blob: a9618ba9693d054880cf893d98f329f17d945e68 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/code-generator.h"
#include "src/ast/scopes.h"
#include "src/compiler/code-generator-impl.h"
#include "src/compiler/gap-resolver.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/osr.h"
#include "src/frames.h"
#include "src/ia32/assembler-ia32.h"
#include "src/ia32/frames-ia32.h"
#include "src/ia32/macro-assembler-ia32.h"
namespace v8 {
namespace internal {
namespace compiler {
#define __ masm()->
#define kScratchDoubleReg xmm0
// Adds IA-32 specific methods for decoding operands.
class IA32OperandConverter : public InstructionOperandConverter {
public:
IA32OperandConverter(CodeGenerator* gen, Instruction* instr)
: InstructionOperandConverter(gen, instr) {}
Operand InputOperand(size_t index, int extra = 0) {
return ToOperand(instr_->InputAt(index), extra);
}
Immediate InputImmediate(size_t index) {
return ToImmediate(instr_->InputAt(index));
}
Operand OutputOperand() { return ToOperand(instr_->Output()); }
Operand ToOperand(InstructionOperand* op, int extra = 0) {
if (op->IsRegister()) {
DCHECK(extra == 0);
return Operand(ToRegister(op));
} else if (op->IsFPRegister()) {
DCHECK(extra == 0);
return Operand(ToDoubleRegister(op));
}
DCHECK(op->IsStackSlot() || op->IsFPStackSlot());
return SlotToOperand(AllocatedOperand::cast(op)->index(), extra);
}
Operand SlotToOperand(int slot, int extra = 0) {
FrameOffset offset = frame_access_state()->GetFrameOffset(slot);
return Operand(offset.from_stack_pointer() ? esp : ebp,
offset.offset() + extra);
}
Operand HighOperand(InstructionOperand* op) {
DCHECK(op->IsFPStackSlot());
return ToOperand(op, kPointerSize);
}
Immediate ToImmediate(InstructionOperand* operand) {
Constant constant = ToConstant(operand);
if (constant.type() == Constant::kInt32 &&
(constant.rmode() == RelocInfo::WASM_MEMORY_REFERENCE ||
constant.rmode() == RelocInfo::WASM_GLOBAL_REFERENCE ||
constant.rmode() == RelocInfo::WASM_MEMORY_SIZE_REFERENCE)) {
return Immediate(reinterpret_cast<Address>(constant.ToInt32()),
constant.rmode());
}
switch (constant.type()) {
case Constant::kInt32:
return Immediate(constant.ToInt32());
case Constant::kFloat32:
return Immediate(
isolate()->factory()->NewNumber(constant.ToFloat32(), TENURED));
case Constant::kFloat64:
return Immediate(
isolate()->factory()->NewNumber(constant.ToFloat64(), TENURED));
case Constant::kExternalReference:
return Immediate(constant.ToExternalReference());
case Constant::kHeapObject:
return Immediate(constant.ToHeapObject());
case Constant::kInt64:
break;
case Constant::kRpoNumber:
return Immediate::CodeRelativeOffset(ToLabel(operand));
}
UNREACHABLE();
return Immediate(-1);
}
static size_t NextOffset(size_t* offset) {
size_t i = *offset;
(*offset)++;
return i;
}
static ScaleFactor ScaleFor(AddressingMode one, AddressingMode mode) {
STATIC_ASSERT(0 == static_cast<int>(times_1));
STATIC_ASSERT(1 == static_cast<int>(times_2));
STATIC_ASSERT(2 == static_cast<int>(times_4));
STATIC_ASSERT(3 == static_cast<int>(times_8));
int scale = static_cast<int>(mode - one);
DCHECK(scale >= 0 && scale < 4);
return static_cast<ScaleFactor>(scale);
}
Operand MemoryOperand(size_t* offset) {
AddressingMode mode = AddressingModeField::decode(instr_->opcode());
switch (mode) {
case kMode_MR: {
Register base = InputRegister(NextOffset(offset));
int32_t disp = 0;
return Operand(base, disp);
}
case kMode_MRI: {
Register base = InputRegister(NextOffset(offset));
Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset)));
return Operand(base, ctant.ToInt32(), ctant.rmode());
}
case kMode_MR1:
case kMode_MR2:
case kMode_MR4:
case kMode_MR8: {
Register base = InputRegister(NextOffset(offset));
Register index = InputRegister(NextOffset(offset));
ScaleFactor scale = ScaleFor(kMode_MR1, mode);
int32_t disp = 0;
return Operand(base, index, scale, disp);
}
case kMode_MR1I:
case kMode_MR2I:
case kMode_MR4I:
case kMode_MR8I: {
Register base = InputRegister(NextOffset(offset));
Register index = InputRegister(NextOffset(offset));
ScaleFactor scale = ScaleFor(kMode_MR1I, mode);
Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset)));
return Operand(base, index, scale, ctant.ToInt32(), ctant.rmode());
}
case kMode_M1:
case kMode_M2:
case kMode_M4:
case kMode_M8: {
Register index = InputRegister(NextOffset(offset));
ScaleFactor scale = ScaleFor(kMode_M1, mode);
int32_t disp = 0;
return Operand(index, scale, disp);
}
case kMode_M1I:
case kMode_M2I:
case kMode_M4I:
case kMode_M8I: {
Register index = InputRegister(NextOffset(offset));
ScaleFactor scale = ScaleFor(kMode_M1I, mode);
Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset)));
return Operand(index, scale, ctant.ToInt32(), ctant.rmode());
}
case kMode_MI: {
Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset)));
return Operand(ctant.ToInt32(), ctant.rmode());
}
case kMode_None:
UNREACHABLE();
return Operand(no_reg, 0);
}
UNREACHABLE();
return Operand(no_reg, 0);
}
Operand MemoryOperand(size_t first_input = 0) {
return MemoryOperand(&first_input);
}
};
namespace {
bool HasImmediateInput(Instruction* instr, size_t index) {
return instr->InputAt(index)->IsImmediate();
}
class OutOfLineLoadInteger final : public OutOfLineCode {
public:
OutOfLineLoadInteger(CodeGenerator* gen, Register result)
: OutOfLineCode(gen), result_(result) {}
void Generate() final { __ xor_(result_, result_); }
private:
Register const result_;
};
class OutOfLineLoadFloat final : public OutOfLineCode {
public:
OutOfLineLoadFloat(CodeGenerator* gen, XMMRegister result)
: OutOfLineCode(gen), result_(result) {}
void Generate() final { __ pcmpeqd(result_, result_); }
private:
XMMRegister const result_;
};
class OutOfLineTruncateDoubleToI final : public OutOfLineCode {
public:
OutOfLineTruncateDoubleToI(CodeGenerator* gen, Register result,
XMMRegister input)
: OutOfLineCode(gen), result_(result), input_(input) {}
void Generate() final {
__ sub(esp, Immediate(kDoubleSize));
__ movsd(MemOperand(esp, 0), input_);
__ SlowTruncateToI(result_, esp, 0);
__ add(esp, Immediate(kDoubleSize));
}
private:
Register const result_;
XMMRegister const input_;
};
class OutOfLineRecordWrite final : public OutOfLineCode {
public:
OutOfLineRecordWrite(CodeGenerator* gen, Register object, Operand operand,
Register value, Register scratch0, Register scratch1,
RecordWriteMode mode)
: OutOfLineCode(gen),
object_(object),
operand_(operand),
value_(value),
scratch0_(scratch0),
scratch1_(scratch1),
mode_(mode) {}
void Generate() final {
if (mode_ > RecordWriteMode::kValueIsPointer) {
__ JumpIfSmi(value_, exit());
}
__ CheckPageFlag(value_, scratch0_,
MemoryChunk::kPointersToHereAreInterestingMask, zero,
exit());
RememberedSetAction const remembered_set_action =
mode_ > RecordWriteMode::kValueIsMap ? EMIT_REMEMBERED_SET
: OMIT_REMEMBERED_SET;
SaveFPRegsMode const save_fp_mode =
frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs;
RecordWriteStub stub(isolate(), object_, scratch0_, scratch1_,
remembered_set_action, save_fp_mode);
__ lea(scratch1_, operand_);
__ CallStub(&stub);
}
private:
Register const object_;
Operand const operand_;
Register const value_;
Register const scratch0_;
Register const scratch1_;
RecordWriteMode const mode_;
};
} // namespace
#define ASSEMBLE_CHECKED_LOAD_FLOAT(asm_instr) \
do { \
auto result = i.OutputDoubleRegister(); \
auto offset = i.InputRegister(0); \
if (instr->InputAt(1)->IsRegister()) { \
__ cmp(offset, i.InputRegister(1)); \
} else { \
__ cmp(offset, i.InputImmediate(1)); \
} \
OutOfLineCode* ool = new (zone()) OutOfLineLoadFloat(this, result); \
__ j(above_equal, ool->entry()); \
__ asm_instr(result, i.MemoryOperand(2)); \
__ bind(ool->exit()); \
} while (false)
#define ASSEMBLE_CHECKED_LOAD_INTEGER(asm_instr) \
do { \
auto result = i.OutputRegister(); \
auto offset = i.InputRegister(0); \
if (instr->InputAt(1)->IsRegister()) { \
__ cmp(offset, i.InputRegister(1)); \
} else { \
__ cmp(offset, i.InputImmediate(1)); \
} \
OutOfLineCode* ool = new (zone()) OutOfLineLoadInteger(this, result); \
__ j(above_equal, ool->entry()); \
__ asm_instr(result, i.MemoryOperand(2)); \
__ bind(ool->exit()); \
} while (false)
#define ASSEMBLE_CHECKED_STORE_FLOAT(asm_instr) \
do { \
auto offset = i.InputRegister(0); \
if (instr->InputAt(1)->IsRegister()) { \
__ cmp(offset, i.InputRegister(1)); \
} else { \
__ cmp(offset, i.InputImmediate(1)); \
} \
Label done; \
__ j(above_equal, &done, Label::kNear); \
__ asm_instr(i.MemoryOperand(3), i.InputDoubleRegister(2)); \
__ bind(&done); \
} while (false)
#define ASSEMBLE_CHECKED_STORE_INTEGER(asm_instr) \
do { \
auto offset = i.InputRegister(0); \
if (instr->InputAt(1)->IsRegister()) { \
__ cmp(offset, i.InputRegister(1)); \
} else { \
__ cmp(offset, i.InputImmediate(1)); \
} \
Label done; \
__ j(above_equal, &done, Label::kNear); \
if (instr->InputAt(2)->IsRegister()) { \
__ asm_instr(i.MemoryOperand(3), i.InputRegister(2)); \
} else { \
__ asm_instr(i.MemoryOperand(3), i.InputImmediate(2)); \
} \
__ bind(&done); \
} while (false)
#define ASSEMBLE_COMPARE(asm_instr) \
do { \
if (AddressingModeField::decode(instr->opcode()) != kMode_None) { \
size_t index = 0; \
Operand left = i.MemoryOperand(&index); \
if (HasImmediateInput(instr, index)) { \
__ asm_instr(left, i.InputImmediate(index)); \
} else { \
__ asm_instr(left, i.InputRegister(index)); \
} \
} else { \
if (HasImmediateInput(instr, 1)) { \
if (instr->InputAt(0)->IsRegister()) { \
__ asm_instr(i.InputRegister(0), i.InputImmediate(1)); \
} else { \
__ asm_instr(i.InputOperand(0), i.InputImmediate(1)); \
} \
} else { \
if (instr->InputAt(1)->IsRegister()) { \
__ asm_instr(i.InputRegister(0), i.InputRegister(1)); \
} else { \
__ asm_instr(i.InputRegister(0), i.InputOperand(1)); \
} \
} \
} \
} while (0)
#define ASSEMBLE_IEEE754_BINOP(name) \
do { \
/* Pass two doubles as arguments on the stack. */ \
__ PrepareCallCFunction(4, eax); \
__ movsd(Operand(esp, 0 * kDoubleSize), i.InputDoubleRegister(0)); \
__ movsd(Operand(esp, 1 * kDoubleSize), i.InputDoubleRegister(1)); \
__ CallCFunction(ExternalReference::ieee754_##name##_function(isolate()), \
4); \
/* Return value is in st(0) on ia32. */ \
/* Store it into the result register. */ \
__ sub(esp, Immediate(kDoubleSize)); \
__ fstp_d(Operand(esp, 0)); \
__ movsd(i.OutputDoubleRegister(), Operand(esp, 0)); \
__ add(esp, Immediate(kDoubleSize)); \
} while (false)
#define ASSEMBLE_IEEE754_UNOP(name) \
do { \
/* Pass one double as argument on the stack. */ \
__ PrepareCallCFunction(2, eax); \
__ movsd(Operand(esp, 0 * kDoubleSize), i.InputDoubleRegister(0)); \
__ CallCFunction(ExternalReference::ieee754_##name##_function(isolate()), \
2); \
/* Return value is in st(0) on ia32. */ \
/* Store it into the result register. */ \
__ sub(esp, Immediate(kDoubleSize)); \
__ fstp_d(Operand(esp, 0)); \
__ movsd(i.OutputDoubleRegister(), Operand(esp, 0)); \
__ add(esp, Immediate(kDoubleSize)); \
} while (false)
void CodeGenerator::AssembleDeconstructFrame() {
__ mov(esp, ebp);
__ pop(ebp);
}
void CodeGenerator::AssemblePrepareTailCall() {
if (frame_access_state()->has_frame()) {
__ mov(ebp, MemOperand(ebp, 0));
}
frame_access_state()->SetFrameAccessToSP();
}
void CodeGenerator::AssemblePopArgumentsAdaptorFrame(Register args_reg,
Register, Register,
Register) {
// There are not enough temp registers left on ia32 for a call instruction
// so we pick some scratch registers and save/restore them manually here.
int scratch_count = 3;
Register scratch1 = ebx;
Register scratch2 = ecx;
Register scratch3 = edx;
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Label done;
// Check if current frame is an arguments adaptor frame.
__ cmp(Operand(ebp, StandardFrameConstants::kContextOffset),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(not_equal, &done, Label::kNear);
__ push(scratch1);
__ push(scratch2);
__ push(scratch3);
// Load arguments count from current arguments adaptor frame (note, it
// does not include receiver).
Register caller_args_count_reg = scratch1;
__ mov(caller_args_count_reg,
Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
ParameterCount callee_args_count(args_reg);
__ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
scratch3, ReturnAddressState::kOnStack, scratch_count);
__ pop(scratch3);
__ pop(scratch2);
__ pop(scratch1);
__ bind(&done);
}
namespace {
void AdjustStackPointerForTailCall(MacroAssembler* masm,
FrameAccessState* state,
int new_slot_above_sp,
bool allow_shrinkage = true) {
int current_sp_offset = state->GetSPToFPSlotCount() +
StandardFrameConstants::kFixedSlotCountAboveFp;
int stack_slot_delta = new_slot_above_sp - current_sp_offset;
if (stack_slot_delta > 0) {
masm->sub(esp, Immediate(stack_slot_delta * kPointerSize));
state->IncreaseSPDelta(stack_slot_delta);
} else if (allow_shrinkage && stack_slot_delta < 0) {
masm->add(esp, Immediate(-stack_slot_delta * kPointerSize));
state->IncreaseSPDelta(stack_slot_delta);
}
}
} // namespace
void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr,
int first_unused_stack_slot) {
CodeGenerator::PushTypeFlags flags(kImmediatePush | kScalarPush);
ZoneVector<MoveOperands*> pushes(zone());
GetPushCompatibleMoves(instr, flags, &pushes);
if (!pushes.empty() &&
(LocationOperand::cast(pushes.back()->destination()).index() + 1 ==
first_unused_stack_slot)) {
IA32OperandConverter g(this, instr);
for (auto move : pushes) {
LocationOperand destination_location(
LocationOperand::cast(move->destination()));
InstructionOperand source(move->source());
AdjustStackPointerForTailCall(masm(), frame_access_state(),
destination_location.index());
if (source.IsStackSlot()) {
LocationOperand source_location(LocationOperand::cast(source));
__ push(g.SlotToOperand(source_location.index()));
} else if (source.IsRegister()) {
LocationOperand source_location(LocationOperand::cast(source));
__ push(source_location.GetRegister());
} else if (source.IsImmediate()) {
__ push(Immediate(ImmediateOperand::cast(source).inline_value()));
} else {
// Pushes of non-scalar data types is not supported.
UNIMPLEMENTED();
}
frame_access_state()->IncreaseSPDelta(1);
move->Eliminate();
}
}
AdjustStackPointerForTailCall(masm(), frame_access_state(),
first_unused_stack_slot, false);
}
void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr,
int first_unused_stack_slot) {
AdjustStackPointerForTailCall(masm(), frame_access_state(),
first_unused_stack_slot);
}
// Assembles an instruction after register allocation, producing machine code.
CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
Instruction* instr) {
IA32OperandConverter i(this, instr);
InstructionCode opcode = instr->opcode();
ArchOpcode arch_opcode = ArchOpcodeField::decode(opcode);
switch (arch_opcode) {
case kArchCallCodeObject: {
EnsureSpaceForLazyDeopt();
if (HasImmediateInput(instr, 0)) {
Handle<Code> code = Handle<Code>::cast(i.InputHeapObject(0));
__ call(code, RelocInfo::CODE_TARGET);
} else {
Register reg = i.InputRegister(0);
__ add(reg, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(reg);
}
RecordCallPosition(instr);
frame_access_state()->ClearSPDelta();
break;
}
case kArchTailCallCodeObjectFromJSFunction:
case kArchTailCallCodeObject: {
if (arch_opcode == kArchTailCallCodeObjectFromJSFunction) {
AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister,
no_reg, no_reg, no_reg);
}
if (HasImmediateInput(instr, 0)) {
Handle<Code> code = Handle<Code>::cast(i.InputHeapObject(0));
__ jmp(code, RelocInfo::CODE_TARGET);
} else {
Register reg = i.InputRegister(0);
__ add(reg, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(reg);
}
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchTailCallAddress: {
CHECK(!HasImmediateInput(instr, 0));
Register reg = i.InputRegister(0);
__ jmp(reg);
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchCallJSFunction: {
EnsureSpaceForLazyDeopt();
Register func = i.InputRegister(0);
if (FLAG_debug_code) {
// Check the function's context matches the context argument.
__ cmp(esi, FieldOperand(func, JSFunction::kContextOffset));
__ Assert(equal, kWrongFunctionContext);
}
__ call(FieldOperand(func, JSFunction::kCodeEntryOffset));
RecordCallPosition(instr);
frame_access_state()->ClearSPDelta();
break;
}
case kArchTailCallJSFunctionFromJSFunction:
case kArchTailCallJSFunction: {
Register func = i.InputRegister(0);
if (FLAG_debug_code) {
// Check the function's context matches the context argument.
__ cmp(esi, FieldOperand(func, JSFunction::kContextOffset));
__ Assert(equal, kWrongFunctionContext);
}
if (arch_opcode == kArchTailCallJSFunctionFromJSFunction) {
AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister,
no_reg, no_reg, no_reg);
}
__ jmp(FieldOperand(func, JSFunction::kCodeEntryOffset));
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchPrepareCallCFunction: {
// Frame alignment requires using FP-relative frame addressing.
frame_access_state()->SetFrameAccessToFP();
int const num_parameters = MiscField::decode(instr->opcode());
__ PrepareCallCFunction(num_parameters, i.TempRegister(0));
break;
}
case kArchPrepareTailCall:
AssemblePrepareTailCall();
break;
case kArchCallCFunction: {
int const num_parameters = MiscField::decode(instr->opcode());
if (HasImmediateInput(instr, 0)) {
ExternalReference ref = i.InputExternalReference(0);
__ CallCFunction(ref, num_parameters);
} else {
Register func = i.InputRegister(0);
__ CallCFunction(func, num_parameters);
}
frame_access_state()->SetFrameAccessToDefault();
frame_access_state()->ClearSPDelta();
break;
}
case kArchJmp:
AssembleArchJump(i.InputRpo(0));
break;
case kArchLookupSwitch:
AssembleArchLookupSwitch(instr);
break;
case kArchTableSwitch:
AssembleArchTableSwitch(instr);
break;
case kArchComment: {
Address comment_string = i.InputExternalReference(0).address();
__ RecordComment(reinterpret_cast<const char*>(comment_string));
break;
}
case kArchDebugBreak:
__ int3();
break;
case kArchNop:
case kArchThrowTerminator:
// don't emit code for nops.
break;
case kArchDeoptimize: {
int deopt_state_id =
BuildTranslation(instr, -1, 0, OutputFrameStateCombine::Ignore());
Deoptimizer::BailoutType bailout_type =
Deoptimizer::BailoutType(MiscField::decode(instr->opcode()));
CodeGenResult result =
AssembleDeoptimizerCall(deopt_state_id, bailout_type);
if (result != kSuccess) return result;
break;
}
case kArchRet:
AssembleReturn();
break;
case kArchStackPointer:
__ mov(i.OutputRegister(), esp);
break;
case kArchFramePointer:
__ mov(i.OutputRegister(), ebp);
break;
case kArchParentFramePointer:
if (frame_access_state()->has_frame()) {
__ mov(i.OutputRegister(), Operand(ebp, 0));
} else {
__ mov(i.OutputRegister(), ebp);
}
break;
case kArchTruncateDoubleToI: {
auto result = i.OutputRegister();
auto input = i.InputDoubleRegister(0);
auto ool = new (zone()) OutOfLineTruncateDoubleToI(this, result, input);
__ cvttsd2si(result, Operand(input));
__ cmp(result, 1);
__ j(overflow, ool->entry());
__ bind(ool->exit());
break;
}
case kArchStoreWithWriteBarrier: {
RecordWriteMode mode =
static_cast<RecordWriteMode>(MiscField::decode(instr->opcode()));
Register object = i.InputRegister(0);
size_t index = 0;
Operand operand = i.MemoryOperand(&index);
Register value = i.InputRegister(index);
Register scratch0 = i.TempRegister(0);
Register scratch1 = i.TempRegister(1);
auto ool = new (zone()) OutOfLineRecordWrite(this, object, operand, value,
scratch0, scratch1, mode);
__ mov(operand, value);
__ CheckPageFlag(object, scratch0,
MemoryChunk::kPointersFromHereAreInterestingMask,
not_zero, ool->entry());
__ bind(ool->exit());
break;
}
case kArchStackSlot: {
FrameOffset offset =
frame_access_state()->GetFrameOffset(i.InputInt32(0));
Register base;
if (offset.from_stack_pointer()) {
base = esp;
} else {
base = ebp;
}
__ lea(i.OutputRegister(), Operand(base, offset.offset()));
break;
}
case kIeee754Float64Acos:
ASSEMBLE_IEEE754_UNOP(acos);
break;
case kIeee754Float64Acosh:
ASSEMBLE_IEEE754_UNOP(acosh);
break;
case kIeee754Float64Asin:
ASSEMBLE_IEEE754_UNOP(asin);
break;
case kIeee754Float64Asinh:
ASSEMBLE_IEEE754_UNOP(asinh);
break;
case kIeee754Float64Atan:
ASSEMBLE_IEEE754_UNOP(atan);
break;
case kIeee754Float64Atanh:
ASSEMBLE_IEEE754_UNOP(atanh);
break;
case kIeee754Float64Atan2:
ASSEMBLE_IEEE754_BINOP(atan2);
break;
case kIeee754Float64Cbrt:
ASSEMBLE_IEEE754_UNOP(cbrt);
break;
case kIeee754Float64Cos:
ASSEMBLE_IEEE754_UNOP(cos);
break;
case kIeee754Float64Cosh:
ASSEMBLE_IEEE754_UNOP(cosh);
break;
case kIeee754Float64Expm1:
ASSEMBLE_IEEE754_UNOP(expm1);
break;
case kIeee754Float64Exp:
ASSEMBLE_IEEE754_UNOP(exp);
break;
case kIeee754Float64Log:
ASSEMBLE_IEEE754_UNOP(log);
break;
case kIeee754Float64Log1p:
ASSEMBLE_IEEE754_UNOP(log1p);
break;
case kIeee754Float64Log2:
ASSEMBLE_IEEE754_UNOP(log2);
break;
case kIeee754Float64Log10:
ASSEMBLE_IEEE754_UNOP(log10);
break;
case kIeee754Float64Pow: {
// TODO(bmeurer): Improve integration of the stub.
if (!i.InputDoubleRegister(1).is(xmm2)) {
__ movaps(xmm2, i.InputDoubleRegister(0));
__ movaps(xmm1, i.InputDoubleRegister(1));
} else {
__ movaps(xmm0, i.InputDoubleRegister(0));
__ movaps(xmm1, xmm2);
__ movaps(xmm2, xmm0);
}
MathPowStub stub(isolate(), MathPowStub::DOUBLE);
__ CallStub(&stub);
__ movaps(i.OutputDoubleRegister(), xmm3);
break;
}
case kIeee754Float64Sin:
ASSEMBLE_IEEE754_UNOP(sin);
break;
case kIeee754Float64Sinh:
ASSEMBLE_IEEE754_UNOP(sinh);
break;
case kIeee754Float64Tan:
ASSEMBLE_IEEE754_UNOP(tan);
break;
case kIeee754Float64Tanh:
ASSEMBLE_IEEE754_UNOP(tanh);
break;
case kIA32Add:
if (HasImmediateInput(instr, 1)) {
__ add(i.InputOperand(0), i.InputImmediate(1));
} else {
__ add(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32And:
if (HasImmediateInput(instr, 1)) {
__ and_(i.InputOperand(0), i.InputImmediate(1));
} else {
__ and_(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Cmp:
ASSEMBLE_COMPARE(cmp);
break;
case kIA32Cmp16:
ASSEMBLE_COMPARE(cmpw);
break;
case kIA32Cmp8:
ASSEMBLE_COMPARE(cmpb);
break;
case kIA32Test:
ASSEMBLE_COMPARE(test);
break;
case kIA32Test16:
ASSEMBLE_COMPARE(test_w);
break;
case kIA32Test8:
ASSEMBLE_COMPARE(test_b);
break;
case kIA32Imul:
if (HasImmediateInput(instr, 1)) {
__ imul(i.OutputRegister(), i.InputOperand(0), i.InputInt32(1));
} else {
__ imul(i.OutputRegister(), i.InputOperand(1));
}
break;
case kIA32ImulHigh:
__ imul(i.InputRegister(1));
break;
case kIA32UmulHigh:
__ mul(i.InputRegister(1));
break;
case kIA32Idiv:
__ cdq();
__ idiv(i.InputOperand(1));
break;
case kIA32Udiv:
__ Move(edx, Immediate(0));
__ div(i.InputOperand(1));
break;
case kIA32Not:
__ not_(i.OutputOperand());
break;
case kIA32Neg:
__ neg(i.OutputOperand());
break;
case kIA32Or:
if (HasImmediateInput(instr, 1)) {
__ or_(i.InputOperand(0), i.InputImmediate(1));
} else {
__ or_(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Xor:
if (HasImmediateInput(instr, 1)) {
__ xor_(i.InputOperand(0), i.InputImmediate(1));
} else {
__ xor_(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Sub:
if (HasImmediateInput(instr, 1)) {
__ sub(i.InputOperand(0), i.InputImmediate(1));
} else {
__ sub(i.InputRegister(0), i.InputOperand(1));
}
break;
case kIA32Shl:
if (HasImmediateInput(instr, 1)) {
__ shl(i.OutputOperand(), i.InputInt5(1));
} else {
__ shl_cl(i.OutputOperand());
}
break;
case kIA32Shr:
if (HasImmediateInput(instr, 1)) {
__ shr(i.OutputOperand(), i.InputInt5(1));
} else {
__ shr_cl(i.OutputOperand());
}
break;
case kIA32Sar:
if (HasImmediateInput(instr, 1)) {
__ sar(i.OutputOperand(), i.InputInt5(1));
} else {
__ sar_cl(i.OutputOperand());
}
break;
case kIA32AddPair: {
// i.OutputRegister(0) == i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
bool use_temp = false;
if (i.OutputRegister(0).code() == i.InputRegister(1).code() ||
i.OutputRegister(0).code() == i.InputRegister(3).code()) {
// We cannot write to the output register directly, because it would
// overwrite an input for adc. We have to use the temp register.
use_temp = true;
__ Move(i.TempRegister(0), i.InputRegister(0));
__ add(i.TempRegister(0), i.InputRegister(2));
} else {
__ add(i.OutputRegister(0), i.InputRegister(2));
}
__ adc(i.InputRegister(1), Operand(i.InputRegister(3)));
if (i.OutputRegister(1).code() != i.InputRegister(1).code()) {
__ Move(i.OutputRegister(1), i.InputRegister(1));
}
if (use_temp) {
__ Move(i.OutputRegister(0), i.TempRegister(0));
}
break;
}
case kIA32SubPair: {
// i.OutputRegister(0) == i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
bool use_temp = false;
if (i.OutputRegister(0).code() == i.InputRegister(1).code() ||
i.OutputRegister(0).code() == i.InputRegister(3).code()) {
// We cannot write to the output register directly, because it would
// overwrite an input for adc. We have to use the temp register.
use_temp = true;
__ Move(i.TempRegister(0), i.InputRegister(0));
__ sub(i.TempRegister(0), i.InputRegister(2));
} else {
__ sub(i.OutputRegister(0), i.InputRegister(2));
}
__ sbb(i.InputRegister(1), Operand(i.InputRegister(3)));
if (i.OutputRegister(1).code() != i.InputRegister(1).code()) {
__ Move(i.OutputRegister(1), i.InputRegister(1));
}
if (use_temp) {
__ Move(i.OutputRegister(0), i.TempRegister(0));
}
break;
}
case kIA32MulPair: {
__ imul(i.OutputRegister(1), i.InputOperand(0));
__ mov(i.TempRegister(0), i.InputOperand(1));
__ imul(i.TempRegister(0), i.InputOperand(2));
__ add(i.OutputRegister(1), i.TempRegister(0));
__ mov(i.OutputRegister(0), i.InputOperand(0));
// Multiplies the low words and stores them in eax and edx.
__ mul(i.InputRegister(2));
__ add(i.OutputRegister(1), i.TempRegister(0));
break;
}
case kIA32ShlPair:
if (HasImmediateInput(instr, 2)) {
__ ShlPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2));
} else {
// Shift has been loaded into CL by the register allocator.
__ ShlPair_cl(i.InputRegister(1), i.InputRegister(0));
}
break;
case kIA32ShrPair:
if (HasImmediateInput(instr, 2)) {
__ ShrPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2));
} else {
// Shift has been loaded into CL by the register allocator.
__ ShrPair_cl(i.InputRegister(1), i.InputRegister(0));
}
break;
case kIA32SarPair:
if (HasImmediateInput(instr, 2)) {
__ SarPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2));
} else {
// Shift has been loaded into CL by the register allocator.
__ SarPair_cl(i.InputRegister(1), i.InputRegister(0));
}
break;
case kIA32Ror:
if (HasImmediateInput(instr, 1)) {
__ ror(i.OutputOperand(), i.InputInt5(1));
} else {
__ ror_cl(i.OutputOperand());
}
break;
case kIA32Lzcnt:
__ Lzcnt(i.OutputRegister(), i.InputOperand(0));
break;
case kIA32Tzcnt:
__ Tzcnt(i.OutputRegister(), i.InputOperand(0));
break;
case kIA32Popcnt:
__ Popcnt(i.OutputRegister(), i.InputOperand(0));
break;
case kSSEFloat32Cmp:
__ ucomiss(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat32Add:
__ addss(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat32Sub:
__ subss(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat32Mul:
__ mulss(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat32Div:
__ divss(i.InputDoubleRegister(0), i.InputOperand(1));
// Don't delete this mov. It may improve performance on some CPUs,
// when there is a (v)mulss depending on the result.
__ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister());
break;
case kSSEFloat32Max:
__ maxss(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat32Min:
__ minss(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat32Sqrt:
__ sqrtss(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kSSEFloat32Abs: {
// TODO(bmeurer): Use 128-bit constants.
__ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg);
__ psrlq(kScratchDoubleReg, 33);
__ andps(i.OutputDoubleRegister(), kScratchDoubleReg);
break;
}
case kSSEFloat32Neg: {
// TODO(bmeurer): Use 128-bit constants.
__ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg);
__ psllq(kScratchDoubleReg, 31);
__ xorps(i.OutputDoubleRegister(), kScratchDoubleReg);
break;
}
case kSSEFloat32Round: {
CpuFeatureScope sse_scope(masm(), SSE4_1);
RoundingMode const mode =
static_cast<RoundingMode>(MiscField::decode(instr->opcode()));
__ roundss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), mode);
break;
}
case kSSEFloat64Cmp:
__ ucomisd(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat64Add:
__ addsd(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat64Sub:
__ subsd(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat64Mul:
__ mulsd(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat64Div:
__ divsd(i.InputDoubleRegister(0), i.InputOperand(1));
// Don't delete this mov. It may improve performance on some CPUs,
// when there is a (v)mulsd depending on the result.
__ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister());
break;
case kSSEFloat64Max:
__ maxsd(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat64Min:
__ minsd(i.InputDoubleRegister(0), i.InputOperand(1));
break;
case kSSEFloat64Mod: {
// TODO(dcarney): alignment is wrong.
__ sub(esp, Immediate(kDoubleSize));
// Move values to st(0) and st(1).
__ movsd(Operand(esp, 0), i.InputDoubleRegister(1));
__ fld_d(Operand(esp, 0));
__ movsd(Operand(esp, 0), i.InputDoubleRegister(0));
__ fld_d(Operand(esp, 0));
// Loop while fprem isn't done.
Label mod_loop;
__ bind(&mod_loop);
// This instructions traps on all kinds inputs, but we are assuming the
// floating point control word is set to ignore them all.
__ fprem();
// The following 2 instruction implicitly use eax.
__ fnstsw_ax();
__ sahf();
__ j(parity_even, &mod_loop);
// Move output to stack and clean up.
__ fstp(1);
__ fstp_d(Operand(esp, 0));
__ movsd(i.OutputDoubleRegister(), Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
break;
}
case kSSEFloat64Abs: {
// TODO(bmeurer): Use 128-bit constants.
__ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg);
__ psrlq(kScratchDoubleReg, 1);
__ andpd(i.OutputDoubleRegister(), kScratchDoubleReg);
break;
}
case kSSEFloat64Neg: {
// TODO(bmeurer): Use 128-bit constants.
__ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg);
__ psllq(kScratchDoubleReg, 63);
__ xorpd(i.OutputDoubleRegister(), kScratchDoubleReg);
break;
}
case kSSEFloat64Sqrt:
__ sqrtsd(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kSSEFloat64Round: {
CpuFeatureScope sse_scope(masm(), SSE4_1);
RoundingMode const mode =
static_cast<RoundingMode>(MiscField::decode(instr->opcode()));
__ roundsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), mode);
break;
}
case kSSEFloat32ToFloat64:
__ cvtss2sd(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kSSEFloat64ToFloat32:
__ cvtsd2ss(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kSSEFloat32ToInt32:
__ cvttss2si(i.OutputRegister(), i.InputOperand(0));
break;
case kSSEFloat32ToUint32: {
Label success;
__ cvttss2si(i.OutputRegister(), i.InputOperand(0));
__ test(i.OutputRegister(), i.OutputRegister());
__ j(positive, &success);
__ Move(kScratchDoubleReg, static_cast<float>(INT32_MIN));
__ addss(kScratchDoubleReg, i.InputOperand(0));
__ cvttss2si(i.OutputRegister(), kScratchDoubleReg);
__ or_(i.OutputRegister(), Immediate(0x80000000));
__ bind(&success);
break;
}
case kSSEFloat64ToInt32:
__ cvttsd2si(i.OutputRegister(), i.InputOperand(0));
break;
case kSSEFloat64ToUint32: {
__ Move(kScratchDoubleReg, -2147483648.0);
__ addsd(kScratchDoubleReg, i.InputOperand(0));
__ cvttsd2si(i.OutputRegister(), kScratchDoubleReg);
__ add(i.OutputRegister(), Immediate(0x80000000));
break;
}
case kSSEInt32ToFloat32:
__ cvtsi2ss(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kSSEUint32ToFloat32: {
Register scratch0 = i.TempRegister(0);
Register scratch1 = i.TempRegister(1);
__ mov(scratch0, i.InputOperand(0));
__ Cvtui2ss(i.OutputDoubleRegister(), scratch0, scratch1);
break;
}
case kSSEInt32ToFloat64:
__ cvtsi2sd(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kSSEUint32ToFloat64:
__ LoadUint32(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kSSEFloat64ExtractLowWord32:
if (instr->InputAt(0)->IsFPStackSlot()) {
__ mov(i.OutputRegister(), i.InputOperand(0));
} else {
__ movd(i.OutputRegister(), i.InputDoubleRegister(0));
}
break;
case kSSEFloat64ExtractHighWord32:
if (instr->InputAt(0)->IsFPStackSlot()) {
__ mov(i.OutputRegister(), i.InputOperand(0, kDoubleSize / 2));
} else {
__ Pextrd(i.OutputRegister(), i.InputDoubleRegister(0), 1);
}
break;
case kSSEFloat64InsertLowWord32:
__ Pinsrd(i.OutputDoubleRegister(), i.InputOperand(1), 0);
break;
case kSSEFloat64InsertHighWord32:
__ Pinsrd(i.OutputDoubleRegister(), i.InputOperand(1), 1);
break;
case kSSEFloat64LoadLowWord32:
__ movd(i.OutputDoubleRegister(), i.InputOperand(0));
break;
case kAVXFloat32Add: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vaddss(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat32Sub: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vsubss(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat32Mul: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vmulss(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat32Div: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vdivss(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
// Don't delete this mov. It may improve performance on some CPUs,
// when there is a (v)mulss depending on the result.
__ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister());
break;
}
case kAVXFloat32Max: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vmaxss(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat32Min: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vminss(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat64Add: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vaddsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat64Sub: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vsubsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat64Mul: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vmulsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat64Div: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vdivsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
// Don't delete this mov. It may improve performance on some CPUs,
// when there is a (v)mulsd depending on the result.
__ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister());
break;
}
case kAVXFloat64Max: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vmaxsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat64Min: {
CpuFeatureScope avx_scope(masm(), AVX);
__ vminsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
i.InputOperand(1));
break;
}
case kAVXFloat32Abs: {
// TODO(bmeurer): Use RIP relative 128-bit constants.
__ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg);
__ psrlq(kScratchDoubleReg, 33);
CpuFeatureScope avx_scope(masm(), AVX);
__ vandps(i.OutputDoubleRegister(), kScratchDoubleReg, i.InputOperand(0));
break;
}
case kAVXFloat32Neg: {
// TODO(bmeurer): Use RIP relative 128-bit constants.
__ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg);
__ psllq(kScratchDoubleReg, 31);
CpuFeatureScope avx_scope(masm(), AVX);
__ vxorps(i.OutputDoubleRegister(), kScratchDoubleReg, i.InputOperand(0));
break;
}
case kAVXFloat64Abs: {
// TODO(bmeurer): Use RIP relative 128-bit constants.
__ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg);
__ psrlq(kScratchDoubleReg, 1);
CpuFeatureScope avx_scope(masm(), AVX);
__ vandpd(i.OutputDoubleRegister(), kScratchDoubleReg, i.InputOperand(0));
break;
}
case kAVXFloat64Neg: {
// TODO(bmeurer): Use RIP relative 128-bit constants.
__ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg);
__ psllq(kScratchDoubleReg, 63);
CpuFeatureScope avx_scope(masm(), AVX);
__ vxorpd(i.OutputDoubleRegister(), kScratchDoubleReg, i.InputOperand(0));
break;
}
case kSSEFloat64SilenceNaN:
__ xorpd(kScratchDoubleReg, kScratchDoubleReg);
__ subsd(i.InputDoubleRegister(0), kScratchDoubleReg);
break;
case kIA32Movsxbl:
__ movsx_b(i.OutputRegister(), i.MemoryOperand());
break;
case kIA32Movzxbl:
__ movzx_b(i.OutputRegister(), i.MemoryOperand());
break;
case kIA32Movb: {
size_t index = 0;
Operand operand = i.MemoryOperand(&index);
if (HasImmediateInput(instr, index)) {
__ mov_b(operand, i.InputInt8(index));
} else {
__ mov_b(operand, i.InputRegister(index));
}
break;
}
case kIA32Movsxwl:
__ movsx_w(i.OutputRegister(), i.MemoryOperand());
break;
case kIA32Movzxwl:
__ movzx_w(i.OutputRegister(), i.MemoryOperand());
break;
case kIA32Movw: {
size_t index = 0;
Operand operand = i.MemoryOperand(&index);
if (HasImmediateInput(instr, index)) {
__ mov_w(operand, i.InputInt16(index));
} else {
__ mov_w(operand, i.InputRegister(index));
}
break;
}
case kIA32Movl:
if (instr->HasOutput()) {
__ mov(i.OutputRegister(), i.MemoryOperand());
} else {
size_t index = 0;
Operand operand = i.MemoryOperand(&index);
if (HasImmediateInput(instr, index)) {
__ mov(operand, i.InputImmediate(index));
} else {
__ mov(operand, i.InputRegister(index));
}
}
break;
case kIA32Movsd:
if (instr->HasOutput()) {
__ movsd(i.OutputDoubleRegister(), i.MemoryOperand());
} else {
size_t index = 0;
Operand operand = i.MemoryOperand(&index);
__ movsd(operand, i.InputDoubleRegister(index));
}
break;
case kIA32Movss:
if (instr->HasOutput()) {
__ movss(i.OutputDoubleRegister(), i.MemoryOperand());
} else {
size_t index = 0;
Operand operand = i.MemoryOperand(&index);
__ movss(operand, i.InputDoubleRegister(index));
}
break;
case kIA32BitcastFI:
if (instr->InputAt(0)->IsFPStackSlot()) {
__ mov(i.OutputRegister(), i.InputOperand(0));
} else {
__ movd(i.OutputRegister(), i.InputDoubleRegister(0));
}
break;
case kIA32BitcastIF:
if (instr->InputAt(0)->IsRegister()) {
__ movd(i.OutputDoubleRegister(), i.InputRegister(0));
} else {
__ movss(i.OutputDoubleRegister(), i.InputOperand(0));
}
break;
case kIA32Lea: {
AddressingMode mode = AddressingModeField::decode(instr->opcode());
// Shorten "leal" to "addl", "subl" or "shll" if the register allocation
// and addressing mode just happens to work out. The "addl"/"subl" forms
// in these cases are faster based on measurements.
if (mode == kMode_MI) {
__ Move(i.OutputRegister(), Immediate(i.InputInt32(0)));
} else if (i.InputRegister(0).is(i.OutputRegister())) {
if (mode == kMode_MRI) {
int32_t constant_summand = i.InputInt32(1);
if (constant_summand > 0) {
__ add(i.OutputRegister(), Immediate(constant_summand));
} else if (constant_summand < 0) {
__ sub(i.OutputRegister(), Immediate(-constant_summand));
}
} else if (mode == kMode_MR1) {
if (i.InputRegister(1).is(i.OutputRegister())) {
__ shl(i.OutputRegister(), 1);
} else {
__ lea(i.OutputRegister(), i.MemoryOperand());
}
} else if (mode == kMode_M2) {
__ shl(i.OutputRegister(), 1);
} else if (mode == kMode_M4) {
__ shl(i.OutputRegister(), 2);
} else if (mode == kMode_M8) {
__ shl(i.OutputRegister(), 3);
} else {
__ lea(i.OutputRegister(), i.MemoryOperand());
}
} else {
__ lea(i.OutputRegister(), i.MemoryOperand());
}
break;
}
case kIA32PushFloat32:
if (instr->InputAt(0)->IsFPRegister()) {
__ sub(esp, Immediate(kFloatSize));
__ movss(Operand(esp, 0), i.InputDoubleRegister(0));
frame_access_state()->IncreaseSPDelta(kFloatSize / kPointerSize);
} else if (HasImmediateInput(instr, 0)) {
__ Move(kScratchDoubleReg, i.InputDouble(0));
__ sub(esp, Immediate(kDoubleSize));
__ movss(Operand(esp, 0), kScratchDoubleReg);
frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize);
} else {
__ movsd(kScratchDoubleReg, i.InputOperand(0));
__ sub(esp, Immediate(kDoubleSize));
__ movss(Operand(esp, 0), kScratchDoubleReg);
frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize);
}
break;
case kIA32PushFloat64:
if (instr->InputAt(0)->IsFPRegister()) {
__ sub(esp, Immediate(kDoubleSize));
__ movsd(Operand(esp, 0), i.InputDoubleRegister(0));
frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize);
} else if (HasImmediateInput(instr, 0)) {
__ Move(kScratchDoubleReg, i.InputDouble(0));
__ sub(esp, Immediate(kDoubleSize));
__ movsd(Operand(esp, 0), kScratchDoubleReg);
frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize);
} else {
__ movsd(kScratchDoubleReg, i.InputOperand(0));
__ sub(esp, Immediate(kDoubleSize));
__ movsd(Operand(esp, 0), kScratchDoubleReg);
frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize);
}
break;
case kIA32Push:
if (instr->InputAt(0)->IsFPRegister()) {
__ sub(esp, Immediate(kFloatSize));
__ movsd(Operand(esp, 0), i.InputDoubleRegister(0));
frame_access_state()->IncreaseSPDelta(kFloatSize / kPointerSize);
} else if (HasImmediateInput(instr, 0)) {
__ push(i.InputImmediate(0));
frame_access_state()->IncreaseSPDelta(1);
} else {
__ push(i.InputOperand(0));
frame_access_state()->IncreaseSPDelta(1);
}
break;
case kIA32Poke: {
int const slot = MiscField::decode(instr->opcode());
if (HasImmediateInput(instr, 0)) {
__ mov(Operand(esp, slot * kPointerSize), i.InputImmediate(0));
} else {
__ mov(Operand(esp, slot * kPointerSize), i.InputRegister(0));
}
break;
}
case kIA32Xchgb: {
size_t index = 0;
Operand operand = i.MemoryOperand(&index);
__ xchg_b(i.InputRegister(index), operand);
break;
}
case kIA32Xchgw: {
size_t index = 0;
Operand operand = i.MemoryOperand(&index);
__ xchg_w(i.InputRegister(index), operand);
break;
}
case kIA32Xchgl: {
size_t index = 0;
Operand operand = i.MemoryOperand(&index);
__ xchg(i.InputRegister(index), operand);
break;
}
case kCheckedLoadInt8:
ASSEMBLE_CHECKED_LOAD_INTEGER(movsx_b);
break;
case kCheckedLoadUint8:
ASSEMBLE_CHECKED_LOAD_INTEGER(movzx_b);
break;
case kCheckedLoadInt16:
ASSEMBLE_CHECKED_LOAD_INTEGER(movsx_w);
break;
case kCheckedLoadUint16:
ASSEMBLE_CHECKED_LOAD_INTEGER(movzx_w);
break;
case kCheckedLoadWord32:
ASSEMBLE_CHECKED_LOAD_INTEGER(mov);
break;
case kCheckedLoadFloat32:
ASSEMBLE_CHECKED_LOAD_FLOAT(movss);
break;
case kCheckedLoadFloat64:
ASSEMBLE_CHECKED_LOAD_FLOAT(movsd);
break;
case kCheckedStoreWord8:
ASSEMBLE_CHECKED_STORE_INTEGER(mov_b);
break;
case kCheckedStoreWord16:
ASSEMBLE_CHECKED_STORE_INTEGER(mov_w);
break;
case kCheckedStoreWord32:
ASSEMBLE_CHECKED_STORE_INTEGER(mov);
break;
case kCheckedStoreFloat32:
ASSEMBLE_CHECKED_STORE_FLOAT(movss);
break;
case kCheckedStoreFloat64:
ASSEMBLE_CHECKED_STORE_FLOAT(movsd);
break;
case kIA32StackCheck: {
ExternalReference const stack_limit =
ExternalReference::address_of_stack_limit(isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
break;
}
case kCheckedLoadWord64:
case kCheckedStoreWord64:
UNREACHABLE(); // currently unsupported checked int64 load/store.
break;
case kAtomicLoadInt8:
case kAtomicLoadUint8:
case kAtomicLoadInt16:
case kAtomicLoadUint16:
case kAtomicLoadWord32:
case kAtomicStoreWord8:
case kAtomicStoreWord16:
case kAtomicStoreWord32:
UNREACHABLE(); // Won't be generated by instruction selector.
break;
}
return kSuccess;
} // NOLINT(readability/fn_size)
// Assembles a branch after an instruction.
void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) {
IA32OperandConverter i(this, instr);
Label::Distance flabel_distance =
branch->fallthru ? Label::kNear : Label::kFar;
Label* tlabel = branch->true_label;
Label* flabel = branch->false_label;
switch (branch->condition) {
case kUnorderedEqual:
__ j(parity_even, flabel, flabel_distance);
// Fall through.
case kEqual:
__ j(equal, tlabel);
break;
case kUnorderedNotEqual:
__ j(parity_even, tlabel);
// Fall through.
case kNotEqual:
__ j(not_equal, tlabel);
break;
case kSignedLessThan:
__ j(less, tlabel);
break;
case kSignedGreaterThanOrEqual:
__ j(greater_equal, tlabel);
break;
case kSignedLessThanOrEqual:
__ j(less_equal, tlabel);
break;
case kSignedGreaterThan:
__ j(greater, tlabel);
break;
case kUnsignedLessThan:
__ j(below, tlabel);
break;
case kUnsignedGreaterThanOrEqual:
__ j(above_equal, tlabel);
break;
case kUnsignedLessThanOrEqual:
__ j(below_equal, tlabel);
break;
case kUnsignedGreaterThan:
__ j(above, tlabel);
break;
case kOverflow:
__ j(overflow, tlabel);
break;
case kNotOverflow:
__ j(no_overflow, tlabel);
break;
default:
UNREACHABLE();
break;
}
// Add a jump if not falling through to the next block.
if (!branch->fallthru) __ jmp(flabel);
}
void CodeGenerator::AssembleArchJump(RpoNumber target) {
if (!IsNextInAssemblyOrder(target)) __ jmp(GetLabel(target));
}
// Assembles boolean materializations after an instruction.
void CodeGenerator::AssembleArchBoolean(Instruction* instr,
FlagsCondition condition) {
IA32OperandConverter i(this, instr);
Label done;
// Materialize a full 32-bit 1 or 0 value. The result register is always the
// last output of the instruction.
Label check;
DCHECK_NE(0u, instr->OutputCount());
Register reg = i.OutputRegister(instr->OutputCount() - 1);
Condition cc = no_condition;
switch (condition) {
case kUnorderedEqual:
__ j(parity_odd, &check, Label::kNear);
__ Move(reg, Immediate(0));
__ jmp(&done, Label::kNear);
// Fall through.
case kEqual:
cc = equal;
break;
case kUnorderedNotEqual:
__ j(parity_odd, &check, Label::kNear);
__ mov(reg, Immediate(1));
__ jmp(&done, Label::kNear);
// Fall through.
case kNotEqual:
cc = not_equal;
break;
case kSignedLessThan:
cc = less;
break;
case kSignedGreaterThanOrEqual:
cc = greater_equal;
break;
case kSignedLessThanOrEqual:
cc = less_equal;
break;
case kSignedGreaterThan:
cc = greater;
break;
case kUnsignedLessThan:
cc = below;
break;
case kUnsignedGreaterThanOrEqual:
cc = above_equal;
break;
case kUnsignedLessThanOrEqual:
cc = below_equal;
break;
case kUnsignedGreaterThan:
cc = above;
break;
case kOverflow:
cc = overflow;
break;
case kNotOverflow:
cc = no_overflow;
break;
default:
UNREACHABLE();
break;
}
__ bind(&check);
if (reg.is_byte_register()) {
// setcc for byte registers (al, bl, cl, dl).
__ setcc(cc, reg);
__ movzx_b(reg, reg);
} else {
// Emit a branch to set a register to either 1 or 0.
Label set;
__ j(cc, &set, Label::kNear);
__ Move(reg, Immediate(0));
__ jmp(&done, Label::kNear);
__ bind(&set);
__ mov(reg, Immediate(1));
}
__ bind(&done);
}
void CodeGenerator::AssembleArchLookupSwitch(Instruction* instr) {
IA32OperandConverter i(this, instr);
Register input = i.InputRegister(0);
for (size_t index = 2; index < instr->InputCount(); index += 2) {
__ cmp(input, Immediate(i.InputInt32(index + 0)));
__ j(equal, GetLabel(i.InputRpo(index + 1)));
}
AssembleArchJump(i.InputRpo(1));
}
void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) {
IA32OperandConverter i(this, instr);
Register input = i.InputRegister(0);
size_t const case_count = instr->InputCount() - 2;
Label** cases = zone()->NewArray<Label*>(case_count);
for (size_t index = 0; index < case_count; ++index) {
cases[index] = GetLabel(i.InputRpo(index + 2));
}
Label* const table = AddJumpTable(cases, case_count);
__ cmp(input, Immediate(case_count));
__ j(above_equal, GetLabel(i.InputRpo(1)));
__ jmp(Operand::JumpTable(input, times_4, table));
}
CodeGenerator::CodeGenResult CodeGenerator::AssembleDeoptimizerCall(
int deoptimization_id, Deoptimizer::BailoutType bailout_type) {
Address deopt_entry = Deoptimizer::GetDeoptimizationEntry(
isolate(), deoptimization_id, bailout_type);
if (deopt_entry == nullptr) return kTooManyDeoptimizationBailouts;
__ call(deopt_entry, RelocInfo::RUNTIME_ENTRY);
return kSuccess;
}
// The calling convention for JSFunctions on IA32 passes arguments on the
// stack and the JSFunction and context in EDI and ESI, respectively, thus
// the steps of the call look as follows:
// --{ before the call instruction }--------------------------------------------
// | caller frame |
// ^ esp ^ ebp
// --{ push arguments and setup ESI, EDI }--------------------------------------
// | args + receiver | caller frame |
// ^ esp ^ ebp
// [edi = JSFunction, esi = context]
// --{ call [edi + kCodeEntryOffset] }------------------------------------------
// | RET | args + receiver | caller frame |
// ^ esp ^ ebp
// =={ prologue of called function }============================================
// --{ push ebp }---------------------------------------------------------------
// | FP | RET | args + receiver | caller frame |
// ^ esp ^ ebp
// --{ mov ebp, esp }-----------------------------------------------------------
// | FP | RET | args + receiver | caller frame |
// ^ ebp,esp
// --{ push esi }---------------------------------------------------------------
// | CTX | FP | RET | args + receiver | caller frame |
// ^esp ^ ebp
// --{ push edi }---------------------------------------------------------------
// | FNC | CTX | FP | RET | args + receiver | caller frame |
// ^esp ^ ebp
// --{ subi esp, #N }-----------------------------------------------------------
// | callee frame | FNC | CTX | FP | RET | args + receiver | caller frame |
// ^esp ^ ebp
// =={ body of called function }================================================
// =={ epilogue of called function }============================================
// --{ mov esp, ebp }-----------------------------------------------------------
// | FP | RET | args + receiver | caller frame |
// ^ esp,ebp
// --{ pop ebp }-----------------------------------------------------------
// | | RET | args + receiver | caller frame |
// ^ esp ^ ebp
// --{ ret #A+1 }-----------------------------------------------------------
// | | caller frame |
// ^ esp ^ ebp
// Runtime function calls are accomplished by doing a stub call to the
// CEntryStub (a real code object). On IA32 passes arguments on the
// stack, the number of arguments in EAX, the address of the runtime function
// in EBX, and the context in ESI.
// --{ before the call instruction }--------------------------------------------
// | caller frame |
// ^ esp ^ ebp
// --{ push arguments and setup EAX, EBX, and ESI }-----------------------------
// | args + receiver | caller frame |
// ^ esp ^ ebp
// [eax = #args, ebx = runtime function, esi = context]
// --{ call #CEntryStub }-------------------------------------------------------
// | RET | args + receiver | caller frame |
// ^ esp ^ ebp
// =={ body of runtime function }===============================================
// --{ runtime returns }--------------------------------------------------------
// | caller frame |
// ^ esp ^ ebp
// Other custom linkages (e.g. for calling directly into and out of C++) may
// need to save callee-saved registers on the stack, which is done in the
// function prologue of generated code.
// --{ before the call instruction }--------------------------------------------
// | caller frame |
// ^ esp ^ ebp
// --{ set up arguments in registers on stack }---------------------------------
// | args | caller frame |
// ^ esp ^ ebp
// [r0 = arg0, r1 = arg1, ...]
// --{ call code }--------------------------------------------------------------
// | RET | args | caller frame |
// ^ esp ^ ebp
// =={ prologue of called function }============================================
// --{ push ebp }---------------------------------------------------------------
// | FP | RET | args | caller frame |
// ^ esp ^ ebp
// --{ mov ebp, esp }-----------------------------------------------------------
// | FP | RET | args | caller frame |
// ^ ebp,esp
// --{ save registers }---------------------------------------------------------
// | regs | FP | RET | args | caller frame |
// ^ esp ^ ebp
// --{ subi esp, #N }-----------------------------------------------------------
// | callee frame | regs | FP | RET | args | caller frame |
// ^esp ^ ebp
// =={ body of called function }================================================
// =={ epilogue of called function }============================================
// --{ restore registers }------------------------------------------------------
// | regs | FP | RET | args | caller frame |
// ^ esp ^ ebp
// --{ mov esp, ebp }-----------------------------------------------------------
// | FP | RET | args | caller frame |
// ^ esp,ebp
// --{ pop ebp }----------------------------------------------------------------
// | RET | args | caller frame |
// ^ esp ^ ebp
void CodeGenerator::FinishFrame(Frame* frame) {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
const RegList saves = descriptor->CalleeSavedRegisters();
if (saves != 0) { // Save callee-saved registers.
DCHECK(!info()->is_osr());
int pushed = 0;
for (int i = Register::kNumRegisters - 1; i >= 0; i--) {
if (!((1 << i) & saves)) continue;
++pushed;
}
frame->AllocateSavedCalleeRegisterSlots(pushed);
}
}
void CodeGenerator::AssembleConstructFrame() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
if (frame_access_state()->has_frame()) {
if (descriptor->IsCFunctionCall()) {
__ push(ebp);
__ mov(ebp, esp);
} else if (descriptor->IsJSFunctionCall()) {
__ Prologue(this->info()->GeneratePreagedPrologue());
} else {
__ StubPrologue(info()->GetOutputStackFrameType());
}
}
int shrink_slots = frame()->GetSpillSlotCount();
if (info()->is_osr()) {
// TurboFan OSR-compiled functions cannot be entered directly.
__ Abort(kShouldNotDirectlyEnterOsrFunction);
// Unoptimized code jumps directly to this entrypoint while the unoptimized
// frame is still on the stack. Optimized code uses OSR values directly from
// the unoptimized frame. Thus, all that needs to be done is to allocate the
// remaining stack slots.
if (FLAG_code_comments) __ RecordComment("-- OSR entrypoint --");
osr_pc_offset_ = __ pc_offset();
shrink_slots -= OsrHelper(info()).UnoptimizedFrameSlots();
}
const RegList saves = descriptor->CalleeSavedRegisters();
if (shrink_slots > 0) {
__ sub(esp, Immediate(shrink_slots * kPointerSize));
}
if (saves != 0) { // Save callee-saved registers.
DCHECK(!info()->is_osr());
int pushed = 0;
for (int i = Register::kNumRegisters - 1; i >= 0; i--) {
if (!((1 << i) & saves)) continue;
__ push(Register::from_code(i));
++pushed;
}
}
}
void CodeGenerator::AssembleReturn() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
const RegList saves = descriptor->CalleeSavedRegisters();
// Restore registers.
if (saves != 0) {
for (int i = 0; i < Register::kNumRegisters; i++) {
if (!((1 << i) & saves)) continue;
__ pop(Register::from_code(i));
}
}
if (descriptor->IsCFunctionCall()) {
AssembleDeconstructFrame();
} else if (frame_access_state()->has_frame()) {
// Canonicalize JSFunction return sites for now.
if (return_label_.is_bound()) {
__ jmp(&return_label_);
return;
} else {
__ bind(&return_label_);
AssembleDeconstructFrame();
}
}
size_t pop_size = descriptor->StackParameterCount() * kPointerSize;
// Might need ecx for scratch if pop_size is too big.
DCHECK_EQ(0u, descriptor->CalleeSavedRegisters() & ecx.bit());
__ Ret(static_cast<int>(pop_size), ecx);
}
void CodeGenerator::AssembleMove(InstructionOperand* source,
InstructionOperand* destination) {
IA32OperandConverter g(this, nullptr);
// Dispatch on the source and destination operand kinds. Not all
// combinations are possible.
if (source->IsRegister()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
Register src = g.ToRegister(source);
Operand dst = g.ToOperand(destination);
__ mov(dst, src);
} else if (source->IsStackSlot()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
Operand src = g.ToOperand(source);
if (destination->IsRegister()) {
Register dst = g.ToRegister(destination);
__ mov(dst, src);
} else {
Operand dst = g.ToOperand(destination);
__ push(src);
__ pop(dst);
}
} else if (source->IsConstant()) {
Constant src_constant = g.ToConstant(source);
if (src_constant.type() == Constant::kHeapObject) {
Handle<HeapObject> src = src_constant.ToHeapObject();
int slot;
if (IsMaterializableFromFrame(src, &slot)) {
if (destination->IsRegister()) {
Register dst = g.ToRegister(destination);
__ mov(dst, g.SlotToOperand(slot));
} else {
DCHECK(destination->IsStackSlot());
Operand dst = g.ToOperand(destination);
__ push(g.SlotToOperand(slot));
__ pop(dst);
}
} else if (destination->IsRegister()) {
Register dst = g.ToRegister(destination);
__ LoadHeapObject(dst, src);
} else {
DCHECK(destination->IsStackSlot());
Operand dst = g.ToOperand(destination);
AllowDeferredHandleDereference embedding_raw_address;
if (isolate()->heap()->InNewSpace(*src)) {
__ PushHeapObject(src);
__ pop(dst);
} else {
__ mov(dst, src);
}
}
} else if (destination->IsRegister()) {
Register dst = g.ToRegister(destination);
__ Move(dst, g.ToImmediate(source));
} else if (destination->IsStackSlot()) {
Operand dst = g.ToOperand(destination);
__ Move(dst, g.ToImmediate(source));
} else if (src_constant.type() == Constant::kFloat32) {
// TODO(turbofan): Can we do better here?
uint32_t src = bit_cast<uint32_t>(src_constant.ToFloat32());
if (destination->IsFPRegister()) {
XMMRegister dst = g.ToDoubleRegister(destination);
__ Move(dst, src);
} else {
DCHECK(destination->IsFPStackSlot());
Operand dst = g.ToOperand(destination);
__ Move(dst, Immediate(src));
}
} else {
DCHECK_EQ(Constant::kFloat64, src_constant.type());
uint64_t src = bit_cast<uint64_t>(src_constant.ToFloat64());
uint32_t lower = static_cast<uint32_t>(src);
uint32_t upper = static_cast<uint32_t>(src >> 32);
if (destination->IsFPRegister()) {
XMMRegister dst = g.ToDoubleRegister(destination);
__ Move(dst, src);
} else {
DCHECK(destination->IsFPStackSlot());
Operand dst0 = g.ToOperand(destination);
Operand dst1 = g.HighOperand(destination);
__ Move(dst0, Immediate(lower));
__ Move(dst1, Immediate(upper));
}
}
} else if (source->IsFPRegister()) {
XMMRegister src = g.ToDoubleRegister(source);
if (destination->IsFPRegister()) {
XMMRegister dst = g.ToDoubleRegister(destination);
__ movaps(dst, src);
} else {
DCHECK(destination->IsFPStackSlot());
Operand dst = g.ToOperand(destination);
MachineRepresentation rep =
LocationOperand::cast(source)->representation();
if (rep == MachineRepresentation::kFloat64) {
__ movsd(dst, src);
} else if (rep == MachineRepresentation::kFloat32) {
__ movss(dst, src);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
__ movups(dst, src);
}
}
} else if (source->IsFPStackSlot()) {
DCHECK(destination->IsFPRegister() || destination->IsFPStackSlot());
Operand src = g.ToOperand(source);
MachineRepresentation rep = LocationOperand::cast(source)->representation();
if (destination->IsFPRegister()) {
XMMRegister dst = g.ToDoubleRegister(destination);
if (rep == MachineRepresentation::kFloat64) {
__ movsd(dst, src);
} else if (rep == MachineRepresentation::kFloat32) {
__ movss(dst, src);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
__ movups(dst, src);
}
} else {
Operand dst = g.ToOperand(destination);
if (rep == MachineRepresentation::kFloat64) {
__ movsd(kScratchDoubleReg, src);
__ movsd(dst, kScratchDoubleReg);
} else if (rep == MachineRepresentation::kFloat32) {
__ movss(kScratchDoubleReg, src);
__ movss(dst, kScratchDoubleReg);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
__ movups(kScratchDoubleReg, src);
__ movups(dst, kScratchDoubleReg);
}
}
} else {
UNREACHABLE();
}
}
void CodeGenerator::AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) {
IA32OperandConverter g(this, nullptr);
// Dispatch on the source and destination operand kinds. Not all
// combinations are possible.
if (source->IsRegister() && destination->IsRegister()) {
// Register-register.
Register src = g.ToRegister(source);
Register dst = g.ToRegister(destination);
__ push(src);
__ mov(src, dst);
__ pop(dst);
} else if (source->IsRegister() && destination->IsStackSlot()) {
// Register-memory.
Register src = g.ToRegister(source);
__ push(src);
frame_access_state()->IncreaseSPDelta(1);
Operand dst = g.ToOperand(destination);
__ mov(src, dst);
frame_access_state()->IncreaseSPDelta(-1);
dst = g.ToOperand(destination);
__ pop(dst);
} else if (source->IsStackSlot() && destination->IsStackSlot()) {
// Memory-memory.
Operand dst1 = g.ToOperand(destination);
__ push(dst1);
frame_access_state()->IncreaseSPDelta(1);
Operand src1 = g.ToOperand(source);
__ push(src1);
Operand dst2 = g.ToOperand(destination);
__ pop(dst2);
frame_access_state()->IncreaseSPDelta(-1);
Operand src2 = g.ToOperand(source);
__ pop(src2);
} else if (source->IsFPRegister() && destination->IsFPRegister()) {
// XMM register-register swap.
XMMRegister src = g.ToDoubleRegister(source);
XMMRegister dst = g.ToDoubleRegister(destination);
__ movaps(kScratchDoubleReg, src);
__ movaps(src, dst);
__ movaps(dst, kScratchDoubleReg);
} else if (source->IsFPRegister() && destination->IsFPStackSlot()) {
// XMM register-memory swap.
XMMRegister reg = g.ToDoubleRegister(source);
Operand other = g.ToOperand(destination);
MachineRepresentation rep = LocationOperand::cast(source)->representation();
if (rep == MachineRepresentation::kFloat64) {
__ movsd(kScratchDoubleReg, other);
__ movsd(other, reg);
__ movaps(reg, kScratchDoubleReg);
} else if (rep == MachineRepresentation::kFloat32) {
__ movss(kScratchDoubleReg, other);
__ movss(other, reg);
__ movaps(reg, kScratchDoubleReg);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
__ movups(kScratchDoubleReg, other);
__ movups(other, reg);
__ movups(reg, kScratchDoubleReg);
}
} else if (source->IsFPStackSlot() && destination->IsFPStackSlot()) {
// Double-width memory-to-memory.
Operand src0 = g.ToOperand(source);
Operand dst0 = g.ToOperand(destination);
MachineRepresentation rep = LocationOperand::cast(source)->representation();
if (rep == MachineRepresentation::kFloat64) {
Operand src1 = g.HighOperand(source);
Operand dst1 = g.HighOperand(destination);
__ movsd(kScratchDoubleReg, dst0); // Save dst in scratch register.
__ push(src0); // Then use stack to copy src to destination.
__ pop(dst0);
__ push(src1);
__ pop(dst1);
__ movsd(src0, kScratchDoubleReg);
} else if (rep == MachineRepresentation::kFloat32) {
__ movss(kScratchDoubleReg, dst0); // Save dst in scratch register.
__ push(src0); // Then use stack to copy src to destination.
__ pop(dst0);
__ movss(src0, kScratchDoubleReg);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, rep);
// Use the XOR trick to swap without a temporary.
__ movups(kScratchDoubleReg, src0);
__ xorps(kScratchDoubleReg, dst0); // scratch contains src ^ dst.
__ movups(src0, kScratchDoubleReg);
__ xorps(kScratchDoubleReg, dst0); // scratch contains src.
__ movups(dst0, kScratchDoubleReg);
__ xorps(kScratchDoubleReg, src0); // scratch contains dst.
__ movups(src0, kScratchDoubleReg);
}
} else {
// No other combinations are possible.
UNREACHABLE();
}
}
void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) {
for (size_t index = 0; index < target_count; ++index) {
__ dd(targets[index]);
}
}
void CodeGenerator::EnsureSpaceForLazyDeopt() {
if (!info()->ShouldEnsureSpaceForLazyDeopt()) {
return;
}
int space_needed = Deoptimizer::patch_size();
// Ensure that we have enough space after the previous lazy-bailout
// instruction for patching the code here.
int current_pc = masm()->pc_offset();
if (current_pc < last_lazy_deopt_pc_ + space_needed) {
int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
__ Nop(padding_size);
}
}
#undef __
} // namespace compiler
} // namespace internal
} // namespace v8