blob: 190af7f276ae72205a8c22144b3f67c8689f5cee [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller ( mueller@kde.org )
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2013 Apple Inc. All
* rights reserved.
* Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "wtf/text/StringImpl.h"
#include "wtf/DynamicAnnotations.h"
#include "wtf/LeakAnnotations.h"
#include "wtf/PtrUtil.h"
#include "wtf/StdLibExtras.h"
#include "wtf/allocator/PartitionAlloc.h"
#include "wtf/allocator/Partitions.h"
#include "wtf/text/AtomicString.h"
#include "wtf/text/AtomicStringTable.h"
#include "wtf/text/CharacterNames.h"
#include "wtf/text/StringBuffer.h"
#include "wtf/text/StringHash.h"
#include "wtf/text/StringToNumber.h"
#include <algorithm>
#include <memory>
#include <unicode/translit.h>
#include <unicode/unistr.h>
#ifdef STRING_STATS
#include "wtf/DataLog.h"
#include "wtf/HashMap.h"
#include "wtf/HashSet.h"
#include "wtf/RefCounted.h"
#include "wtf/ThreadingPrimitives.h"
#include <unistd.h>
#endif
using namespace std;
namespace WTF {
using namespace Unicode;
static_assert(sizeof(StringImpl) == 3 * sizeof(int),
"StringImpl should stay small");
#ifdef STRING_STATS
static Mutex& statsMutex() {
DEFINE_STATIC_LOCAL(Mutex, mutex, ());
return mutex;
}
static HashSet<void*>& liveStrings() {
// Notice that we can't use HashSet<StringImpl*> because then HashSet would
// dedup identical strings.
DEFINE_STATIC_LOCAL(HashSet<void*>, strings, ());
return strings;
}
void addStringForStats(StringImpl* string) {
MutexLocker locker(statsMutex());
liveStrings().add(string);
}
void removeStringForStats(StringImpl* string) {
MutexLocker locker(statsMutex());
liveStrings().remove(string);
}
static void fillWithSnippet(const StringImpl* string, Vector<char>& snippet) {
const unsigned kMaxSnippetLength = 64;
snippet.clear();
size_t expectedLength = std::min(string->length(), kMaxSnippetLength);
if (expectedLength == kMaxSnippetLength)
expectedLength += 3; // For the "...".
++expectedLength; // For the terminating '\0'.
snippet.reserveCapacity(expectedLength);
size_t i;
for (i = 0; i < string->length() && i < kMaxSnippetLength; ++i) {
UChar c = (*string)[i];
if (isASCIIPrintable(c))
snippet.append(c);
else
snippet.append('?');
}
if (i < string->length()) {
snippet.append('.');
snippet.append('.');
snippet.append('.');
}
snippet.append('\0');
}
static bool isUnnecessarilyWide(const StringImpl* string) {
if (string->is8Bit())
return false;
UChar c = 0;
for (unsigned i = 0; i < string->length(); ++i)
c |= (*string)[i] >> 8;
return !c;
}
class PerStringStats : public RefCounted<PerStringStats> {
public:
static PassRefPtr<PerStringStats> create() {
return adoptRef(new PerStringStats);
}
void add(const StringImpl* string) {
++m_numberOfCopies;
if (!m_length) {
m_length = string->length();
fillWithSnippet(string, m_snippet);
}
if (string->isAtomic())
++m_numberOfAtomicCopies;
if (isUnnecessarilyWide(string))
m_unnecessarilyWide = true;
}
size_t totalCharacters() const { return m_numberOfCopies * m_length; }
void print() {
const char* status = "ok";
if (m_unnecessarilyWide)
status = "16";
dataLogF("%8u copies (%s) of length %8u %s\n", m_numberOfCopies, status,
m_length, m_snippet.data());
}
bool m_unnecessarilyWide;
unsigned m_numberOfCopies;
unsigned m_length;
unsigned m_numberOfAtomicCopies;
Vector<char> m_snippet;
private:
PerStringStats()
: m_unnecessarilyWide(false),
m_numberOfCopies(0),
m_length(0),
m_numberOfAtomicCopies(0) {}
};
bool operator<(const RefPtr<PerStringStats>& a,
const RefPtr<PerStringStats>& b) {
if (a->m_unnecessarilyWide != b->m_unnecessarilyWide)
return !a->m_unnecessarilyWide && b->m_unnecessarilyWide;
if (a->totalCharacters() != b->totalCharacters())
return a->totalCharacters() < b->totalCharacters();
if (a->m_numberOfCopies != b->m_numberOfCopies)
return a->m_numberOfCopies < b->m_numberOfCopies;
if (a->m_length != b->m_length)
return a->m_length < b->m_length;
return a->m_numberOfAtomicCopies < b->m_numberOfAtomicCopies;
}
static void printLiveStringStats(void*) {
MutexLocker locker(statsMutex());
HashSet<void*>& strings = liveStrings();
HashMap<StringImpl*, RefPtr<PerStringStats>> stats;
for (HashSet<void*>::iterator iter = strings.begin(); iter != strings.end();
++iter) {
StringImpl* string = static_cast<StringImpl*>(*iter);
HashMap<StringImpl*, RefPtr<PerStringStats>>::iterator entry =
stats.find(string);
RefPtr<PerStringStats> value =
entry == stats.end() ? RefPtr<PerStringStats>(PerStringStats::create())
: entry->value;
value->add(string);
stats.set(string, value.release());
}
Vector<RefPtr<PerStringStats>> all;
for (HashMap<StringImpl*, RefPtr<PerStringStats>>::iterator iter =
stats.begin();
iter != stats.end(); ++iter)
all.append(iter->value);
std::sort(all.begin(), all.end());
std::reverse(all.begin(), all.end());
for (size_t i = 0; i < 20 && i < all.size(); ++i)
all[i]->print();
}
StringStats StringImpl::m_stringStats;
unsigned StringStats::s_stringRemovesTillPrintStats =
StringStats::s_printStringStatsFrequency;
void StringStats::removeString(StringImpl* string) {
unsigned length = string->length();
--m_totalNumberStrings;
if (string->is8Bit()) {
--m_number8BitStrings;
m_total8BitData -= length;
} else {
--m_number16BitStrings;
m_total16BitData -= length;
}
if (!--s_stringRemovesTillPrintStats) {
s_stringRemovesTillPrintStats = s_printStringStatsFrequency;
printStats();
}
}
void StringStats::printStats() {
dataLogF("String stats for process id %d:\n", getpid());
unsigned long long totalNumberCharacters = m_total8BitData + m_total16BitData;
double percent8Bit =
m_totalNumberStrings
? ((double)m_number8BitStrings * 100) / (double)m_totalNumberStrings
: 0.0;
double average8bitLength =
m_number8BitStrings
? (double)m_total8BitData / (double)m_number8BitStrings
: 0.0;
dataLogF(
"%8u (%5.2f%%) 8 bit %12llu chars %12llu bytes avg length "
"%6.1f\n",
m_number8BitStrings, percent8Bit, m_total8BitData, m_total8BitData,
average8bitLength);
double percent16Bit =
m_totalNumberStrings
? ((double)m_number16BitStrings * 100) / (double)m_totalNumberStrings
: 0.0;
double average16bitLength =
m_number16BitStrings
? (double)m_total16BitData / (double)m_number16BitStrings
: 0.0;
dataLogF(
"%8u (%5.2f%%) 16 bit %12llu chars %12llu bytes avg length "
"%6.1f\n",
m_number16BitStrings, percent16Bit, m_total16BitData,
m_total16BitData * 2, average16bitLength);
double averageLength =
m_totalNumberStrings
? (double)totalNumberCharacters / (double)m_totalNumberStrings
: 0.0;
unsigned long long totalDataBytes = m_total8BitData + m_total16BitData * 2;
dataLogF(
"%8u Total %12llu chars %12llu bytes avg length "
"%6.1f\n",
m_totalNumberStrings, totalNumberCharacters, totalDataBytes,
averageLength);
unsigned long long totalSavedBytes = m_total8BitData;
double percentSavings = totalSavedBytes
? ((double)totalSavedBytes * 100) /
(double)(totalDataBytes + totalSavedBytes)
: 0.0;
dataLogF(" Total savings %12llu bytes (%5.2f%%)\n", totalSavedBytes,
percentSavings);
unsigned totalOverhead = m_totalNumberStrings * sizeof(StringImpl);
double overheadPercent = (double)totalOverhead / (double)totalDataBytes * 100;
dataLogF(" StringImpl overheader: %8u (%5.2f%%)\n", totalOverhead,
overheadPercent);
internal::callOnMainThread(&printLiveStringStats, nullptr);
}
#endif
void* StringImpl::operator new(size_t size) {
ASSERT(size == sizeof(StringImpl));
return Partitions::bufferMalloc(size, "WTF::StringImpl");
}
void StringImpl::operator delete(void* ptr) {
Partitions::bufferFree(ptr);
}
inline StringImpl::~StringImpl() {
ASSERT(!isStatic());
STRING_STATS_REMOVE_STRING(this);
if (isAtomic())
AtomicStringTable::instance().remove(this);
}
void StringImpl::destroyIfNotStatic() {
if (!isStatic())
delete this;
}
bool StringImpl::isSafeToSendToAnotherThread() const {
if (isStatic())
return true;
// AtomicStrings are not safe to send between threads as ~StringImpl()
// will try to remove them from the wrong AtomicStringTable.
if (isAtomic())
return false;
if (hasOneRef())
return true;
return false;
}
PassRefPtr<StringImpl> StringImpl::createUninitialized(unsigned length,
LChar*& data) {
if (!length) {
data = 0;
return empty();
}
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
StringImpl* string = static_cast<StringImpl*>(Partitions::bufferMalloc(
allocationSize<LChar>(length), "WTF::StringImpl"));
data = reinterpret_cast<LChar*>(string + 1);
return adoptRef(new (string) StringImpl(length, Force8BitConstructor));
}
PassRefPtr<StringImpl> StringImpl::createUninitialized(unsigned length,
UChar*& data) {
if (!length) {
data = 0;
return empty();
}
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
StringImpl* string = static_cast<StringImpl*>(Partitions::bufferMalloc(
allocationSize<UChar>(length), "WTF::StringImpl"));
data = reinterpret_cast<UChar*>(string + 1);
return adoptRef(new (string) StringImpl(length));
}
static StaticStringsTable& staticStrings() {
DEFINE_STATIC_LOCAL(StaticStringsTable, staticStrings, ());
return staticStrings;
}
#if ENABLE(ASSERT)
static bool s_allowCreationOfStaticStrings = true;
#endif
const StaticStringsTable& StringImpl::allStaticStrings() {
return staticStrings();
}
void StringImpl::freezeStaticStrings() {
ASSERT(isMainThread());
#if ENABLE(ASSERT)
s_allowCreationOfStaticStrings = false;
#endif
}
unsigned StringImpl::m_highestStaticStringLength = 0;
StringImpl* StringImpl::createStatic(const char* string,
unsigned length,
unsigned hash) {
ASSERT(s_allowCreationOfStaticStrings);
ASSERT(string);
ASSERT(length);
StaticStringsTable::const_iterator it = staticStrings().find(hash);
if (it != staticStrings().end()) {
ASSERT(!memcmp(string, it->value + 1, length * sizeof(LChar)));
return it->value;
}
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
RELEASE_ASSERT(length <=
((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) /
sizeof(LChar)));
size_t size = sizeof(StringImpl) + length * sizeof(LChar);
WTF_INTERNAL_LEAK_SANITIZER_DISABLED_SCOPE;
StringImpl* impl = static_cast<StringImpl*>(
Partitions::bufferMalloc(size, "WTF::StringImpl"));
LChar* data = reinterpret_cast<LChar*>(impl + 1);
impl = new (impl) StringImpl(length, hash, StaticString);
memcpy(data, string, length * sizeof(LChar));
#if ENABLE(ASSERT)
impl->assertHashIsCorrect();
#endif
ASSERT(isMainThread());
m_highestStaticStringLength = std::max(m_highestStaticStringLength, length);
staticStrings().add(hash, impl);
WTF_ANNOTATE_BENIGN_RACE(impl,
"Benign race on the reference counter of a static "
"string created by StringImpl::createStatic");
return impl;
}
void StringImpl::reserveStaticStringsCapacityForSize(unsigned size) {
ASSERT(s_allowCreationOfStaticStrings);
staticStrings().reserveCapacityForSize(size);
}
PassRefPtr<StringImpl> StringImpl::create(const UChar* characters,
unsigned length) {
if (!characters || !length)
return empty();
UChar* data;
RefPtr<StringImpl> string = createUninitialized(length, data);
memcpy(data, characters, length * sizeof(UChar));
return string.release();
}
PassRefPtr<StringImpl> StringImpl::create(const LChar* characters,
unsigned length) {
if (!characters || !length)
return empty();
LChar* data;
RefPtr<StringImpl> string = createUninitialized(length, data);
memcpy(data, characters, length * sizeof(LChar));
return string.release();
}
PassRefPtr<StringImpl> StringImpl::create8BitIfPossible(const UChar* characters,
unsigned length) {
if (!characters || !length)
return empty();
LChar* data;
RefPtr<StringImpl> string = createUninitialized(length, data);
for (size_t i = 0; i < length; ++i) {
if (characters[i] & 0xff00)
return create(characters, length);
data[i] = static_cast<LChar>(characters[i]);
}
return string.release();
}
PassRefPtr<StringImpl> StringImpl::create(const LChar* string) {
if (!string)
return empty();
size_t length = strlen(reinterpret_cast<const char*>(string));
RELEASE_ASSERT(length <= numeric_limits<unsigned>::max());
return create(string, length);
}
bool StringImpl::containsOnlyWhitespace() {
// FIXME: The definition of whitespace here includes a number of characters
// that are not whitespace from the point of view of LayoutText; I wonder if
// that's a problem in practice.
if (is8Bit()) {
for (unsigned i = 0; i < m_length; ++i) {
UChar c = characters8()[i];
if (!isASCIISpace(c))
return false;
}
return true;
}
for (unsigned i = 0; i < m_length; ++i) {
UChar c = characters16()[i];
if (!isASCIISpace(c))
return false;
}
return true;
}
PassRefPtr<StringImpl> StringImpl::substring(unsigned start, unsigned length) {
if (start >= m_length)
return empty();
unsigned maxLength = m_length - start;
if (length >= maxLength) {
if (!start)
return this;
length = maxLength;
}
if (is8Bit())
return create(characters8() + start, length);
return create(characters16() + start, length);
}
UChar32 StringImpl::characterStartingAt(unsigned i) {
if (is8Bit())
return characters8()[i];
if (U16_IS_SINGLE(characters16()[i]))
return characters16()[i];
if (i + 1 < m_length && U16_IS_LEAD(characters16()[i]) &&
U16_IS_TRAIL(characters16()[i + 1]))
return U16_GET_SUPPLEMENTARY(characters16()[i], characters16()[i + 1]);
return 0;
}
unsigned StringImpl::copyTo(UChar* buffer,
unsigned start,
unsigned maxLength) const {
unsigned numberOfCharactersToCopy = std::min(length() - start, maxLength);
if (!numberOfCharactersToCopy)
return 0;
if (is8Bit())
copyChars(buffer, characters8() + start, numberOfCharactersToCopy);
else
copyChars(buffer, characters16() + start, numberOfCharactersToCopy);
return numberOfCharactersToCopy;
}
PassRefPtr<StringImpl> StringImpl::lowerASCII() {
// First scan the string for uppercase and non-ASCII characters:
if (is8Bit()) {
unsigned firstIndexToBeLowered = m_length;
for (unsigned i = 0; i < m_length; ++i) {
LChar ch = characters8()[i];
if (isASCIIUpper(ch)) {
firstIndexToBeLowered = i;
break;
}
}
// Nothing to do if the string is all ASCII with no uppercase.
if (firstIndexToBeLowered == m_length) {
return this;
}
LChar* data8;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data8);
memcpy(data8, characters8(), firstIndexToBeLowered);
for (unsigned i = firstIndexToBeLowered; i < m_length; ++i) {
LChar ch = characters8()[i];
data8[i] = isASCIIUpper(ch) ? toASCIILower(ch) : ch;
}
return newImpl.release();
}
bool noUpper = true;
UChar ored = 0;
const UChar* end = characters16() + m_length;
for (const UChar* chp = characters16(); chp != end; ++chp) {
if (isASCIIUpper(*chp))
noUpper = false;
ored |= *chp;
}
// Nothing to do if the string is all ASCII with no uppercase.
if (noUpper && !(ored & ~0x7F))
return this;
RELEASE_ASSERT(m_length <=
static_cast<unsigned>(numeric_limits<unsigned>::max()));
unsigned length = m_length;
UChar* data16;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data16);
for (unsigned i = 0; i < length; ++i) {
UChar c = characters16()[i];
data16[i] = isASCIIUpper(c) ? toASCIILower(c) : c;
}
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::lower() {
// Note: This is a hot function in the Dromaeo benchmark, specifically the
// no-op code path up through the first 'return' statement.
// First scan the string for uppercase and non-ASCII characters:
if (is8Bit()) {
unsigned firstIndexToBeLowered = m_length;
for (unsigned i = 0; i < m_length; ++i) {
LChar ch = characters8()[i];
if (UNLIKELY(isASCIIUpper(ch) || ch & ~0x7F)) {
firstIndexToBeLowered = i;
break;
}
}
// Nothing to do if the string is all ASCII with no uppercase.
if (firstIndexToBeLowered == m_length)
return this;
LChar* data8;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data8);
memcpy(data8, characters8(), firstIndexToBeLowered);
for (unsigned i = firstIndexToBeLowered; i < m_length; ++i) {
LChar ch = characters8()[i];
data8[i] = UNLIKELY(ch & ~0x7F) ? static_cast<LChar>(Unicode::toLower(ch))
: toASCIILower(ch);
}
return newImpl.release();
}
bool noUpper = true;
UChar ored = 0;
const UChar* end = characters16() + m_length;
for (const UChar* chp = characters16(); chp != end; ++chp) {
if (UNLIKELY(isASCIIUpper(*chp)))
noUpper = false;
ored |= *chp;
}
// Nothing to do if the string is all ASCII with no uppercase.
if (noUpper && !(ored & ~0x7F))
return this;
RELEASE_ASSERT(m_length <=
static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = m_length;
if (!(ored & ~0x7F)) {
UChar* data16;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data16);
for (int32_t i = 0; i < length; ++i) {
UChar c = characters16()[i];
data16[i] = toASCIILower(c);
}
return newImpl.release();
}
// Do a slower implementation for cases that include non-ASCII characters.
UChar* data16;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data16);
bool error;
int32_t realLength =
Unicode::toLower(data16, length, characters16(), m_length, &error);
if (!error && realLength == length)
return newImpl.release();
newImpl = createUninitialized(realLength, data16);
Unicode::toLower(data16, realLength, characters16(), m_length, &error);
if (error)
return this;
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::upper() {
// This function could be optimized for no-op cases the way lower() is,
// but in empirical testing, few actual calls to upper() are no-ops, so
// it wouldn't be worth the extra time for pre-scanning.
RELEASE_ASSERT(m_length <=
static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = m_length;
if (is8Bit()) {
LChar* data8;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data8);
// Do a faster loop for the case where all the characters are ASCII.
LChar ored = 0;
for (int i = 0; i < length; ++i) {
LChar c = characters8()[i];
ored |= c;
data8[i] = toASCIIUpper(c);
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII Latin-1
// characters.
int numberSharpSCharacters = 0;
// There are two special cases.
// 1. latin-1 characters when converted to upper case are 16 bit
// characters.
// 2. Lower case sharp-S converts to "SS" (two characters)
for (int32_t i = 0; i < length; ++i) {
LChar c = characters8()[i];
if (UNLIKELY(c == smallLetterSharpSCharacter))
++numberSharpSCharacters;
UChar upper = static_cast<UChar>(Unicode::toUpper(c));
if (UNLIKELY(upper > 0xff)) {
// Since this upper-cased character does not fit in an 8-bit string, we
// need to take the 16-bit path.
goto upconvert;
}
data8[i] = static_cast<LChar>(upper);
}
if (!numberSharpSCharacters)
return newImpl.release();
// We have numberSSCharacters sharp-s characters, but none of the other
// special characters.
newImpl = createUninitialized(m_length + numberSharpSCharacters, data8);
LChar* dest = data8;
for (int32_t i = 0; i < length; ++i) {
LChar c = characters8()[i];
if (c == smallLetterSharpSCharacter) {
*dest++ = 'S';
*dest++ = 'S';
} else {
*dest++ = static_cast<LChar>(Unicode::toUpper(c));
}
}
return newImpl.release();
}
upconvert:
RefPtr<StringImpl> upconverted = upconvertedString();
const UChar* source16 = upconverted->characters16();
UChar* data16;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data16);
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
for (int i = 0; i < length; ++i) {
UChar c = source16[i];
ored |= c;
data16[i] = toASCIIUpper(c);
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t realLength =
Unicode::toUpper(data16, length, source16, m_length, &error);
if (!error && realLength == length)
return newImpl;
newImpl = createUninitialized(realLength, data16);
Unicode::toUpper(data16, realLength, source16, m_length, &error);
if (error)
return this;
return newImpl.release();
}
static inline bool localeIdMatchesLang(const AtomicString& localeId,
const StringView& lang) {
RELEASE_ASSERT(lang.length() >= 2 && lang.length() <= 3);
if (!localeId.impl() || !localeId.impl()->startsWithIgnoringCase(lang))
return false;
if (localeId.impl()->length() == lang.length())
return true;
const UChar maybeDelimiter = (*localeId.impl())[lang.length()];
return maybeDelimiter == '-' || maybeDelimiter == '_' ||
maybeDelimiter == '@';
}
typedef int32_t (*icuCaseConverter)(UChar*,
int32_t,
const UChar*,
int32_t,
const char*,
UErrorCode*);
static PassRefPtr<StringImpl> caseConvert(const UChar* source16,
size_t length,
icuCaseConverter converter,
const char* locale,
StringImpl* originalString) {
UChar* data16;
size_t targetLength = length;
RefPtr<StringImpl> output = StringImpl::createUninitialized(length, data16);
do {
UErrorCode status = U_ZERO_ERROR;
targetLength =
converter(data16, targetLength, source16, length, locale, &status);
if (U_SUCCESS(status)) {
if (length > 0)
return output->substring(0, targetLength);
return output.release();
}
if (status != U_BUFFER_OVERFLOW_ERROR)
return originalString;
// Expand the buffer.
output = StringImpl::createUninitialized(targetLength, data16);
} while (true);
}
PassRefPtr<StringImpl> StringImpl::lower(const AtomicString& localeIdentifier) {
// Use the more-optimized code path most of the time.
// Only Turkic (tr and az) languages and Lithuanian requires
// locale-specific lowercasing rules. Even though CLDR has el-Lower,
// it's identical to the locale-agnostic lowercasing. Context-dependent
// handling of Greek capital sigma is built into the common lowercasing
// function in ICU.
const char* localeForConversion = 0;
if (localeIdMatchesLang(localeIdentifier, "tr") ||
localeIdMatchesLang(localeIdentifier, "az"))
localeForConversion = "tr";
else if (localeIdMatchesLang(localeIdentifier, "lt"))
localeForConversion = "lt";
else
return lower();
if (m_length > static_cast<unsigned>(numeric_limits<int32_t>::max()))
CRASH();
int length = m_length;
RefPtr<StringImpl> upconverted = upconvertedString();
const UChar* source16 = upconverted->characters16();
return caseConvert(source16, length, u_strToLower, localeForConversion, this);
}
PassRefPtr<StringImpl> StringImpl::upper(const AtomicString& localeIdentifier) {
// Use the more-optimized code path most of the time.
// Only Turkic (tr and az) languages and Greek require locale-specific
// lowercasing rules.
icu::UnicodeString transliteratorId;
const char* localeForConversion = 0;
if (localeIdMatchesLang(localeIdentifier, "tr") ||
localeIdMatchesLang(localeIdentifier, "az"))
localeForConversion = "tr";
else if (localeIdMatchesLang(localeIdentifier, "el"))
transliteratorId = UNICODE_STRING_SIMPLE("el-Upper");
else if (localeIdMatchesLang(localeIdentifier, "lt"))
localeForConversion = "lt";
else
return upper();
if (m_length > static_cast<unsigned>(numeric_limits<int32_t>::max()))
CRASH();
int length = m_length;
RefPtr<StringImpl> upconverted = upconvertedString();
const UChar* source16 = upconverted->characters16();
if (localeForConversion)
return caseConvert(source16, length, u_strToUpper, localeForConversion,
this);
// TODO(jungshik): Cache transliterator if perf penaly warrants it for Greek.
UErrorCode status = U_ZERO_ERROR;
std::unique_ptr<icu::Transliterator> translit =
wrapUnique(icu::Transliterator::createInstance(transliteratorId,
UTRANS_FORWARD, status));
if (U_FAILURE(status))
return upper();
// target will be copy-on-write.
icu::UnicodeString target(false, source16, length);
translit->transliterate(target);
return create(target.getBuffer(), target.length());
}
PassRefPtr<StringImpl> StringImpl::fill(UChar character) {
if (!(character & ~0x7F)) {
LChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (unsigned i = 0; i < m_length; ++i)
data[i] = static_cast<LChar>(character);
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (unsigned i = 0; i < m_length; ++i)
data[i] = character;
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::foldCase() {
RELEASE_ASSERT(m_length <=
static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = m_length;
if (is8Bit()) {
// Do a faster loop for the case where all the characters are ASCII.
LChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
LChar ored = 0;
for (int32_t i = 0; i < length; ++i) {
LChar c = characters8()[i];
data[i] = toASCIILower(c);
ored |= c;
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII Latin-1
// characters.
for (int32_t i = 0; i < length; ++i)
data[i] = static_cast<LChar>(Unicode::toLower(characters8()[i]));
return newImpl.release();
}
// Do a faster loop for the case where all the characters are ASCII.
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
UChar ored = 0;
for (int32_t i = 0; i < length; ++i) {
UChar c = characters16()[i];
ored |= c;
data[i] = toASCIILower(c);
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t realLength =
Unicode::foldCase(data, length, characters16(), m_length, &error);
if (!error && realLength == length)
return newImpl.release();
newImpl = createUninitialized(realLength, data);
Unicode::foldCase(data, realLength, characters16(), m_length, &error);
if (error)
return this;
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::truncate(unsigned length) {
if (length >= m_length)
return this;
if (is8Bit())
return create(characters8(), length);
return create(characters16(), length);
}
template <class UCharPredicate>
inline PassRefPtr<StringImpl> StringImpl::stripMatchedCharacters(
UCharPredicate predicate) {
if (!m_length)
return empty();
unsigned start = 0;
unsigned end = m_length - 1;
// skip white space from start
while (start <= end &&
predicate(is8Bit() ? characters8()[start] : characters16()[start]))
++start;
// only white space
if (start > end)
return empty();
// skip white space from end
while (end && predicate(is8Bit() ? characters8()[end] : characters16()[end]))
--end;
if (!start && end == m_length - 1)
return this;
if (is8Bit())
return create(characters8() + start, end + 1 - start);
return create(characters16() + start, end + 1 - start);
}
class UCharPredicate final {
STACK_ALLOCATED();
public:
inline UCharPredicate(CharacterMatchFunctionPtr function)
: m_function(function) {}
inline bool operator()(UChar ch) const { return m_function(ch); }
private:
const CharacterMatchFunctionPtr m_function;
};
class SpaceOrNewlinePredicate final {
STACK_ALLOCATED();
public:
inline bool operator()(UChar ch) const { return isSpaceOrNewline(ch); }
};
PassRefPtr<StringImpl> StringImpl::stripWhiteSpace() {
return stripMatchedCharacters(SpaceOrNewlinePredicate());
}
PassRefPtr<StringImpl> StringImpl::stripWhiteSpace(
IsWhiteSpaceFunctionPtr isWhiteSpace) {
return stripMatchedCharacters(UCharPredicate(isWhiteSpace));
}
template <typename CharType>
ALWAYS_INLINE PassRefPtr<StringImpl> StringImpl::removeCharacters(
const CharType* characters,
CharacterMatchFunctionPtr findMatch) {
const CharType* from = characters;
const CharType* fromend = from + m_length;
// Assume the common case will not remove any characters
while (from != fromend && !findMatch(*from))
++from;
if (from == fromend)
return this;
StringBuffer<CharType> data(m_length);
CharType* to = data.characters();
unsigned outc = from - characters;
if (outc)
memcpy(to, characters, outc * sizeof(CharType));
while (true) {
while (from != fromend && findMatch(*from))
++from;
while (from != fromend && !findMatch(*from))
to[outc++] = *from++;
if (from == fromend)
break;
}
data.shrink(outc);
return data.release();
}
PassRefPtr<StringImpl> StringImpl::removeCharacters(
CharacterMatchFunctionPtr findMatch) {
if (is8Bit())
return removeCharacters(characters8(), findMatch);
return removeCharacters(characters16(), findMatch);
}
PassRefPtr<StringImpl> StringImpl::remove(unsigned start,
unsigned lengthToRemove) {
if (lengthToRemove <= 0)
return this;
if (start >= m_length)
return this;
lengthToRemove = std::min(m_length - start, lengthToRemove);
unsigned removedEnd = start + lengthToRemove;
if (is8Bit()) {
StringBuffer<LChar> buffer(m_length - lengthToRemove);
copyChars(buffer.characters(), characters8(), start);
copyChars(buffer.characters() + start, characters8() + removedEnd,
m_length - removedEnd);
return buffer.release();
}
StringBuffer<UChar> buffer(m_length - lengthToRemove);
copyChars(buffer.characters(), characters16(), start);
copyChars(buffer.characters() + start, characters16() + removedEnd,
m_length - removedEnd);
return buffer.release();
}
template <typename CharType, class UCharPredicate>
inline PassRefPtr<StringImpl> StringImpl::simplifyMatchedCharactersToSpace(
UCharPredicate predicate,
StripBehavior stripBehavior) {
StringBuffer<CharType> data(m_length);
const CharType* from = getCharacters<CharType>();
const CharType* fromend = from + m_length;
int outc = 0;
bool changedToSpace = false;
CharType* to = data.characters();
if (stripBehavior == StripExtraWhiteSpace) {
while (true) {
while (from != fromend && predicate(*from)) {
if (*from != ' ')
changedToSpace = true;
++from;
}
while (from != fromend && !predicate(*from))
to[outc++] = *from++;
if (from != fromend)
to[outc++] = ' ';
else
break;
}
if (outc > 0 && to[outc - 1] == ' ')
--outc;
} else {
for (; from != fromend; ++from) {
if (predicate(*from)) {
if (*from != ' ')
changedToSpace = true;
to[outc++] = ' ';
} else {
to[outc++] = *from;
}
}
}
if (static_cast<unsigned>(outc) == m_length && !changedToSpace)
return this;
data.shrink(outc);
return data.release();
}
PassRefPtr<StringImpl> StringImpl::simplifyWhiteSpace(
StripBehavior stripBehavior) {
if (is8Bit())
return StringImpl::simplifyMatchedCharactersToSpace<LChar>(
SpaceOrNewlinePredicate(), stripBehavior);
return StringImpl::simplifyMatchedCharactersToSpace<UChar>(
SpaceOrNewlinePredicate(), stripBehavior);
}
PassRefPtr<StringImpl> StringImpl::simplifyWhiteSpace(
IsWhiteSpaceFunctionPtr isWhiteSpace,
StripBehavior stripBehavior) {
if (is8Bit())
return StringImpl::simplifyMatchedCharactersToSpace<LChar>(
UCharPredicate(isWhiteSpace), stripBehavior);
return StringImpl::simplifyMatchedCharactersToSpace<UChar>(
UCharPredicate(isWhiteSpace), stripBehavior);
}
int StringImpl::toIntStrict(bool* ok, int base) {
if (is8Bit())
return charactersToIntStrict(characters8(), m_length, ok, base);
return charactersToIntStrict(characters16(), m_length, ok, base);
}
unsigned StringImpl::toUIntStrict(bool* ok, int base) {
if (is8Bit())
return charactersToUIntStrict(characters8(), m_length, ok, base);
return charactersToUIntStrict(characters16(), m_length, ok, base);
}
int64_t StringImpl::toInt64Strict(bool* ok, int base) {
if (is8Bit())
return charactersToInt64Strict(characters8(), m_length, ok, base);
return charactersToInt64Strict(characters16(), m_length, ok, base);
}
uint64_t StringImpl::toUInt64Strict(bool* ok, int base) {
if (is8Bit())
return charactersToUInt64Strict(characters8(), m_length, ok, base);
return charactersToUInt64Strict(characters16(), m_length, ok, base);
}
int StringImpl::toInt(bool* ok) {
if (is8Bit())
return charactersToInt(characters8(), m_length, ok);
return charactersToInt(characters16(), m_length, ok);
}
unsigned StringImpl::toUInt(bool* ok) {
if (is8Bit())
return charactersToUInt(characters8(), m_length, ok);
return charactersToUInt(characters16(), m_length, ok);
}
int64_t StringImpl::toInt64(bool* ok) {
if (is8Bit())
return charactersToInt64(characters8(), m_length, ok);
return charactersToInt64(characters16(), m_length, ok);
}
uint64_t StringImpl::toUInt64(bool* ok) {
if (is8Bit())
return charactersToUInt64(characters8(), m_length, ok);
return charactersToUInt64(characters16(), m_length, ok);
}
double StringImpl::toDouble(bool* ok) {
if (is8Bit())
return charactersToDouble(characters8(), m_length, ok);
return charactersToDouble(characters16(), m_length, ok);
}
float StringImpl::toFloat(bool* ok) {
if (is8Bit())
return charactersToFloat(characters8(), m_length, ok);
return charactersToFloat(characters16(), m_length, ok);
}
// Table is based on ftp://ftp.unicode.org/Public/UNIDATA/CaseFolding.txt
const UChar StringImpl::latin1CaseFoldTable[256] = {
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008,
0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011,
0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017, 0x0018, 0x0019, 0x001a,
0x001b, 0x001c, 0x001d, 0x001e, 0x001f, 0x0020, 0x0021, 0x0022, 0x0023,
0x0024, 0x0025, 0x0026, 0x0027, 0x0028, 0x0029, 0x002a, 0x002b, 0x002c,
0x002d, 0x002e, 0x002f, 0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035,
0x0036, 0x0037, 0x0038, 0x0039, 0x003a, 0x003b, 0x003c, 0x003d, 0x003e,
0x003f, 0x0040, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067,
0x0068, 0x0069, 0x006a, 0x006b, 0x006c, 0x006d, 0x006e, 0x006f, 0x0070,
0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077, 0x0078, 0x0079,
0x007a, 0x005b, 0x005c, 0x005d, 0x005e, 0x005f, 0x0060, 0x0061, 0x0062,
0x0063, 0x0064, 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b,
0x006c, 0x006d, 0x006e, 0x006f, 0x0070, 0x0071, 0x0072, 0x0073, 0x0074,
0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007a, 0x007b, 0x007c, 0x007d,
0x007e, 0x007f, 0x0080, 0x0081, 0x0082, 0x0083, 0x0084, 0x0085, 0x0086,
0x0087, 0x0088, 0x0089, 0x008a, 0x008b, 0x008c, 0x008d, 0x008e, 0x008f,
0x0090, 0x0091, 0x0092, 0x0093, 0x0094, 0x0095, 0x0096, 0x0097, 0x0098,
0x0099, 0x009a, 0x009b, 0x009c, 0x009d, 0x009e, 0x009f, 0x00a0, 0x00a1,
0x00a2, 0x00a3, 0x00a4, 0x00a5, 0x00a6, 0x00a7, 0x00a8, 0x00a9, 0x00aa,
0x00ab, 0x00ac, 0x00ad, 0x00ae, 0x00af, 0x00b0, 0x00b1, 0x00b2, 0x00b3,
0x00b4, 0x03bc, 0x00b6, 0x00b7, 0x00b8, 0x00b9, 0x00ba, 0x00bb, 0x00bc,
0x00bd, 0x00be, 0x00bf, 0x00e0, 0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5,
0x00e6, 0x00e7, 0x00e8, 0x00e9, 0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee,
0x00ef, 0x00f0, 0x00f1, 0x00f2, 0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00d7,
0x00f8, 0x00f9, 0x00fa, 0x00fb, 0x00fc, 0x00fd, 0x00fe, 0x00df, 0x00e0,
0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7, 0x00e8, 0x00e9,
0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef, 0x00f0, 0x00f1, 0x00f2,
0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00f7, 0x00f8, 0x00f9, 0x00fa, 0x00fb,
0x00fc, 0x00fd, 0x00fe, 0x00ff,
};
bool equalIgnoringCase(const LChar* a, const LChar* b, unsigned length) {
DCHECK_GE(length, 0u);
if (a == b)
return true;
while (length--) {
if (StringImpl::latin1CaseFoldTable[*a++] !=
StringImpl::latin1CaseFoldTable[*b++])
return false;
}
return true;
}
bool equalIgnoringCase(const UChar* a, const UChar* b, unsigned length) {
DCHECK_GE(length, 0u);
if (a == b)
return true;
return !Unicode::umemcasecmp(a, b, length);
}
bool equalIgnoringCase(const UChar* a, const LChar* b, unsigned length) {
while (length--) {
if (foldCase(*a++) != StringImpl::latin1CaseFoldTable[*b++])
return false;
}
return true;
}
size_t StringImpl::find(CharacterMatchFunctionPtr matchFunction,
unsigned start) {
if (is8Bit())
return WTF::find(characters8(), m_length, matchFunction, start);
return WTF::find(characters16(), m_length, matchFunction, start);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t findInternal(
const SearchCharacterType* searchCharacters,
const MatchCharacterType* matchCharacters,
unsigned index,
unsigned searchLength,
unsigned matchLength) {
// Optimization: keep a running hash of the strings,
// only call equal() if the hashes match.
// delta is the number of additional times to test; delta == 0 means test only
// once.
unsigned delta = searchLength - matchLength;
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[i];
matchHash += matchCharacters[i];
}
unsigned i = 0;
// keep looping until we match
while (searchHash != matchHash ||
!equal(searchCharacters + i, matchCharacters, matchLength)) {
if (i == delta)
return kNotFound;
searchHash += searchCharacters[i + matchLength];
searchHash -= searchCharacters[i];
++i;
}
return index + i;
}
size_t StringImpl::find(const StringView& matchString, unsigned index) {
if (UNLIKELY(matchString.isNull()))
return kNotFound;
unsigned matchLength = matchString.length();
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1) {
if (is8Bit())
return WTF::find(characters8(), length(), matchString[0], index);
return WTF::find(characters16(), length(), matchString[0], index);
}
if (UNLIKELY(!matchLength))
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return kNotFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return kNotFound;
if (is8Bit()) {
if (matchString.is8Bit())
return findInternal(characters8() + index, matchString.characters8(),
index, searchLength, matchLength);
return findInternal(characters8() + index, matchString.characters16(),
index, searchLength, matchLength);
}
if (matchString.is8Bit())
return findInternal(characters16() + index, matchString.characters8(),
index, searchLength, matchLength);
return findInternal(characters16() + index, matchString.characters16(), index,
searchLength, matchLength);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t findIgnoringCaseInternal(
const SearchCharacterType* searchCharacters,
const MatchCharacterType* matchCharacters,
unsigned index,
unsigned searchLength,
unsigned matchLength) {
// delta is the number of additional times to test; delta == 0 means test only
// once.
unsigned delta = searchLength - matchLength;
unsigned i = 0;
// keep looping until we match
while (
!equalIgnoringCase(searchCharacters + i, matchCharacters, matchLength)) {
if (i == delta)
return kNotFound;
++i;
}
return index + i;
}
size_t StringImpl::findIgnoringCase(const StringView& matchString,
unsigned index) {
if (UNLIKELY(matchString.isNull()))
return kNotFound;
unsigned matchLength = matchString.length();
if (!matchLength)
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return kNotFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return kNotFound;
if (is8Bit()) {
if (matchString.is8Bit())
return findIgnoringCaseInternal(characters8() + index,
matchString.characters8(), index,
searchLength, matchLength);
return findIgnoringCaseInternal(characters8() + index,
matchString.characters16(), index,
searchLength, matchLength);
}
if (matchString.is8Bit())
return findIgnoringCaseInternal(characters16() + index,
matchString.characters8(), index,
searchLength, matchLength);
return findIgnoringCaseInternal(characters16() + index,
matchString.characters16(), index,
searchLength, matchLength);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t findIgnoringASCIICaseInternal(
const SearchCharacterType* searchCharacters,
const MatchCharacterType* matchCharacters,
unsigned index,
unsigned searchLength,
unsigned matchLength) {
// delta is the number of additional times to test; delta == 0 means test only
// once.
unsigned delta = searchLength - matchLength;
unsigned i = 0;
// keep looping until we match
while (!equalIgnoringASCIICase(searchCharacters + i, matchCharacters,
matchLength)) {
if (i == delta)
return kNotFound;
++i;
}
return index + i;
}
size_t StringImpl::findIgnoringASCIICase(const StringView& matchString,
unsigned index) {
if (UNLIKELY(matchString.isNull()))
return kNotFound;
unsigned matchLength = matchString.length();
if (!matchLength)
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return kNotFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return kNotFound;
if (is8Bit()) {
if (matchString.is8Bit())
return findIgnoringASCIICaseInternal(characters8() + index,
matchString.characters8(), index,
searchLength, matchLength);
return findIgnoringASCIICaseInternal(characters8() + index,
matchString.characters16(), index,
searchLength, matchLength);
}
if (matchString.is8Bit())
return findIgnoringASCIICaseInternal(characters16() + index,
matchString.characters8(), index,
searchLength, matchLength);
return findIgnoringASCIICaseInternal(characters16() + index,
matchString.characters16(), index,
searchLength, matchLength);
}
size_t StringImpl::reverseFind(UChar c, unsigned index) {
if (is8Bit())
return WTF::reverseFind(characters8(), m_length, c, index);
return WTF::reverseFind(characters16(), m_length, c, index);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t reverseFindInternal(
const SearchCharacterType* searchCharacters,
const MatchCharacterType* matchCharacters,
unsigned index,
unsigned length,
unsigned matchLength) {
// Optimization: keep a running hash of the strings,
// only call equal if the hashes match.
// delta is the number of additional times to test; delta == 0 means test only
// once.
unsigned delta = min(index, length - matchLength);
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[delta + i];
matchHash += matchCharacters[i];
}
// keep looping until we match
while (searchHash != matchHash ||
!equal(searchCharacters + delta, matchCharacters, matchLength)) {
if (!delta)
return kNotFound;
--delta;
searchHash -= searchCharacters[delta + matchLength];
searchHash += searchCharacters[delta];
}
return delta;
}
size_t StringImpl::reverseFind(const StringView& matchString, unsigned index) {
if (UNLIKELY(matchString.isNull()))
return kNotFound;
unsigned matchLength = matchString.length();
unsigned ourLength = length();
if (!matchLength)
return min(index, ourLength);
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1) {
if (is8Bit())
return WTF::reverseFind(characters8(), ourLength, matchString[0], index);
return WTF::reverseFind(characters16(), ourLength, matchString[0], index);
}
// Check index & matchLength are in range.
if (matchLength > ourLength)
return kNotFound;
if (is8Bit()) {
if (matchString.is8Bit())
return reverseFindInternal(characters8(), matchString.characters8(),
index, ourLength, matchLength);
return reverseFindInternal(characters8(), matchString.characters16(), index,
ourLength, matchLength);
}
if (matchString.is8Bit())
return reverseFindInternal(characters16(), matchString.characters8(), index,
ourLength, matchLength);
return reverseFindInternal(characters16(), matchString.characters16(), index,
ourLength, matchLength);
}
bool StringImpl::startsWith(UChar character) const {
return m_length && (*this)[0] == character;
}
bool StringImpl::startsWith(const StringView& prefix) const {
if (prefix.length() > length())
return false;
if (is8Bit()) {
if (prefix.is8Bit())
return equal(characters8(), prefix.characters8(), prefix.length());
return equal(characters8(), prefix.characters16(), prefix.length());
}
if (prefix.is8Bit())
return equal(characters16(), prefix.characters8(), prefix.length());
return equal(characters16(), prefix.characters16(), prefix.length());
}
bool StringImpl::startsWithIgnoringCase(const StringView& prefix) const {
if (prefix.length() > length())
return false;
if (is8Bit()) {
if (prefix.is8Bit())
return equalIgnoringCase(characters8(), prefix.characters8(),
prefix.length());
return equalIgnoringCase(characters8(), prefix.characters16(),
prefix.length());
}
if (prefix.is8Bit())
return equalIgnoringCase(characters16(), prefix.characters8(),
prefix.length());
return equalIgnoringCase(characters16(), prefix.characters16(),
prefix.length());
}
bool StringImpl::startsWithIgnoringASCIICase(const StringView& prefix) const {
if (prefix.length() > length())
return false;
if (is8Bit()) {
if (prefix.is8Bit())
return equalIgnoringASCIICase(characters8(), prefix.characters8(),
prefix.length());
return equalIgnoringASCIICase(characters8(), prefix.characters16(),
prefix.length());
}
if (prefix.is8Bit())
return equalIgnoringASCIICase(characters16(), prefix.characters8(),
prefix.length());
return equalIgnoringASCIICase(characters16(), prefix.characters16(),
prefix.length());
}
bool StringImpl::endsWith(UChar character) const {
return m_length && (*this)[m_length - 1] == character;
}
bool StringImpl::endsWith(const StringView& suffix) const {
if (suffix.length() > length())
return false;
unsigned startOffset = length() - suffix.length();
if (is8Bit()) {
if (suffix.is8Bit())
return equal(characters8() + startOffset, suffix.characters8(),
suffix.length());
return equal(characters8() + startOffset, suffix.characters16(),
suffix.length());
}
if (suffix.is8Bit())
return equal(characters16() + startOffset, suffix.characters8(),
suffix.length());
return equal(characters16() + startOffset, suffix.characters16(),
suffix.length());
}
bool StringImpl::endsWithIgnoringCase(const StringView& suffix) const {
if (suffix.length() > length())
return false;
unsigned startOffset = length() - suffix.length();
if (is8Bit()) {
if (suffix.is8Bit())
return equalIgnoringCase(characters8() + startOffset,
suffix.characters8(), suffix.length());
return equalIgnoringCase(characters8() + startOffset, suffix.characters16(),
suffix.length());
}
if (suffix.is8Bit())
return equalIgnoringCase(characters16() + startOffset, suffix.characters8(),
suffix.length());
return equalIgnoringCase(characters16() + startOffset, suffix.characters16(),
suffix.length());
}
bool StringImpl::endsWithIgnoringASCIICase(const StringView& suffix) const {
if (suffix.length() > length())
return false;
unsigned startOffset = length() - suffix.length();
if (is8Bit()) {
if (suffix.is8Bit())
return equalIgnoringASCIICase(characters8() + startOffset,
suffix.characters8(), suffix.length());
return equalIgnoringASCIICase(characters8() + startOffset,
suffix.characters16(), suffix.length());
}
if (suffix.is8Bit())
return equalIgnoringASCIICase(characters16() + startOffset,
suffix.characters8(), suffix.length());
return equalIgnoringASCIICase(characters16() + startOffset,
suffix.characters16(), suffix.length());
}
PassRefPtr<StringImpl> StringImpl::replace(UChar oldC, UChar newC) {
if (oldC == newC)
return this;
if (find(oldC) == kNotFound)
return this;
unsigned i;
if (is8Bit()) {
if (newC <= 0xff) {
LChar* data;
LChar oldChar = static_cast<LChar>(oldC);
LChar newChar = static_cast<LChar>(newC);
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (i = 0; i != m_length; ++i) {
LChar ch = characters8()[i];
if (ch == oldChar)
ch = newChar;
data[i] = ch;
}
return newImpl.release();
}
// There is the possibility we need to up convert from 8 to 16 bit,
// create a 16 bit string for the result.
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (i = 0; i != m_length; ++i) {
UChar ch = characters8()[i];
if (ch == oldC)
ch = newC;
data[i] = ch;
}
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (i = 0; i != m_length; ++i) {
UChar ch = characters16()[i];
if (ch == oldC)
ch = newC;
data[i] = ch;
}
return newImpl.release();
}
// TODO(esprehn): Passing a null replacement is the same as empty string for
// this method but all others treat null as a no-op. We should choose one
// behavior.
PassRefPtr<StringImpl> StringImpl::replace(unsigned position,
unsigned lengthToReplace,
const StringView& string) {
position = min(position, length());
lengthToReplace = min(lengthToReplace, length() - position);
unsigned lengthToInsert = string.length();
if (!lengthToReplace && !lengthToInsert)
return this;
RELEASE_ASSERT((length() - lengthToReplace) <
(numeric_limits<unsigned>::max() - lengthToInsert));
if (is8Bit() && (string.isNull() || string.is8Bit())) {
LChar* data;
RefPtr<StringImpl> newImpl =
createUninitialized(length() - lengthToReplace + lengthToInsert, data);
memcpy(data, characters8(), position * sizeof(LChar));
if (!string.isNull())
memcpy(data + position, string.characters8(),
lengthToInsert * sizeof(LChar));
memcpy(data + position + lengthToInsert,
characters8() + position + lengthToReplace,
(length() - position - lengthToReplace) * sizeof(LChar));
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl =
createUninitialized(length() - lengthToReplace + lengthToInsert, data);
if (is8Bit())
for (unsigned i = 0; i < position; ++i)
data[i] = characters8()[i];
else
memcpy(data, characters16(), position * sizeof(UChar));
if (!string.isNull()) {
if (string.is8Bit())
for (unsigned i = 0; i < lengthToInsert; ++i)
data[i + position] = string.characters8()[i];
else
memcpy(data + position, string.characters16(),
lengthToInsert * sizeof(UChar));
}
if (is8Bit()) {
for (unsigned i = 0; i < length() - position - lengthToReplace; ++i)
data[i + position + lengthToInsert] =
characters8()[i + position + lengthToReplace];
} else {
memcpy(data + position + lengthToInsert,
characters16() + position + lengthToReplace,
(length() - position - lengthToReplace) * sizeof(UChar));
}
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(UChar pattern,
const StringView& replacement) {
if (replacement.isNull())
return this;
if (replacement.is8Bit())
return replace(pattern, replacement.characters8(), replacement.length());
return replace(pattern, replacement.characters16(), replacement.length());
}
PassRefPtr<StringImpl> StringImpl::replace(UChar pattern,
const LChar* replacement,
unsigned repStrLength) {
ASSERT(replacement);
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches.
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != kNotFound) {
++matchCount;
++srcSegmentStart;
}
// If we have 0 matches then we don't have to do any more work.
if (!matchCount)
return this;
RELEASE_ASSERT(!repStrLength ||
matchCount <= numeric_limits<unsigned>::max() / repStrLength);
unsigned replaceSize = matchCount * repStrLength;
unsigned newSize = m_length - matchCount;
RELEASE_ASSERT(newSize < (numeric_limits<unsigned>::max() - replaceSize));
newSize += replaceSize;
// Construct the new data.
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
if (is8Bit()) {
LChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != kNotFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, characters8() + srcSegmentStart,
srcSegmentLength * sizeof(LChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement, repStrLength * sizeof(LChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, characters8() + srcSegmentStart,
srcSegmentLength * sizeof(LChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != kNotFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, characters16() + srcSegmentStart,
srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
for (unsigned i = 0; i < repStrLength; ++i)
data[i + dstOffset] = replacement[i];
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, characters16() + srcSegmentStart,
srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(UChar pattern,
const UChar* replacement,
unsigned repStrLength) {
ASSERT(replacement);
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches.
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != kNotFound) {
++matchCount;
++srcSegmentStart;
}
// If we have 0 matches then we don't have to do any more work.
if (!matchCount)
return this;
RELEASE_ASSERT(!repStrLength ||
matchCount <= numeric_limits<unsigned>::max() / repStrLength);
unsigned replaceSize = matchCount * repStrLength;
unsigned newSize = m_length - matchCount;
RELEASE_ASSERT(newSize < (numeric_limits<unsigned>::max() - replaceSize));
newSize += replaceSize;
// Construct the new data.
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
if (is8Bit()) {
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != kNotFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = characters8()[i + srcSegmentStart];
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = characters8()[i + srcSegmentStart];
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != kNotFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, characters16() + srcSegmentStart,
srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, characters16() + srcSegmentStart,
srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(const StringView& pattern,
const StringView& replacement) {
if (pattern.isNull() || replacement.isNull())
return this;
unsigned patternLength = pattern.length();
if (!patternLength)
return this;
unsigned repStrLength = replacement.length();
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches.
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != kNotFound) {
++matchCount;
srcSegmentStart += patternLength;
}
// If we have 0 matches, we don't have to do any more work
if (!matchCount)
return this;
unsigned newSize = m_length - matchCount * patternLength;
RELEASE_ASSERT(!repStrLength ||
matchCount <= numeric_limits<unsigned>::max() / repStrLength);
RELEASE_ASSERT(newSize <=
(numeric_limits<unsigned>::max() - matchCount * repStrLength));
newSize += matchCount * repStrLength;
// Construct the new data
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
bool srcIs8Bit = is8Bit();
bool replacementIs8Bit = replacement.is8Bit();
// There are 4 cases:
// 1. This and replacement are both 8 bit.
// 2. This and replacement are both 16 bit.
// 3. This is 8 bit and replacement is 16 bit.
// 4. This is 16 bit and replacement is 8 bit.
if (srcIs8Bit && replacementIs8Bit) {
// Case 1
LChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != kNotFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, characters8() + srcSegmentStart,
srcSegmentLength * sizeof(LChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement.characters8(),
repStrLength * sizeof(LChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + patternLength;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, characters8() + srcSegmentStart,
srcSegmentLength * sizeof(LChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != kNotFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
if (srcIs8Bit) {
// Case 3.
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = characters8()[i + srcSegmentStart];
} else {
// Case 2 & 4.
memcpy(data + dstOffset, characters16() + srcSegmentStart,
srcSegmentLength * sizeof(UChar));
}
dstOffset += srcSegmentLength;
if (replacementIs8Bit) {
// Cases 2 & 3.
for (unsigned i = 0; i < repStrLength; ++i)
data[i + dstOffset] = replacement.characters8()[i];
} else {
// Case 4
memcpy(data + dstOffset, replacement.characters16(),
repStrLength * sizeof(UChar));
}
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + patternLength;
}
srcSegmentLength = m_length - srcSegmentStart;
if (srcIs8Bit) {
// Case 3.
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = characters8()[i + srcSegmentStart];
} else {
// Cases 2 & 4.
memcpy(data + dstOffset, characters16() + srcSegmentStart,
srcSegmentLength * sizeof(UChar));
}
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::upconvertedString() {
if (is8Bit())
return String::make16BitFrom8BitSource(characters8(), m_length)
.releaseImpl();
return this;
}
static inline bool stringImplContentEqual(const StringImpl* a,
const StringImpl* b) {
unsigned aLength = a->length();
unsigned bLength = b->length();
if (aLength != bLength)
return false;
if (a->is8Bit()) {
if (b->is8Bit())
return equal(a->characters8(), b->characters8(), aLength);
return equal(a->characters8(), b->characters16(), aLength);
}
if (b->is8Bit())
return equal(a->characters16(), b->characters8(), aLength);
return equal(a->characters16(), b->characters16(), aLength);
}
bool equal(const StringImpl* a, const StringImpl* b) {
if (a == b)
return true;
if (!a || !b)
return false;
if (a->isAtomic() && b->isAtomic())
return false;
return stringImplContentEqual(a, b);
}
template <typename CharType>
inline bool equalInternal(const StringImpl* a,
const CharType* b,
unsigned length) {
if (!a)
return !b;
if (!b)
return false;
if (a->length() != length)
return false;
if (a->is8Bit())
return equal(a->characters8(), b, length);
return equal(a->characters16(), b, length);
}
bool equal(const StringImpl* a, const LChar* b, unsigned length) {
return equalInternal(a, b, length);
}
bool equal(const StringImpl* a, const UChar* b, unsigned length) {
return equalInternal(a, b, length);
}
bool equal(const StringImpl* a, const LChar* b) {
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
if (a->is8Bit()) {
const LChar* aPtr = a->characters8();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
LChar ac = aPtr[i];
if (!bc)
return false;
if (ac != bc)
return false;
}
return !b[length];
}
const UChar* aPtr = a->characters16();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
if (!bc)
return false;
if (aPtr[i] != bc)
return false;
}
return !b[length];
}
bool equalNonNull(const StringImpl* a, const StringImpl* b) {
ASSERT(a && b);
if (a == b)
return true;
return stringImplContentEqual(a, b);
}
bool equalIgnoringNullity(StringImpl* a, StringImpl* b) {
if (!a && b && !b->length())
return true;
if (!b && a && !a->length())
return true;
return equal(a, b);
}
template <typename CharacterType1, typename CharacterType2>
int codePointCompareIgnoringASCIICase(unsigned l1,
unsigned l2,
const CharacterType1* c1,
const CharacterType2* c2) {
const unsigned lmin = l1 < l2 ? l1 : l2;
unsigned pos = 0;
while (pos < lmin && toASCIILower(*c1) == toASCIILower(*c2)) {
++c1;
++c2;
++pos;
}
if (pos < lmin)
return (toASCIILower(c1[0]) > toASCIILower(c2[0])) ? 1 : -1;
if (l1 == l2)
return 0;
return (l1 > l2) ? 1 : -1;
}
int codePointCompareIgnoringASCIICase(const StringImpl* string1,
const LChar* string2) {
unsigned length1 = string1 ? string1->length() : 0;
size_t length2 = string2 ? strlen(reinterpret_cast<const char*>(string2)) : 0;
if (!string1)
return length2 > 0 ? -1 : 0;
if (!string2)
return length1 > 0 ? 1 : 0;
if (string1->is8Bit())
return codePointCompareIgnoringASCIICase(length1, length2,
string1->characters8(), string2);
return codePointCompareIgnoringASCIICase(length1, length2,
string1->characters16(), string2);
}
UChar32 toUpper(UChar32 c, const AtomicString& localeIdentifier) {
if (!localeIdentifier.isNull()) {
if (localeIdMatchesLang(localeIdentifier, "tr") ||
localeIdMatchesLang(localeIdentifier, "az")) {
if (c == 'i')
return latinCapitalLetterIWithDotAbove;
if (c == latinSmallLetterDotlessI)
return 'I';
} else if (localeIdMatchesLang(localeIdentifier, "lt")) {
// TODO(rob.buis) implement upper-casing rules for lt
// like in StringImpl::upper(locale).
}
}
return toUpper(c);
}
} // namespace WTF