blob: a4c76352fbb519c54f7f54dedb37218c6fa3b6dc [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/wasm-code-manager.h"
#include <iomanip>
#include "src/assembler-inl.h"
#include "src/base/adapters.h"
#include "src/base/macros.h"
#include "src/base/platform/platform.h"
#include "src/disassembler.h"
#include "src/globals.h"
#include "src/log.h"
#include "src/macro-assembler-inl.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/ostreams.h"
#include "src/wasm/compilation-environment.h"
#include "src/wasm/function-compiler.h"
#include "src/wasm/jump-table-assembler.h"
#include "src/wasm/wasm-import-wrapper-cache-inl.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-objects.h"
#define TRACE_HEAP(...) \
do { \
if (FLAG_trace_wasm_native_heap) PrintF(__VA_ARGS__); \
} while (false)
namespace v8 {
namespace internal {
namespace wasm {
namespace {
// Binary predicate to perform lookups in {NativeModule::owned_code_} with a
// given address into a code object. Use with {std::upper_bound} for example.
struct WasmCodeUniquePtrComparator {
bool operator()(Address pc, const std::unique_ptr<WasmCode>& code) const {
DCHECK_NE(kNullAddress, pc);
DCHECK_NOT_NULL(code);
return pc < code->instruction_start();
}
};
} // namespace
void DisjointAllocationPool::Merge(base::AddressRegion region) {
auto dest_it = regions_.begin();
auto dest_end = regions_.end();
// Skip over dest regions strictly before {region}.
while (dest_it != dest_end && dest_it->end() < region.begin()) ++dest_it;
// After last dest region: insert and done.
if (dest_it == dest_end) {
regions_.push_back(region);
return;
}
// Adjacent (from below) to dest: merge and done.
if (dest_it->begin() == region.end()) {
base::AddressRegion merged_region{region.begin(),
region.size() + dest_it->size()};
DCHECK_EQ(merged_region.end(), dest_it->end());
*dest_it = merged_region;
return;
}
// Before dest: insert and done.
if (dest_it->begin() > region.end()) {
regions_.insert(dest_it, region);
return;
}
// Src is adjacent from above. Merge and check whether the merged region is
// now adjacent to the next region.
DCHECK_EQ(dest_it->end(), region.begin());
dest_it->set_size(dest_it->size() + region.size());
DCHECK_EQ(dest_it->end(), region.end());
auto next_dest = dest_it;
++next_dest;
if (next_dest != dest_end && dest_it->end() == next_dest->begin()) {
dest_it->set_size(dest_it->size() + next_dest->size());
DCHECK_EQ(dest_it->end(), next_dest->end());
regions_.erase(next_dest);
}
}
base::AddressRegion DisjointAllocationPool::Allocate(size_t size) {
for (auto it = regions_.begin(), end = regions_.end(); it != end; ++it) {
if (size > it->size()) continue;
base::AddressRegion ret{it->begin(), size};
if (size == it->size()) {
regions_.erase(it);
} else {
*it = base::AddressRegion{it->begin() + size, it->size() - size};
}
return ret;
}
return {};
}
Address WasmCode::constant_pool() const {
if (FLAG_enable_embedded_constant_pool) {
if (constant_pool_offset_ < code_comments_offset_) {
return instruction_start() + constant_pool_offset_;
}
}
return kNullAddress;
}
Address WasmCode::code_comments() const {
if (code_comments_offset_ < unpadded_binary_size_) {
return instruction_start() + code_comments_offset_;
}
return kNullAddress;
}
size_t WasmCode::trap_handler_index() const {
CHECK(HasTrapHandlerIndex());
return static_cast<size_t>(trap_handler_index_);
}
void WasmCode::set_trap_handler_index(size_t value) {
trap_handler_index_ = value;
}
void WasmCode::RegisterTrapHandlerData() {
DCHECK(!HasTrapHandlerIndex());
if (kind() != WasmCode::kFunction) return;
Address base = instruction_start();
size_t size = instructions().size();
const int index =
RegisterHandlerData(base, size, protected_instructions().size(),
protected_instructions().start());
// TODO(eholk): if index is negative, fail.
CHECK_LE(0, index);
set_trap_handler_index(static_cast<size_t>(index));
}
bool WasmCode::HasTrapHandlerIndex() const { return trap_handler_index_ >= 0; }
bool WasmCode::ShouldBeLogged(Isolate* isolate) {
return isolate->logger()->is_listening_to_code_events() ||
isolate->is_profiling();
}
void WasmCode::LogCode(Isolate* isolate) const {
DCHECK(ShouldBeLogged(isolate));
if (IsAnonymous()) return;
ModuleWireBytes wire_bytes(native_module()->wire_bytes());
// TODO(herhut): Allow to log code without on-heap round-trip of the name.
WireBytesRef name_ref =
native_module()->module()->LookupFunctionName(wire_bytes, index());
WasmName name_vec = wire_bytes.GetNameOrNull(name_ref);
if (!name_vec.is_empty()) {
HandleScope scope(isolate);
MaybeHandle<String> maybe_name = isolate->factory()->NewStringFromUtf8(
Vector<const char>::cast(name_vec));
Handle<String> name;
if (!maybe_name.ToHandle(&name)) {
name = isolate->factory()->NewStringFromAsciiChecked("<name too long>");
}
int name_length;
auto cname =
name->ToCString(AllowNullsFlag::DISALLOW_NULLS,
RobustnessFlag::ROBUST_STRING_TRAVERSAL, &name_length);
PROFILE(isolate,
CodeCreateEvent(CodeEventListener::FUNCTION_TAG, this,
{cname.get(), static_cast<size_t>(name_length)}));
} else {
EmbeddedVector<char, 32> generated_name;
int length = SNPrintF(generated_name, "wasm-function[%d]", index());
generated_name.Truncate(length);
PROFILE(isolate, CodeCreateEvent(CodeEventListener::FUNCTION_TAG, this,
generated_name));
}
if (!source_positions().is_empty()) {
LOG_CODE_EVENT(isolate, CodeLinePosInfoRecordEvent(instruction_start(),
source_positions()));
}
}
const char* WasmCode::GetRuntimeStubName() const {
DCHECK_EQ(WasmCode::kRuntimeStub, kind());
#define RETURN_NAME(Name) \
if (native_module_->runtime_stub_table_[WasmCode::k##Name] == this) { \
return #Name; \
}
#define RETURN_NAME_TRAP(Name) RETURN_NAME(ThrowWasm##Name)
WASM_RUNTIME_STUB_LIST(RETURN_NAME, RETURN_NAME_TRAP)
#undef RETURN_NAME_TRAP
#undef RETURN_NAME
return "<unknown>";
}
void WasmCode::Validate() const {
#ifdef DEBUG
// We expect certain relocation info modes to never appear in {WasmCode}
// objects or to be restricted to a small set of valid values. Hence the
// iteration below does not use a mask, but visits all relocation data.
for (RelocIterator it(instructions(), reloc_info(), constant_pool());
!it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
switch (mode) {
case RelocInfo::WASM_CALL: {
Address target = it.rinfo()->wasm_call_address();
WasmCode* code = native_module_->Lookup(target);
CHECK_NOT_NULL(code);
CHECK_EQ(WasmCode::kJumpTable, code->kind());
CHECK(code->contains(target));
break;
}
case RelocInfo::WASM_STUB_CALL: {
Address target = it.rinfo()->wasm_stub_call_address();
WasmCode* code = native_module_->Lookup(target);
CHECK_NOT_NULL(code);
CHECK_EQ(WasmCode::kRuntimeStub, code->kind());
CHECK_EQ(target, code->instruction_start());
break;
}
case RelocInfo::INTERNAL_REFERENCE:
case RelocInfo::INTERNAL_REFERENCE_ENCODED: {
Address target = it.rinfo()->target_internal_reference();
CHECK(contains(target));
break;
}
case RelocInfo::EXTERNAL_REFERENCE:
case RelocInfo::CONST_POOL:
case RelocInfo::VENEER_POOL:
// These are OK to appear.
break;
default:
FATAL("Unexpected mode: %d", mode);
}
}
#endif
}
void WasmCode::MaybePrint(const char* name) const {
// Determines whether flags want this code to be printed.
if ((FLAG_print_wasm_code && kind() == kFunction) ||
(FLAG_print_wasm_stub_code && kind() != kFunction) || FLAG_print_code) {
Print(name);
}
}
void WasmCode::Print(const char* name) const {
StdoutStream os;
os << "--- WebAssembly code ---\n";
Disassemble(name, os);
os << "--- End code ---\n";
}
void WasmCode::Disassemble(const char* name, std::ostream& os,
Address current_pc) const {
if (name) os << "name: " << name << "\n";
if (!IsAnonymous()) os << "index: " << index() << "\n";
os << "kind: " << GetWasmCodeKindAsString(kind_) << "\n";
os << "compiler: " << (is_liftoff() ? "Liftoff" : "TurboFan") << "\n";
size_t padding = instructions().size() - unpadded_binary_size_;
os << "Body (size = " << instructions().size() << " = "
<< unpadded_binary_size_ << " + " << padding << " padding)\n";
#ifdef ENABLE_DISASSEMBLER
size_t instruction_size = unpadded_binary_size_;
if (constant_pool_offset_ < instruction_size) {
instruction_size = constant_pool_offset_;
}
if (safepoint_table_offset_ && safepoint_table_offset_ < instruction_size) {
instruction_size = safepoint_table_offset_;
}
if (handler_table_offset_ && handler_table_offset_ < instruction_size) {
instruction_size = handler_table_offset_;
}
DCHECK_LT(0, instruction_size);
os << "Instructions (size = " << instruction_size << ")\n";
Disassembler::Decode(nullptr, &os, instructions().start(),
instructions().start() + instruction_size,
CodeReference(this), current_pc);
os << "\n";
if (handler_table_offset_ > 0) {
HandlerTable table(instruction_start(), handler_table_offset_);
os << "Exception Handler Table (size = " << table.NumberOfReturnEntries()
<< "):\n";
table.HandlerTableReturnPrint(os);
os << "\n";
}
if (!protected_instructions_.is_empty()) {
os << "Protected instructions:\n pc offset land pad\n";
for (auto& data : protected_instructions()) {
os << std::setw(10) << std::hex << data.instr_offset << std::setw(10)
<< std::hex << data.landing_offset << "\n";
}
os << "\n";
}
if (!source_positions().is_empty()) {
os << "Source positions:\n pc offset position\n";
for (SourcePositionTableIterator it(source_positions()); !it.done();
it.Advance()) {
os << std::setw(10) << std::hex << it.code_offset() << std::dec
<< std::setw(10) << it.source_position().ScriptOffset()
<< (it.is_statement() ? " statement" : "") << "\n";
}
os << "\n";
}
if (safepoint_table_offset_ > 0) {
SafepointTable table(instruction_start(), safepoint_table_offset_,
stack_slots_);
os << "Safepoints (size = " << table.size() << ")\n";
for (uint32_t i = 0; i < table.length(); i++) {
uintptr_t pc_offset = table.GetPcOffset(i);
os << reinterpret_cast<const void*>(instruction_start() + pc_offset);
os << std::setw(6) << std::hex << pc_offset << " " << std::dec;
table.PrintEntry(i, os);
os << " (sp -> fp)";
SafepointEntry entry = table.GetEntry(i);
if (entry.trampoline_pc() != -1) {
os << " trampoline: " << std::hex << entry.trampoline_pc() << std::dec;
}
if (entry.has_deoptimization_index()) {
os << " deopt: " << std::setw(6) << entry.deoptimization_index();
}
os << "\n";
}
os << "\n";
}
os << "RelocInfo (size = " << reloc_info_.size() << ")\n";
for (RelocIterator it(instructions(), reloc_info(), constant_pool());
!it.done(); it.next()) {
it.rinfo()->Print(nullptr, os);
}
os << "\n";
if (code_comments_offset() < unpadded_binary_size_) {
Address code_comments = reinterpret_cast<Address>(instructions().start() +
code_comments_offset());
PrintCodeCommentsSection(os, code_comments);
}
#endif // ENABLE_DISASSEMBLER
}
const char* GetWasmCodeKindAsString(WasmCode::Kind kind) {
switch (kind) {
case WasmCode::kFunction:
return "wasm function";
case WasmCode::kWasmToJsWrapper:
return "wasm-to-js";
case WasmCode::kLazyStub:
return "lazy-compile";
case WasmCode::kRuntimeStub:
return "runtime-stub";
case WasmCode::kInterpreterEntry:
return "interpreter entry";
case WasmCode::kJumpTable:
return "jump table";
}
return "unknown kind";
}
WasmCode::~WasmCode() {
if (HasTrapHandlerIndex()) {
CHECK_LT(trap_handler_index(),
static_cast<size_t>(std::numeric_limits<int>::max()));
trap_handler::ReleaseHandlerData(static_cast<int>(trap_handler_index()));
}
}
NativeModule::NativeModule(WasmEngine* engine, Isolate* isolate,
const WasmFeatures& enabled, bool can_request_more,
VirtualMemory code_space,
std::shared_ptr<const WasmModule> module)
: enabled_features_(enabled),
module_(std::move(module)),
compilation_state_(CompilationState::New(isolate, this)),
import_wrapper_cache_(std::unique_ptr<WasmImportWrapperCache>(
new WasmImportWrapperCache(this))),
free_code_space_(code_space.region()),
engine_(engine),
can_request_more_memory_(can_request_more),
use_trap_handler_(trap_handler::IsTrapHandlerEnabled() ? kUseTrapHandler
: kNoTrapHandler) {
DCHECK_NOT_NULL(module_);
owned_code_space_.emplace_back(std::move(code_space));
owned_code_.reserve(num_functions());
uint32_t num_wasm_functions = module_->num_declared_functions;
if (num_wasm_functions > 0) {
code_table_.reset(new WasmCode*[num_wasm_functions]);
memset(code_table_.get(), 0, num_wasm_functions * sizeof(WasmCode*));
jump_table_ = CreateEmptyJumpTable(num_wasm_functions);
}
}
void NativeModule::ReserveCodeTableForTesting(uint32_t max_functions) {
DCHECK_LE(num_functions(), max_functions);
WasmCode** new_table = new WasmCode*[max_functions];
memset(new_table, 0, max_functions * sizeof(*new_table));
if (module_->num_declared_functions > 0) {
memcpy(new_table, code_table_.get(),
module_->num_declared_functions * sizeof(*new_table));
}
code_table_.reset(new_table);
// Re-allocate jump table.
jump_table_ = CreateEmptyJumpTable(max_functions);
}
void NativeModule::LogWasmCodes(Isolate* isolate) {
if (!WasmCode::ShouldBeLogged(isolate)) return;
// TODO(titzer): we skip the logging of the import wrappers
// here, but they should be included somehow.
for (WasmCode* code : code_table()) {
if (code != nullptr) code->LogCode(isolate);
}
}
CompilationEnv NativeModule::CreateCompilationEnv() const {
return {module(), use_trap_handler_, kRuntimeExceptionSupport,
enabled_features_};
}
WasmCode* NativeModule::AddOwnedCode(
uint32_t index, Vector<const byte> instructions, uint32_t stack_slots,
uint32_t tagged_parameter_slots, size_t safepoint_table_offset,
size_t handler_table_offset, size_t constant_pool_offset,
size_t code_comments_offset, size_t unpadded_binary_size,
OwnedVector<trap_handler::ProtectedInstructionData> protected_instructions,
OwnedVector<const byte> reloc_info,
OwnedVector<const byte> source_position_table, WasmCode::Kind kind,
WasmCode::Tier tier) {
WasmCode* code;
{
// Both allocation and insertion in owned_code_ happen in the same critical
// section, thus ensuring owned_code_'s elements are rarely if ever moved.
base::MutexGuard lock(&allocation_mutex_);
Vector<byte> executable_buffer = AllocateForCode(instructions.size());
// Ownership will be transferred to {owned_code_} below.
code = new WasmCode(
this, index, executable_buffer, stack_slots, tagged_parameter_slots,
safepoint_table_offset, handler_table_offset, constant_pool_offset,
code_comments_offset, unpadded_binary_size,
std::move(protected_instructions), std::move(reloc_info),
std::move(source_position_table), kind, tier);
if (owned_code_.empty() ||
code->instruction_start() > owned_code_.back()->instruction_start()) {
// Common case.
owned_code_.emplace_back(code);
} else {
// Slow but unlikely case.
// TODO(mtrofin): We allocate in increasing address order, and
// even if we end up with segmented memory, we may end up only with a few
// large moves - if, for example, a new segment is below the current ones.
auto insert_before = std::upper_bound(
owned_code_.begin(), owned_code_.end(), code->instruction_start(),
WasmCodeUniquePtrComparator{});
owned_code_.emplace(insert_before, code);
}
}
memcpy(reinterpret_cast<void*>(code->instruction_start()),
instructions.start(), instructions.size());
return code;
}
WasmCode* NativeModule::AddCodeForTesting(Handle<Code> code) {
WasmCode* ret = AddAnonymousCode(code, WasmCode::kFunction);
return ret;
}
void NativeModule::SetLazyBuiltin(Handle<Code> code) {
uint32_t num_wasm_functions = module_->num_declared_functions;
if (num_wasm_functions == 0) return;
WasmCode* lazy_builtin = AddAnonymousCode(code, WasmCode::kLazyStub);
// Fill the jump table with jumps to the lazy compile stub.
Address lazy_compile_target = lazy_builtin->instruction_start();
for (uint32_t i = 0; i < num_wasm_functions; ++i) {
JumpTableAssembler::EmitLazyCompileJumpSlot(
jump_table_->instruction_start(), i,
i + module_->num_imported_functions, lazy_compile_target,
WasmCode::kNoFlushICache);
}
Assembler::FlushICache(jump_table_->instructions().start(),
jump_table_->instructions().size());
}
void NativeModule::SetRuntimeStubs(Isolate* isolate) {
HandleScope scope(isolate);
DCHECK_NULL(runtime_stub_table_[0]); // Only called once.
#define COPY_BUILTIN(Name) \
runtime_stub_table_[WasmCode::k##Name] = \
AddAnonymousCode(isolate->builtins()->builtin_handle(Builtins::k##Name), \
WasmCode::kRuntimeStub, #Name);
#define COPY_BUILTIN_TRAP(Name) COPY_BUILTIN(ThrowWasm##Name)
WASM_RUNTIME_STUB_LIST(COPY_BUILTIN, COPY_BUILTIN_TRAP)
#undef COPY_BUILTIN_TRAP
#undef COPY_BUILTIN
}
WasmCode* NativeModule::AddAnonymousCode(Handle<Code> code, WasmCode::Kind kind,
const char* name) {
// For off-heap builtins, we create a copy of the off-heap instruction stream
// instead of the on-heap code object containing the trampoline. Ensure that
// we do not apply the on-heap reloc info to the off-heap instructions.
const size_t relocation_size =
code->is_off_heap_trampoline() ? 0 : code->relocation_size();
OwnedVector<byte> reloc_info = OwnedVector<byte>::New(relocation_size);
if (relocation_size > 0) {
memcpy(reloc_info.start(), code->relocation_start(), relocation_size);
}
Handle<ByteArray> source_pos_table(code->SourcePositionTable(),
code->GetIsolate());
OwnedVector<byte> source_pos =
OwnedVector<byte>::New(source_pos_table->length());
if (source_pos_table->length() > 0) {
source_pos_table->copy_out(0, source_pos.start(),
source_pos_table->length());
}
Vector<const byte> instructions(
reinterpret_cast<byte*>(code->InstructionStart()),
static_cast<size_t>(code->InstructionSize()));
int stack_slots = code->has_safepoint_info() ? code->stack_slots() : 0;
int safepoint_table_offset =
code->has_safepoint_info() ? code->safepoint_table_offset() : 0;
WasmCode* ret =
AddOwnedCode(WasmCode::kAnonymousFuncIndex, // index
instructions, // instructions
stack_slots, // stack_slots
0, // tagged_parameter_slots
safepoint_table_offset, // safepoint_table_offset
code->handler_table_offset(), // handler_table_offset
code->constant_pool_offset(), // constant_pool_offset
code->code_comments_offset(), // code_comments_offset
instructions.size(), // unpadded_binary_size
{}, // protected_instructions
std::move(reloc_info), // reloc_info
std::move(source_pos), // source positions
kind, // kind
WasmCode::kOther); // tier
// Apply the relocation delta by iterating over the RelocInfo.
intptr_t delta = ret->instruction_start() - code->InstructionStart();
int mode_mask = RelocInfo::kApplyMask |
RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL);
RelocIterator orig_it(*code, mode_mask);
for (RelocIterator it(ret->instructions(), ret->reloc_info(),
ret->constant_pool(), mode_mask);
!it.done(); it.next(), orig_it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
if (RelocInfo::IsWasmStubCall(mode)) {
uint32_t stub_call_tag = orig_it.rinfo()->wasm_call_tag();
DCHECK_LT(stub_call_tag, WasmCode::kRuntimeStubCount);
WasmCode* code =
runtime_stub(static_cast<WasmCode::RuntimeStubId>(stub_call_tag));
it.rinfo()->set_wasm_stub_call_address(code->instruction_start(),
SKIP_ICACHE_FLUSH);
} else {
it.rinfo()->apply(delta);
}
}
// Flush the i-cache here instead of in AddOwnedCode, to include the changes
// made while iterating over the RelocInfo above.
Assembler::FlushICache(ret->instructions().start(),
ret->instructions().size());
ret->MaybePrint(name);
ret->Validate();
return ret;
}
WasmCode* NativeModule::AddCode(
uint32_t index, const CodeDesc& desc, uint32_t stack_slots,
uint32_t tagged_parameter_slots, size_t safepoint_table_offset,
size_t handler_table_offset,
OwnedVector<trap_handler::ProtectedInstructionData> protected_instructions,
OwnedVector<const byte> source_pos_table, WasmCode::Kind kind,
WasmCode::Tier tier) {
OwnedVector<byte> reloc_info = OwnedVector<byte>::New(desc.reloc_size);
if (desc.reloc_size > 0) {
memcpy(reloc_info.start(), desc.buffer + desc.buffer_size - desc.reloc_size,
desc.reloc_size);
}
WasmCode* ret = AddOwnedCode(
index, {desc.buffer, static_cast<size_t>(desc.instr_size)}, stack_slots,
tagged_parameter_slots, safepoint_table_offset, handler_table_offset,
desc.constant_pool_offset(), desc.code_comments_offset(), desc.instr_size,
std::move(protected_instructions), std::move(reloc_info),
std::move(source_pos_table), kind, tier);
// Apply the relocation delta by iterating over the RelocInfo.
intptr_t delta = ret->instructions().start() - desc.buffer;
int mode_mask = RelocInfo::kApplyMask |
RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL);
for (RelocIterator it(ret->instructions(), ret->reloc_info(),
ret->constant_pool(), mode_mask);
!it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
if (RelocInfo::IsWasmCall(mode)) {
uint32_t call_tag = it.rinfo()->wasm_call_tag();
Address target = GetCallTargetForFunction(call_tag);
it.rinfo()->set_wasm_call_address(target, SKIP_ICACHE_FLUSH);
} else if (RelocInfo::IsWasmStubCall(mode)) {
uint32_t stub_call_tag = it.rinfo()->wasm_call_tag();
DCHECK_LT(stub_call_tag, WasmCode::kRuntimeStubCount);
WasmCode* code =
runtime_stub(static_cast<WasmCode::RuntimeStubId>(stub_call_tag));
it.rinfo()->set_wasm_stub_call_address(code->instruction_start(),
SKIP_ICACHE_FLUSH);
} else {
it.rinfo()->apply(delta);
}
}
// Flush the i-cache here instead of in AddOwnedCode, to include the changes
// made while iterating over the RelocInfo above.
Assembler::FlushICache(ret->instructions().start(),
ret->instructions().size());
ret->MaybePrint();
ret->Validate();
return ret;
}
WasmCode* NativeModule::AddDeserializedCode(
uint32_t index, Vector<const byte> instructions, uint32_t stack_slots,
uint32_t tagged_parameter_slots, size_t safepoint_table_offset,
size_t handler_table_offset, size_t constant_pool_offset,
size_t code_comments_offset, size_t unpadded_binary_size,
OwnedVector<trap_handler::ProtectedInstructionData> protected_instructions,
OwnedVector<const byte> reloc_info,
OwnedVector<const byte> source_position_table, WasmCode::Tier tier) {
WasmCode* code = AddOwnedCode(
index, instructions, stack_slots, tagged_parameter_slots,
safepoint_table_offset, handler_table_offset, constant_pool_offset,
code_comments_offset, unpadded_binary_size,
std::move(protected_instructions), std::move(reloc_info),
std::move(source_position_table), WasmCode::kFunction, tier);
if (!code->protected_instructions_.is_empty()) {
code->RegisterTrapHandlerData();
}
base::MutexGuard lock(&allocation_mutex_);
InstallCode(code);
// Note: we do not flush the i-cache here, since the code needs to be
// relocated anyway. The caller is responsible for flushing the i-cache later.
return code;
}
void NativeModule::PublishCode(WasmCode* code) {
base::MutexGuard lock(&allocation_mutex_);
// Skip publishing code if there is an active redirection to the interpreter
// for the given function index, in order to preserve the redirection.
if (has_interpreter_redirection(code->index())) return;
if (!code->protected_instructions_.is_empty()) {
code->RegisterTrapHandlerData();
}
InstallCode(code);
}
void NativeModule::PublishInterpreterEntry(WasmCode* code,
uint32_t func_index) {
code->index_ = func_index;
base::MutexGuard lock(&allocation_mutex_);
InstallCode(code);
SetInterpreterRedirection(func_index);
}
std::vector<WasmCode*> NativeModule::SnapshotCodeTable() const {
base::MutexGuard lock(&allocation_mutex_);
std::vector<WasmCode*> result;
result.reserve(code_table().size());
for (WasmCode* code : code_table()) result.push_back(code);
return result;
}
WasmCode* NativeModule::CreateEmptyJumpTable(uint32_t num_wasm_functions) {
// Only call this if we really need a jump table.
DCHECK_LT(0, num_wasm_functions);
OwnedVector<byte> instructions = OwnedVector<byte>::New(
JumpTableAssembler::SizeForNumberOfSlots(num_wasm_functions));
memset(instructions.start(), 0, instructions.size());
return AddOwnedCode(WasmCode::kAnonymousFuncIndex, // index
instructions.as_vector(), // instructions
0, // stack_slots
0, // tagged_parameter_slots
instructions.size(), // safepoint_table_offset
instructions.size(), // handler_table_offset
instructions.size(), // constant_pool_offset
instructions.size(), // code_comments_offset
instructions.size(), // unpadded_binary_size
{}, // protected_instructions
{}, // reloc_info
{}, // source_pos
WasmCode::kJumpTable, // kind
WasmCode::kOther); // tier
}
void NativeModule::InstallCode(WasmCode* code) {
DCHECK_LT(code->index(), num_functions());
DCHECK_LE(module_->num_imported_functions, code->index());
// Update code table, except for interpreter entries.
if (code->kind() != WasmCode::kInterpreterEntry) {
code_table_[code->index() - module_->num_imported_functions] = code;
}
// Patch jump table.
uint32_t slot_idx = code->index() - module_->num_imported_functions;
JumpTableAssembler::PatchJumpTableSlot(jump_table_->instruction_start(),
slot_idx, code->instruction_start(),
WasmCode::kFlushICache);
}
Vector<byte> NativeModule::AllocateForCode(size_t size) {
DCHECK_LT(0, size);
v8::PageAllocator* page_allocator = GetPlatformPageAllocator();
// This happens under a lock assumed by the caller.
size = RoundUp(size, kCodeAlignment);
base::AddressRegion code_space = free_code_space_.Allocate(size);
if (code_space.is_empty()) {
if (!can_request_more_memory_) {
V8::FatalProcessOutOfMemory(nullptr,
"NativeModule::AllocateForCode reservation");
UNREACHABLE();
}
Address hint = owned_code_space_.empty() ? kNullAddress
: owned_code_space_.back().end();
VirtualMemory new_mem = engine_->code_manager()->TryAllocate(
size, reinterpret_cast<void*>(hint));
if (!new_mem.IsReserved()) {
V8::FatalProcessOutOfMemory(nullptr,
"NativeModule::AllocateForCode reservation");
UNREACHABLE();
}
engine_->code_manager()->AssignRanges(new_mem.address(), new_mem.end(),
this);
free_code_space_.Merge(new_mem.region());
owned_code_space_.emplace_back(std::move(new_mem));
code_space = free_code_space_.Allocate(size);
DCHECK(!code_space.is_empty());
}
const Address page_size = page_allocator->AllocatePageSize();
Address commit_start = RoundUp(code_space.begin(), page_size);
Address commit_end = RoundUp(code_space.end(), page_size);
// {commit_start} will be either code_space.start or the start of the next
// page. {commit_end} will be the start of the page after the one in which
// the allocation ends.
// We start from an aligned start, and we know we allocated vmem in
// page multiples.
// We just need to commit what's not committed. The page in which we
// start is already committed (or we start at the beginning of a page).
// The end needs to be committed all through the end of the page.
if (commit_start < commit_end) {
committed_code_space_.fetch_add(commit_end - commit_start);
// Committed code cannot grow bigger than maximum code space size.
DCHECK_LE(committed_code_space_.load(), kMaxWasmCodeMemory);
#if V8_OS_WIN
// On Windows, we cannot commit a region that straddles different
// reservations of virtual memory. Because we bump-allocate, and because, if
// we need more memory, we append that memory at the end of the
// owned_code_space_ list, we traverse that list in reverse order to find
// the reservation(s) that guide how to chunk the region to commit.
for (auto& vmem : base::Reversed(owned_code_space_)) {
if (commit_end <= vmem.address() || vmem.end() <= commit_start) continue;
Address start = std::max(commit_start, vmem.address());
Address end = std::min(commit_end, vmem.end());
size_t commit_size = static_cast<size_t>(end - start);
if (!engine_->code_manager()->Commit(start, commit_size)) {
V8::FatalProcessOutOfMemory(nullptr,
"NativeModule::AllocateForCode commit");
UNREACHABLE();
}
// Opportunistically reduce the commit range. This might terminate the
// loop early.
if (commit_start == start) commit_start = end;
if (commit_end == end) commit_end = start;
if (commit_start >= commit_end) break;
}
#else
if (!engine_->code_manager()->Commit(commit_start,
commit_end - commit_start)) {
V8::FatalProcessOutOfMemory(nullptr,
"NativeModule::AllocateForCode commit");
UNREACHABLE();
}
#endif
}
DCHECK(IsAligned(code_space.begin(), kCodeAlignment));
allocated_code_space_.Merge(code_space);
TRACE_HEAP("Code alloc for %p: %" PRIxPTR ",+%zu\n", this, code_space.begin(),
size);
return {reinterpret_cast<byte*>(code_space.begin()), code_space.size()};
}
namespace {
class NativeModuleWireBytesStorage final : public WireBytesStorage {
public:
explicit NativeModuleWireBytesStorage(
std::shared_ptr<OwnedVector<const uint8_t>> wire_bytes)
: wire_bytes_(std::move(wire_bytes)) {}
Vector<const uint8_t> GetCode(WireBytesRef ref) const final {
return wire_bytes_->as_vector().SubVector(ref.offset(), ref.end_offset());
}
private:
const std::shared_ptr<OwnedVector<const uint8_t>> wire_bytes_;
};
} // namespace
void NativeModule::SetWireBytes(OwnedVector<const uint8_t> wire_bytes) {
auto shared_wire_bytes =
std::make_shared<OwnedVector<const uint8_t>>(std::move(wire_bytes));
wire_bytes_ = shared_wire_bytes;
if (!shared_wire_bytes->is_empty()) {
compilation_state_->SetWireBytesStorage(
std::make_shared<NativeModuleWireBytesStorage>(
std::move(shared_wire_bytes)));
}
}
WasmCode* NativeModule::Lookup(Address pc) const {
base::MutexGuard lock(&allocation_mutex_);
if (owned_code_.empty()) return nullptr;
auto iter = std::upper_bound(owned_code_.begin(), owned_code_.end(), pc,
WasmCodeUniquePtrComparator());
if (iter == owned_code_.begin()) return nullptr;
--iter;
WasmCode* candidate = iter->get();
DCHECK_NOT_NULL(candidate);
return candidate->contains(pc) ? candidate : nullptr;
}
Address NativeModule::GetCallTargetForFunction(uint32_t func_index) const {
// TODO(clemensh): Measure performance win of returning instruction start
// directly if we have turbofan code. Downside: Redirecting functions (e.g.
// for debugging) gets much harder.
// Return the jump table slot for that function index.
DCHECK_NOT_NULL(jump_table_);
uint32_t slot_idx = func_index - module_->num_imported_functions;
uint32_t slot_offset = JumpTableAssembler::SlotIndexToOffset(slot_idx);
DCHECK_LT(slot_offset, jump_table_->instructions().size());
return jump_table_->instruction_start() + slot_offset;
}
uint32_t NativeModule::GetFunctionIndexFromJumpTableSlot(
Address slot_address) const {
DCHECK(is_jump_table_slot(slot_address));
uint32_t slot_offset =
static_cast<uint32_t>(slot_address - jump_table_->instruction_start());
uint32_t slot_idx = JumpTableAssembler::SlotOffsetToIndex(slot_offset);
DCHECK_LT(slot_idx, module_->num_declared_functions);
return module_->num_imported_functions + slot_idx;
}
void NativeModule::DisableTrapHandler() {
// Switch {use_trap_handler_} from true to false.
DCHECK(use_trap_handler_);
use_trap_handler_ = kNoTrapHandler;
// Clear the code table (just to increase the chances to hit an error if we
// forget to re-add all code).
uint32_t num_wasm_functions = module_->num_declared_functions;
memset(code_table_.get(), 0, num_wasm_functions * sizeof(WasmCode*));
// TODO(clemensh): Actually free the owned code, such that the memory can be
// recycled.
}
NativeModule::~NativeModule() {
TRACE_HEAP("Deleting native module: %p\n", reinterpret_cast<void*>(this));
// Cancel all background compilation before resetting any field of the
// NativeModule or freeing anything.
compilation_state_->CancelAndWait();
engine_->FreeNativeModule(this);
}
WasmCodeManager::WasmCodeManager(WasmMemoryTracker* memory_tracker,
size_t max_committed)
: memory_tracker_(memory_tracker),
remaining_uncommitted_code_space_(max_committed),
critical_uncommitted_code_space_(max_committed / 2) {
DCHECK_LE(max_committed, kMaxWasmCodeMemory);
}
bool WasmCodeManager::Commit(Address start, size_t size) {
// TODO(v8:8462) Remove eager commit once perf supports remapping.
if (FLAG_perf_prof) return true;
DCHECK(IsAligned(start, AllocatePageSize()));
DCHECK(IsAligned(size, AllocatePageSize()));
// Reserve the size. Use CAS loop to avoid underflow on
// {remaining_uncommitted_}. Temporary underflow would allow concurrent
// threads to over-commit.
size_t old_value = remaining_uncommitted_code_space_.load();
while (true) {
if (old_value < size) return false;
if (remaining_uncommitted_code_space_.compare_exchange_weak(
old_value, old_value - size)) {
break;
}
}
PageAllocator::Permission permission = FLAG_wasm_write_protect_code_memory
? PageAllocator::kReadWrite
: PageAllocator::kReadWriteExecute;
bool ret =
SetPermissions(GetPlatformPageAllocator(), start, size, permission);
TRACE_HEAP("Setting rw permissions for %p:%p\n",
reinterpret_cast<void*>(start),
reinterpret_cast<void*>(start + size));
if (!ret) {
// Highly unlikely.
remaining_uncommitted_code_space_.fetch_add(size);
return false;
}
return ret;
}
void WasmCodeManager::AssignRanges(Address start, Address end,
NativeModule* native_module) {
base::MutexGuard lock(&native_modules_mutex_);
lookup_map_.insert(std::make_pair(start, std::make_pair(end, native_module)));
}
VirtualMemory WasmCodeManager::TryAllocate(size_t size, void* hint) {
v8::PageAllocator* page_allocator = GetPlatformPageAllocator();
DCHECK_GT(size, 0);
size = RoundUp(size, page_allocator->AllocatePageSize());
if (!memory_tracker_->ReserveAddressSpace(size,
WasmMemoryTracker::kHardLimit)) {
return {};
}
if (hint == nullptr) hint = page_allocator->GetRandomMmapAddr();
VirtualMemory mem(page_allocator, size, hint,
page_allocator->AllocatePageSize());
if (!mem.IsReserved()) {
memory_tracker_->ReleaseReservation(size);
return {};
}
TRACE_HEAP("VMem alloc: %p:%p (%zu)\n",
reinterpret_cast<void*>(mem.address()),
reinterpret_cast<void*>(mem.end()), mem.size());
// TODO(v8:8462) Remove eager commit once perf supports remapping.
if (FLAG_perf_prof) {
SetPermissions(GetPlatformPageAllocator(), mem.address(), mem.size(),
PageAllocator::kReadWriteExecute);
}
return mem;
}
void WasmCodeManager::SetMaxCommittedMemoryForTesting(size_t limit) {
remaining_uncommitted_code_space_.store(limit);
critical_uncommitted_code_space_.store(limit / 2);
}
// static
size_t WasmCodeManager::EstimateNativeModuleCodeSize(const WasmModule* module) {
constexpr size_t kCodeSizeMultiplier = 4;
constexpr size_t kCodeOverhead = 32; // for prologue, stack check, ...
constexpr size_t kStaticCodeSize = 512; // runtime stubs, ...
constexpr size_t kImportSize = 64 * kSystemPointerSize;
size_t estimate = kStaticCodeSize;
for (auto& function : module->functions) {
estimate += kCodeOverhead + kCodeSizeMultiplier * function.code.length();
}
estimate +=
JumpTableAssembler::SizeForNumberOfSlots(module->num_declared_functions);
estimate += kImportSize * module->num_imported_functions;
return estimate;
}
// static
size_t WasmCodeManager::EstimateNativeModuleNonCodeSize(
const WasmModule* module) {
size_t wasm_module_estimate = EstimateStoredSize(module);
uint32_t num_wasm_functions = module->num_declared_functions;
// TODO(wasm): Include wire bytes size.
size_t native_module_estimate =
sizeof(NativeModule) + /* NativeModule struct */
(sizeof(WasmCode*) * num_wasm_functions) + /* code table size */
(sizeof(WasmCode) * num_wasm_functions); /* code object size */
return wasm_module_estimate + native_module_estimate;
}
std::unique_ptr<NativeModule> WasmCodeManager::NewNativeModule(
WasmEngine* engine, Isolate* isolate, const WasmFeatures& enabled,
size_t code_size_estimate, bool can_request_more,
std::shared_ptr<const WasmModule> module) {
DCHECK_EQ(this, isolate->wasm_engine()->code_manager());
if (remaining_uncommitted_code_space_.load() <
critical_uncommitted_code_space_.load()) {
(reinterpret_cast<v8::Isolate*>(isolate))
->MemoryPressureNotification(MemoryPressureLevel::kCritical);
critical_uncommitted_code_space_.store(
remaining_uncommitted_code_space_.load() / 2);
}
// If the code must be contiguous, reserve enough address space up front.
size_t code_vmem_size =
kRequiresCodeRange ? kMaxWasmCodeMemory : code_size_estimate;
// Try up to two times; getting rid of dead JSArrayBuffer allocations might
// require two GCs because the first GC maybe incremental and may have
// floating garbage.
static constexpr int kAllocationRetries = 2;
VirtualMemory code_space;
for (int retries = 0;; ++retries) {
code_space = TryAllocate(code_vmem_size);
if (code_space.IsReserved()) break;
if (retries == kAllocationRetries) {
V8::FatalProcessOutOfMemory(isolate, "WasmCodeManager::NewNativeModule");
UNREACHABLE();
}
// Run one GC, then try the allocation again.
isolate->heap()->MemoryPressureNotification(MemoryPressureLevel::kCritical,
true);
}
Address start = code_space.address();
size_t size = code_space.size();
Address end = code_space.end();
std::unique_ptr<NativeModule> ret(
new NativeModule(engine, isolate, enabled, can_request_more,
std::move(code_space), std::move(module)));
TRACE_HEAP("New NativeModule %p: Mem: %" PRIuPTR ",+%zu\n", ret.get(), start,
size);
base::MutexGuard lock(&native_modules_mutex_);
lookup_map_.insert(std::make_pair(start, std::make_pair(end, ret.get())));
return ret;
}
bool NativeModule::SetExecutable(bool executable) {
if (is_executable_ == executable) return true;
TRACE_HEAP("Setting module %p as executable: %d.\n", this, executable);
v8::PageAllocator* page_allocator = GetPlatformPageAllocator();
if (FLAG_wasm_write_protect_code_memory) {
PageAllocator::Permission permission =
executable ? PageAllocator::kReadExecute : PageAllocator::kReadWrite;
#if V8_OS_WIN
// On windows, we need to switch permissions per separate virtual memory
// reservation. This is really just a problem when the NativeModule is
// growable (meaning can_request_more_memory_). That's 32-bit in production,
// or unittests.
// For now, in that case, we commit at reserved memory granularity.
// Technically, that may be a waste, because we may reserve more than we
// use. On 32-bit though, the scarce resource is the address space -
// committed or not.
if (can_request_more_memory_) {
for (auto& vmem : owned_code_space_) {
if (!SetPermissions(page_allocator, vmem.address(), vmem.size(),
permission)) {
return false;
}
TRACE_HEAP("Set %p:%p to executable:%d\n", vmem.address(), vmem.end(),
executable);
}
is_executable_ = executable;
return true;
}
#endif
for (auto& region : allocated_code_space_.regions()) {
// allocated_code_space_ is fine-grained, so we need to
// page-align it.
size_t region_size =
RoundUp(region.size(), page_allocator->AllocatePageSize());
if (!SetPermissions(page_allocator, region.begin(), region_size,
permission)) {
return false;
}
TRACE_HEAP("Set %p:%p to executable:%d\n",
reinterpret_cast<void*>(region.begin()),
reinterpret_cast<void*>(region.end()), executable);
}
}
is_executable_ = executable;
return true;
}
void WasmCodeManager::FreeNativeModule(NativeModule* native_module) {
base::MutexGuard lock(&native_modules_mutex_);
TRACE_HEAP("Freeing NativeModule %p\n", native_module);
for (auto& code_space : native_module->owned_code_space_) {
DCHECK(code_space.IsReserved());
TRACE_HEAP("VMem Release: %" PRIxPTR ":%" PRIxPTR " (%zu)\n",
code_space.address(), code_space.end(), code_space.size());
lookup_map_.erase(code_space.address());
memory_tracker_->ReleaseReservation(code_space.size());
code_space.Free();
DCHECK(!code_space.IsReserved());
}
native_module->owned_code_space_.clear();
size_t code_size = native_module->committed_code_space_.load();
DCHECK(IsAligned(code_size, AllocatePageSize()));
remaining_uncommitted_code_space_.fetch_add(code_size);
// Remaining code space cannot grow bigger than maximum code space size.
DCHECK_LE(remaining_uncommitted_code_space_.load(), kMaxWasmCodeMemory);
}
NativeModule* WasmCodeManager::LookupNativeModule(Address pc) const {
base::MutexGuard lock(&native_modules_mutex_);
if (lookup_map_.empty()) return nullptr;
auto iter = lookup_map_.upper_bound(pc);
if (iter == lookup_map_.begin()) return nullptr;
--iter;
Address region_start = iter->first;
Address region_end = iter->second.first;
NativeModule* candidate = iter->second.second;
DCHECK_NOT_NULL(candidate);
return region_start <= pc && pc < region_end ? candidate : nullptr;
}
WasmCode* WasmCodeManager::LookupCode(Address pc) const {
NativeModule* candidate = LookupNativeModule(pc);
return candidate ? candidate->Lookup(pc) : nullptr;
}
size_t WasmCodeManager::remaining_uncommitted_code_space() const {
return remaining_uncommitted_code_space_.load();
}
// TODO(v8:7424): Code protection scopes are not yet supported with shared code
// enabled and need to be revisited to work with --wasm-shared-code as well.
NativeModuleModificationScope::NativeModuleModificationScope(
NativeModule* native_module)
: native_module_(native_module) {
if (FLAG_wasm_write_protect_code_memory && native_module_ &&
(native_module_->modification_scope_depth_++) == 0) {
bool success = native_module_->SetExecutable(false);
CHECK(success);
}
}
NativeModuleModificationScope::~NativeModuleModificationScope() {
if (FLAG_wasm_write_protect_code_memory && native_module_ &&
(native_module_->modification_scope_depth_--) == 1) {
bool success = native_module_->SetExecutable(true);
CHECK(success);
}
}
} // namespace wasm
} // namespace internal
} // namespace v8
#undef TRACE_HEAP