blob: a60ddf436edc000b024a45068af4fc6b83759af6 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/test/videoprocessor.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "api/video/i420_buffer.h"
#include "common_types.h" // NOLINT(build/include)
#include "common_video/h264/h264_common.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/video_coding/include/video_codec_initializer.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "modules/video_coding/utility/default_video_bitrate_allocator.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "rtc_base/checks.h"
#include "rtc_base/timeutils.h"
#include "test/gtest.h"
#include "third_party/libyuv/include/libyuv/compare.h"
#include "third_party/libyuv/include/libyuv/scale.h"
namespace webrtc {
namespace test {
using FrameStatistics = VideoCodecTestStats::FrameStatistics;
namespace {
const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000;
const int kMaxBufferedInputFrames = 20;
size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame,
const VideoCodecTestFixture::Config& config) {
if (config.codec_settings.codecType != kVideoCodecH264)
return 0;
std::vector<webrtc::H264::NaluIndex> nalu_indices =
webrtc::H264::FindNaluIndices(encoded_frame._buffer,
encoded_frame._length);
RTC_CHECK(!nalu_indices.empty());
size_t max_size = 0;
for (const webrtc::H264::NaluIndex& index : nalu_indices)
max_size = std::max(max_size, index.payload_size);
return max_size;
}
void GetLayerIndices(const CodecSpecificInfo& codec_specific,
size_t* spatial_idx,
size_t* temporal_idx) {
if (codec_specific.codecType == kVideoCodecVP8) {
*spatial_idx = codec_specific.codecSpecific.VP8.simulcastIdx;
*temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx;
} else if (codec_specific.codecType == kVideoCodecVP9) {
*spatial_idx = codec_specific.codecSpecific.VP9.spatial_idx;
*temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx;
}
if (*spatial_idx == kNoSpatialIdx) {
*spatial_idx = 0;
}
if (*temporal_idx == kNoTemporalIdx) {
*temporal_idx = 0;
}
}
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
return static_cast<int>(diff_us);
}
void ExtractI420BufferWithSize(const VideoFrame& image,
int width,
int height,
rtc::Buffer* buffer) {
if (image.width() != width || image.height() != height) {
EXPECT_DOUBLE_EQ(static_cast<double>(width) / height,
static_cast<double>(image.width()) / image.height());
// Same aspect ratio, no cropping needed.
rtc::scoped_refptr<I420Buffer> scaled(I420Buffer::Create(width, height));
scaled->ScaleFrom(*image.video_frame_buffer()->ToI420());
size_t length =
CalcBufferSize(VideoType::kI420, scaled->width(), scaled->height());
buffer->SetSize(length);
RTC_CHECK_NE(ExtractBuffer(scaled, length, buffer->data()), -1);
return;
}
// No resize.
size_t length =
CalcBufferSize(VideoType::kI420, image.width(), image.height());
buffer->SetSize(length);
RTC_CHECK_NE(ExtractBuffer(image, length, buffer->data()), -1);
}
void CalculateFrameQuality(const I420BufferInterface& ref_buffer,
const I420BufferInterface& dec_buffer,
FrameStatistics* frame_stat) {
if (ref_buffer.width() != dec_buffer.width() ||
ref_buffer.height() != dec_buffer.height()) {
RTC_CHECK_GE(ref_buffer.width(), dec_buffer.width());
RTC_CHECK_GE(ref_buffer.height(), dec_buffer.height());
// Downscale reference frame.
rtc::scoped_refptr<I420Buffer> scaled_buffer =
I420Buffer::Create(dec_buffer.width(), dec_buffer.height());
I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(),
ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(),
ref_buffer.width(), ref_buffer.height(),
scaled_buffer->MutableDataY(), scaled_buffer->StrideY(),
scaled_buffer->MutableDataU(), scaled_buffer->StrideU(),
scaled_buffer->MutableDataV(), scaled_buffer->StrideV(),
scaled_buffer->width(), scaled_buffer->height(),
libyuv::kFilterBox);
CalculateFrameQuality(*scaled_buffer, dec_buffer, frame_stat);
} else {
const uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(),
ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height());
const uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(),
ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2);
const uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(),
ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2);
const size_t num_y_samples = dec_buffer.width() * dec_buffer.height();
const size_t num_u_samples =
dec_buffer.width() / 2 * dec_buffer.height() / 2;
frame_stat->psnr_y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples);
frame_stat->psnr_u = libyuv::SumSquareErrorToPsnr(sse_u, num_u_samples);
frame_stat->psnr_v = libyuv::SumSquareErrorToPsnr(sse_v, num_u_samples);
frame_stat->psnr = libyuv::SumSquareErrorToPsnr(
sse_y + sse_u + sse_v, num_y_samples + 2 * num_u_samples);
frame_stat->ssim = I420SSIM(ref_buffer, dec_buffer);
}
}
std::vector<FrameType> FrameTypeForFrame(
const VideoCodecTestFixture::Config& config,
size_t frame_idx) {
if (config.keyframe_interval > 0 &&
(frame_idx % config.keyframe_interval == 0)) {
return {kVideoFrameKey};
}
return {kVideoFrameDelta};
}
} // namespace
VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
VideoDecoderList* decoders,
FrameReader* input_frame_reader,
const VideoCodecTestFixture::Config& config,
VideoCodecTestStats* stats,
IvfFileWriterList* encoded_frame_writers,
FrameWriterList* decoded_frame_writers)
: config_(config),
num_simulcast_or_spatial_layers_(
std::max(config_.NumberOfSimulcastStreams(),
config_.NumberOfSpatialLayers())),
stats_(stats),
encoder_(encoder),
decoders_(decoders),
bitrate_allocator_(VideoCodecInitializer::CreateBitrateAllocator(
config_.codec_settings)),
framerate_fps_(0),
encode_callback_(this),
input_frame_reader_(input_frame_reader),
merged_encoded_frames_(num_simulcast_or_spatial_layers_),
encoded_frame_writers_(encoded_frame_writers),
decoded_frame_writers_(decoded_frame_writers),
last_inputed_frame_num_(0),
last_inputed_timestamp_(0),
first_encoded_frame_(num_simulcast_or_spatial_layers_, true),
last_encoded_frame_num_(num_simulcast_or_spatial_layers_),
first_decoded_frame_(num_simulcast_or_spatial_layers_, true),
last_decoded_frame_num_(num_simulcast_or_spatial_layers_),
decoded_frame_buffer_(num_simulcast_or_spatial_layers_),
post_encode_time_ns_(0) {
// Sanity checks.
RTC_CHECK(rtc::TaskQueue::Current())
<< "VideoProcessor must be run on a task queue.";
RTC_CHECK(encoder);
RTC_CHECK(decoders);
RTC_CHECK_EQ(decoders->size(), num_simulcast_or_spatial_layers_);
RTC_CHECK(input_frame_reader);
RTC_CHECK(stats);
RTC_CHECK(!encoded_frame_writers ||
encoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
RTC_CHECK(!decoded_frame_writers ||
decoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
// Setup required callbacks for the encoder and decoder and initialize them.
RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_),
WEBRTC_VIDEO_CODEC_OK);
// Initialize codecs so that they are ready to receive frames.
RTC_CHECK_EQ(encoder_->InitEncode(&config_.codec_settings,
static_cast<int>(config_.NumberOfCores()),
config_.max_payload_size_bytes),
WEBRTC_VIDEO_CODEC_OK);
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
decode_callback_.push_back(
absl::make_unique<VideoProcessorDecodeCompleteCallback>(this, i));
RTC_CHECK_EQ(
decoders_->at(i)->InitDecode(&config_.codec_settings,
static_cast<int>(config_.NumberOfCores())),
WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(decoders_->at(i)->RegisterDecodeCompleteCallback(
decode_callback_.at(i).get()),
WEBRTC_VIDEO_CODEC_OK);
}
}
VideoProcessor::~VideoProcessor() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// Explicitly reset codecs, in case they don't do that themselves when they
// go out of scope.
RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
encoder_->RegisterEncodeCompleteCallback(nullptr);
for (auto& decoder : *decoders_) {
RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK);
decoder->RegisterDecodeCompleteCallback(nullptr);
}
// Sanity check.
RTC_CHECK_LE(input_frames_.size(), kMaxBufferedInputFrames);
// Deal with manual memory management of EncodedImage's.
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
uint8_t* buffer = merged_encoded_frames_.at(i)._buffer;
if (buffer) {
delete[] buffer;
}
}
}
void VideoProcessor::ProcessFrame() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
const size_t frame_number = last_inputed_frame_num_++;
// Get input frame and store for future quality calculation.
rtc::scoped_refptr<I420BufferInterface> buffer =
input_frame_reader_->ReadFrame();
RTC_CHECK(buffer) << "Tried to read too many frames from the file.";
const size_t timestamp =
last_inputed_timestamp_ + kVideoPayloadTypeFrequency / framerate_fps_;
VideoFrame input_frame(buffer, static_cast<uint32_t>(timestamp),
static_cast<int64_t>(timestamp / kMsToRtpTimestamp),
webrtc::kVideoRotation_0);
// Store input frame as a reference for quality calculations.
if (config_.decode && !config_.measure_cpu) {
if (input_frames_.size() == kMaxBufferedInputFrames) {
input_frames_.erase(input_frames_.begin());
}
input_frames_.emplace(frame_number, input_frame);
}
last_inputed_timestamp_ = timestamp;
post_encode_time_ns_ = 0;
// Create frame statistics object for all simulcast/spatial layers.
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
stats_->AddFrame(timestamp, i);
}
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
const int64_t encode_start_ns = rtc::TimeNanos();
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
frame_stat->encode_start_ns = encode_start_ns;
}
// Encode.
const std::vector<FrameType> frame_types =
FrameTypeForFrame(config_, frame_number);
const int encode_return_code =
encoder_->Encode(input_frame, nullptr, &frame_types);
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
frame_stat->encode_return_code = encode_return_code;
}
}
void VideoProcessor::SetRates(size_t bitrate_kbps, size_t framerate_fps) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
framerate_fps_ = static_cast<uint32_t>(framerate_fps);
bitrate_allocation_ = bitrate_allocator_->GetAllocation(
static_cast<uint32_t>(bitrate_kbps * 1000), framerate_fps_);
const int set_rates_result =
encoder_->SetRateAllocation(bitrate_allocation_, framerate_fps_);
RTC_DCHECK_GE(set_rates_result, 0)
<< "Failed to update encoder with new rate " << bitrate_kbps << ".";
}
int32_t VideoProcessor::VideoProcessorDecodeCompleteCallback::Decoded(
VideoFrame& image) {
// Post the callback to the right task queue, if needed.
if (!task_queue_->IsCurrent()) {
// There might be a limited amount of output buffers, make a copy to make
// sure we don't block the decoder.
VideoFrame copy(I420Buffer::Copy(*image.video_frame_buffer()->ToI420()),
image.rotation(), image.timestamp_us());
copy.set_timestamp(image.timestamp());
task_queue_->PostTask([this, copy]() {
video_processor_->FrameDecoded(copy, simulcast_svc_idx_);
});
return 0;
}
video_processor_->FrameDecoded(image, simulcast_svc_idx_);
return 0;
}
void VideoProcessor::FrameEncoded(
const webrtc::EncodedImage& encoded_image,
const webrtc::CodecSpecificInfo& codec_specific) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
const int64_t encode_stop_ns = rtc::TimeNanos();
const VideoCodecType codec_type = codec_specific.codecType;
if (config_.encoded_frame_checker) {
config_.encoded_frame_checker->CheckEncodedFrame(codec_type, encoded_image);
}
// Layer metadata.
size_t spatial_idx = 0;
size_t temporal_idx = 0;
GetLayerIndices(codec_specific, &spatial_idx, &temporal_idx);
FrameStatistics* frame_stat =
stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), spatial_idx);
const size_t frame_number = frame_stat->frame_number;
// Ensure that the encode order is monotonically increasing, within this
// simulcast/spatial layer.
RTC_CHECK(first_encoded_frame_[spatial_idx] ||
last_encoded_frame_num_[spatial_idx] < frame_number);
// Ensure SVC spatial layers are delivered in ascending order.
if (!first_encoded_frame_[spatial_idx] &&
config_.NumberOfSpatialLayers() > 1) {
for (size_t i = 0; i < spatial_idx; ++i) {
RTC_CHECK_LE(last_encoded_frame_num_[i], frame_number);
}
for (size_t i = spatial_idx + 1; i < num_simulcast_or_spatial_layers_;
++i) {
RTC_CHECK_GT(frame_number, last_encoded_frame_num_[i]);
}
}
first_encoded_frame_[spatial_idx] = false;
last_encoded_frame_num_[spatial_idx] = frame_number;
// Update frame statistics.
frame_stat->encoding_successful = true;
frame_stat->encode_time_us = GetElapsedTimeMicroseconds(
frame_stat->encode_start_ns, encode_stop_ns - post_encode_time_ns_);
frame_stat->target_bitrate_kbps =
bitrate_allocation_.GetTemporalLayerSum(spatial_idx, temporal_idx) / 1000;
frame_stat->length_bytes = encoded_image._length;
frame_stat->frame_type = encoded_image._frameType;
frame_stat->temporal_idx = temporal_idx;
frame_stat->spatial_idx = spatial_idx;
frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_);
frame_stat->qp = encoded_image.qp_;
const size_t num_spatial_layers = config_.NumberOfSpatialLayers();
bool end_of_picture = false;
if (codec_type == kVideoCodecVP9) {
const CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9;
frame_stat->inter_layer_predicted = vp9_info.inter_layer_predicted;
frame_stat->non_ref_for_inter_layer_pred =
vp9_info.non_ref_for_inter_layer_pred;
end_of_picture = vp9_info.end_of_picture;
} else {
frame_stat->inter_layer_predicted = false;
frame_stat->non_ref_for_inter_layer_pred = true;
}
const webrtc::EncodedImage* encoded_image_for_decode = &encoded_image;
if (config_.decode || encoded_frame_writers_) {
if (num_spatial_layers > 1) {
encoded_image_for_decode = BuildAndStoreSuperframe(
encoded_image, codec_type, frame_number, spatial_idx,
frame_stat->inter_layer_predicted);
}
}
if (config_.decode) {
DecodeFrame(*encoded_image_for_decode, spatial_idx);
if (end_of_picture && num_spatial_layers > 1) {
// If inter-layer prediction is enabled and upper layer was dropped then
// base layer should be passed to upper layer decoder. Otherwise decoder
// won't be able to decode next superframe.
const EncodedImage* base_image = nullptr;
const FrameStatistics* base_stat = nullptr;
for (size_t i = 0; i < num_spatial_layers; ++i) {
const bool layer_dropped = (first_decoded_frame_[i] ||
last_decoded_frame_num_[i] < frame_number);
// Ensure current layer was decoded.
RTC_CHECK(layer_dropped == false || i != spatial_idx);
if (!layer_dropped) {
base_image = &merged_encoded_frames_[i];
base_stat =
stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), i);
} else if (base_image && !base_stat->non_ref_for_inter_layer_pred) {
DecodeFrame(*base_image, i);
}
}
}
} else {
frame_stat->decode_return_code = WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
if (encoded_frame_writers_) {
RTC_CHECK(encoded_frame_writers_->at(spatial_idx)
->WriteFrame(*encoded_image_for_decode,
config_.codec_settings.codecType));
}
if (!config_.IsAsyncCodec()) {
// To get pure encode time for next layers, measure time spent in encode
// callback and subtract it from encode time of next layers.
post_encode_time_ns_ += rtc::TimeNanos() - encode_stop_ns;
}
}
void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame,
size_t spatial_idx) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
const int64_t decode_stop_ns = rtc::TimeNanos();
FrameStatistics* frame_stat =
stats_->GetFrameWithTimestamp(decoded_frame.timestamp(), spatial_idx);
const size_t frame_number = frame_stat->frame_number;
if (decoded_frame_writers_ && !first_decoded_frame_[spatial_idx]) {
// Fill drops with last decoded frame to make them look like freeze at
// playback and to keep decoded layers in sync.
for (size_t i = last_decoded_frame_num_[spatial_idx] + 1; i < frame_number;
++i) {
RTC_CHECK(decoded_frame_writers_->at(spatial_idx)
->WriteFrame(decoded_frame_buffer_[spatial_idx].data()));
}
}
// Ensure that the decode order is monotonically increasing, within this
// simulcast/spatial layer.
RTC_CHECK(first_decoded_frame_[spatial_idx] ||
last_decoded_frame_num_[spatial_idx] < frame_number);
first_decoded_frame_[spatial_idx] = false;
last_decoded_frame_num_[spatial_idx] = frame_number;
// Update frame statistics.
frame_stat->decoding_successful = true;
frame_stat->decode_time_us =
GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns);
frame_stat->decoded_width = decoded_frame.width();
frame_stat->decoded_height = decoded_frame.height();
// Skip quality metrics calculation to not affect CPU usage.
if (!config_.measure_cpu) {
const auto reference_frame = input_frames_.find(frame_number);
RTC_CHECK(reference_frame != input_frames_.cend())
<< "The codecs are either buffering too much, dropping too much, or "
"being too slow relative the input frame rate.";
CalculateFrameQuality(
*reference_frame->second.video_frame_buffer()->ToI420(),
*decoded_frame.video_frame_buffer()->ToI420(), frame_stat);
// Erase all buffered input frames that we have moved past for all
// simulcast/spatial layers. Never buffer more than
// |kMaxBufferedInputFrames| frames, to protect against long runs of
// consecutive frame drops for a particular layer.
const auto min_last_decoded_frame_num = std::min_element(
last_decoded_frame_num_.cbegin(), last_decoded_frame_num_.cend());
const size_t min_buffered_frame_num = std::max(
0, static_cast<int>(frame_number) - kMaxBufferedInputFrames + 1);
RTC_CHECK(min_last_decoded_frame_num != last_decoded_frame_num_.cend());
const auto input_frames_erase_before = input_frames_.lower_bound(
std::max(*min_last_decoded_frame_num, min_buffered_frame_num));
input_frames_.erase(input_frames_.cbegin(), input_frames_erase_before);
}
if (decoded_frame_writers_) {
ExtractI420BufferWithSize(decoded_frame, config_.codec_settings.width,
config_.codec_settings.height,
&decoded_frame_buffer_[spatial_idx]);
RTC_CHECK_EQ(decoded_frame_buffer_[spatial_idx].size(),
decoded_frame_writers_->at(spatial_idx)->FrameLength());
RTC_CHECK(decoded_frame_writers_->at(spatial_idx)
->WriteFrame(decoded_frame_buffer_[spatial_idx].data()));
}
}
void VideoProcessor::DecodeFrame(const EncodedImage& encoded_image,
size_t spatial_idx) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
FrameStatistics* frame_stat =
stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), spatial_idx);
frame_stat->decode_start_ns = rtc::TimeNanos();
frame_stat->decode_return_code =
decoders_->at(spatial_idx)->Decode(encoded_image, false, nullptr, 0);
}
const webrtc::EncodedImage* VideoProcessor::BuildAndStoreSuperframe(
const EncodedImage& encoded_image,
const VideoCodecType codec,
size_t frame_number,
size_t spatial_idx,
bool inter_layer_predicted) {
// Should only be called for SVC.
RTC_CHECK_GT(config_.NumberOfSpatialLayers(), 1);
EncodedImage base_image;
RTC_CHECK_EQ(base_image._length, 0);
// Each SVC layer is decoded with dedicated decoder. Find the nearest
// non-dropped base frame and merge it and current frame into superframe.
if (inter_layer_predicted) {
for (int base_idx = static_cast<int>(spatial_idx) - 1; base_idx >= 0;
--base_idx) {
EncodedImage lower_layer = merged_encoded_frames_.at(base_idx);
if (lower_layer.Timestamp() == encoded_image.Timestamp()) {
base_image = lower_layer;
break;
}
}
}
const size_t payload_size_bytes = base_image._length + encoded_image._length;
const size_t buffer_size_bytes =
payload_size_bytes + EncodedImage::GetBufferPaddingBytes(codec);
uint8_t* copied_buffer = new uint8_t[buffer_size_bytes];
RTC_CHECK(copied_buffer);
if (base_image._length) {
RTC_CHECK(base_image._buffer);
memcpy(copied_buffer, base_image._buffer, base_image._length);
}
memcpy(copied_buffer + base_image._length, encoded_image._buffer,
encoded_image._length);
EncodedImage copied_image = encoded_image;
copied_image = encoded_image;
copied_image._buffer = copied_buffer;
copied_image._length = payload_size_bytes;
copied_image._size = buffer_size_bytes;
// Replace previous EncodedImage for this spatial layer.
uint8_t* old_buffer = merged_encoded_frames_.at(spatial_idx)._buffer;
if (old_buffer) {
delete[] old_buffer;
}
merged_encoded_frames_.at(spatial_idx) = copied_image;
return &merged_encoded_frames_.at(spatial_idx);
}
} // namespace test
} // namespace webrtc