blob: d2cf5f0bbb8924cb085c97e985cf0a337e3b59c2 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/pipeline.h"
#include <fstream> // NOLINT(readability/streams)
#include <iostream>
#include <memory>
#include <sstream>
#include "src/assembler-inl.h"
#include "src/base/adapters.h"
#include "src/base/optional.h"
#include "src/base/platform/elapsed-timer.h"
#include "src/bootstrapper.h"
#include "src/code-tracer.h"
#include "src/compiler.h"
#include "src/compiler/backend/code-generator.h"
#include "src/compiler/backend/frame-elider.h"
#include "src/compiler/backend/instruction-selector.h"
#include "src/compiler/backend/instruction.h"
#include "src/compiler/backend/jump-threading.h"
#include "src/compiler/backend/live-range-separator.h"
#include "src/compiler/backend/move-optimizer.h"
#include "src/compiler/backend/register-allocator-verifier.h"
#include "src/compiler/backend/register-allocator.h"
#include "src/compiler/basic-block-instrumentor.h"
#include "src/compiler/branch-elimination.h"
#include "src/compiler/bytecode-graph-builder.h"
#include "src/compiler/checkpoint-elimination.h"
#include "src/compiler/common-operator-reducer.h"
#include "src/compiler/compilation-dependencies.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/constant-folding-reducer.h"
#include "src/compiler/control-flow-optimizer.h"
#include "src/compiler/dead-code-elimination.h"
#include "src/compiler/effect-control-linearizer.h"
#include "src/compiler/escape-analysis-reducer.h"
#include "src/compiler/escape-analysis.h"
#include "src/compiler/graph-trimmer.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/js-call-reducer.h"
#include "src/compiler/js-context-specialization.h"
#include "src/compiler/js-create-lowering.h"
#include "src/compiler/js-generic-lowering.h"
#include "src/compiler/js-heap-broker.h"
#include "src/compiler/js-heap-copy-reducer.h"
#include "src/compiler/js-inlining-heuristic.h"
#include "src/compiler/js-intrinsic-lowering.h"
#include "src/compiler/js-native-context-specialization.h"
#include "src/compiler/js-typed-lowering.h"
#include "src/compiler/load-elimination.h"
#include "src/compiler/loop-analysis.h"
#include "src/compiler/loop-peeling.h"
#include "src/compiler/loop-variable-optimizer.h"
#include "src/compiler/machine-graph-verifier.h"
#include "src/compiler/machine-operator-reducer.h"
#include "src/compiler/memory-optimizer.h"
#include "src/compiler/node-origin-table.h"
#include "src/compiler/osr.h"
#include "src/compiler/pipeline-statistics.h"
#include "src/compiler/redundancy-elimination.h"
#include "src/compiler/schedule.h"
#include "src/compiler/scheduler.h"
#include "src/compiler/select-lowering.h"
#include "src/compiler/simplified-lowering.h"
#include "src/compiler/simplified-operator-reducer.h"
#include "src/compiler/simplified-operator.h"
#include "src/compiler/store-store-elimination.h"
#include "src/compiler/type-narrowing-reducer.h"
#include "src/compiler/typed-optimization.h"
#include "src/compiler/typer.h"
#include "src/compiler/value-numbering-reducer.h"
#include "src/compiler/verifier.h"
#include "src/compiler/wasm-compiler.h"
#include "src/compiler/zone-stats.h"
#include "src/disassembler.h"
#include "src/isolate-inl.h"
#include "src/objects/shared-function-info.h"
#include "src/optimized-compilation-info.h"
#include "src/ostreams.h"
#include "src/parsing/parse-info.h"
#include "src/register-configuration.h"
#include "src/utils.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/wasm-engine.h"
namespace v8 {
namespace internal {
namespace compiler {
// Turbofan can only handle 2^16 control inputs. Since each control flow split
// requires at least two bytes (jump and offset), we limit the bytecode size
// to 128K bytes.
const int kMaxBytecodeSizeForTurbofan = 128 * 1024;
class PipelineData {
public:
// For main entry point.
PipelineData(ZoneStats* zone_stats, Isolate* isolate,
OptimizedCompilationInfo* info,
PipelineStatistics* pipeline_statistics)
: isolate_(isolate),
allocator_(isolate->allocator()),
info_(info),
debug_name_(info_->GetDebugName()),
may_have_unverifiable_graph_(false),
zone_stats_(zone_stats),
pipeline_statistics_(pipeline_statistics),
graph_zone_scope_(zone_stats_, ZONE_NAME),
graph_zone_(graph_zone_scope_.zone()),
instruction_zone_scope_(zone_stats_, ZONE_NAME),
instruction_zone_(instruction_zone_scope_.zone()),
codegen_zone_scope_(zone_stats_, ZONE_NAME),
codegen_zone_(codegen_zone_scope_.zone()),
register_allocation_zone_scope_(zone_stats_, ZONE_NAME),
register_allocation_zone_(register_allocation_zone_scope_.zone()),
assembler_options_(AssemblerOptions::Default(isolate)) {
PhaseScope scope(pipeline_statistics, "init pipeline data");
graph_ = new (graph_zone_) Graph(graph_zone_);
source_positions_ = new (graph_zone_) SourcePositionTable(graph_);
node_origins_ = info->trace_turbo_json_enabled()
? new (graph_zone_) NodeOriginTable(graph_)
: nullptr;
simplified_ = new (graph_zone_) SimplifiedOperatorBuilder(graph_zone_);
machine_ = new (graph_zone_) MachineOperatorBuilder(
graph_zone_, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags(),
InstructionSelector::AlignmentRequirements());
common_ = new (graph_zone_) CommonOperatorBuilder(graph_zone_);
javascript_ = new (graph_zone_) JSOperatorBuilder(graph_zone_);
jsgraph_ = new (graph_zone_)
JSGraph(isolate_, graph_, common_, javascript_, simplified_, machine_);
broker_ = new (info_->zone()) JSHeapBroker(isolate_, info_->zone());
dependencies_ =
new (info_->zone()) CompilationDependencies(isolate_, info_->zone());
}
// For WebAssembly compile entry point.
PipelineData(ZoneStats* zone_stats, wasm::WasmEngine* wasm_engine,
OptimizedCompilationInfo* info, MachineGraph* mcgraph,
PipelineStatistics* pipeline_statistics,
SourcePositionTable* source_positions,
NodeOriginTable* node_origins,
const AssemblerOptions& assembler_options)
: isolate_(nullptr),
wasm_engine_(wasm_engine),
allocator_(wasm_engine->allocator()),
info_(info),
debug_name_(info_->GetDebugName()),
may_have_unverifiable_graph_(false),
zone_stats_(zone_stats),
pipeline_statistics_(pipeline_statistics),
graph_zone_scope_(zone_stats_, ZONE_NAME),
graph_zone_(graph_zone_scope_.zone()),
graph_(mcgraph->graph()),
source_positions_(source_positions),
node_origins_(node_origins),
machine_(mcgraph->machine()),
common_(mcgraph->common()),
mcgraph_(mcgraph),
instruction_zone_scope_(zone_stats_, ZONE_NAME),
instruction_zone_(instruction_zone_scope_.zone()),
codegen_zone_scope_(zone_stats_, ZONE_NAME),
codegen_zone_(codegen_zone_scope_.zone()),
register_allocation_zone_scope_(zone_stats_, ZONE_NAME),
register_allocation_zone_(register_allocation_zone_scope_.zone()),
assembler_options_(assembler_options) {}
// For machine graph testing entry point.
PipelineData(ZoneStats* zone_stats, OptimizedCompilationInfo* info,
Isolate* isolate, Graph* graph, Schedule* schedule,
SourcePositionTable* source_positions,
NodeOriginTable* node_origins, JumpOptimizationInfo* jump_opt,
const AssemblerOptions& assembler_options)
: isolate_(isolate),
allocator_(isolate->allocator()),
info_(info),
debug_name_(info_->GetDebugName()),
zone_stats_(zone_stats),
graph_zone_scope_(zone_stats_, ZONE_NAME),
graph_(graph),
source_positions_(source_positions),
node_origins_(node_origins),
schedule_(schedule),
instruction_zone_scope_(zone_stats_, ZONE_NAME),
instruction_zone_(instruction_zone_scope_.zone()),
codegen_zone_scope_(zone_stats_, ZONE_NAME),
codegen_zone_(codegen_zone_scope_.zone()),
register_allocation_zone_scope_(zone_stats_, ZONE_NAME),
register_allocation_zone_(register_allocation_zone_scope_.zone()),
jump_optimization_info_(jump_opt),
assembler_options_(assembler_options) {}
// For register allocation testing entry point.
PipelineData(ZoneStats* zone_stats, OptimizedCompilationInfo* info,
Isolate* isolate, InstructionSequence* sequence)
: isolate_(isolate),
allocator_(isolate->allocator()),
info_(info),
debug_name_(info_->GetDebugName()),
zone_stats_(zone_stats),
graph_zone_scope_(zone_stats_, ZONE_NAME),
instruction_zone_scope_(zone_stats_, ZONE_NAME),
instruction_zone_(sequence->zone()),
sequence_(sequence),
codegen_zone_scope_(zone_stats_, ZONE_NAME),
codegen_zone_(codegen_zone_scope_.zone()),
register_allocation_zone_scope_(zone_stats_, ZONE_NAME),
register_allocation_zone_(register_allocation_zone_scope_.zone()),
assembler_options_(AssemblerOptions::Default(isolate)) {}
~PipelineData() {
// Must happen before zones are destroyed.
delete code_generator_;
code_generator_ = nullptr;
DeleteTyper();
DeleteRegisterAllocationZone();
DeleteInstructionZone();
DeleteCodegenZone();
DeleteGraphZone();
}
Isolate* isolate() const { return isolate_; }
AccountingAllocator* allocator() const { return allocator_; }
OptimizedCompilationInfo* info() const { return info_; }
ZoneStats* zone_stats() const { return zone_stats_; }
CompilationDependencies* dependencies() const { return dependencies_; }
PipelineStatistics* pipeline_statistics() { return pipeline_statistics_; }
OsrHelper* osr_helper() { return &(*osr_helper_); }
bool compilation_failed() const { return compilation_failed_; }
void set_compilation_failed() { compilation_failed_ = true; }
bool verify_graph() const { return verify_graph_; }
void set_verify_graph(bool value) { verify_graph_ = value; }
MaybeHandle<Code> code() { return code_; }
void set_code(MaybeHandle<Code> code) {
DCHECK(code_.is_null());
code_ = code;
}
CodeGenerator* code_generator() const { return code_generator_; }
// RawMachineAssembler generally produces graphs which cannot be verified.
bool MayHaveUnverifiableGraph() const { return may_have_unverifiable_graph_; }
Zone* graph_zone() const { return graph_zone_; }
Graph* graph() const { return graph_; }
SourcePositionTable* source_positions() const { return source_positions_; }
NodeOriginTable* node_origins() const { return node_origins_; }
MachineOperatorBuilder* machine() const { return machine_; }
CommonOperatorBuilder* common() const { return common_; }
JSOperatorBuilder* javascript() const { return javascript_; }
JSGraph* jsgraph() const { return jsgraph_; }
MachineGraph* mcgraph() const { return mcgraph_; }
Handle<Context> native_context() const {
return handle(info()->native_context(), isolate());
}
Handle<JSGlobalObject> global_object() const {
return handle(info()->global_object(), isolate());
}
JSHeapBroker* broker() const { return broker_; }
Schedule* schedule() const { return schedule_; }
void set_schedule(Schedule* schedule) {
DCHECK(!schedule_);
schedule_ = schedule;
}
void reset_schedule() { schedule_ = nullptr; }
Zone* instruction_zone() const { return instruction_zone_; }
Zone* codegen_zone() const { return codegen_zone_; }
InstructionSequence* sequence() const { return sequence_; }
Frame* frame() const { return frame_; }
Zone* register_allocation_zone() const { return register_allocation_zone_; }
RegisterAllocationData* register_allocation_data() const {
return register_allocation_data_;
}
BasicBlockProfiler::Data* profiler_data() const { return profiler_data_; }
void set_profiler_data(BasicBlockProfiler::Data* profiler_data) {
profiler_data_ = profiler_data;
}
std::string const& source_position_output() const {
return source_position_output_;
}
void set_source_position_output(std::string const& source_position_output) {
source_position_output_ = source_position_output;
}
JumpOptimizationInfo* jump_optimization_info() const {
return jump_optimization_info_;
}
const AssemblerOptions& assembler_options() const {
return assembler_options_;
}
CodeTracer* GetCodeTracer() const {
return wasm_engine_ == nullptr ? isolate_->GetCodeTracer()
: wasm_engine_->GetCodeTracer();
}
Typer* CreateTyper() {
DCHECK_NULL(typer_);
typer_ = new Typer(broker(), typer_flags_, graph());
return typer_;
}
void AddTyperFlag(Typer::Flag flag) {
DCHECK_NULL(typer_);
typer_flags_ |= flag;
}
void DeleteTyper() {
delete typer_;
typer_ = nullptr;
}
void DeleteGraphZone() {
if (graph_zone_ == nullptr) return;
graph_zone_scope_.Destroy();
graph_zone_ = nullptr;
graph_ = nullptr;
source_positions_ = nullptr;
node_origins_ = nullptr;
simplified_ = nullptr;
machine_ = nullptr;
common_ = nullptr;
javascript_ = nullptr;
jsgraph_ = nullptr;
mcgraph_ = nullptr;
schedule_ = nullptr;
}
void DeleteInstructionZone() {
if (instruction_zone_ == nullptr) return;
instruction_zone_scope_.Destroy();
instruction_zone_ = nullptr;
sequence_ = nullptr;
}
void DeleteCodegenZone() {
if (codegen_zone_ == nullptr) return;
codegen_zone_scope_.Destroy();
codegen_zone_ = nullptr;
dependencies_ = nullptr;
broker_ = nullptr;
frame_ = nullptr;
}
void DeleteRegisterAllocationZone() {
if (register_allocation_zone_ == nullptr) return;
register_allocation_zone_scope_.Destroy();
register_allocation_zone_ = nullptr;
register_allocation_data_ = nullptr;
}
void InitializeInstructionSequence(const CallDescriptor* call_descriptor) {
DCHECK_NULL(sequence_);
InstructionBlocks* instruction_blocks =
InstructionSequence::InstructionBlocksFor(instruction_zone(),
schedule());
sequence_ = new (instruction_zone())
InstructionSequence(isolate(), instruction_zone(), instruction_blocks);
if (call_descriptor && call_descriptor->RequiresFrameAsIncoming()) {
sequence_->instruction_blocks()[0]->mark_needs_frame();
} else {
DCHECK_EQ(0u, call_descriptor->CalleeSavedFPRegisters());
DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters());
}
}
void InitializeFrameData(CallDescriptor* call_descriptor) {
DCHECK_NULL(frame_);
int fixed_frame_size = 0;
if (call_descriptor != nullptr) {
fixed_frame_size = call_descriptor->CalculateFixedFrameSize();
}
frame_ = new (codegen_zone()) Frame(fixed_frame_size);
}
void InitializeRegisterAllocationData(const RegisterConfiguration* config,
CallDescriptor* call_descriptor) {
DCHECK_NULL(register_allocation_data_);
register_allocation_data_ = new (register_allocation_zone())
RegisterAllocationData(config, register_allocation_zone(), frame(),
sequence(), debug_name());
}
void InitializeOsrHelper() {
DCHECK(!osr_helper_.has_value());
osr_helper_.emplace(info());
}
void set_start_source_position(int position) {
DCHECK_EQ(start_source_position_, kNoSourcePosition);
start_source_position_ = position;
}
void InitializeCodeGenerator(Linkage* linkage) {
DCHECK_NULL(code_generator_);
code_generator_ = new CodeGenerator(
codegen_zone(), frame(), linkage, sequence(), info(), isolate(),
osr_helper_, start_source_position_, jump_optimization_info_,
info()->GetPoisoningMitigationLevel(), assembler_options_,
info_->builtin_index());
}
void BeginPhaseKind(const char* phase_kind_name) {
if (pipeline_statistics() != nullptr) {
pipeline_statistics()->BeginPhaseKind(phase_kind_name);
}
}
void EndPhaseKind() {
if (pipeline_statistics() != nullptr) {
pipeline_statistics()->EndPhaseKind();
}
}
const char* debug_name() const { return debug_name_.get(); }
private:
Isolate* const isolate_;
wasm::WasmEngine* const wasm_engine_ = nullptr;
AccountingAllocator* const allocator_;
OptimizedCompilationInfo* const info_;
std::unique_ptr<char[]> debug_name_;
bool may_have_unverifiable_graph_ = true;
ZoneStats* const zone_stats_;
PipelineStatistics* pipeline_statistics_ = nullptr;
bool compilation_failed_ = false;
bool verify_graph_ = false;
int start_source_position_ = kNoSourcePosition;
base::Optional<OsrHelper> osr_helper_;
MaybeHandle<Code> code_;
CodeGenerator* code_generator_ = nullptr;
Typer* typer_ = nullptr;
Typer::Flags typer_flags_ = Typer::kNoFlags;
// All objects in the following group of fields are allocated in graph_zone_.
// They are all set to nullptr when the graph_zone_ is destroyed.
ZoneStats::Scope graph_zone_scope_;
Zone* graph_zone_ = nullptr;
Graph* graph_ = nullptr;
SourcePositionTable* source_positions_ = nullptr;
NodeOriginTable* node_origins_ = nullptr;
SimplifiedOperatorBuilder* simplified_ = nullptr;
MachineOperatorBuilder* machine_ = nullptr;
CommonOperatorBuilder* common_ = nullptr;
JSOperatorBuilder* javascript_ = nullptr;
JSGraph* jsgraph_ = nullptr;
MachineGraph* mcgraph_ = nullptr;
Schedule* schedule_ = nullptr;
// All objects in the following group of fields are allocated in
// instruction_zone_. They are all set to nullptr when the instruction_zone_
// is destroyed.
ZoneStats::Scope instruction_zone_scope_;
Zone* instruction_zone_;
InstructionSequence* sequence_ = nullptr;
// All objects in the following group of fields are allocated in
// codegen_zone_. They are all set to nullptr when the codegen_zone_
// is destroyed.
ZoneStats::Scope codegen_zone_scope_;
Zone* codegen_zone_;
CompilationDependencies* dependencies_ = nullptr;
JSHeapBroker* broker_ = nullptr;
Frame* frame_ = nullptr;
// All objects in the following group of fields are allocated in
// register_allocation_zone_. They are all set to nullptr when the zone is
// destroyed.
ZoneStats::Scope register_allocation_zone_scope_;
Zone* register_allocation_zone_;
RegisterAllocationData* register_allocation_data_ = nullptr;
// Basic block profiling support.
BasicBlockProfiler::Data* profiler_data_ = nullptr;
// Source position output for --trace-turbo.
std::string source_position_output_;
JumpOptimizationInfo* jump_optimization_info_ = nullptr;
AssemblerOptions assembler_options_;
DISALLOW_COPY_AND_ASSIGN(PipelineData);
};
class PipelineImpl final {
public:
explicit PipelineImpl(PipelineData* data) : data_(data) {}
// Helpers for executing pipeline phases.
template <typename Phase>
void Run();
template <typename Phase, typename Arg0>
void Run(Arg0 arg_0);
template <typename Phase, typename Arg0, typename Arg1>
void Run(Arg0 arg_0, Arg1 arg_1);
// Step A. Run the graph creation and initial optimization passes.
bool CreateGraph();
// B. Run the concurrent optimization passes.
bool OptimizeGraph(Linkage* linkage);
// Substep B.1. Produce a scheduled graph.
void ComputeScheduledGraph();
// Substep B.2. Select instructions from a scheduled graph.
bool SelectInstructions(Linkage* linkage);
// Step C. Run the code assembly pass.
void AssembleCode(Linkage* linkage);
// Step D. Run the code finalization pass.
MaybeHandle<Code> FinalizeCode();
// Step E. Install any code dependencies.
bool CommitDependencies(Handle<Code> code);
void VerifyGeneratedCodeIsIdempotent();
void RunPrintAndVerify(const char* phase, bool untyped = false);
MaybeHandle<Code> GenerateCode(CallDescriptor* call_descriptor);
void AllocateRegisters(const RegisterConfiguration* config,
CallDescriptor* call_descriptor, bool run_verifier);
OptimizedCompilationInfo* info() const;
Isolate* isolate() const;
CodeGenerator* code_generator() const;
private:
PipelineData* const data_;
};
namespace {
void PrintFunctionSource(OptimizedCompilationInfo* info, Isolate* isolate,
int source_id, Handle<SharedFunctionInfo> shared) {
if (!shared->script()->IsUndefined(isolate)) {
Handle<Script> script(Script::cast(shared->script()), isolate);
if (!script->source()->IsUndefined(isolate)) {
CodeTracer::Scope tracing_scope(isolate->GetCodeTracer());
Object* source_name = script->name();
OFStream os(tracing_scope.file());
os << "--- FUNCTION SOURCE (";
if (source_name->IsString()) {
os << String::cast(source_name)->ToCString().get() << ":";
}
os << shared->DebugName()->ToCString().get() << ") id{";
os << info->optimization_id() << "," << source_id << "} start{";
os << shared->StartPosition() << "} ---\n";
{
DisallowHeapAllocation no_allocation;
int start = shared->StartPosition();
int len = shared->EndPosition() - start;
SubStringRange source(String::cast(script->source()), start, len);
for (const auto& c : source) {
os << AsReversiblyEscapedUC16(c);
}
}
os << "\n--- END ---\n";
}
}
}
// Print information for the given inlining: which function was inlined and
// where the inlining occurred.
void PrintInlinedFunctionInfo(
OptimizedCompilationInfo* info, Isolate* isolate, int source_id,
int inlining_id, const OptimizedCompilationInfo::InlinedFunctionHolder& h) {
CodeTracer::Scope tracing_scope(isolate->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "INLINE (" << h.shared_info->DebugName()->ToCString().get() << ") id{"
<< info->optimization_id() << "," << source_id << "} AS " << inlining_id
<< " AT ";
const SourcePosition position = h.position.position;
if (position.IsKnown()) {
os << "<" << position.InliningId() << ":" << position.ScriptOffset() << ">";
} else {
os << "<?>";
}
os << std::endl;
}
// Print the source of all functions that participated in this optimizing
// compilation. For inlined functions print source position of their inlining.
void PrintParticipatingSource(OptimizedCompilationInfo* info,
Isolate* isolate) {
AllowDeferredHandleDereference allow_deference_for_print_code;
SourceIdAssigner id_assigner(info->inlined_functions().size());
PrintFunctionSource(info, isolate, -1, info->shared_info());
const auto& inlined = info->inlined_functions();
for (unsigned id = 0; id < inlined.size(); id++) {
const int source_id = id_assigner.GetIdFor(inlined[id].shared_info);
PrintFunctionSource(info, isolate, source_id, inlined[id].shared_info);
PrintInlinedFunctionInfo(info, isolate, source_id, id, inlined[id]);
}
}
// Print the code after compiling it.
void PrintCode(Isolate* isolate, Handle<Code> code,
OptimizedCompilationInfo* info) {
if (FLAG_print_opt_source && info->IsOptimizing()) {
PrintParticipatingSource(info, isolate);
}
#ifdef ENABLE_DISASSEMBLER
AllowDeferredHandleDereference allow_deference_for_print_code;
bool print_code =
FLAG_print_code || (info->IsStub() && FLAG_print_code_stubs) ||
(info->IsOptimizing() && FLAG_print_opt_code &&
info->shared_info()->PassesFilter(FLAG_print_opt_code_filter));
if (print_code) {
std::unique_ptr<char[]> debug_name = info->GetDebugName();
CodeTracer::Scope tracing_scope(isolate->GetCodeTracer());
OFStream os(tracing_scope.file());
// Print the source code if available.
bool print_source = code->kind() == Code::OPTIMIZED_FUNCTION;
if (print_source) {
Handle<SharedFunctionInfo> shared = info->shared_info();
if (shared->script()->IsScript() &&
!Script::cast(shared->script())->source()->IsUndefined(isolate)) {
os << "--- Raw source ---\n";
StringCharacterStream stream(
String::cast(Script::cast(shared->script())->source()),
shared->StartPosition());
// fun->end_position() points to the last character in the stream. We
// need to compensate by adding one to calculate the length.
int source_len = shared->EndPosition() - shared->StartPosition() + 1;
for (int i = 0; i < source_len; i++) {
if (stream.HasMore()) {
os << AsReversiblyEscapedUC16(stream.GetNext());
}
}
os << "\n\n";
}
}
if (info->IsOptimizing()) {
os << "--- Optimized code ---\n"
<< "optimization_id = " << info->optimization_id() << "\n";
} else {
os << "--- Code ---\n";
}
if (print_source) {
Handle<SharedFunctionInfo> shared = info->shared_info();
os << "source_position = " << shared->StartPosition() << "\n";
}
code->Disassemble(debug_name.get(), os);
os << "--- End code ---\n";
}
#endif // ENABLE_DISASSEMBLER
}
void TraceSchedule(OptimizedCompilationInfo* info, PipelineData* data,
Schedule* schedule, const char* phase_name) {
if (info->trace_turbo_json_enabled()) {
AllowHandleDereference allow_deref;
TurboJsonFile json_of(info, std::ios_base::app);
json_of << "{\"name\":\"" << phase_name << "\",\"type\":\"schedule\""
<< ",\"data\":\"";
std::stringstream schedule_stream;
schedule_stream << *schedule;
std::string schedule_string(schedule_stream.str());
for (const auto& c : schedule_string) {
json_of << AsEscapedUC16ForJSON(c);
}
json_of << "\"},\n";
}
if (info->trace_turbo_graph_enabled() || FLAG_trace_turbo_scheduler) {
AllowHandleDereference allow_deref;
CodeTracer::Scope tracing_scope(data->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "-- Schedule --------------------------------------\n" << *schedule;
}
}
class SourcePositionWrapper final : public Reducer {
public:
SourcePositionWrapper(Reducer* reducer, SourcePositionTable* table)
: reducer_(reducer), table_(table) {}
~SourcePositionWrapper() final = default;
const char* reducer_name() const override { return reducer_->reducer_name(); }
Reduction Reduce(Node* node) final {
SourcePosition const pos = table_->GetSourcePosition(node);
SourcePositionTable::Scope position(table_, pos);
return reducer_->Reduce(node);
}
void Finalize() final { reducer_->Finalize(); }
private:
Reducer* const reducer_;
SourcePositionTable* const table_;
DISALLOW_COPY_AND_ASSIGN(SourcePositionWrapper);
};
class NodeOriginsWrapper final : public Reducer {
public:
NodeOriginsWrapper(Reducer* reducer, NodeOriginTable* table)
: reducer_(reducer), table_(table) {}
~NodeOriginsWrapper() final = default;
const char* reducer_name() const override { return reducer_->reducer_name(); }
Reduction Reduce(Node* node) final {
NodeOriginTable::Scope position(table_, reducer_name(), node);
return reducer_->Reduce(node);
}
void Finalize() final { reducer_->Finalize(); }
private:
Reducer* const reducer_;
NodeOriginTable* const table_;
DISALLOW_COPY_AND_ASSIGN(NodeOriginsWrapper);
};
void AddReducer(PipelineData* data, GraphReducer* graph_reducer,
Reducer* reducer) {
if (data->info()->is_source_positions_enabled()) {
void* const buffer = data->graph_zone()->New(sizeof(SourcePositionWrapper));
SourcePositionWrapper* const wrapper =
new (buffer) SourcePositionWrapper(reducer, data->source_positions());
reducer = wrapper;
}
if (data->info()->trace_turbo_json_enabled()) {
void* const buffer = data->graph_zone()->New(sizeof(NodeOriginsWrapper));
NodeOriginsWrapper* const wrapper =
new (buffer) NodeOriginsWrapper(reducer, data->node_origins());
reducer = wrapper;
}
graph_reducer->AddReducer(reducer);
}
class PipelineRunScope {
public:
PipelineRunScope(PipelineData* data, const char* phase_name)
: phase_scope_(
phase_name == nullptr ? nullptr : data->pipeline_statistics(),
phase_name),
zone_scope_(data->zone_stats(), ZONE_NAME),
origin_scope_(data->node_origins(), phase_name) {}
Zone* zone() { return zone_scope_.zone(); }
private:
PhaseScope phase_scope_;
ZoneStats::Scope zone_scope_;
NodeOriginTable::PhaseScope origin_scope_;
};
PipelineStatistics* CreatePipelineStatistics(Handle<Script> script,
OptimizedCompilationInfo* info,
Isolate* isolate,
ZoneStats* zone_stats) {
PipelineStatistics* pipeline_statistics = nullptr;
if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) {
pipeline_statistics =
new PipelineStatistics(info, isolate->GetTurboStatistics(), zone_stats);
pipeline_statistics->BeginPhaseKind("initializing");
}
if (info->trace_turbo_json_enabled()) {
TurboJsonFile json_of(info, std::ios_base::trunc);
json_of << "{\"function\" : ";
JsonPrintFunctionSource(json_of, -1, info->GetDebugName(), script, isolate,
info->shared_info());
json_of << ",\n\"phases\":[";
}
return pipeline_statistics;
}
PipelineStatistics* CreatePipelineStatistics(
wasm::WasmEngine* wasm_engine, wasm::FunctionBody function_body,
const wasm::WasmModule* wasm_module, OptimizedCompilationInfo* info,
ZoneStats* zone_stats) {
PipelineStatistics* pipeline_statistics = nullptr;
if (FLAG_turbo_stats_wasm) {
pipeline_statistics = new PipelineStatistics(
info, wasm_engine->GetOrCreateTurboStatistics(), zone_stats);
pipeline_statistics->BeginPhaseKind("initializing");
}
if (info->trace_turbo_json_enabled()) {
TurboJsonFile json_of(info, std::ios_base::trunc);
std::unique_ptr<char[]> function_name = info->GetDebugName();
json_of << "{\"function\":\"" << function_name.get() << "\", \"source\":\"";
AccountingAllocator allocator;
std::ostringstream disassembly;
std::vector<int> source_positions;
wasm::PrintRawWasmCode(&allocator, function_body, wasm_module,
wasm::kPrintLocals, disassembly, &source_positions);
for (const auto& c : disassembly.str()) {
json_of << AsEscapedUC16ForJSON(c);
}
json_of << "\",\n\"sourceLineToBytecodePosition\" : [";
bool insert_comma = false;
for (auto val : source_positions) {
if (insert_comma) {
json_of << ", ";
}
json_of << val;
insert_comma = true;
}
json_of << "],\n\"phases\":[";
}
return pipeline_statistics;
}
} // namespace
class PipelineCompilationJob final : public OptimizedCompilationJob {
public:
PipelineCompilationJob(Isolate* isolate,
Handle<SharedFunctionInfo> shared_info,
Handle<JSFunction> function)
// Note that the OptimizedCompilationInfo is not initialized at the time
// we pass it to the CompilationJob constructor, but it is not
// dereferenced there.
: OptimizedCompilationJob(
function->GetIsolate()->stack_guard()->real_climit(),
&compilation_info_, "TurboFan"),
zone_(function->GetIsolate()->allocator(), ZONE_NAME),
zone_stats_(function->GetIsolate()->allocator()),
compilation_info_(&zone_, function->GetIsolate(), shared_info,
function),
pipeline_statistics_(CreatePipelineStatistics(
handle(Script::cast(shared_info->script()), isolate),
compilation_info(), function->GetIsolate(), &zone_stats_)),
data_(&zone_stats_, function->GetIsolate(), compilation_info(),
pipeline_statistics_.get()),
pipeline_(&data_),
linkage_(nullptr) {}
protected:
Status PrepareJobImpl(Isolate* isolate) final;
Status ExecuteJobImpl() final;
Status FinalizeJobImpl(Isolate* isolate) final;
// Registers weak object to optimized code dependencies.
void RegisterWeakObjectsInOptimizedCode(Handle<Code> code, Isolate* isolate);
private:
Zone zone_;
ZoneStats zone_stats_;
OptimizedCompilationInfo compilation_info_;
std::unique_ptr<PipelineStatistics> pipeline_statistics_;
PipelineData data_;
PipelineImpl pipeline_;
Linkage* linkage_;
DISALLOW_COPY_AND_ASSIGN(PipelineCompilationJob);
};
PipelineCompilationJob::Status PipelineCompilationJob::PrepareJobImpl(
Isolate* isolate) {
if (compilation_info()->bytecode_array()->length() >
kMaxBytecodeSizeForTurbofan) {
return AbortOptimization(BailoutReason::kFunctionTooBig);
}
if (!FLAG_always_opt) {
compilation_info()->MarkAsBailoutOnUninitialized();
}
if (FLAG_turbo_loop_peeling) {
compilation_info()->MarkAsLoopPeelingEnabled();
}
if (FLAG_turbo_inlining) {
compilation_info()->MarkAsInliningEnabled();
}
if (FLAG_inline_accessors) {
compilation_info()->MarkAsAccessorInliningEnabled();
}
// This is the bottleneck for computing and setting poisoning level in the
// optimizing compiler.
PoisoningMitigationLevel load_poisoning =
PoisoningMitigationLevel::kDontPoison;
if (FLAG_untrusted_code_mitigations) {
// For full mitigations, this can be changed to
// PoisoningMitigationLevel::kPoisonAll.
load_poisoning = PoisoningMitigationLevel::kPoisonCriticalOnly;
}
compilation_info()->SetPoisoningMitigationLevel(load_poisoning);
if (FLAG_turbo_allocation_folding) {
compilation_info()->MarkAsAllocationFoldingEnabled();
}
if (compilation_info()->closure()->feedback_cell()->map() ==
ReadOnlyRoots(isolate).one_closure_cell_map()) {
compilation_info()->MarkAsFunctionContextSpecializing();
}
data_.set_start_source_position(
compilation_info()->shared_info()->StartPosition());
linkage_ = new (compilation_info()->zone()) Linkage(
Linkage::ComputeIncoming(compilation_info()->zone(), compilation_info()));
if (!pipeline_.CreateGraph()) {
if (isolate->has_pending_exception()) return FAILED; // Stack overflowed.
return AbortOptimization(BailoutReason::kGraphBuildingFailed);
}
if (compilation_info()->is_osr()) data_.InitializeOsrHelper();
// Make sure that we have generated the maximal number of deopt entries.
// This is in order to avoid triggering the generation of deopt entries later
// during code assembly.
Deoptimizer::EnsureCodeForMaxDeoptimizationEntries(isolate);
return SUCCEEDED;
}
PipelineCompilationJob::Status PipelineCompilationJob::ExecuteJobImpl() {
if (!pipeline_.OptimizeGraph(linkage_)) return FAILED;
pipeline_.AssembleCode(linkage_);
return SUCCEEDED;
}
PipelineCompilationJob::Status PipelineCompilationJob::FinalizeJobImpl(
Isolate* isolate) {
MaybeHandle<Code> maybe_code = pipeline_.FinalizeCode();
Handle<Code> code;
if (!maybe_code.ToHandle(&code)) {
if (compilation_info()->bailout_reason() == BailoutReason::kNoReason) {
return AbortOptimization(BailoutReason::kCodeGenerationFailed);
}
return FAILED;
}
if (!pipeline_.CommitDependencies(code)) {
return RetryOptimization(BailoutReason::kBailedOutDueToDependencyChange);
}
compilation_info()->SetCode(code);
compilation_info()->native_context()->AddOptimizedCode(*code);
RegisterWeakObjectsInOptimizedCode(code, isolate);
return SUCCEEDED;
}
void PipelineCompilationJob::RegisterWeakObjectsInOptimizedCode(
Handle<Code> code, Isolate* isolate) {
DCHECK(code->is_optimized_code());
std::vector<Handle<Map>> maps;
{
DisallowHeapAllocation no_gc;
int const mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT &&
code->IsWeakObjectInOptimizedCode(it.rinfo()->target_object())) {
Handle<HeapObject> object(HeapObject::cast(it.rinfo()->target_object()),
isolate);
if (object->IsMap()) {
maps.push_back(Handle<Map>::cast(object));
}
}
}
}
for (Handle<Map> map : maps) {
isolate->heap()->AddRetainedMap(map);
}
code->set_can_have_weak_objects(true);
}
template <typename Phase>
void PipelineImpl::Run() {
PipelineRunScope scope(this->data_, Phase::phase_name());
Phase phase;
phase.Run(this->data_, scope.zone());
}
template <typename Phase, typename Arg0>
void PipelineImpl::Run(Arg0 arg_0) {
PipelineRunScope scope(this->data_, Phase::phase_name());
Phase phase;
phase.Run(this->data_, scope.zone(), arg_0);
}
template <typename Phase, typename Arg0, typename Arg1>
void PipelineImpl::Run(Arg0 arg_0, Arg1 arg_1) {
PipelineRunScope scope(this->data_, Phase::phase_name());
Phase phase;
phase.Run(this->data_, scope.zone(), arg_0, arg_1);
}
struct GraphBuilderPhase {
static const char* phase_name() { return "bytecode graph builder"; }
void Run(PipelineData* data, Zone* temp_zone) {
JSTypeHintLowering::Flags flags = JSTypeHintLowering::kNoFlags;
if (data->info()->is_bailout_on_uninitialized()) {
flags |= JSTypeHintLowering::kBailoutOnUninitialized;
}
CallFrequency frequency = CallFrequency(1.0f);
BytecodeGraphBuilder graph_builder(
temp_zone, data->info()->bytecode_array(), data->info()->shared_info(),
handle(data->info()->closure()->feedback_vector(), data->isolate()),
data->info()->osr_offset(), data->jsgraph(), frequency,
data->source_positions(), data->native_context(),
SourcePosition::kNotInlined, flags, true,
data->info()->is_analyze_environment_liveness());
graph_builder.CreateGraph();
}
};
namespace {
Maybe<OuterContext> GetModuleContext(Handle<JSFunction> closure) {
Context current = closure->context();
size_t distance = 0;
while (!current->IsNativeContext()) {
if (current->IsModuleContext()) {
return Just(
OuterContext(handle(current, current->GetIsolate()), distance));
}
current = current->previous();
distance++;
}
return Nothing<OuterContext>();
}
Maybe<OuterContext> ChooseSpecializationContext(
Isolate* isolate, OptimizedCompilationInfo* info) {
if (info->is_function_context_specializing()) {
DCHECK(info->has_context());
return Just(OuterContext(handle(info->context(), isolate), 0));
}
return GetModuleContext(info->closure());
}
} // anonymous namespace
struct InliningPhase {
static const char* phase_name() { return "inlining"; }
void Run(PipelineData* data, Zone* temp_zone) {
Isolate* isolate = data->isolate();
OptimizedCompilationInfo* info = data->info();
GraphReducer graph_reducer(temp_zone, data->graph(),
data->jsgraph()->Dead());
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common(), temp_zone);
CheckpointElimination checkpoint_elimination(&graph_reducer);
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->broker(), data->common(),
data->machine(), temp_zone);
JSCallReducer call_reducer(&graph_reducer, data->jsgraph(), data->broker(),
data->info()->is_bailout_on_uninitialized()
? JSCallReducer::kBailoutOnUninitialized
: JSCallReducer::kNoFlags,
data->dependencies());
JSContextSpecialization context_specialization(
&graph_reducer, data->jsgraph(), data->broker(),
ChooseSpecializationContext(isolate, data->info()),
data->info()->is_function_context_specializing()
? data->info()->closure()
: MaybeHandle<JSFunction>());
JSNativeContextSpecialization::Flags flags =
JSNativeContextSpecialization::kNoFlags;
if (data->info()->is_accessor_inlining_enabled()) {
flags |= JSNativeContextSpecialization::kAccessorInliningEnabled;
}
if (data->info()->is_bailout_on_uninitialized()) {
flags |= JSNativeContextSpecialization::kBailoutOnUninitialized;
}
// Passing the OptimizedCompilationInfo's shared zone here as
// JSNativeContextSpecialization allocates out-of-heap objects
// that need to live until code generation.
JSNativeContextSpecialization native_context_specialization(
&graph_reducer, data->jsgraph(), data->broker(), flags,
data->native_context(), data->dependencies(), temp_zone, info->zone());
JSInliningHeuristic inlining(&graph_reducer,
data->info()->is_inlining_enabled()
? JSInliningHeuristic::kGeneralInlining
: JSInliningHeuristic::kRestrictedInlining,
temp_zone, data->info(), data->jsgraph(),
data->broker(), data->source_positions());
JSIntrinsicLowering intrinsic_lowering(&graph_reducer, data->jsgraph());
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &checkpoint_elimination);
AddReducer(data, &graph_reducer, &common_reducer);
AddReducer(data, &graph_reducer, &native_context_specialization);
AddReducer(data, &graph_reducer, &context_specialization);
AddReducer(data, &graph_reducer, &intrinsic_lowering);
AddReducer(data, &graph_reducer, &call_reducer);
AddReducer(data, &graph_reducer, &inlining);
graph_reducer.ReduceGraph();
}
};
struct TyperPhase {
static const char* phase_name() { return "typer"; }
void Run(PipelineData* data, Zone* temp_zone, Typer* typer) {
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
// Make sure we always type True and False. Needed for escape analysis.
roots.push_back(data->jsgraph()->TrueConstant());
roots.push_back(data->jsgraph()->FalseConstant());
LoopVariableOptimizer induction_vars(data->jsgraph()->graph(),
data->common(), temp_zone);
if (FLAG_turbo_loop_variable) induction_vars.Run();
typer->Run(roots, &induction_vars);
}
};
struct UntyperPhase {
static const char* phase_name() { return "untyper"; }
void Run(PipelineData* data, Zone* temp_zone) {
class RemoveTypeReducer final : public Reducer {
public:
const char* reducer_name() const override { return "RemoveTypeReducer"; }
Reduction Reduce(Node* node) final {
if (NodeProperties::IsTyped(node)) {
NodeProperties::RemoveType(node);
return Changed(node);
}
return NoChange();
}
};
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
for (Node* node : roots) {
NodeProperties::RemoveType(node);
}
GraphReducer graph_reducer(temp_zone, data->graph(),
data->jsgraph()->Dead());
RemoveTypeReducer remove_type_reducer;
AddReducer(data, &graph_reducer, &remove_type_reducer);
graph_reducer.ReduceGraph();
}
};
struct SerializeStandardObjectsPhase {
static const char* phase_name() { return "serialize standard objects"; }
void Run(PipelineData* data, Zone* temp_zone) {
data->broker()->SerializeStandardObjects();
}
};
struct CopyMetadataForConcurrentCompilePhase {
static const char* phase_name() { return "serialize metadata"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphReducer graph_reducer(temp_zone, data->graph(),
data->jsgraph()->Dead());
JSHeapCopyReducer heap_copy_reducer(data->broker());
AddReducer(data, &graph_reducer, &heap_copy_reducer);
graph_reducer.ReduceGraph();
// Some nodes that are no longer in the graph might still be in the cache.
NodeVector cached_nodes(temp_zone);
data->jsgraph()->GetCachedNodes(&cached_nodes);
for (Node* const node : cached_nodes) graph_reducer.ReduceNode(node);
}
};
struct TypedLoweringPhase {
static const char* phase_name() { return "typed lowering"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphReducer graph_reducer(temp_zone, data->graph(),
data->jsgraph()->Dead());
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common(), temp_zone);
JSCreateLowering create_lowering(&graph_reducer, data->dependencies(),
data->jsgraph(), data->broker(),
temp_zone);
JSTypedLowering typed_lowering(&graph_reducer, data->jsgraph(),
data->broker(), temp_zone);
ConstantFoldingReducer constant_folding_reducer(
&graph_reducer, data->jsgraph(), data->broker());
TypedOptimization typed_optimization(&graph_reducer, data->dependencies(),
data->jsgraph(), data->broker());
SimplifiedOperatorReducer simple_reducer(&graph_reducer, data->jsgraph(),
data->broker());
CheckpointElimination checkpoint_elimination(&graph_reducer);
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->broker(), data->common(),
data->machine(), temp_zone);
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &create_lowering);
AddReducer(data, &graph_reducer, &constant_folding_reducer);
AddReducer(data, &graph_reducer, &typed_lowering);
AddReducer(data, &graph_reducer, &typed_optimization);
AddReducer(data, &graph_reducer, &simple_reducer);
AddReducer(data, &graph_reducer, &checkpoint_elimination);
AddReducer(data, &graph_reducer, &common_reducer);
graph_reducer.ReduceGraph();
}
};
struct EscapeAnalysisPhase {
static const char* phase_name() { return "escape analysis"; }
void Run(PipelineData* data, Zone* temp_zone) {
EscapeAnalysis escape_analysis(data->jsgraph(), temp_zone);
escape_analysis.ReduceGraph();
GraphReducer reducer(temp_zone, data->graph(), data->jsgraph()->Dead());
EscapeAnalysisReducer escape_reducer(&reducer, data->jsgraph(),
escape_analysis.analysis_result(),
temp_zone);
AddReducer(data, &reducer, &escape_reducer);
reducer.ReduceGraph();
// TODO(tebbi): Turn this into a debug mode check once we have confidence.
escape_reducer.VerifyReplacement();
}
};
struct SimplifiedLoweringPhase {
static const char* phase_name() { return "simplified lowering"; }
void Run(PipelineData* data, Zone* temp_zone) {
SimplifiedLowering lowering(data->jsgraph(), data->broker(), temp_zone,
data->source_positions(), data->node_origins(),
data->info()->GetPoisoningMitigationLevel());
lowering.LowerAllNodes();
}
};
struct LoopPeelingPhase {
static const char* phase_name() { return "loop peeling"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
trimmer.TrimGraph(roots.begin(), roots.end());
LoopTree* loop_tree =
LoopFinder::BuildLoopTree(data->jsgraph()->graph(), temp_zone);
LoopPeeler(data->graph(), data->common(), loop_tree, temp_zone,
data->source_positions(), data->node_origins())
.PeelInnerLoopsOfTree();
}
};
struct LoopExitEliminationPhase {
static const char* phase_name() { return "loop exit elimination"; }
void Run(PipelineData* data, Zone* temp_zone) {
LoopPeeler::EliminateLoopExits(data->graph(), temp_zone);
}
};
struct GenericLoweringPhase {
static const char* phase_name() { return "generic lowering"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphReducer graph_reducer(temp_zone, data->graph(),
data->jsgraph()->Dead());
JSGenericLowering generic_lowering(data->jsgraph());
AddReducer(data, &graph_reducer, &generic_lowering);
graph_reducer.ReduceGraph();
}
};
struct EarlyOptimizationPhase {
static const char* phase_name() { return "early optimization"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphReducer graph_reducer(temp_zone, data->graph(),
data->jsgraph()->Dead());
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common(), temp_zone);
SimplifiedOperatorReducer simple_reducer(&graph_reducer, data->jsgraph(),
data->broker());
RedundancyElimination redundancy_elimination(&graph_reducer, temp_zone);
ValueNumberingReducer value_numbering(temp_zone, data->graph()->zone());
MachineOperatorReducer machine_reducer(data->jsgraph());
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->broker(), data->common(),
data->machine(), temp_zone);
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &simple_reducer);
AddReducer(data, &graph_reducer, &redundancy_elimination);
AddReducer(data, &graph_reducer, &machine_reducer);
AddReducer(data, &graph_reducer, &common_reducer);
AddReducer(data, &graph_reducer, &value_numbering);
graph_reducer.ReduceGraph();
}
};
struct ControlFlowOptimizationPhase {
static const char* phase_name() { return "control flow optimization"; }
void Run(PipelineData* data, Zone* temp_zone) {
ControlFlowOptimizer optimizer(data->graph(), data->common(),
data->machine(), temp_zone);
optimizer.Optimize();
}
};
struct EffectControlLinearizationPhase {
static const char* phase_name() { return "effect linearization"; }
void Run(PipelineData* data, Zone* temp_zone) {
{
// The scheduler requires the graphs to be trimmed, so trim now.
// TODO(jarin) Remove the trimming once the scheduler can handle untrimmed
// graphs.
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
trimmer.TrimGraph(roots.begin(), roots.end());
// Schedule the graph without node splitting so that we can
// fix the effect and control flow for nodes with low-level side
// effects (such as changing representation to tagged or
// 'floating' allocation regions.)
Schedule* schedule = Scheduler::ComputeSchedule(temp_zone, data->graph(),
Scheduler::kTempSchedule);
if (FLAG_turbo_verify) ScheduleVerifier::Run(schedule);
TraceSchedule(data->info(), data, schedule,
"effect linearization schedule");
EffectControlLinearizer::MaskArrayIndexEnable mask_array_index =
(data->info()->GetPoisoningMitigationLevel() !=
PoisoningMitigationLevel::kDontPoison)
? EffectControlLinearizer::kMaskArrayIndex
: EffectControlLinearizer::kDoNotMaskArrayIndex;
// Post-pass for wiring the control/effects
// - connect allocating representation changes into the control&effect
// chains and lower them,
// - get rid of the region markers,
// - introduce effect phis and rewire effects to get SSA again.
EffectControlLinearizer linearizer(
data->jsgraph(), schedule, temp_zone, data->source_positions(),
data->node_origins(), mask_array_index);
linearizer.Run();
}
{
// The {EffectControlLinearizer} might leave {Dead} nodes behind, so we
// run {DeadCodeElimination} to prune these parts of the graph.
// Also, the following store-store elimination phase greatly benefits from
// doing a common operator reducer and dead code elimination just before
// it, to eliminate conditional deopts with a constant condition.
GraphReducer graph_reducer(temp_zone, data->graph(),
data->jsgraph()->Dead());
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common(), temp_zone);
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->broker(), data->common(),
data->machine(), temp_zone);
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &common_reducer);
graph_reducer.ReduceGraph();
}
}
};
struct StoreStoreEliminationPhase {
static const char* phase_name() { return "store-store elimination"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
trimmer.TrimGraph(roots.begin(), roots.end());
StoreStoreElimination::Run(data->jsgraph(), temp_zone);
}
};
struct LoadEliminationPhase {
static const char* phase_name() { return "load elimination"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphReducer graph_reducer(temp_zone, data->graph(),
data->jsgraph()->Dead());
BranchElimination branch_condition_elimination(&graph_reducer,
data->jsgraph(), temp_zone);
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common(), temp_zone);
RedundancyElimination redundancy_elimination(&graph_reducer, temp_zone);
LoadElimination load_elimination(&graph_reducer, data->jsgraph(),
temp_zone);
CheckpointElimination checkpoint_elimination(&graph_reducer);
ValueNumberingReducer value_numbering(temp_zone, data->graph()->zone());
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->broker(), data->common(),
data->machine(), temp_zone);
TypedOptimization typed_optimization(&graph_reducer, data->dependencies(),
data->jsgraph(), data->broker());
ConstantFoldingReducer constant_folding_reducer(
&graph_reducer, data->jsgraph(), data->broker());
TypeNarrowingReducer type_narrowing_reducer(&graph_reducer, data->jsgraph(),
data->broker());
AddReducer(data, &graph_reducer, &branch_condition_elimination);
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &redundancy_elimination);
AddReducer(data, &graph_reducer, &load_elimination);
AddReducer(data, &graph_reducer, &type_narrowing_reducer);
AddReducer(data, &graph_reducer, &constant_folding_reducer);
AddReducer(data, &graph_reducer, &typed_optimization);
AddReducer(data, &graph_reducer, &checkpoint_elimination);
AddReducer(data, &graph_reducer, &common_reducer);
AddReducer(data, &graph_reducer, &value_numbering);
graph_reducer.ReduceGraph();
}
};
struct MemoryOptimizationPhase {
static const char* phase_name() { return "memory optimization"; }
void Run(PipelineData* data, Zone* temp_zone) {
// The memory optimizer requires the graphs to be trimmed, so trim now.
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
trimmer.TrimGraph(roots.begin(), roots.end());
// Optimize allocations and load/store operations.
MemoryOptimizer optimizer(
data->jsgraph(), temp_zone, data->info()->GetPoisoningMitigationLevel(),
data->info()->is_allocation_folding_enabled()
? MemoryOptimizer::AllocationFolding::kDoAllocationFolding
: MemoryOptimizer::AllocationFolding::kDontAllocationFolding);
optimizer.Optimize();
}
};
struct LateOptimizationPhase {
static const char* phase_name() { return "late optimization"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphReducer graph_reducer(temp_zone, data->graph(),
data->jsgraph()->Dead());
BranchElimination branch_condition_elimination(&graph_reducer,
data->jsgraph(), temp_zone);
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common(), temp_zone);
ValueNumberingReducer value_numbering(temp_zone, data->graph()->zone());
MachineOperatorReducer machine_reducer(data->jsgraph());
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->broker(), data->common(),
data->machine(), temp_zone);
SelectLowering select_lowering(data->jsgraph()->graph(),
data->jsgraph()->common());
AddReducer(data, &graph_reducer, &branch_condition_elimination);
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &machine_reducer);
AddReducer(data, &graph_reducer, &common_reducer);
AddReducer(data, &graph_reducer, &select_lowering);
AddReducer(data, &graph_reducer, &value_numbering);
graph_reducer.ReduceGraph();
}
};
struct EarlyGraphTrimmingPhase {
static const char* phase_name() { return "early trimming"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
trimmer.TrimGraph(roots.begin(), roots.end());
}
};
struct LateGraphTrimmingPhase {
static const char* phase_name() { return "late graph trimming"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
if (data->jsgraph()) {
data->jsgraph()->GetCachedNodes(&roots);
}
trimmer.TrimGraph(roots.begin(), roots.end());
}
};
struct ComputeSchedulePhase {
static const char* phase_name() { return "scheduling"; }
void Run(PipelineData* data, Zone* temp_zone) {
Schedule* schedule = Scheduler::ComputeSchedule(
temp_zone, data->graph(), data->info()->is_splitting_enabled()
? Scheduler::kSplitNodes
: Scheduler::kNoFlags);
if (FLAG_turbo_verify) ScheduleVerifier::Run(schedule);
data->set_schedule(schedule);
}
};
struct InstructionRangesAsJSON {
const InstructionSequence* sequence;
const ZoneVector<std::pair<int, int>>* instr_origins;
};
std::ostream& operator<<(std::ostream& out, const InstructionRangesAsJSON& s) {
const int max = static_cast<int>(s.sequence->LastInstructionIndex());
out << ", \"nodeIdToInstructionRange\": {";
bool need_comma = false;
for (size_t i = 0; i < s.instr_origins->size(); ++i) {
std::pair<int, int> offset = (*s.instr_origins)[i];
if (offset.first == -1) continue;
const int first = max - offset.first + 1;
const int second = max - offset.second + 1;
if (need_comma) out << ", ";
out << "\"" << i << "\": [" << first << ", " << second << "]";
need_comma = true;
}
out << "}";
out << ", \"blockIdtoInstructionRange\": {";
need_comma = false;
for (auto block : s.sequence->instruction_blocks()) {
if (need_comma) out << ", ";
out << "\"" << block->rpo_number() << "\": [" << block->code_start() << ", "
<< block->code_end() << "]";
need_comma = true;
}
out << "}";
return out;
}
struct InstructionSelectionPhase {
static const char* phase_name() { return "select instructions"; }
void Run(PipelineData* data, Zone* temp_zone, Linkage* linkage) {
InstructionSelector selector(
temp_zone, data->graph()->NodeCount(), linkage, data->sequence(),
data->schedule(), data->source_positions(), data->frame(),
data->info()->switch_jump_table_enabled()
? InstructionSelector::kEnableSwitchJumpTable
: InstructionSelector::kDisableSwitchJumpTable,
data->info()->is_source_positions_enabled()
? InstructionSelector::kAllSourcePositions
: InstructionSelector::kCallSourcePositions,
InstructionSelector::SupportedFeatures(),
FLAG_turbo_instruction_scheduling
? InstructionSelector::kEnableScheduling
: InstructionSelector::kDisableScheduling,
!data->isolate() || data->isolate()->serializer_enabled() ||
data->isolate()->ShouldLoadConstantsFromRootList()
? InstructionSelector::kDisableRootsRelativeAddressing
: InstructionSelector::kEnableRootsRelativeAddressing,
data->info()->GetPoisoningMitigationLevel(),
data->info()->trace_turbo_json_enabled()
? InstructionSelector::kEnableTraceTurboJson
: InstructionSelector::kDisableTraceTurboJson);
if (!selector.SelectInstructions()) {
data->set_compilation_failed();
}
if (data->info()->trace_turbo_json_enabled()) {
TurboJsonFile json_of(data->info(), std::ios_base::app);
json_of << "{\"name\":\"" << phase_name()
<< "\",\"type\":\"instructions\""
<< InstructionRangesAsJSON{data->sequence(),
&selector.instr_origins()}
<< "},\n";
}
}
};
struct MeetRegisterConstraintsPhase {
static const char* phase_name() { return "meet register constraints"; }
void Run(PipelineData* data, Zone* temp_zone) {
ConstraintBuilder builder(data->register_allocation_data());
builder.MeetRegisterConstraints();
}
};
struct ResolvePhisPhase {
static const char* phase_name() { return "resolve phis"; }
void Run(PipelineData* data, Zone* temp_zone) {
ConstraintBuilder builder(data->register_allocation_data());
builder.ResolvePhis();
}
};
struct BuildLiveRangesPhase {
static const char* phase_name() { return "build live ranges"; }
void Run(PipelineData* data, Zone* temp_zone) {
LiveRangeBuilder builder(data->register_allocation_data(), temp_zone);
builder.BuildLiveRanges();
}
};
struct SplinterLiveRangesPhase {
static const char* phase_name() { return "splinter live ranges"; }
void Run(PipelineData* data, Zone* temp_zone) {
LiveRangeSeparator live_range_splinterer(data->register_allocation_data(),
temp_zone);
live_range_splinterer.Splinter();
}
};
template <typename RegAllocator>
struct AllocateGeneralRegistersPhase {
static const char* phase_name() { return "allocate general registers"; }
void Run(PipelineData* data, Zone* temp_zone) {
RegAllocator allocator(data->register_allocation_data(), GENERAL_REGISTERS,
temp_zone);
allocator.AllocateRegisters();
}
};
template <typename RegAllocator>
struct AllocateFPRegistersPhase {
static const char* phase_name() { return "allocate f.p. registers"; }
void Run(PipelineData* data, Zone* temp_zone) {
RegAllocator allocator(data->register_allocation_data(), FP_REGISTERS,
temp_zone);
allocator.AllocateRegisters();
}
};
struct MergeSplintersPhase {
static const char* phase_name() { return "merge splintered ranges"; }
void Run(PipelineData* pipeline_data, Zone* temp_zone) {
RegisterAllocationData* data = pipeline_data->register_allocation_data();
LiveRangeMerger live_range_merger(data, temp_zone);
live_range_merger.Merge();
}
};
struct LocateSpillSlotsPhase {
static const char* phase_name() { return "locate spill slots"; }
void Run(PipelineData* data, Zone* temp_zone) {
SpillSlotLocator locator(data->register_allocation_data());
locator.LocateSpillSlots();
}
};
struct AssignSpillSlotsPhase {
static const char* phase_name() { return "assign spill slots"; }
void Run(PipelineData* data, Zone* temp_zone) {
OperandAssigner assigner(data->register_allocation_data());
assigner.AssignSpillSlots();
}
};
struct CommitAssignmentPhase {
static const char* phase_name() { return "commit assignment"; }
void Run(PipelineData* data, Zone* temp_zone) {
OperandAssigner assigner(data->register_allocation_data());
assigner.CommitAssignment();
}
};
struct PopulateReferenceMapsPhase {
static const char* phase_name() { return "populate pointer maps"; }
void Run(PipelineData* data, Zone* temp_zone) {
ReferenceMapPopulator populator(data->register_allocation_data());
populator.PopulateReferenceMaps();
}
};
struct ConnectRangesPhase {
static const char* phase_name() { return "connect ranges"; }
void Run(PipelineData* data, Zone* temp_zone) {
LiveRangeConnector connector(data->register_allocation_data());
connector.ConnectRanges(temp_zone);
}
};
struct ResolveControlFlowPhase {
static const char* phase_name() { return "resolve control flow"; }
void Run(PipelineData* data, Zone* temp_zone) {
LiveRangeConnector connector(data->register_allocation_data());
connector.ResolveControlFlow(temp_zone);
}
};
struct OptimizeMovesPhase {
static const char* phase_name() { return "optimize moves"; }
void Run(PipelineData* data, Zone* temp_zone) {
MoveOptimizer move_optimizer(temp_zone, data->sequence());
move_optimizer.Run();
}
};
struct FrameElisionPhase {
static const char* phase_name() { return "frame elision"; }
void Run(PipelineData* data, Zone* temp_zone) {
FrameElider(data->sequence()).Run();
}
};
struct JumpThreadingPhase {
static const char* phase_name() { return "jump threading"; }
void Run(PipelineData* data, Zone* temp_zone, bool frame_at_start) {
ZoneVector<RpoNumber> result(temp_zone);
if (JumpThreading::ComputeForwarding(temp_zone, result, data->sequence(),
frame_at_start)) {
JumpThreading::ApplyForwarding(temp_zone, result, data->sequence());
}
}
};
struct AssembleCodePhase {
static const char* phase_name() { return "assemble code"; }
void Run(PipelineData* data, Zone* temp_zone) {
data->code_generator()->AssembleCode();
}
};
struct FinalizeCodePhase {
static const char* phase_name() { return "finalize code"; }
void Run(PipelineData* data, Zone* temp_zone) {
data->set_code(data->code_generator()->FinalizeCode());
}
};
struct PrintGraphPhase {
static const char* phase_name() { return nullptr; }
void Run(PipelineData* data, Zone* temp_zone, const char* phase) {
OptimizedCompilationInfo* info = data->info();
Graph* graph = data->graph();
if (info->trace_turbo_json_enabled()) { // Print JSON.
AllowHandleDereference allow_deref;
TurboJsonFile json_of(info, std::ios_base::app);
json_of << "{\"name\":\"" << phase << "\",\"type\":\"graph\",\"data\":"
<< AsJSON(*graph, data->source_positions(), data->node_origins())
<< "},\n";
}
if (info->trace_turbo_scheduled_enabled()) {
AccountingAllocator allocator;
Schedule* schedule = data->schedule();
if (schedule == nullptr) {
schedule = Scheduler::ComputeSchedule(temp_zone, data->graph(),
Scheduler::kNoFlags);
}
AllowHandleDereference allow_deref;
CodeTracer::Scope tracing_scope(data->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "-- Graph after " << phase << " -- " << std::endl;
os << AsScheduledGraph(schedule);
} else if (info->trace_turbo_graph_enabled()) { // Simple textual RPO.
AllowHandleDereference allow_deref;
CodeTracer::Scope tracing_scope(data->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "-- Graph after " << phase << " -- " << std::endl;
os << AsRPO(*graph);
}
}
};
struct VerifyGraphPhase {
static const char* phase_name() { return nullptr; }
void Run(PipelineData* data, Zone* temp_zone, const bool untyped,
bool values_only = false) {
Verifier::CodeType code_type;
switch (data->info()->code_kind()) {
case Code::WASM_FUNCTION:
case Code::WASM_TO_JS_FUNCTION:
case Code::JS_TO_WASM_FUNCTION:
case Code::WASM_INTERPRETER_ENTRY:
case Code::C_WASM_ENTRY:
code_type = Verifier::kWasm;
break;
default:
code_type = Verifier::kDefault;
}
Verifier::Run(data->graph(), !untyped ? Verifier::TYPED : Verifier::UNTYPED,
values_only ? Verifier::kValuesOnly : Verifier::kAll,
code_type);
}
};
void PipelineImpl::RunPrintAndVerify(const char* phase, bool untyped) {
if (info()->trace_turbo_json_enabled() ||
info()->trace_turbo_graph_enabled()) {
Run<PrintGraphPhase>(phase);
}
if (FLAG_turbo_verify) {
Run<VerifyGraphPhase>(untyped);
}
}
bool PipelineImpl::CreateGraph() {
PipelineData* data = this->data_;
data->BeginPhaseKind("graph creation");
if (info()->trace_turbo_json_enabled() ||
info()->trace_turbo_graph_enabled()) {
CodeTracer::Scope tracing_scope(data->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "---------------------------------------------------\n"
<< "Begin compiling method " << info()->GetDebugName().get()
<< " using Turbofan" << std::endl;
}
if (info()->trace_turbo_json_enabled()) {
TurboCfgFile tcf(isolate());
tcf << AsC1VCompilation(info());
}
data->source_positions()->AddDecorator();
if (data->info()->trace_turbo_json_enabled()) {
data->node_origins()->AddDecorator();
}
Run<GraphBuilderPhase>();
RunPrintAndVerify(GraphBuilderPhase::phase_name(), true);
if (FLAG_concurrent_inlining) {
data->broker()->StartSerializing();
Run<SerializeStandardObjectsPhase>();
Run<CopyMetadataForConcurrentCompilePhase>();
} else {
data->broker()->SetNativeContextRef();
}
// Perform function context specialization and inlining (if enabled).
Run<InliningPhase>();
RunPrintAndVerify(InliningPhase::phase_name(), true);
// Remove dead->live edges from the graph.
Run<EarlyGraphTrimmingPhase>();
RunPrintAndVerify(EarlyGraphTrimmingPhase::phase_name(), true);
// Determine the Typer operation flags.
{
if (is_sloppy(info()->shared_info()->language_mode()) &&
info()->shared_info()->IsUserJavaScript()) {
// Sloppy mode functions always have an Object for this.
data->AddTyperFlag(Typer::kThisIsReceiver);
}
if (IsClassConstructor(info()->shared_info()->kind())) {
// Class constructors cannot be [[Call]]ed.
data->AddTyperFlag(Typer::kNewTargetIsReceiver);
}
}
// Run the type-sensitive lowerings and optimizations on the graph.
{
if (FLAG_concurrent_inlining) {
// TODO(neis): Remove CopyMetadataForConcurrentCompilePhase call once
// brokerization of JSNativeContextSpecialization is complete.
Run<CopyMetadataForConcurrentCompilePhase>();
data->broker()->StopSerializing();
} else {
data->broker()->StartSerializing();
Run<SerializeStandardObjectsPhase>();
Run<CopyMetadataForConcurrentCompilePhase>();
data->broker()->StopSerializing();
}
}
data->EndPhaseKind();
return true;
}
bool PipelineImpl::OptimizeGraph(Linkage* linkage) {
PipelineData* data = this->data_;
data->BeginPhaseKind("lowering");
// Type the graph and keep the Typer running such that new nodes get
// automatically typed when they are created.
Run<TyperPhase>(data->CreateTyper());
RunPrintAndVerify(TyperPhase::phase_name());
Run<TypedLoweringPhase>();
RunPrintAndVerify(TypedLoweringPhase::phase_name());
if (data->info()->is_loop_peeling_enabled()) {
Run<LoopPeelingPhase>();
RunPrintAndVerify(LoopPeelingPhase::phase_name(), true);
} else {
Run<LoopExitEliminationPhase>();
RunPrintAndVerify(LoopExitEliminationPhase::phase_name(), true);
}
if (FLAG_turbo_load_elimination) {
Run<LoadEliminationPhase>();
RunPrintAndVerify(LoadEliminationPhase::phase_name());
}
data->DeleteTyper();
if (FLAG_turbo_escape) {
Run<EscapeAnalysisPhase>();
if (data->compilation_failed()) {
info()->AbortOptimization(
BailoutReason::kCyclicObjectStateDetectedInEscapeAnalysis);
data->EndPhaseKind();
return false;
}
RunPrintAndVerify(EscapeAnalysisPhase::phase_name());
}
// Perform simplified lowering. This has to run w/o the Typer decorator,
// because we cannot compute meaningful types anyways, and the computed types
// might even conflict with the representation/truncation logic.
Run<SimplifiedLoweringPhase>();
RunPrintAndVerify(SimplifiedLoweringPhase::phase_name(), true);
// From now on it is invalid to look at types on the nodes, because the types
// on the nodes might not make sense after representation selection due to the
// way we handle truncations; if we'd want to look at types afterwards we'd
// essentially need to re-type (large portions of) the graph.
// In order to catch bugs related to type access after this point, we now
// remove the types from the nodes (currently only in Debug builds).
#ifdef DEBUG
Run<UntyperPhase>();
RunPrintAndVerify(UntyperPhase::phase_name(), true);
#endif
// Run generic lowering pass.
Run<GenericLoweringPhase>();
RunPrintAndVerify(GenericLoweringPhase::phase_name(), true);
data->BeginPhaseKind("block building");
// Run early optimization pass.
Run<EarlyOptimizationPhase>();
RunPrintAndVerify(EarlyOptimizationPhase::phase_name(), true);
Run<EffectControlLinearizationPhase>();
RunPrintAndVerify(EffectControlLinearizationPhase::phase_name(), true);
if (FLAG_turbo_store_elimination) {
Run<StoreStoreEliminationPhase>();
RunPrintAndVerify(StoreStoreEliminationPhase::phase_name(), true);
}
// Optimize control flow.
if (FLAG_turbo_cf_optimization) {
Run<ControlFlowOptimizationPhase>();
RunPrintAndVerify(ControlFlowOptimizationPhase::phase_name(), true);
}
// Optimize memory access and allocation operations.
Run<MemoryOptimizationPhase>();
// TODO(jarin, rossberg): Remove UNTYPED once machine typing works.
RunPrintAndVerify(MemoryOptimizationPhase::phase_name(), true);
// Lower changes that have been inserted before.
Run<LateOptimizationPhase>();
// TODO(jarin, rossberg): Remove UNTYPED once machine typing works.
RunPrintAndVerify(LateOptimizationPhase::phase_name(), true);
data->source_positions()->RemoveDecorator();
if (data->info()->trace_turbo_json_enabled()) {
data->node_origins()->RemoveDecorator();
}
ComputeScheduledGraph();
return SelectInstructions(linkage);
}
MaybeHandle<Code> Pipeline::GenerateCodeForCodeStub(
Isolate* isolate, CallDescriptor* call_descriptor, Graph* graph,
Schedule* schedule, Code::Kind kind, const char* debug_name,
uint32_t stub_key, int32_t builtin_index, JumpOptimizationInfo* jump_opt,
PoisoningMitigationLevel poisoning_level, const AssemblerOptions& options) {
OptimizedCompilationInfo info(CStrVector(debug_name), graph->zone(), kind);
info.set_builtin_index(builtin_index);
info.set_stub_key(stub_key);
if (poisoning_level != PoisoningMitigationLevel::kDontPoison) {
info.SetPoisoningMitigationLevel(poisoning_level);
}
// Construct a pipeline for scheduling and code generation.
ZoneStats zone_stats(isolate->allocator());
NodeOriginTable node_origins(graph);
PipelineData data(&zone_stats, &info, isolate, graph, schedule, nullptr,
&node_origins, jump_opt, options);
data.set_verify_graph(FLAG_verify_csa);
std::unique_ptr<PipelineStatistics> pipeline_statistics;
if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) {
pipeline_statistics.reset(new PipelineStatistics(
&info, isolate->GetTurboStatistics(), &zone_stats));
pipeline_statistics->BeginPhaseKind("stub codegen");
}
PipelineImpl pipeline(&data);
if (info.trace_turbo_json_enabled() || info.trace_turbo_graph_enabled()) {
CodeTracer::Scope tracing_scope(data.GetCodeTracer());
OFStream os(tracing_scope.file());
os << "---------------------------------------------------\n"
<< "Begin compiling " << debug_name << " using Turbofan" << std::endl;
if (info.trace_turbo_json_enabled()) {
TurboJsonFile json_of(&info, std::ios_base::trunc);
json_of << "{\"function\" : ";
JsonPrintFunctionSource(json_of, -1, info.GetDebugName(),
Handle<Script>(), isolate,
Handle<SharedFunctionInfo>());
json_of << ",\n\"phases\":[";
}
pipeline.Run<PrintGraphPhase>("Machine");
}
if (FLAG_optimize_csa) {
DCHECK_NULL(data.schedule());
pipeline.Run<VerifyGraphPhase>(true, !FLAG_optimize_csa);
pipeline.ComputeScheduledGraph();
} else {
TraceSchedule(data.info(), &data, data.schedule(), "schedule");
}
DCHECK_NOT_NULL(data.schedule());
return pipeline.GenerateCode(call_descriptor);
}
// static
wasm::WasmCode* Pipeline::GenerateCodeForWasmNativeStub(
wasm::WasmEngine* wasm_engine, CallDescriptor* call_descriptor,
MachineGraph* mcgraph, Code::Kind kind, int wasm_kind,
const char* debug_name, const AssemblerOptions& options,
wasm::NativeModule* native_module, SourcePositionTable* source_positions) {
Graph* graph = mcgraph->graph();
OptimizedCompilationInfo info(CStrVector(debug_name), graph->zone(), kind);
// Construct a pipeline for scheduling and code generation.
ZoneStats zone_stats(wasm_engine->allocator());
NodeOriginTable* node_positions = new (graph->zone()) NodeOriginTable(graph);
PipelineData data(&zone_stats, wasm_engine, &info, mcgraph, nullptr,
source_positions, node_positions, options);
std::unique_ptr<PipelineStatistics> pipeline_statistics;
if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) {
pipeline_statistics.reset(new PipelineStatistics(
&info, wasm_engine->GetOrCreateTurboStatistics(), &zone_stats));
pipeline_statistics->BeginPhaseKind("wasm stub codegen");
}
PipelineImpl pipeline(&data);
if (info.trace_turbo_json_enabled() || info.trace_turbo_graph_enabled()) {
CodeTracer::Scope tracing_scope(data.GetCodeTracer());
OFStream os(tracing_scope.file());
os << "---------------------------------------------------\n"
<< "Begin compiling method " << info.GetDebugName().get()
<< " using Turbofan" << std::endl;
}
if (info.trace_turbo_graph_enabled()) { // Simple textual RPO.
StdoutStream{} << "-- wasm stub " << Code::Kind2String(kind) << " graph -- "
<< std::endl
<< AsRPO(*graph);
}
if (info.trace_turbo_json_enabled()) {
TurboJsonFile json_of(&info, std::ios_base::trunc);
json_of << "{\"function\":\"" << info.GetDebugName().get()
<< "\", \"source\":\"\",\n\"phases\":[";
}
pipeline.RunPrintAndVerify("machine", true);
pipeline.ComputeScheduledGraph();
Linkage linkage(call_descriptor);
if (!pipeline.SelectInstructions(&linkage)) return nullptr;
pipeline.AssembleCode(&linkage);
CodeGenerator* code_generator = pipeline.code_generator();
CodeDesc code_desc;
code_generator->tasm()->GetCode(nullptr, &code_desc);
wasm::WasmCode* code = native_module->AddCode(
wasm::WasmCode::kAnonymousFuncIndex, code_desc,
code_generator->frame()->GetTotalFrameSlotCount(),
code_generator->GetSafepointTableOffset(),
code_generator->GetHandlerTableOffset(),
code_generator->GetProtectedInstructions(),
code_generator->GetSourcePositionTable(),
static_cast<wasm::WasmCode::Kind>(wasm_kind), wasm::WasmCode::kOther);
if (info.trace_turbo_json_enabled()) {
TurboJsonFile json_of(&info, std::ios_base::app);
json_of << "{\"name\":\"disassembly\",\"type\":\"disassembly\",\"data\":\"";
#ifdef ENABLE_DISASSEMBLER
std::stringstream disassembler_stream;
Disassembler::Decode(
nullptr, &disassembler_stream, code->instructions().start(),
code->instructions().start() + code->safepoint_table_offset(),
CodeReference(code));
for (auto const c : disassembler_stream.str()) {
json_of << AsEscapedUC16ForJSON(c);
}
#endif // ENABLE_DISASSEMBLER
json_of << "\"}\n]";
json_of << "\n}";
}
if (info.trace_turbo_json_enabled() || info.trace_turbo_graph_enabled()) {
CodeTracer::Scope tracing_scope(data.GetCodeTracer());
OFStream os(tracing_scope.file());
os << "---------------------------------------------------\n"
<< "Finished compiling method " << info.GetDebugName().get()
<< " using Turbofan" << std::endl;
}
return code;
}
// static
MaybeHandle<Code> Pipeline::GenerateCodeForWasmHeapStub(
Isolate* isolate, CallDescriptor* call_descriptor, Graph* graph,
Code::Kind kind, const char* debug_name, const AssemblerOptions& options,
SourcePositionTable* source_positions) {
OptimizedCompilationInfo info(CStrVector(debug_name), graph->zone(), kind);
// Construct a pipeline for scheduling and code generation.
ZoneStats zone_stats(isolate->allocator());
NodeOriginTable* node_positions = new (graph->zone()) NodeOriginTable(graph);
PipelineData data(&zone_stats, &info, isolate, graph, nullptr,
source_positions, node_positions, nullptr, options);
std::unique_ptr<PipelineStatistics> pipeline_statistics;
if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) {
pipeline_statistics.reset(new PipelineStatistics(
&info, isolate->GetTurboStatistics(), &zone_stats));
pipeline_statistics->BeginPhaseKind("wasm stub codegen");
}
PipelineImpl pipeline(&data);
if (info.trace_turbo_json_enabled() ||
info.trace_turbo_graph_enabled()) {
CodeTracer::Scope tracing_scope(data.GetCodeTracer());
OFStream os(tracing_scope.file());
os << "---------------------------------------------------\n"
<< "Begin compiling method " << info.GetDebugName().get()
<< " using Turbofan" << std::endl;
}
if (info.trace_turbo_graph_enabled()) { // Simple textual RPO.
StdoutStream{} << "-- wasm stub " << Code::Kind2String(kind) << " graph -- "
<< std::endl
<< AsRPO(*graph);
}
if (info.trace_turbo_json_enabled()) {
TurboJsonFile json_of(&info, std::ios_base::trunc);
json_of << "{\"function\":\"" << info.GetDebugName().get()
<< "\", \"source\":\"\",\n\"phases\":[";
}
pipeline.RunPrintAndVerify("machine", true);
pipeline.ComputeScheduledGraph();
Handle<Code> code;
if (pipeline.GenerateCode(call_descriptor).ToHandle(&code) &&
pipeline.CommitDependencies(code)) {
return code;
}
return MaybeHandle<Code>();
}
// static
MaybeHandle<Code> Pipeline::GenerateCodeForTesting(
OptimizedCompilationInfo* info, Isolate* isolate) {
ZoneStats zone_stats(isolate->allocator());
std::unique_ptr<PipelineStatistics> pipeline_statistics(
CreatePipelineStatistics(Handle<Script>::null(), info, isolate,
&zone_stats));
PipelineData data(&zone_stats, isolate, info, pipeline_statistics.get());
PipelineImpl pipeline(&data);
Linkage linkage(Linkage::ComputeIncoming(data.instruction_zone(), info));
Deoptimizer::EnsureCodeForMaxDeoptimizationEntries(isolate);
if (!pipeline.CreateGraph()) return MaybeHandle<Code>();
if (!pipeline.OptimizeGraph(&linkage)) return MaybeHandle<Code>();
pipeline.AssembleCode(&linkage);
Handle<Code> code;
if (pipeline.FinalizeCode().ToHandle(&code) &&
pipeline.CommitDependencies(code)) {
return code;
}
return MaybeHandle<Code>();
}
// static
MaybeHandle<Code> Pipeline::GenerateCodeForTesting(
OptimizedCompilationInfo* info, Isolate* isolate,
CallDescriptor* call_descriptor, Graph* graph,
const AssemblerOptions& options, Schedule* schedule) {
// Construct a pipeline for scheduling and code generation.
ZoneStats zone_stats(isolate->allocator());
NodeOriginTable* node_positions = new (info->zone()) NodeOriginTable(graph);
PipelineData data(&zone_stats, info, isolate, graph, schedule, nullptr,
node_positions, nullptr, options);
std::unique_ptr<PipelineStatistics> pipeline_statistics;
if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) {
pipeline_statistics.reset(new PipelineStatistics(
info, isolate->GetTurboStatistics(), &zone_stats));
pipeline_statistics->BeginPhaseKind("test codegen");
}
PipelineImpl pipeline(&data);
if (info->trace_turbo_json_enabled()) {
TurboJsonFile json_of(info, std::ios_base::trunc);
json_of << "{\"function\":\"" << info->GetDebugName().get()
<< "\", \"source\":\"\",\n\"phases\":[";
}
// TODO(rossberg): Should this really be untyped?
pipeline.RunPrintAndVerify("machine", true);
// Ensure we have a schedule.
if (data.schedule() == nullptr) {
pipeline.ComputeScheduledGraph();
}
Handle<Code> code;
if (pipeline.GenerateCode(call_descriptor).ToHandle(&code) &&
pipeline.CommitDependencies(code)) {
return code;
}
return MaybeHandle<Code>();
}
// static
OptimizedCompilationJob* Pipeline::NewCompilationJob(
Isolate* isolate, Handle<JSFunction> function, bool has_script) {
Handle<SharedFunctionInfo> shared =
handle(function->shared(), function->GetIsolate());
return new PipelineCompilationJob(isolate, shared, function);
}
// static
wasm::WasmCode* Pipeline::GenerateCodeForWasmFunction(
OptimizedCompilationInfo* info, wasm::WasmEngine* wasm_engine,
MachineGraph* mcgraph, CallDescriptor* call_descriptor,
SourcePositionTable* source_positions, NodeOriginTable* node_origins,
wasm::FunctionBody function_body, wasm::NativeModule* native_module,
int function_index) {
ZoneStats zone_stats(wasm_engine->allocator());
std::unique_ptr<PipelineStatistics> pipeline_statistics(
CreatePipelineStatistics(wasm_engine, function_body,
native_module->module(), info, &zone_stats));
PipelineData data(&zone_stats, wasm_engine, info, mcgraph,
pipeline_statistics.get(), source_positions, node_origins,
WasmAssemblerOptions());
PipelineImpl pipeline(&data);
if (data.info()->trace_turbo_json_enabled() ||
data.info()->trace_turbo_graph_enabled()) {
CodeTracer::Scope tracing_scope(data.GetCodeTracer());
OFStream os(tracing_scope.file());
os << "---------------------------------------------------\n"
<< "Begin compiling method " << data.info()->GetDebugName().get()
<< " using Turbofan" << std::endl;
}
pipeline.RunPrintAndVerify("Machine", true);
data.BeginPhaseKind("wasm optimization");
const bool is_asm_js = native_module->module()->origin == wasm::kAsmJsOrigin;
if (FLAG_turbo_splitting && !is_asm_js) {
data.info()->MarkAsSplittingEnabled();
}
if (FLAG_wasm_opt || is_asm_js) {
PipelineRunScope scope(&data, "wasm full optimization");
GraphReducer graph_reducer(scope.zone(), data.graph(),
data.mcgraph()->Dead());
DeadCodeElimination dead_code_elimination(&graph_reducer, data.graph(),
data.common(), scope.zone());
ValueNumberingReducer value_numbering(scope.zone(), data.graph()->zone());
const bool allow_signalling_nan = is_asm_js;
MachineOperatorReducer machine_reducer(data.mcgraph(),
allow_signalling_nan);
CommonOperatorReducer common_reducer(&graph_reducer, data.graph(),
data.broker(), data.common(),
data.machine(), scope.zone());
AddReducer(&data, &graph_reducer, &dead_code_elimination);
AddReducer(&data, &graph_reducer, &machine_reducer);
AddReducer(&data, &graph_reducer, &common_reducer);
AddReducer(&data, &graph_reducer, &value_numbering);
graph_reducer.ReduceGraph();
} else {
PipelineRunScope scope(&data, "wasm base optimization");
GraphReducer graph_reducer(scope.zone(), data.graph(),
data.mcgraph()->Dead());
ValueNumberingReducer value_numbering(scope.zone(), data.graph()->zone());
AddReducer(&data, &graph_reducer, &value_numbering);
graph_reducer.ReduceGraph();
}
pipeline.RunPrintAndVerify("wasm optimization", true);
if (data.node_origins()) {
data.node_origins()->RemoveDecorator();
}
pipeline.ComputeScheduledGraph();
Linkage linkage(call_descriptor);
if (!pipeline.SelectInstructions(&linkage)) return nullptr;
pipeline.AssembleCode(&linkage);
CodeGenerator* code_generator = pipeline.code_generator();
CodeDesc code_desc;
code_generator->tasm()->GetCode(nullptr, &code_desc);
wasm::WasmCode* code = native_module->AddCode(
function_index, code_desc,
code_generator->frame()->GetTotalFrameSlotCount(),
code_generator->GetSafepointTableOffset(),
code_generator->GetHandlerTableOffset(),
code_generator->GetProtectedInstructions(),
code_generator->GetSourcePositionTable(), wasm::WasmCode::kFunction,
wasm::WasmCode::kTurbofan);
if (data.info()->trace_turbo_json_enabled()) {
TurboJsonFile json_of(data.info(), std::ios_base::app);
json_of << "{\"name\":\"disassembly\",\"type\":\"disassembly\",\"data\":\"";
#ifdef ENABLE_DISASSEMBLER
std::stringstream disassembler_stream;
Disassembler::Decode(
nullptr, &disassembler_stream, code->instructions().start(),
code->instructions().start() + code->safepoint_table_offset(),
CodeReference(code));
for (auto const c : disassembler_stream.str()) {
json_of << AsEscapedUC16ForJSON(c);
}
#endif // ENABLE_DISASSEMBLER
json_of << "\"}\n]";
json_of << "\n}";
}
if (data.info()->trace_turbo_json_enabled() ||
data.info()->trace_turbo_graph_enabled()) {
CodeTracer::Scope tracing_scope(data.GetCodeTracer());
OFStream os(tracing_scope.file());
os << "---------------------------------------------------\n"
<< "Finished compiling method " << data.info()->GetDebugName().get()
<< " using Turbofan" << std::endl;
}
return code;
}
bool Pipeline::AllocateRegistersForTesting(const RegisterConfiguration* config,
InstructionSequence* sequence,
bool run_verifier) {
OptimizedCompilationInfo info(ArrayVector("testing"), sequence->zone(),
Code::STUB);
ZoneStats zone_stats(sequence->isolate()->allocator());
PipelineData data(&zone_stats, &info, sequence->isolate(), sequence);
data.InitializeFrameData(nullptr);
PipelineImpl pipeline(&data);
pipeline.AllocateRegisters(config, nullptr, run_verifier);
return !data.compilation_failed();
}
void PipelineImpl::ComputeScheduledGraph() {
PipelineData* data = this->data_;
// We should only schedule the graph if it is not scheduled yet.
DCHECK_NULL(data->schedule());
Run<LateGraphTrimmingPhase>();
RunPrintAndVerify(LateGraphTrimmingPhase::phase_name(), true);
Run<ComputeSchedulePhase>();
TraceSchedule(data->info(), data, data->schedule(), "schedule");
}
bool PipelineImpl::SelectInstructions(Linkage* linkage) {
auto call_descriptor = linkage->GetIncomingDescriptor();
PipelineData* data = this->data_;
// We should have a scheduled graph.
DCHECK_NOT_NULL(data->graph());
DCHECK_NOT_NULL(data->schedule());
if (FLAG_turbo_profiling) {
data->set_profiler_data(BasicBlockInstrumentor::Instrument(
info(), data->graph(), data->schedule(), data->isolate()));
}
bool verify_stub_graph = data->verify_graph();
// Jump optimization runs instruction selection twice, but the instruction
// selector mutates nodes like swapping the inputs of a load, which can
// violate the machine graph verification rules. So we skip the second
// verification on a graph that already verified before.
auto jump_opt = data->jump_optimization_info();
if (jump_opt && jump_opt->is_optimizing()) {
verify_stub_graph = false;
}
if (verify_stub_graph ||
(FLAG_turbo_verify_machine_graph != nullptr &&
(!strcmp(FLAG_turbo_verify_machine_graph, "*") ||
!strcmp(FLAG_turbo_verify_machine_graph, data->debug_name())))) {
if (FLAG_trace_verify_csa) {
AllowHandleDereference allow_deref;
CodeTracer::Scope tracing_scope(data->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "--------------------------------------------------\n"
<< "--- Verifying " << data->debug_name() << " generated by TurboFan\n"
<< "--------------------------------------------------\n"
<< *data->schedule()
<< "--------------------------------------------------\n"
<< "--- End of " << data->debug_name() << " generated by TurboFan\n"
<< "--------------------------------------------------\n";
}
Zone temp_zone(data->allocator(), ZONE_NAME);
MachineGraphVerifier::Run(data->graph(), data->schedule(), linkage,
data->info()->IsStub(), data->debug_name(),
&temp_zone);
}
data->InitializeInstructionSequence(call_descriptor);
data->InitializeFrameData(call_descriptor);
// Select and schedule instructions covering the scheduled graph.
Run<InstructionSelectionPhase>(linkage);
if (data->compilation_failed()) {
info()->AbortOptimization(BailoutReason::kCodeGenerationFailed);
data->EndPhaseKind();
return false;
}
if (info()->trace_turbo_json_enabled() && !data->MayHaveUnverifiableGraph()) {
AllowHandleDereference allow_deref;
TurboCfgFile tcf(isolate());
tcf << AsC1V("CodeGen", data->schedule(), data->source_positions(),
data->sequence());
}
if (info()->trace_turbo_json_enabled()) {
std::ostringstream source_position_output;
// Output source position information before the graph is deleted.
if (data_->source_positions() != nullptr) {
data_->source_positions()->PrintJson(source_position_output);
} else {
source_position_output << "{}";
}
source_position_output << ",\n\"NodeOrigins\" : ";
data_->node_origins()->PrintJson(source_position_output);
data_->set_source_position_output(source_position_output.str());
}
data->DeleteGraphZone();
data->BeginPhaseKind("register allocation");
bool run_verifier = FLAG_turbo_verify_allocation;
// Allocate registers.
if (call_descriptor->HasRestrictedAllocatableRegisters()) {
RegList registers = call_descriptor->AllocatableRegisters();
DCHECK_LT(0, NumRegs(registers));
std::unique_ptr<const RegisterConfiguration> config;
config.reset(RegisterConfiguration::RestrictGeneralRegisters(registers));
AllocateRegisters(config.get(), call_descriptor, run_verifier);
} else if (data->info()->GetPoisoningMitigationLevel() !=
PoisoningMitigationLevel::kDontPoison) {
#ifdef V8_TARGET_ARCH_IA32
FATAL("Poisoning is not supported on ia32.");
#else
AllocateRegisters(RegisterConfiguration::Poisoning(), call_descriptor,
run_verifier);
#endif // V8_TARGET_ARCH_IA32
} else {
AllocateRegisters(RegisterConfiguration::Default(), call_descriptor,
run_verifier);
}
// Verify the instruction sequence has the same hash in two stages.
VerifyGeneratedCodeIsIdempotent();
Run<FrameElisionPhase>();
if (data->compilation_failed()) {
info()->AbortOptimization(
BailoutReason::kNotEnoughVirtualRegistersRegalloc);
data->EndPhaseKind();
return false;
}
// TODO(mtrofin): move this off to the register allocator.
bool generate_frame_at_start =
data_->sequence()->instruction_blocks().front()->must_construct_frame();
// Optimimize jumps.
if (FLAG_turbo_jt) {
Run<JumpThreadingPhase>(generate_frame_at_start);
}
data->EndPhaseKind();
return true;
}
void PipelineImpl::VerifyGeneratedCodeIsIdempotent() {
PipelineData* data = this->data_;
JumpOptimizationInfo* jump_opt = data->jump_optimization_info();
if (jump_opt == nullptr) return;
InstructionSequence* code = data->sequence();
int instruction_blocks = code->InstructionBlockCount();
int virtual_registers = code->VirtualRegisterCount();
size_t hash_code = base::hash_combine(instruction_blocks, virtual_registers);
for (auto instr : *code) {
hash_code = base::hash_combine(hash_code, instr->opcode(),
instr->InputCount(), instr->OutputCount());
}
for (int i = 0; i < virtual_registers; i++) {
hash_code = base::hash_combine(hash_code, code->GetRepresentation(i));
}
if (jump_opt->is_collecting()) {
jump_opt->set_hash_code(hash_code);
} else {
CHECK_EQ(hash_code, jump_opt->hash_code());
}
}
struct InstructionStartsAsJSON {
const ZoneVector<int>* instr_starts;
};
std::ostream& operator<<(std::ostream& out, const InstructionStartsAsJSON& s) {
out << ", \"instructionOffsetToPCOffset\": {";
bool need_comma = false;
for (size_t i = 0; i < s.instr_starts->size(); ++i) {
if (need_comma) out << ", ";
int offset = (*s.instr_starts)[i];
out << "\"" << i << "\":" << offset;
need_comma = true;
}
out << "}";
return out;
}
void PipelineImpl::AssembleCode(Linkage* linkage) {
PipelineData* data = this->data_;
data->BeginPhaseKind("code generation");
data->InitializeCodeGenerator(linkage);
Run<AssembleCodePhase>();
if (data->info()->trace_turbo_json_enabled()) {
TurboJsonFile json_of(data->info(), std::ios_base::app);
json_of << "{\"name\":\"code generation\""
<< ", \"type\":\"instructions\""
<< InstructionStartsAsJSON{&data->code_generator()->instr_starts()};
json_of << "},\n";
}
data->DeleteInstructionZone();
}
struct BlockStartsAsJSON {
const ZoneVector<int>* block_starts;
};
std::ostream& operator<<(std::ostream& out, const BlockStartsAsJSON& s) {
out << ", \"blockIdToOffset\": {";
bool need_comma = false;
for (size_t i = 0; i < s.block_starts->size(); ++i) {
if (need_comma) out << ", ";
int offset = (*s.block_starts)[i];
out << "\"" << i << "\":" << offset;
need_comma = true;
}
out << "},";
return out;
}
MaybeHandle<Code> PipelineImpl::FinalizeCode() {
PipelineData* data = this->data_;
if (data->broker()) {
data->broker()->Retire();
}
Run<FinalizeCodePhase>();
MaybeHandle<Code> maybe_code = data->code();
Handle<Code> code;
if (!maybe_code.ToHandle(&code)) {
return maybe_code;
}
if (data->profiler_data()) {
#ifdef ENABLE_DISASSEMBLER
std::ostringstream os;
code->Disassemble(nullptr, os);
data->profiler_data()->SetCode(&os);
#endif // ENABLE_DISASSEMBLER
}
info()->SetCode(code);
PrintCode(isolate(), code, info());
if (info()->trace_turbo_json_enabled()) {
TurboJsonFile json_of(info(), std::ios_base::app);
json_of << "{\"name\":\"disassembly\",\"type\":\"disassembly\""
<< BlockStartsAsJSON{&data->code_generator()->block_starts()}
<< "\"data\":\"";
#ifdef ENABLE_DISASSEMBLER
std::stringstream disassembly_stream;
code->Disassemble(nullptr, disassembly_stream);
std::string disassembly_string(disassembly_stream.str());
for (const auto& c : disassembly_string) {
json_of << AsEscapedUC16ForJSON(c);
}
#endif // ENABLE_DISASSEMBLER
json_of << "\"}\n],\n";
json_of << "\"nodePositions\":";
json_of << data->source_position_output() << ",\n";
JsonPrintAllSourceWithPositions(json_of, data->info(), isolate());
json_of << "\n}";
}
if (info()->trace_turbo_json_enabled() ||
info()->trace_turbo_graph_enabled()) {
CodeTracer::Scope tracing_scope(data->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "---------------------------------------------------\n"
<< "Finished compiling method " << info()->GetDebugName().get()
<< " using Turbofan" << std::endl;
}
return code;
}
MaybeHandle<Code> PipelineImpl::GenerateCode(CallDescriptor* call_descriptor) {
Linkage linkage(call_descriptor);
// Perform instruction selection and register allocation.
if (!SelectInstructions(&linkage)) return MaybeHandle<Code>();
// Generate the final machine code.
AssembleCode(&linkage);
return FinalizeCode();
}
bool PipelineImpl::CommitDependencies(Handle<Code> code) {
return data_->dependencies() == nullptr ||
data_->dependencies()->Commit(code);
}
namespace {
void TraceSequence(OptimizedCompilationInfo* info, PipelineData* data,
const char* phase_name) {
if (info->trace_turbo_json_enabled()) {
AllowHandleDereference allow_deref;
TurboJsonFile json_of(info, std::ios_base::app);
json_of << "{\"name\":\"" << phase_name << "\",\"type\":\"sequence\",";
json_of << InstructionSequenceAsJSON{data->sequence()};
json_of << "},\n";
}
if (info->trace_turbo_graph_enabled()) {
AllowHandleDereference allow_deref;
CodeTracer::Scope tracing_scope(data->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "----- Instruction sequence " << phase_name << " -----\n"
<< *data->sequence();
}
}
} // namespace
void PipelineImpl::AllocateRegisters(const RegisterConfiguration* config,
CallDescriptor* call_descriptor,
bool run_verifier) {
PipelineData* data = this->data_;
// Don't track usage for this zone in compiler stats.
std::unique_ptr<Zone> verifier_zone;
RegisterAllocatorVerifier* verifier = nullptr;
if (run_verifier) {
verifier_zone.reset(new Zone(data->allocator(), ZONE_NAME));
verifier = new (verifier_zone.get()) RegisterAllocatorVerifier(
verifier_zone.get(), config, data->sequence());
}
#ifdef DEBUG
data_->sequence()->ValidateEdgeSplitForm();
data_->sequence()->ValidateDeferredBlockEntryPaths();
data_->sequence()->ValidateDeferredBlockExitPaths();
#endif
data->InitializeRegisterAllocationData(config, call_descriptor);
if (info()->is_osr()) data->osr_helper()->SetupFrame(data->frame());
Run<MeetRegisterConstraintsPhase>();
Run<ResolvePhisPhase>();
Run<BuildLiveRangesPhase>();
TraceSequence(info(), data, "before register allocation");
if (verifier != nullptr) {
CHECK(!data->register_allocation_data()->ExistsUseWithoutDefinition());
CHECK(data->register_allocation_data()
->RangesDefinedInDeferredStayInDeferred());
}
if (info()->trace_turbo_json_enabled() && !data->MayHaveUnverifiableGraph()) {
TurboCfgFile tcf(isolate());
tcf << AsC1VRegisterAllocationData("PreAllocation",
data->register_allocation_data());
}
if (FLAG_turbo_preprocess_ranges) {
Run<SplinterLiveRangesPhase>();
if (info()->trace_turbo_json_enabled() &&
!data->MayHaveUnverifiableGraph()) {
TurboCfgFile tcf(isolate());
tcf << AsC1VRegisterAllocationData("PostSplinter",
data->register_allocation_data());
}
}
Run<AllocateGeneralRegistersPhase<LinearScanAllocator>>();
if (data->sequence()->HasFPVirtualRegisters()) {
Run<AllocateFPRegistersPhase<LinearScanAllocator>>();
}
if (FLAG_turbo_preprocess_ranges) {
Run<MergeSplintersPhase>();
}
Run<AssignSpillSlotsPhase>();
Run<CommitAssignmentPhase>();
// TODO(chromium:725559): remove this check once
// we understand the cause of the bug. We keep just the
// check at the end of the allocation.
if (verifier != nullptr) {
verifier->VerifyAssignment("Immediately after CommitAssignmentPhase.");
}
Run<PopulateReferenceMapsPhase>();
Run<ConnectRangesPhase>();
Run<ResolveControlFlowPhase>();
if (FLAG_turbo_move_optimization) {
Run<OptimizeMovesPhase>();
}
Run<LocateSpillSlotsPhase>();
TraceSequence(info(), data, "after register allocation");
if (verifier != nullptr) {
verifier->VerifyAssignment("End of regalloc pipeline.");
verifier->VerifyGapMoves();
}
if (info()->trace_turbo_json_enabled() && !data->MayHaveUnverifiableGraph()) {
TurboCfgFile tcf(isolate());
tcf << AsC1VRegisterAllocationData("CodeGen",
data->register_allocation_data());
}
data->DeleteRegisterAllocationZone();
}
OptimizedCompilationInfo* PipelineImpl::info() const { return data_->info(); }
Isolate* PipelineImpl::isolate() const { return data_->isolate(); }
CodeGenerator* PipelineImpl::code_generator() const {
return data_->code_generator();
}
} // namespace compiler
} // namespace internal
} // namespace v8