blob: 266a5dc7400cbd11079294f59809cad87bc51584 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/rtp/include/send_side_congestion_controller.h"
#include <algorithm>
#include <functional>
#include <memory>
#include <vector>
#include "absl/memory/memory.h"
#include "api/transport/network_types.h"
#include "modules/congestion_controller/congestion_window_pushback_controller.h"
#include "modules/congestion_controller/goog_cc/include/goog_cc_factory.h"
#include "modules/remote_bitrate_estimator/include/bwe_defines.h"
#include "rtc_base/bind.h"
#include "rtc_base/checks.h"
#include "rtc_base/format_macros.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "rtc_base/rate_limiter.h"
#include "rtc_base/sequenced_task_checker.h"
#include "rtc_base/socket.h"
#include "rtc_base/timeutils.h"
#include "system_wrappers/include/field_trial.h"
using absl::make_unique;
namespace webrtc {
namespace webrtc_cc {
namespace {
using send_side_cc_internal::PeriodicTask;
const char kCwndExperiment[] = "WebRTC-CwndExperiment";
// When CongestionWindowPushback is enabled, the pacer is oblivious to
// the congestion window. The relation between outstanding data and
// the congestion window affects encoder allocations directly.
const char kCongestionPushbackExperiment[] = "WebRTC-CongestionWindowPushback";
// When PacerPushbackExperiment is enabled, build-up in the pacer due to
// the congestion window and/or data spikes reduces encoder allocations.
const char kPacerPushbackExperiment[] = "WebRTC-PacerPushbackExperiment";
const int64_t PacerQueueUpdateIntervalMs = 25;
bool IsPacerPushbackExperimentEnabled() {
return webrtc::field_trial::IsEnabled(kPacerPushbackExperiment);
}
bool IsCongestionWindowPushbackExperimentEnabled() {
return webrtc::field_trial::IsEnabled(kCongestionPushbackExperiment) &&
webrtc::field_trial::IsEnabled(kCwndExperiment);
}
std::unique_ptr<CongestionWindowPushbackController>
MaybeInitalizeCongestionWindowPushbackController() {
return IsCongestionWindowPushbackExperimentEnabled()
? absl::make_unique<CongestionWindowPushbackController>()
: nullptr;
}
void SortPacketFeedbackVector(std::vector<webrtc::PacketFeedback>* input) {
std::sort(input->begin(), input->end(), PacketFeedbackComparator());
}
PacketResult NetworkPacketFeedbackFromRtpPacketFeedback(
const webrtc::PacketFeedback& pf) {
PacketResult feedback;
if (pf.arrival_time_ms == webrtc::PacketFeedback::kNotReceived)
feedback.receive_time = Timestamp::PlusInfinity();
else
feedback.receive_time = Timestamp::ms(pf.arrival_time_ms);
if (pf.send_time_ms != webrtc::PacketFeedback::kNoSendTime) {
feedback.sent_packet = SentPacket();
feedback.sent_packet->sequence_number = pf.long_sequence_number;
feedback.sent_packet->send_time = Timestamp::ms(pf.send_time_ms);
feedback.sent_packet->size = DataSize::bytes(pf.payload_size);
feedback.sent_packet->pacing_info = pf.pacing_info;
}
return feedback;
}
std::vector<PacketResult> PacketResultsFromRtpFeedbackVector(
const std::vector<PacketFeedback>& feedback_vector) {
RTC_DCHECK(std::is_sorted(feedback_vector.begin(), feedback_vector.end(),
PacketFeedbackComparator()));
std::vector<PacketResult> packet_feedbacks;
packet_feedbacks.reserve(feedback_vector.size());
for (const PacketFeedback& rtp_feedback : feedback_vector) {
auto feedback = NetworkPacketFeedbackFromRtpPacketFeedback(rtp_feedback);
packet_feedbacks.push_back(feedback);
}
return packet_feedbacks;
}
TargetRateConstraints ConvertConstraints(int min_bitrate_bps,
int max_bitrate_bps,
int start_bitrate_bps,
const Clock* clock) {
TargetRateConstraints msg;
msg.at_time = Timestamp::ms(clock->TimeInMilliseconds());
msg.min_data_rate =
min_bitrate_bps >= 0 ? DataRate::bps(min_bitrate_bps) : DataRate::Zero();
msg.max_data_rate = max_bitrate_bps > 0 ? DataRate::bps(max_bitrate_bps)
: DataRate::Infinity();
if (start_bitrate_bps > 0)
msg.starting_rate = DataRate::bps(start_bitrate_bps);
return msg;
}
// The template closure pattern is based on rtc::ClosureTask.
template <class Closure>
class PeriodicTaskImpl final : public PeriodicTask {
public:
PeriodicTaskImpl(rtc::TaskQueue* task_queue,
int64_t period_ms,
Closure&& closure)
: task_queue_(task_queue),
period_ms_(period_ms),
closure_(std::forward<Closure>(closure)) {}
bool Run() override {
if (!running_)
return true;
closure_();
// absl::WrapUnique lets us repost this task on the TaskQueue.
task_queue_->PostDelayedTask(absl::WrapUnique(this), period_ms_);
// Return false to tell TaskQueue to not destruct this object, since we have
// taken ownership with absl::WrapUnique.
return false;
}
void Stop() override {
if (task_queue_->IsCurrent()) {
RTC_DCHECK(running_);
running_ = false;
} else {
task_queue_->PostTask([this] { Stop(); });
}
}
private:
rtc::TaskQueue* const task_queue_;
const int64_t period_ms_;
typename std::remove_const<
typename std::remove_reference<Closure>::type>::type closure_;
bool running_ = true;
};
template <class Closure>
static PeriodicTask* StartPeriodicTask(rtc::TaskQueue* task_queue,
int64_t period_ms,
Closure&& closure) {
auto periodic_task = absl::make_unique<PeriodicTaskImpl<Closure>>(
task_queue, period_ms, std::forward<Closure>(closure));
PeriodicTask* periodic_task_ptr = periodic_task.get();
task_queue->PostDelayedTask(std::move(periodic_task), period_ms);
return periodic_task_ptr;
}
} // namespace
namespace send_side_cc_internal {
class ControlHandler {
public:
ControlHandler(NetworkChangedObserver* observer,
PacerController* pacer_controller,
const Clock* clock);
void PostUpdates(NetworkControlUpdate update);
void OnNetworkAvailability(NetworkAvailability msg);
void OnOutstandingData(DataSize in_flight_data);
void OnPacerQueueUpdate(TimeDelta expected_queue_time);
absl::optional<TargetTransferRate> last_transfer_rate();
private:
void OnNetworkInvalidation();
bool GetNetworkParameters(int32_t* estimated_bitrate_bps,
uint8_t* fraction_loss,
int64_t* rtt_ms);
bool IsSendQueueFull() const;
bool HasNetworkParametersToReportChanged(int64_t bitrate_bps,
uint8_t fraction_loss,
int64_t rtt);
NetworkChangedObserver* observer_ = nullptr;
PacerController* pacer_controller_;
absl::optional<TargetTransferRate> current_target_rate_msg_;
bool network_available_ = true;
int64_t last_reported_target_bitrate_bps_ = 0;
uint8_t last_reported_fraction_loss_ = 0;
int64_t last_reported_rtt_ms_ = 0;
const bool pacer_pushback_experiment_ = false;
uint32_t min_pushback_target_bitrate_bps_;
int64_t pacer_expected_queue_ms_ = 0;
double encoding_rate_ratio_ = 1.0;
const std::unique_ptr<CongestionWindowPushbackController>
congestion_window_pushback_controller_;
rtc::SequencedTaskChecker sequenced_checker_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(ControlHandler);
};
ControlHandler::ControlHandler(NetworkChangedObserver* observer,
PacerController* pacer_controller,
const Clock* clock)
: observer_(observer),
pacer_controller_(pacer_controller),
pacer_pushback_experiment_(IsPacerPushbackExperimentEnabled()),
congestion_window_pushback_controller_(
MaybeInitalizeCongestionWindowPushbackController()) {
sequenced_checker_.Detach();
}
void ControlHandler::PostUpdates(NetworkControlUpdate update) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
if (update.congestion_window) {
if (congestion_window_pushback_controller_) {
congestion_window_pushback_controller_->SetDataWindow(
update.congestion_window.value());
} else {
pacer_controller_->OnCongestionWindow(*update.congestion_window);
}
}
if (update.pacer_config) {
pacer_controller_->OnPacerConfig(*update.pacer_config);
}
for (const auto& probe : update.probe_cluster_configs) {
pacer_controller_->OnProbeClusterConfig(probe);
}
if (update.target_rate) {
current_target_rate_msg_ = *update.target_rate;
OnNetworkInvalidation();
}
}
void ControlHandler::OnNetworkAvailability(NetworkAvailability msg) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
network_available_ = msg.network_available;
OnNetworkInvalidation();
}
void ControlHandler::OnOutstandingData(DataSize in_flight_data) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
if (congestion_window_pushback_controller_) {
congestion_window_pushback_controller_->UpdateOutstandingData(
in_flight_data.bytes());
}
OnNetworkInvalidation();
}
void ControlHandler::OnPacerQueueUpdate(TimeDelta expected_queue_time) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
pacer_expected_queue_ms_ = expected_queue_time.ms();
OnNetworkInvalidation();
}
void ControlHandler::OnNetworkInvalidation() {
if (!current_target_rate_msg_.has_value())
return;
uint32_t target_bitrate_bps = current_target_rate_msg_->target_rate.bps();
int64_t rtt_ms =
current_target_rate_msg_->network_estimate.round_trip_time.ms();
float loss_rate_ratio =
current_target_rate_msg_->network_estimate.loss_rate_ratio;
int loss_ratio_255 = loss_rate_ratio * 255;
uint8_t fraction_loss =
rtc::dchecked_cast<uint8_t>(rtc::SafeClamp(loss_ratio_255, 0, 255));
int64_t probing_interval_ms =
current_target_rate_msg_->network_estimate.bwe_period.ms();
if (!network_available_) {
target_bitrate_bps = 0;
} else if (congestion_window_pushback_controller_) {
target_bitrate_bps =
congestion_window_pushback_controller_->UpdateTargetBitrate(
target_bitrate_bps);
} else if (!pacer_pushback_experiment_) {
target_bitrate_bps = IsSendQueueFull() ? 0 : target_bitrate_bps;
} else {
int64_t queue_length_ms = pacer_expected_queue_ms_;
if (queue_length_ms == 0) {
encoding_rate_ratio_ = 1.0;
} else if (queue_length_ms > 50) {
double encoding_ratio = 1.0 - queue_length_ms / 1000.0;
encoding_rate_ratio_ = std::min(encoding_rate_ratio_, encoding_ratio);
encoding_rate_ratio_ = std::max(encoding_rate_ratio_, 0.0);
}
target_bitrate_bps *= encoding_rate_ratio_;
target_bitrate_bps = target_bitrate_bps < 50000 ? 0 : target_bitrate_bps;
}
if (HasNetworkParametersToReportChanged(target_bitrate_bps, fraction_loss,
rtt_ms)) {
observer_->OnNetworkChanged(target_bitrate_bps, fraction_loss, rtt_ms,
probing_interval_ms);
}
}
bool ControlHandler::HasNetworkParametersToReportChanged(
int64_t target_bitrate_bps,
uint8_t fraction_loss,
int64_t rtt_ms) {
bool changed = last_reported_target_bitrate_bps_ != target_bitrate_bps ||
(target_bitrate_bps > 0 &&
(last_reported_fraction_loss_ != fraction_loss ||
last_reported_rtt_ms_ != rtt_ms));
if (changed &&
(last_reported_target_bitrate_bps_ == 0 || target_bitrate_bps == 0)) {
RTC_LOG(LS_INFO) << "Bitrate estimate state changed, BWE: "
<< target_bitrate_bps << " bps.";
}
last_reported_target_bitrate_bps_ = target_bitrate_bps;
last_reported_fraction_loss_ = fraction_loss;
last_reported_rtt_ms_ = rtt_ms;
return changed;
}
bool ControlHandler::IsSendQueueFull() const {
return pacer_expected_queue_ms_ > PacedSender::kMaxQueueLengthMs;
}
absl::optional<TargetTransferRate> ControlHandler::last_transfer_rate() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
return current_target_rate_msg_;
}
} // namespace send_side_cc_internal
SendSideCongestionController::SendSideCongestionController(
const Clock* clock,
rtc::TaskQueue* task_queue,
RtcEventLog* event_log,
PacedSender* pacer,
int start_bitrate_bps,
int min_bitrate_bps,
int max_bitrate_bps,
NetworkControllerFactoryInterface* controller_factory)
: clock_(clock),
pacer_(pacer),
transport_feedback_adapter_(clock_),
controller_factory_with_feedback_(controller_factory),
controller_factory_fallback_(
absl::make_unique<GoogCcNetworkControllerFactory>(event_log)),
pacer_controller_(absl::make_unique<PacerController>(pacer_)),
process_interval_(controller_factory_fallback_->GetProcessInterval()),
last_report_block_time_(Timestamp::ms(clock_->TimeInMilliseconds())),
observer_(nullptr),
send_side_bwe_with_overhead_(
webrtc::field_trial::IsEnabled("WebRTC-SendSideBwe-WithOverhead")),
transport_overhead_bytes_per_packet_(0),
network_available_(false),
periodic_tasks_enabled_(true),
packet_feedback_available_(false),
pacer_queue_update_task_(nullptr),
controller_task_(nullptr),
task_queue_(task_queue) {
initial_config_.constraints = ConvertConstraints(
min_bitrate_bps, max_bitrate_bps, start_bitrate_bps, clock_);
RTC_DCHECK(start_bitrate_bps > 0);
// To be fully compatible with legacy SendSideCongestionController, make sure
// pacer is initialized even if there are no registered streams. This should
// not happen under normal circumstances, but some tests rely on it and there
// are no checks detecting when the legacy SendSideCongestionController is
// used. This way of setting the value has the drawback that it might be wrong
// compared to what the actual value from the congestion controller will be.
// TODO(srte): Remove this when the legacy SendSideCongestionController is
// removed.
pacer_->SetEstimatedBitrate(start_bitrate_bps);
}
// There is no point in having a network controller for a network that is not
// yet available and if we don't have any observer of it's state.
// MaybeCreateControllers is used to trigger creation if those things are
// fulfilled. This is needed since dependent code uses the period until network
// is signalled to be avaliabile to set the expected start bitrate which is sent
// to the initializer for NetworkControllers. The observer is injected later due
// to a circular dependency between RtpTransportControllerSend and Call.
// TODO(srte): Break the circular dependency issue and make sure that starting
// bandwidth is set before this class is initialized so the controllers can be
// created in the constructor.
void SendSideCongestionController::MaybeCreateControllers() {
if (!controller_)
MaybeRecreateControllers();
}
void SendSideCongestionController::MaybeRecreateControllers() {
if (!network_available_ || !observer_)
return;
if (!control_handler_) {
control_handler_ = absl::make_unique<send_side_cc_internal::ControlHandler>(
observer_, pacer_controller_.get(), clock_);
}
initial_config_.constraints.at_time =
Timestamp::ms(clock_->TimeInMilliseconds());
initial_config_.stream_based_config = streams_config_;
if (!controller_) {
// TODO(srte): Use fallback controller if no feedback is available.
if (controller_factory_with_feedback_) {
RTC_LOG(LS_INFO) << "Creating feedback based only controller";
controller_ = controller_factory_with_feedback_->Create(initial_config_);
process_interval_ =
controller_factory_with_feedback_->GetProcessInterval();
} else {
RTC_LOG(LS_INFO) << "Creating fallback controller";
controller_ = controller_factory_fallback_->Create(initial_config_);
process_interval_ = controller_factory_fallback_->GetProcessInterval();
}
UpdateControllerWithTimeInterval();
StartProcessPeriodicTasks();
}
RTC_DCHECK(controller_);
}
void SendSideCongestionController::UpdateInitialConstraints(
TargetRateConstraints new_contraints) {
if (!new_contraints.starting_rate)
new_contraints.starting_rate = initial_config_.constraints.starting_rate;
RTC_DCHECK(new_contraints.starting_rate);
initial_config_.constraints = new_contraints;
}
SendSideCongestionController::~SendSideCongestionController() = default;
void SendSideCongestionController::RegisterPacketFeedbackObserver(
PacketFeedbackObserver* observer) {
transport_feedback_adapter_.RegisterPacketFeedbackObserver(observer);
}
void SendSideCongestionController::DeRegisterPacketFeedbackObserver(
PacketFeedbackObserver* observer) {
transport_feedback_adapter_.DeRegisterPacketFeedbackObserver(observer);
}
void SendSideCongestionController::RegisterNetworkObserver(
NetworkChangedObserver* observer) {
task_queue_->PostTask([this, observer]() {
RTC_DCHECK_RUN_ON(task_queue_);
RTC_DCHECK(observer_ == nullptr);
observer_ = observer;
MaybeCreateControllers();
});
}
void SendSideCongestionController::SetBweBitrates(int min_bitrate_bps,
int start_bitrate_bps,
int max_bitrate_bps) {
TargetRateConstraints constraints = ConvertConstraints(
min_bitrate_bps, max_bitrate_bps, start_bitrate_bps, clock_);
task_queue_->PostTask([this, constraints]() {
RTC_DCHECK_RUN_ON(task_queue_);
if (controller_) {
control_handler_->PostUpdates(
controller_->OnTargetRateConstraints(constraints));
} else {
UpdateInitialConstraints(constraints);
}
});
}
void SendSideCongestionController::SetAllocatedSendBitrateLimits(
int64_t min_send_bitrate_bps,
int64_t max_padding_bitrate_bps,
int64_t max_total_bitrate_bps) {
RTC_DCHECK_RUN_ON(task_queue_);
streams_config_.min_pacing_rate = DataRate::bps(min_send_bitrate_bps);
streams_config_.max_padding_rate = DataRate::bps(max_padding_bitrate_bps);
streams_config_.max_total_allocated_bitrate =
DataRate::bps(max_total_bitrate_bps);
UpdateStreamsConfig();
}
// TODO(holmer): Split this up and use SetBweBitrates in combination with
// OnNetworkRouteChanged.
void SendSideCongestionController::OnNetworkRouteChanged(
const rtc::NetworkRoute& network_route,
int start_bitrate_bps,
int min_bitrate_bps,
int max_bitrate_bps) {
transport_feedback_adapter_.SetNetworkIds(network_route.local_network_id,
network_route.remote_network_id);
transport_overhead_bytes_per_packet_ = network_route.packet_overhead;
NetworkRouteChange msg;
msg.at_time = Timestamp::ms(clock_->TimeInMilliseconds());
msg.constraints = ConvertConstraints(min_bitrate_bps, max_bitrate_bps,
start_bitrate_bps, clock_);
task_queue_->PostTask([this, msg]() {
RTC_DCHECK_RUN_ON(task_queue_);
if (controller_) {
control_handler_->PostUpdates(controller_->OnNetworkRouteChange(msg));
} else {
UpdateInitialConstraints(msg.constraints);
}
pacer_controller_->OnNetworkRouteChange(msg);
});
}
bool SendSideCongestionController::AvailableBandwidth(
uint32_t* bandwidth) const {
// This is only called in the OnNetworkChanged callback in
// RtpTransportControllerSend which is called from ControlHandler, which is
// running on the task queue.
// TODO(srte): Remove this function when RtpTransportControllerSend stops
// calling it.
RTC_DCHECK_RUN_ON(task_queue_);
if (!control_handler_) {
return false;
}
// TODO(srte): Remove this interface and push information about bandwidth
// estimation to users of this class, thereby reducing synchronous calls.
if (control_handler_->last_transfer_rate().has_value()) {
*bandwidth = control_handler_->last_transfer_rate()
->network_estimate.bandwidth.bps();
return true;
}
return false;
}
RtcpBandwidthObserver* SendSideCongestionController::GetBandwidthObserver() {
return this;
}
void SendSideCongestionController::SetPerPacketFeedbackAvailable(
bool available) {
RTC_DCHECK_RUN_ON(task_queue_);
packet_feedback_available_ = available;
MaybeRecreateControllers();
}
void SendSideCongestionController::EnablePeriodicAlrProbing(bool enable) {
task_queue_->PostTask([this, enable]() {
RTC_DCHECK_RUN_ON(task_queue_);
streams_config_.requests_alr_probing = enable;
UpdateStreamsConfig();
});
}
void SendSideCongestionController::UpdateStreamsConfig() {
streams_config_.at_time = Timestamp::ms(clock_->TimeInMilliseconds());
if (controller_)
control_handler_->PostUpdates(
controller_->OnStreamsConfig(streams_config_));
}
TransportFeedbackObserver*
SendSideCongestionController::GetTransportFeedbackObserver() {
return this;
}
void SendSideCongestionController::SignalNetworkState(NetworkState state) {
RTC_LOG(LS_INFO) << "SignalNetworkState "
<< (state == kNetworkUp ? "Up" : "Down");
NetworkAvailability msg;
msg.at_time = Timestamp::ms(clock_->TimeInMilliseconds());
msg.network_available = state == kNetworkUp;
task_queue_->PostTask([this, msg]() {
RTC_DCHECK_RUN_ON(task_queue_);
network_available_ = msg.network_available;
if (controller_) {
control_handler_->PostUpdates(controller_->OnNetworkAvailability(msg));
pacer_controller_->OnNetworkAvailability(msg);
control_handler_->OnNetworkAvailability(msg);
} else {
MaybeCreateControllers();
}
});
}
void SendSideCongestionController::OnSentPacket(
const rtc::SentPacket& sent_packet) {
// We're not interested in packets without an id, which may be stun packets,
// etc, sent on the same transport.
if (sent_packet.packet_id == -1)
return;
transport_feedback_adapter_.OnSentPacket(sent_packet.packet_id,
sent_packet.send_time_ms);
MaybeUpdateOutstandingData();
auto packet = transport_feedback_adapter_.GetPacket(sent_packet.packet_id);
if (packet.has_value()) {
SentPacket msg;
msg.size = DataSize::bytes(packet->payload_size);
msg.send_time = Timestamp::ms(packet->send_time_ms);
msg.sequence_number = packet->long_sequence_number;
msg.data_in_flight =
DataSize::bytes(transport_feedback_adapter_.GetOutstandingBytes());
task_queue_->PostTask([this, msg]() {
RTC_DCHECK_RUN_ON(task_queue_);
if (controller_)
control_handler_->PostUpdates(controller_->OnSentPacket(msg));
});
}
}
void SendSideCongestionController::OnRttUpdate(int64_t avg_rtt_ms,
int64_t max_rtt_ms) {
int64_t now_ms = clock_->TimeInMilliseconds();
RoundTripTimeUpdate report;
report.receive_time = Timestamp::ms(now_ms);
report.round_trip_time = TimeDelta::ms(avg_rtt_ms);
report.smoothed = true;
task_queue_->PostTask([this, report]() {
RTC_DCHECK_RUN_ON(task_queue_);
if (controller_)
control_handler_->PostUpdates(controller_->OnRoundTripTimeUpdate(report));
});
}
int64_t SendSideCongestionController::TimeUntilNextProcess() {
// Using task queue to process, just sleep long to avoid wasting resources.
return 60 * 1000;
}
void SendSideCongestionController::Process() {
// Ignored, using task queue to process.
}
void SendSideCongestionController::StartProcessPeriodicTasks() {
if (!periodic_tasks_enabled_)
return;
if (!pacer_queue_update_task_) {
pacer_queue_update_task_ =
StartPeriodicTask(task_queue_, PacerQueueUpdateIntervalMs, [this]() {
RTC_DCHECK_RUN_ON(task_queue_);
UpdatePacerQueue();
});
}
if (controller_task_) {
// Stop is not synchronous, but is guaranteed to occur before the first
// invocation of the new controller task started below.
controller_task_->Stop();
controller_task_ = nullptr;
}
if (process_interval_.IsFinite()) {
// The controller task is owned by the task queue and lives until the task
// queue is destroyed or some time after Stop() is called, whichever comes
// first.
controller_task_ =
StartPeriodicTask(task_queue_, process_interval_.ms(), [this]() {
RTC_DCHECK_RUN_ON(task_queue_);
UpdateControllerWithTimeInterval();
});
}
}
void SendSideCongestionController::UpdateControllerWithTimeInterval() {
if (controller_) {
ProcessInterval msg;
msg.at_time = Timestamp::ms(clock_->TimeInMilliseconds());
control_handler_->PostUpdates(controller_->OnProcessInterval(msg));
}
}
void SendSideCongestionController::UpdatePacerQueue() {
if (control_handler_) {
TimeDelta expected_queue_time =
TimeDelta::ms(pacer_->ExpectedQueueTimeMs());
control_handler_->OnPacerQueueUpdate(expected_queue_time);
}
}
void SendSideCongestionController::AddPacket(
uint32_t ssrc,
uint16_t sequence_number,
size_t length,
const PacedPacketInfo& pacing_info) {
if (send_side_bwe_with_overhead_) {
length += transport_overhead_bytes_per_packet_;
}
transport_feedback_adapter_.AddPacket(ssrc, sequence_number, length,
pacing_info);
}
void SendSideCongestionController::OnTransportFeedback(
const rtcp::TransportFeedback& feedback) {
RTC_DCHECK_RUNS_SERIALIZED(&worker_race_);
int64_t feedback_time_ms = clock_->TimeInMilliseconds();
DataSize prior_in_flight =
DataSize::bytes(transport_feedback_adapter_.GetOutstandingBytes());
transport_feedback_adapter_.OnTransportFeedback(feedback);
MaybeUpdateOutstandingData();
std::vector<PacketFeedback> feedback_vector =
transport_feedback_adapter_.GetTransportFeedbackVector();
SortPacketFeedbackVector(&feedback_vector);
if (!feedback_vector.empty()) {
TransportPacketsFeedback msg;
msg.packet_feedbacks = PacketResultsFromRtpFeedbackVector(feedback_vector);
msg.feedback_time = Timestamp::ms(feedback_time_ms);
msg.prior_in_flight = prior_in_flight;
msg.data_in_flight =
DataSize::bytes(transport_feedback_adapter_.GetOutstandingBytes());
task_queue_->PostTask([this, msg]() {
RTC_DCHECK_RUN_ON(task_queue_);
if (controller_)
control_handler_->PostUpdates(
controller_->OnTransportPacketsFeedback(msg));
});
}
}
void SendSideCongestionController::MaybeUpdateOutstandingData() {
DataSize in_flight_data =
DataSize::bytes(transport_feedback_adapter_.GetOutstandingBytes());
task_queue_->PostTask([this, in_flight_data]() {
RTC_DCHECK_RUN_ON(task_queue_);
pacer_controller_->OnOutstandingData(in_flight_data);
if (control_handler_)
control_handler_->OnOutstandingData(in_flight_data);
});
}
std::vector<PacketFeedback>
SendSideCongestionController::GetTransportFeedbackVector() const {
RTC_DCHECK_RUNS_SERIALIZED(&worker_race_);
return transport_feedback_adapter_.GetTransportFeedbackVector();
}
void SendSideCongestionController::PostPeriodicTasksForTest() {
task_queue_->PostTask([this]() {
RTC_DCHECK_RUN_ON(task_queue_);
UpdateControllerWithTimeInterval();
UpdatePacerQueue();
});
}
void SendSideCongestionController::WaitOnTasksForTest() {
rtc::Event event(false, false);
task_queue_->PostTask([&event]() { event.Set(); });
event.Wait(rtc::Event::kForever);
}
void SendSideCongestionController::SetPacingFactor(float pacing_factor) {
RTC_DCHECK_RUN_ON(task_queue_);
streams_config_.pacing_factor = pacing_factor;
UpdateStreamsConfig();
}
void SendSideCongestionController::SetAllocatedBitrateWithoutFeedback(
uint32_t bitrate_bps) {
task_queue_->PostTask([this, bitrate_bps]() {
RTC_DCHECK_RUN_ON(task_queue_);
streams_config_.unacknowledged_rate_allocation = DataRate::bps(bitrate_bps);
UpdateStreamsConfig();
});
}
void SendSideCongestionController::DisablePeriodicTasks() {
task_queue_->PostTask([this]() {
RTC_DCHECK_RUN_ON(task_queue_);
periodic_tasks_enabled_ = false;
});
}
void SendSideCongestionController::OnReceivedEstimatedBitrate(
uint32_t bitrate) {
RemoteBitrateReport msg;
msg.receive_time = Timestamp::ms(clock_->TimeInMilliseconds());
msg.bandwidth = DataRate::bps(bitrate);
task_queue_->PostTask([this, msg]() {
RTC_DCHECK_RUN_ON(task_queue_);
if (controller_)
control_handler_->PostUpdates(controller_->OnRemoteBitrateReport(msg));
});
}
void SendSideCongestionController::OnReceivedRtcpReceiverReport(
const webrtc::ReportBlockList& report_blocks,
int64_t rtt_ms,
int64_t now_ms) {
task_queue_->PostTask([this, report_blocks, now_ms]() {
RTC_DCHECK_RUN_ON(task_queue_);
OnReceivedRtcpReceiverReportBlocks(report_blocks, now_ms);
});
task_queue_->PostTask([this, now_ms, rtt_ms]() {
RTC_DCHECK_RUN_ON(task_queue_);
RoundTripTimeUpdate report;
report.receive_time = Timestamp::ms(now_ms);
report.round_trip_time = TimeDelta::ms(rtt_ms);
report.smoothed = false;
if (controller_)
control_handler_->PostUpdates(controller_->OnRoundTripTimeUpdate(report));
});
}
void SendSideCongestionController::OnReceivedRtcpReceiverReportBlocks(
const ReportBlockList& report_blocks,
int64_t now_ms) {
if (report_blocks.empty())
return;
int total_packets_lost_delta = 0;
int total_packets_delta = 0;
// Compute the packet loss from all report blocks.
for (const RTCPReportBlock& report_block : report_blocks) {
auto it = last_report_blocks_.find(report_block.source_ssrc);
if (it != last_report_blocks_.end()) {
auto number_of_packets = report_block.extended_highest_sequence_number -
it->second.extended_highest_sequence_number;
total_packets_delta += number_of_packets;
auto lost_delta = report_block.packets_lost - it->second.packets_lost;
total_packets_lost_delta += lost_delta;
}
last_report_blocks_[report_block.source_ssrc] = report_block;
}
// Can only compute delta if there has been previous blocks to compare to. If
// not, total_packets_delta will be unchanged and there's nothing more to do.
if (!total_packets_delta)
return;
int packets_received_delta = total_packets_delta - total_packets_lost_delta;
// To detect lost packets, at least one packet has to be received. This check
// is needed to avoid bandwith detection update in
// VideoSendStreamTest.SuspendBelowMinBitrate
if (packets_received_delta < 1)
return;
Timestamp now = Timestamp::ms(now_ms);
TransportLossReport msg;
msg.packets_lost_delta = total_packets_lost_delta;
msg.packets_received_delta = packets_received_delta;
msg.receive_time = now;
msg.start_time = last_report_block_time_;
msg.end_time = now;
if (controller_)
control_handler_->PostUpdates(controller_->OnTransportLossReport(msg));
last_report_block_time_ = now;
}
} // namespace webrtc_cc
} // namespace webrtc