receiver);
const dict: NumberDictionary = UnsafeCast<NumberDictionary>(array.elements);
try {
return BasicLoadNumberDictionaryElement(dict, Signed(Convert<uintptr>(k)))
otherwise IfNoData, IfHole;
}
label IfNoData deferred {
return GetProperty(receiver, k);
}
label IfHole {
return kEmptyString;
}
}
LoadJoinElement<FastSmiOrObjectElements>(
context: Context, receiver: JSReceiver, k: Number): Object {
const array: JSArray = UnsafeCast<JSArray>(receiver);
const fixedArray: FixedArray = UnsafeCast<FixedArray>(array.elements);
const element: Object = fixedArray[UnsafeCast<Smi>(k)];
return element == Hole ? kEmptyString : element;
}
LoadJoinElement<FastDoubleElements>(
context: Context, receiver: JSReceiver, k: Number): Object {
const array: JSArray = UnsafeCast<JSArray>(receiver);
const fixedDoubleArray: FixedDoubleArray =
UnsafeCast<FixedDoubleArray>(array.elements);
try {
const element: float64 = LoadDoubleWithHoleCheck(
fixedDoubleArray, UnsafeCast<Smi>(k)) otherwise IfHole;
return AllocateHeapNumberWithValue(element);
}
label IfHole {
return kEmptyString;
}
}
transitioning builtin ConvertToLocaleString(
context: Context, element: Object, locales: Object,
options: Object): String {
if (IsNullOrUndefined(element)) return kEmptyString;
const prop: Object = GetProperty(element, 'toLocaleString');
try {
const callable: Callable = Cast<Callable>(prop) otherwise TypeError;
let result: Object;
if (IsNullOrUndefined(locales)) {
result = Call(context, callable, element);
} else if (IsNullOrUndefined(options)) {
result = Call(context, callable, element, locales);
} else {
result = Call(context, callable, element, locales, options);
}
return ToString_Inline(context, result);
}
label TypeError {
ThrowTypeError(context, kCalledNonCallable, prop);
}
}
// Verifies the current element JSArray accessor can still be safely used
// (see LoadJoinElement<ElementsAccessor>).
macro CannotUseSameArrayAccessor(implicit context: Context)(
originalMap: Object, originalLen: Object, receiver: JSReceiver): never
labels Cannot, Can {
const array: JSArray = UnsafeCast<JSArray>(receiver);
if (originalMap != array.map) goto Cannot;
if (originalLen != array.length) goto Cannot;
if (IsNoElementsProtectorCellInvalid()) goto Cannot;
goto Can;
}
// Calculates the running total length of the resulting string. If the
// calculated length exceeds the maximum string length (see
// String::kMaxLength), throws a range error.
macro AddStringLength(implicit context: Context)(lenA: intptr, lenB: intptr):
intptr {
try {
const length: intptr = TryIntPtrAdd(lenA, lenB) otherwise IfOverflow;
if (length > kStringMaxLength) goto IfOverflow;
return length;
}
label IfOverflow deferred {
ThrowInvalidStringLength(context);
}
}
// Stores an element to a fixed array and return the fixed array. If the fixed
// array is not large enough, create and return a new, larger fixed array that
// contains all previously elements and the new element.
macro StoreAndGrowFixedArray<T: type>(
fixedArray: FixedArray, index: intptr, element: T): FixedArray {
const length: intptr = fixedArray.length_intptr;
assert(index <= length);
if (index < length) {
fixedArray[index] = element;
return fixedArray;
} else
deferred {
const newLength: intptr = CalculateNewElementsCapacity(length);
assert(index < newLength);
const newfixedArray: FixedArray =
ExtractFixedArray(fixedArray, 0, length, newLength, kFixedArrays);
newfixedArray[index] = element;
return newfixedArray;
}
}
// Contains the information necessary to create a single, separator delimited,
// flattened one or two byte string.
// The buffer is maintained and updated by BufferInit(), BufferAdd(),
// BufferAddSeparators().
struct Buffer {
// Fixed array holding elements that are either:
// 1) String result of `ToString(next)`.
// 2) Smi representing the number of consecutive separators.
// `BufferJoin()` will iterate and writes these entries to a flat string.
//
// To save space, reduce reads and writes, only separators at the beginning,
// end, or more than one are written.
//
// No hole example
// receiver: ['hello', 'world']
// fixedArray: ['hello', 'world']
//
// Hole example
// receiver: [<hole>, 'hello', <hole>, 'world', <hole>]
// fixedArray: [1, 'hello', 2, 'world', 1]
fixedArray: FixedArray;
// Index to insert a new entry into `fixedArray`.
index: intptr;
// Running total of the resulting string length.
totalStringLength: intptr;
// `true` if the separator and all strings in the buffer are one-byte,
// otherwise `false`.
isOneByte: bool;
}
macro BufferInit(len: uintptr, sep: String): Buffer {
const cappedBufferSize: intptr = len > kMaxNewSpaceFixedArrayElements ?
kMaxNewSpaceFixedArrayElements :
Signed(len);
assert(cappedBufferSize > 0);
const fixedArray: FixedArray = AllocateZeroedFixedArray(cappedBufferSize);
const isOneByte: bool = HasOnlyOneByteChars(sep.instanceType);
return Buffer{fixedArray, 0, 0, isOneByte};
}
macro BufferAdd(implicit context: Context)(
initialBuffer: Buffer, str: String, nofSeparators: intptr,
separatorLength: intptr): Buffer {
let buffer: Buffer = initialBuffer;
// Add separators if necessary (at the beginning or more than one)
const writeSeparators: bool = buffer.index == 0 | nofSeparators > 1;
buffer = BufferAddSeparators(
buffer, nofSeparators, separatorLength, writeSeparators);
const totalStringLength: intptr =
AddStringLength(buffer.totalStringLength, str.length);
let index: intptr = buffer.index;
const fixedArray: FixedArray =
StoreAndGrowFixedArray(buffer.fixedArray, index++, str);
const isOneByte: bool =
HasOnlyOneByteChars(str.instanceType) & buffer.isOneByte;
return Buffer{fixedArray, index, totalStringLength, isOneByte};
}
macro BufferAddSeparators(implicit context: Context)(
buffer: Buffer, nofSeparators: intptr, separatorLength: intptr,
write: bool): Buffer {
if (nofSeparators == 0 || separatorLength == 0) return buffer;
const nofSeparatorsInt: intptr = nofSeparators;
const sepsLen: intptr = separatorLength * nofSeparatorsInt;
// Detect integer overflow
// TODO(tebbi): Replace with overflow-checked multiplication.
if (sepsLen / separatorLength != nofSeparatorsInt) deferred {
ThrowInvalidStringLength(context);
}
const totalStringLength: intptr =
AddStringLength(buffer.totalStringLength, sepsLen);
let index: intptr = buffer.index;
let fixedArray: FixedArray = buffer.fixedArray;
if (write) deferred {
fixedArray = StoreAndGrowFixedArray(
buffer.fixedArray, index++, Convert<Smi>(nofSeparatorsInt));
}
return Buffer{fixedArray, index, totalStringLength, buffer.isOneByte};
}
macro BufferJoin(implicit context: Context)(buffer: Buffer, sep: String):
String {
assert(IsValidPositiveSmi(buffer.totalStringLength));
if (buffer.totalStringLength == 0) return kEmptyString;
// Fast path when there's only one buffer element.
if (buffer.index == 1) {
const fixedArray: FixedArray = buffer.fixedArray;
typeswitch (fixedArray[0]) {
// When the element is a string, just return it and completely avoid
// allocating another string.
case (str: String): {
return str;
}
// When the element is a smi, use StringRepeat to quickly build a memory
// efficient separator repeated string.
case (nofSeparators: Number): {
return StringRepeat(context, sep, nofSeparators);
}
case (obj: Object): {
unreachable;
}
}
}
const length: uint32 = Convert<uint32>(Unsigned(buffer.totalStringLength));
const r: String = buffer.isOneByte ? AllocateSeqOneByteString(length) :
AllocateSeqTwoByteString(length);
return CallJSArrayArrayJoinConcatToSequentialString(
buffer.fixedArray, buffer.index, sep, r);
}
transitioning macro ArrayJoinImpl(
context: Context, receiver: JSReceiver, sep: String, lengthNumber: Number,
useToLocaleString: constexpr bool, locales: Object, options: Object,
initialLoadJoinElement: LoadJoinElementFn): String {
const initialMap: Map = receiver.map;
const len: uintptr = Convert<uintptr>(lengthNumber);
const separatorLength: intptr = sep.length;
let nofSeparators: intptr = 0;
let loadJoinElements: LoadJoinElementFn = initialLoadJoinElement;
let buffer: Buffer = BufferInit(len, sep);
// 6. Let k be 0.
let k: uintptr = 0;
// 7. Repeat, while k < len
while (k < len) {
if (k > 0) {
// a. If k > 0, let R be the string-concatenation of R and sep.
nofSeparators = nofSeparators + 1;
// Verify the current LoadJoinElement specialization can safely be
// used. Otherwise, fall back to generic element access (see
// LoadJoinElement<GenericElementsAccessor>).
if (loadJoinElements != LoadJoinElement<GenericElementsAccessor>&&
CannotUseSameArrayAccessor(initialMap, lengthNumber, receiver))
deferred {
loadJoinElements = LoadJoinElement<GenericElementsAccessor>;
}
}
// b. Let element be ? Get(O, ! ToString(k)).
const element: Object =
loadJoinElements(context, receiver, Convert<Number>(k++));
// c. If element is undefined or null, let next be the empty String;
// otherwise, let next be ? ToString(element).
let next: String;
if constexpr (useToLocaleString) {
next = ConvertToLocaleString(context, element, locales, options);
if (next == kEmptyString) continue;
} else {
typeswitch (element) {
case (str: String): {
if (str == kEmptyString) continue;
next = str;
}
case (num: Number): {
next = NumberToString(num);
}
case (obj: HeapObject): {
if (IsNullOrUndefined(obj)) continue;
next = ToString(context, obj);
}
}
}
// d. Set R to the string-concatenation of R and next.
buffer = BufferAdd(buffer, next, nofSeparators, separatorLength);
nofSeparators = 0;
}
// Add any separators at the end.
buffer = BufferAddSeparators(buffer, nofSeparators, separatorLength, true);
// 8. Return R.
return BufferJoin(buffer, sep);
}
transitioning macro ArrayJoin(implicit context: Context)(
useToLocaleString: constexpr bool, receiver: JSReceiver, sep: String,
lenNumber: Number, locales: Object, options: Object): Object {
const map: Map = receiver.map;
const kind: ElementsKind = map.elements_kind;
let loadJoinElements: LoadJoinElementFn;
try {
const array: JSArray = Cast<JSArray>(receiver) otherwise IfSlowPath;
if (array.length != lenNumber) goto IfSlowPath;
if (!IsPrototypeInitialArrayPrototype(context, map)) goto IfSlowPath;
if (IsNoElementsProtectorCellInvalid()) goto IfSlowPath;
if (IsElementsKindLessThanOrEqual(kind, HOLEY_ELEMENTS)) {
loadJoinElements = LoadJoinElement<FastSmiOrObjectElements>;
} else if (IsElementsKindLessThanOrEqual(kind, HOLEY_DOUBLE_ELEMENTS)) {
loadJoinElements = LoadJoinElement<FastDoubleElements>;
} else if (kind == DICTIONARY_ELEMENTS)
deferred {
const dict: NumberDictionary =
UnsafeCast<NumberDictionary>(array.elements);
const nofElements: Smi = GetNumberDictionaryNumberOfElements(dict);
if (nofElements == 0) {
if (sep == kEmptyString) return kEmptyString;
try {
const nofSeparators: Smi =
Cast<Smi>(lenNumber - 1) otherwise IfNotSmi;
return StringRepeat(context, sep, nofSeparators);
}
label IfNotSmi {
ThrowInvalidStringLength(context);
}
} else {
loadJoinElements = LoadJoinElement<DictionaryElements>;
}
}
else {
goto IfSlowPath;
}
}
label IfSlowPath {
loadJoinElements = LoadJoinElement<GenericElementsAccessor>;
}
return ArrayJoinImpl(
context, receiver, sep, lenNumber, useToLocaleString, locales, options,
loadJoinElements);
}
// The Join Stack detects cyclical calls to Array Join builtins
// (Array.p.join(), Array.p.toString(), Array.p.toLocaleString()). This
// FixedArray holds a stack of receivers to the current call.
// CycleProtectedArrayJoin() is responsible for calling JoinStackPush and
// JoinStackPop when visiting and leaving a receiver, respectively.
const kMinJoinStackSize:
constexpr int31 generates 'JSArray::kMinJoinStackSize';
macro LoadJoinStack(implicit context: Context)(): FixedArray
labels IfUninitialized {
const nativeContext: NativeContext = LoadNativeContext(context);
const stack: HeapObject =
UnsafeCast<HeapObject>(nativeContext[ARRAY_JOIN_STACK_INDEX]);
if (stack == Undefined) goto IfUninitialized;
assert(IsFixedArray(stack));
return UnsafeCast<FixedArray>(stack);
}
macro SetJoinStack(implicit context: Context)(stack: FixedArray): void {
const nativeContext: NativeContext = LoadNativeContext(context);
nativeContext[ARRAY_JOIN_STACK_INDEX] = stack;
}
// Adds a receiver to the stack. The FixedArray will automatically grow to
// accommodate the receiver. If the receiver already exists on the stack,
// this indicates a cyclical call and False is returned.
builtin JoinStackPush(implicit context: Context)(
stack: FixedArray, receiver: JSReceiver): Boolean {
const capacity: intptr = stack.length_intptr;
for (let i: intptr = 0; i < capacity; i++) {
const previouslyVisited: Object = stack[i];
// Add `receiver` to the first open slot
if (previouslyVisited == Hole) {
stack[i] = receiver;
return True;
}
// Detect cycles
if (receiver == previouslyVisited) return False;
}
// If no open slots were found, grow the stack and add receiver to the end.
const newStack: FixedArray =
StoreAndGrowFixedArray(stack, capacity, receiver);
SetJoinStack(newStack);
return True;
}
// Fast path the common non-nested calls. If the receiver is not already on
// the stack, add it to the stack and go to ReceiverAdded. Otherwise go to
// ReceiverNotAdded.
macro JoinStackPushInline(implicit context: Context)(receiver: JSReceiver):
never
labels ReceiverAdded, ReceiverNotAdded {
try {
const stack: FixedArray = LoadJoinStack()
otherwise IfUninitialized;
if (stack[0] == Hole) {
stack[0] = receiver;
} else if (JoinStackPush(stack, receiver) == False)
deferred {
goto ReceiverNotAdded;
}
}
label IfUninitialized {
const stack: FixedArray =
AllocateFixedArrayWithHoles(kMinJoinStackSize, kNone);
stack[0] = receiver;
SetJoinStack(stack);
}
goto ReceiverAdded;
}
// Removes a receiver from the stack. The FixedArray will automatically shrink
// to Heap::kMinJoinStackSize once the stack becomes empty.
builtin JoinStackPop(implicit context: Context)(
stack: FixedArray, receiver: JSReceiver): Object {
const len: intptr = stack.length_intptr;
for (let i: intptr = 0; i < len; i++) {
if (stack[i] == receiver) {
// Shrink the Join Stack if the stack will be empty and is larger than
// the minimum size.
if (i == 0 && len > kMinJoinStackSize) deferred {
const newStack: FixedArray =
AllocateFixedArrayWithHoles(kMinJoinStackSize, kNone);
SetJoinStack(newStack);
}
else {
stack[i] = Hole;
}
return Undefined;
}
}
unreachable;
}
// Fast path the common non-nested calls.
macro JoinStackPopInline(implicit context: Context)(receiver: JSReceiver) {
const stack: FixedArray = LoadJoinStack()
otherwise unreachable;
const len: intptr = stack.length_intptr;
// Builtin call was not nested (receiver is the first entry) and
// did not contain other nested arrays that expanded the stack.
if (stack[0] == receiver && len == kMinJoinStackSize) {
StoreFixedArrayElement(stack, 0, Hole, SKIP_WRITE_BARRIER);
} else
deferred {
JoinStackPop(stack, receiver);
}
}
// Main entry point for all builtins using Array Join functionality.
transitioning macro CycleProtectedArrayJoin(implicit context: Context)(
useToLocaleString: constexpr bool, receiver: Object, sepObj: Object,
locales: Object, options: Object): Object {
// 1. Let O be ? ToObject(this value).
const o: JSReceiver = ToObject_Inline(context, receiver);
// 2. Let len be ? ToLength(? Get(O, "length")).
const len: Number = GetLengthProperty(o);
// Only handle valid array lengths. Although the spec allows larger values,
// this matches historical V8 behavior.
if (len > kMaxArrayIndex + 1) ThrowTypeError(context, kInvalidArrayLength);
// 3. If separator is undefined, let sep be the single-element String ",".
// 4. Else, let sep be ? ToString(separator).
let sep: String =
sepObj == Undefined ? ',' : ToString_Inline(context, sepObj);
// If the receiver is not empty and not already being joined, continue with
// the normal join algorithm.
if (len > 0 && JoinStackPushInline(o)) {
try {
const result: Object =
ArrayJoin(useToLocaleString, o, sep, len, locales, options);
JoinStackPopInline(o);
return result;
} catch (e) deferred {
JoinStackPopInline(o);
ReThrow(context, e);
}
} else {
return kEmptyString;
}
}
// https://tc39.github.io/ecma262/#sec-array.prototype.join
transitioning javascript builtin
ArrayPrototypeJoin(context: Context, receiver: Object, ...arguments): Object {
const separator: Object = arguments[0];
return CycleProtectedArrayJoin(
false, receiver, separator, Undefined, Undefined);
}
// https://tc39.github.io/ecma262/#sec-array.prototype.toLocaleString
transitioning javascript builtin ArrayPrototypeToLocaleString(
context: Context, receiver: Object, ...arguments): Object {
const locales: Object = arguments[0];
const options: Object = arguments[1];
return CycleProtectedArrayJoin(true, receiver, ',', locales, options);
}
// https://tc39.github.io/ecma262/#sec-array.prototype.toString
transitioning javascript builtin ArrayPrototypeToString(
context: Context, receiver: Object, ...arguments): Object {
// 1. Let array be ? ToObject(this value).
const array: JSReceiver = ToObject_Inline(context, receiver);
// 2. Let func be ? Get(array, "join").
const prop: Object = GetProperty(array, 'join');
try {
// 3. If IsCallable(func) is false, let func be the intrinsic function
// %ObjProto_toString%.
const func: Callable = Cast<Callable>(prop) otherwise NotCallable;
// 4. Return ? Call(func, array).
return Call(context, func, array);
}
label NotCallable {
return ObjectToString(context, array);
}
}
}