blob: f5a0fd1e6afefbe50f42f55eb429c8573785c3d5 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/video/color_space.h"
#include "api/video/i420_buffer.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "media/base/vp9_profile.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/video_coding/codecs/test/video_codec_unittest.h"
#include "modules/video_coding/codecs/vp9/include/vp9.h"
#include "modules/video_coding/codecs/vp9/svc_config.h"
#include "test/field_trial.h"
#include "test/video_codec_settings.h"
namespace webrtc {
namespace {
const size_t kWidth = 1280;
const size_t kHeight = 720;
} // namespace
class TestVp9Impl : public VideoCodecUnitTest {
protected:
std::unique_ptr<VideoEncoder> CreateEncoder() override {
return VP9Encoder::Create();
}
std::unique_ptr<VideoDecoder> CreateDecoder() override {
return VP9Decoder::Create();
}
void ModifyCodecSettings(VideoCodec* codec_settings) override {
webrtc::test::CodecSettings(kVideoCodecVP9, codec_settings);
codec_settings->width = kWidth;
codec_settings->height = kHeight;
codec_settings->VP9()->numberOfTemporalLayers = 1;
codec_settings->VP9()->numberOfSpatialLayers = 1;
}
void ExpectFrameWith(uint8_t temporal_idx) {
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_EQ(temporal_idx, codec_specific_info.codecSpecific.VP9.temporal_idx);
}
void ExpectFrameWith(size_t num_spatial_layers,
uint8_t temporal_idx,
bool temporal_up_switch,
uint8_t num_ref_pics,
const std::vector<uint8_t>& p_diff) {
std::vector<EncodedImage> encoded_frame;
std::vector<CodecSpecificInfo> codec_specific;
ASSERT_TRUE(WaitForEncodedFrames(&encoded_frame, &codec_specific));
for (size_t spatial_idx = 0; spatial_idx < num_spatial_layers;
++spatial_idx) {
const CodecSpecificInfoVP9& vp9 =
codec_specific[spatial_idx].codecSpecific.VP9;
if (vp9.temporal_idx == kNoTemporalIdx) {
EXPECT_EQ(temporal_idx, 0);
} else {
EXPECT_EQ(vp9.temporal_idx, temporal_idx);
}
if (num_spatial_layers == 1) {
EXPECT_FALSE(encoded_frame[spatial_idx].SpatialIndex());
} else {
EXPECT_EQ(encoded_frame[spatial_idx].SpatialIndex(),
static_cast<int>(spatial_idx));
}
EXPECT_EQ(vp9.temporal_up_switch, temporal_up_switch);
// Ensure there are no duplicates in reference list.
std::vector<uint8_t> vp9_p_diff(vp9.p_diff,
vp9.p_diff + vp9.num_ref_pics);
std::sort(vp9_p_diff.begin(), vp9_p_diff.end());
EXPECT_EQ(std::unique(vp9_p_diff.begin(), vp9_p_diff.end()),
vp9_p_diff.end());
for (size_t ref_pic_num = 0; ref_pic_num < num_ref_pics; ++ref_pic_num) {
EXPECT_NE(
std::find(p_diff.begin(), p_diff.end(), vp9.p_diff[ref_pic_num]),
p_diff.end());
}
}
}
void ConfigureSvc(size_t num_spatial_layers) {
codec_settings_.VP9()->numberOfSpatialLayers =
static_cast<unsigned char>(num_spatial_layers);
codec_settings_.VP9()->numberOfTemporalLayers = 1;
codec_settings_.VP9()->frameDroppingOn = false;
std::vector<SpatialLayer> layers = GetSvcConfig(
codec_settings_.width, codec_settings_.height,
codec_settings_.maxFramerate, num_spatial_layers, 1, false);
for (size_t i = 0; i < layers.size(); ++i) {
codec_settings_.spatialLayers[i] = layers[i];
}
}
HdrMetadata CreateTestHdrMetadata() const {
// Random but reasonable HDR metadata.
HdrMetadata hdr_metadata;
hdr_metadata.mastering_metadata.luminance_max = 2000.0;
hdr_metadata.mastering_metadata.luminance_min = 2.0001;
hdr_metadata.mastering_metadata.primary_r.x = 0.30;
hdr_metadata.mastering_metadata.primary_r.y = 0.40;
hdr_metadata.mastering_metadata.primary_g.x = 0.32;
hdr_metadata.mastering_metadata.primary_g.y = 0.46;
hdr_metadata.mastering_metadata.primary_b.x = 0.34;
hdr_metadata.mastering_metadata.primary_b.y = 0.49;
hdr_metadata.mastering_metadata.white_point.x = 0.41;
hdr_metadata.mastering_metadata.white_point.y = 0.48;
hdr_metadata.max_content_light_level = 2345;
hdr_metadata.max_frame_average_light_level = 1789;
return hdr_metadata;
}
ColorSpace CreateTestColorSpace() const {
HdrMetadata hdr_metadata = CreateTestHdrMetadata();
ColorSpace color_space(ColorSpace::PrimaryID::kBT709,
ColorSpace::TransferID::kGAMMA22,
ColorSpace::MatrixID::kSMPTE2085,
ColorSpace::RangeID::kFull, &hdr_metadata);
return color_space;
}
};
// Disabled on ios as flake, see https://crbug.com/webrtc/7057
#if defined(WEBRTC_IOS)
TEST_F(TestVp9Impl, DISABLED_EncodeDecode) {
#else
TEST_F(TestVp9Impl, EncodeDecode) {
#endif
VideoFrame* input_frame = NextInputFrame();
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
// First frame should be a key frame.
encoded_frame._frameType = kVideoFrameKey;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
decoder_->Decode(encoded_frame, false, nullptr, 0));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
EXPECT_GT(I420PSNR(input_frame, decoded_frame.get()), 36);
const ColorSpace color_space = *decoded_frame->color_space();
EXPECT_EQ(ColorSpace::PrimaryID::kUNSPECIFIED, color_space.primaries());
EXPECT_EQ(ColorSpace::TransferID::kUNSPECIFIED, color_space.transfer());
EXPECT_EQ(ColorSpace::MatrixID::kUNSPECIFIED, color_space.matrix());
EXPECT_EQ(ColorSpace::RangeID::kLimited, color_space.range());
}
// We only test the encoder here, since the decoded frame rotation is set based
// on the CVO RTP header extension in VCMDecodedFrameCallback::Decoded.
// TODO(brandtr): Consider passing through the rotation flag through the decoder
// in the same way as done in the encoder.
TEST_F(TestVp9Impl, EncodedRotationEqualsInputRotation) {
VideoFrame* input_frame = NextInputFrame();
input_frame->set_rotation(kVideoRotation_0);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_EQ(kVideoRotation_0, encoded_frame.rotation_);
input_frame = NextInputFrame();
input_frame->set_rotation(kVideoRotation_90);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_EQ(kVideoRotation_90, encoded_frame.rotation_);
}
TEST_F(TestVp9Impl, EncodedColorSpaceEqualsInputColorSpace) {
// Video frame without explicit color space information.
VideoFrame* input_frame = NextInputFrame();
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_FALSE(encoded_frame.ColorSpace());
// Video frame with explicit color space information.
ColorSpace color_space = CreateTestColorSpace();
VideoFrame input_frame_w_hdr =
VideoFrame::Builder()
.set_video_frame_buffer(input_frame->video_frame_buffer())
.set_color_space(&color_space)
.build();
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(input_frame_w_hdr, nullptr, nullptr));
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
ASSERT_TRUE(encoded_frame.ColorSpace());
EXPECT_EQ(*encoded_frame.ColorSpace(), color_space);
}
TEST_F(TestVp9Impl, DecodedHdrMetadataEqualsEncodedHdrMetadata) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
// Encoded frame without explicit color space information.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
decoder_->Decode(encoded_frame, false, nullptr, 0));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
// Color space present from encoded bitstream.
ASSERT_TRUE(decoded_frame->color_space());
// No HDR metadata present.
EXPECT_FALSE(decoded_frame->color_space()->hdr_metadata());
// Encoded frame with explicit color space information.
ColorSpace color_space = CreateTestColorSpace();
encoded_frame.SetColorSpace(&color_space);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
decoder_->Decode(encoded_frame, false, nullptr, 0));
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
ASSERT_TRUE(decoded_frame->color_space());
EXPECT_EQ(color_space, *decoded_frame->color_space());
}
TEST_F(TestVp9Impl, DecodedQpEqualsEncodedQp) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
// First frame should be a key frame.
encoded_frame._frameType = kVideoFrameKey;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
decoder_->Decode(encoded_frame, false, nullptr, 0));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
ASSERT_TRUE(decoded_qp);
EXPECT_EQ(encoded_frame.qp_, *decoded_qp);
}
TEST_F(TestVp9Impl, ParserQpEqualsEncodedQp) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
int qp = 0;
ASSERT_TRUE(vp9::GetQp(encoded_frame._buffer, encoded_frame._length, &qp));
EXPECT_EQ(encoded_frame.qp_, qp);
}
TEST_F(TestVp9Impl, EncoderWith2TemporalLayers) {
// Override default settings.
codec_settings_.VP9()->numberOfTemporalLayers = 2;
// Tl0PidIdx is only used in non-flexible mode.
codec_settings_.VP9()->flexibleMode = false;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
// Temporal layer 0.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_EQ(0, codec_specific_info.codecSpecific.VP9.temporal_idx);
// Temporal layer 1.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
ExpectFrameWith(1);
// Temporal layer 0.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
ExpectFrameWith(0);
// Temporal layer 1.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
ExpectFrameWith(1);
}
TEST_F(TestVp9Impl, EncoderWith2SpatialLayers) {
codec_settings_.VP9()->numberOfSpatialLayers = 2;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
SetWaitForEncodedFramesThreshold(2);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
std::vector<EncodedImage> encoded_frame;
std::vector<CodecSpecificInfo> codec_info;
ASSERT_TRUE(WaitForEncodedFrames(&encoded_frame, &codec_info));
EXPECT_EQ(encoded_frame[0].SpatialIndex(), 0);
EXPECT_EQ(encoded_frame[1].SpatialIndex(), 1);
}
TEST_F(TestVp9Impl, EncoderExplicitLayering) {
// Override default settings.
codec_settings_.VP9()->numberOfTemporalLayers = 1;
codec_settings_.VP9()->numberOfSpatialLayers = 2;
codec_settings_.width = 960;
codec_settings_.height = 540;
codec_settings_.spatialLayers[0].minBitrate = 200;
codec_settings_.spatialLayers[0].maxBitrate = 500;
codec_settings_.spatialLayers[0].targetBitrate =
(codec_settings_.spatialLayers[0].minBitrate +
codec_settings_.spatialLayers[0].maxBitrate) /
2;
codec_settings_.spatialLayers[1].minBitrate = 400;
codec_settings_.spatialLayers[1].maxBitrate = 1500;
codec_settings_.spatialLayers[1].targetBitrate =
(codec_settings_.spatialLayers[1].minBitrate +
codec_settings_.spatialLayers[1].maxBitrate) /
2;
codec_settings_.spatialLayers[0].width = codec_settings_.width / 2;
codec_settings_.spatialLayers[0].height = codec_settings_.height / 2;
codec_settings_.spatialLayers[0].maxFramerate = codec_settings_.maxFramerate;
codec_settings_.spatialLayers[1].width = codec_settings_.width;
codec_settings_.spatialLayers[1].height = codec_settings_.height;
codec_settings_.spatialLayers[1].maxFramerate = codec_settings_.maxFramerate;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
// Ensure it fails if scaling factors in horz/vert dimentions are different.
codec_settings_.spatialLayers[0].width = codec_settings_.width;
codec_settings_.spatialLayers[0].height = codec_settings_.height / 2;
codec_settings_.spatialLayers[1].width = codec_settings_.width;
codec_settings_.spatialLayers[1].height = codec_settings_.height;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERR_PARAMETER,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
// Ensure it fails if scaling factor is not power of two.
codec_settings_.spatialLayers[0].width = codec_settings_.width / 3;
codec_settings_.spatialLayers[0].height = codec_settings_.height / 3;
codec_settings_.spatialLayers[1].width = codec_settings_.width;
codec_settings_.spatialLayers[1].height = codec_settings_.height;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERR_PARAMETER,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
}
TEST_F(TestVp9Impl, EnableDisableSpatialLayers) {
// Configure encoder to produce N spatial layers. Encode frames of layer 0
// then enable layer 1 and encode more frames and so on until layer N-1.
// Then disable layers one by one in the same way.
// Note: bit rate allocation is high to avoid frame dropping due to rate
// control, the encoder should always produce a frame. A dropped
// frame indicates a problem and the test will fail.
const size_t num_spatial_layers = 3;
const size_t num_frames_to_encode = 5;
ConfigureSvc(num_spatial_layers);
codec_settings_.VP9()->frameDroppingOn = true;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
VideoBitrateAllocation bitrate_allocation;
for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
// Allocate high bit rate to avoid frame dropping due to rate control.
bitrate_allocation.SetBitrate(
sl_idx, 0,
codec_settings_.spatialLayers[sl_idx].targetBitrate * 1000 * 2);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
for (size_t frame_num = 0; frame_num < num_frames_to_encode; ++frame_num) {
SetWaitForEncodedFramesThreshold(sl_idx + 1);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
std::vector<EncodedImage> encoded_frame;
std::vector<CodecSpecificInfo> codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrames(&encoded_frame, &codec_specific_info));
}
}
for (size_t i = 0; i < num_spatial_layers - 1; ++i) {
const size_t sl_idx = num_spatial_layers - i - 1;
bitrate_allocation.SetBitrate(sl_idx, 0, 0);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
for (size_t frame_num = 0; frame_num < num_frames_to_encode; ++frame_num) {
SetWaitForEncodedFramesThreshold(sl_idx);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
std::vector<EncodedImage> encoded_frame;
std::vector<CodecSpecificInfo> codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrames(&encoded_frame, &codec_specific_info));
}
}
}
TEST_F(TestVp9Impl, EndOfPicture) {
const size_t num_spatial_layers = 2;
ConfigureSvc(num_spatial_layers);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
// Encode both base and upper layers. Check that end-of-superframe flag is
// set on upper layer frame but not on base layer frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(
0, 0, codec_settings_.spatialLayers[0].targetBitrate * 1000);
bitrate_allocation.SetBitrate(
1, 0, codec_settings_.spatialLayers[1].targetBitrate * 1000);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
SetWaitForEncodedFramesThreshold(2);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
std::vector<EncodedImage> frames;
std::vector<CodecSpecificInfo> codec_specific;
ASSERT_TRUE(WaitForEncodedFrames(&frames, &codec_specific));
EXPECT_FALSE(codec_specific[0].codecSpecific.VP9.end_of_picture);
EXPECT_TRUE(codec_specific[1].codecSpecific.VP9.end_of_picture);
// Encode only base layer. Check that end-of-superframe flag is
// set on base layer frame.
bitrate_allocation.SetBitrate(1, 0, 0);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
SetWaitForEncodedFramesThreshold(1);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
ASSERT_TRUE(WaitForEncodedFrames(&frames, &codec_specific));
EXPECT_FALSE(frames[0].SpatialIndex());
EXPECT_TRUE(codec_specific[0].codecSpecific.VP9.end_of_picture);
}
TEST_F(TestVp9Impl, InterLayerPred) {
const size_t num_spatial_layers = 2;
ConfigureSvc(num_spatial_layers);
codec_settings_.VP9()->frameDroppingOn = false;
VideoBitrateAllocation bitrate_allocation;
for (size_t i = 0; i < num_spatial_layers; ++i) {
bitrate_allocation.SetBitrate(
i, 0, codec_settings_.spatialLayers[i].targetBitrate * 1000);
}
const std::vector<InterLayerPredMode> inter_layer_pred_modes = {
InterLayerPredMode::kOff, InterLayerPredMode::kOn,
InterLayerPredMode::kOnKeyPic};
for (const InterLayerPredMode inter_layer_pred : inter_layer_pred_modes) {
codec_settings_.VP9()->interLayerPred = inter_layer_pred;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
SetWaitForEncodedFramesThreshold(2);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
std::vector<EncodedImage> frames;
std::vector<CodecSpecificInfo> codec_specific;
ASSERT_TRUE(WaitForEncodedFrames(&frames, &codec_specific));
// Key frame.
EXPECT_FALSE(codec_specific[0].codecSpecific.VP9.inter_pic_predicted);
EXPECT_EQ(frames[0].SpatialIndex(), 0);
EXPECT_EQ(codec_specific[0].codecSpecific.VP9.non_ref_for_inter_layer_pred,
inter_layer_pred == InterLayerPredMode::kOff);
EXPECT_TRUE(
codec_specific[1].codecSpecific.VP9.non_ref_for_inter_layer_pred);
SetWaitForEncodedFramesThreshold(2);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
ASSERT_TRUE(WaitForEncodedFrames(&frames, &codec_specific));
// Delta frame.
EXPECT_TRUE(codec_specific[0].codecSpecific.VP9.inter_pic_predicted);
EXPECT_EQ(frames[0].SpatialIndex(), 0);
EXPECT_EQ(codec_specific[0].codecSpecific.VP9.non_ref_for_inter_layer_pred,
inter_layer_pred == InterLayerPredMode::kOff ||
inter_layer_pred == InterLayerPredMode::kOnKeyPic);
EXPECT_TRUE(
codec_specific[1].codecSpecific.VP9.non_ref_for_inter_layer_pred);
}
}
TEST_F(TestVp9Impl,
EnablingUpperLayerTriggersKeyFrameIfInterLayerPredIsDisabled) {
const size_t num_spatial_layers = 3;
const size_t num_frames_to_encode = 2;
ConfigureSvc(num_spatial_layers);
codec_settings_.VP9()->frameDroppingOn = false;
const std::vector<InterLayerPredMode> inter_layer_pred_modes = {
InterLayerPredMode::kOff, InterLayerPredMode::kOn,
InterLayerPredMode::kOnKeyPic};
for (const InterLayerPredMode inter_layer_pred : inter_layer_pred_modes) {
codec_settings_.VP9()->interLayerPred = inter_layer_pred;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
VideoBitrateAllocation bitrate_allocation;
for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
bitrate_allocation.SetBitrate(
sl_idx, 0,
codec_settings_.spatialLayers[sl_idx].targetBitrate * 1000);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
for (size_t frame_num = 0; frame_num < num_frames_to_encode;
++frame_num) {
SetWaitForEncodedFramesThreshold(sl_idx + 1);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
std::vector<EncodedImage> encoded_frame;
std::vector<CodecSpecificInfo> codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrames(&encoded_frame, &codec_specific_info));
const bool is_first_upper_layer_frame = (sl_idx > 0 && frame_num == 0);
if (is_first_upper_layer_frame) {
if (inter_layer_pred == InterLayerPredMode::kOn) {
EXPECT_EQ(encoded_frame[0]._frameType, kVideoFrameDelta);
} else {
EXPECT_EQ(encoded_frame[0]._frameType, kVideoFrameKey);
}
} else if (sl_idx == 0 && frame_num == 0) {
EXPECT_EQ(encoded_frame[0]._frameType, kVideoFrameKey);
} else {
for (size_t i = 0; i <= sl_idx; ++i) {
EXPECT_EQ(encoded_frame[i]._frameType, kVideoFrameDelta);
}
}
}
}
}
}
TEST_F(TestVp9Impl,
LowLayerMarkedAsRefIfHighLayerNotEncodedAndInterLayerPredIsEnabled) {
ConfigureSvc(3);
codec_settings_.VP9()->frameDroppingOn = false;
codec_settings_.VP9()->interLayerPred = InterLayerPredMode::kOn;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(
0, 0, codec_settings_.spatialLayers[0].targetBitrate * 1000);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_info));
EXPECT_TRUE(codec_info.codecSpecific.VP9.ss_data_available);
EXPECT_FALSE(codec_info.codecSpecific.VP9.non_ref_for_inter_layer_pred);
}
TEST_F(TestVp9Impl, ScalabilityStructureIsAvailableInFlexibleMode) {
codec_settings_.VP9()->flexibleMode = true;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_TRUE(codec_specific_info.codecSpecific.VP9.ss_data_available);
}
class TestVp9ImplWithLayering
: public TestVp9Impl,
public ::testing::WithParamInterface<::testing::tuple<uint8_t, uint8_t>> {
protected:
TestVp9ImplWithLayering()
: num_spatial_layers_(::testing::get<0>(GetParam())),
num_temporal_layers_(::testing::get<1>(GetParam())) {}
const uint8_t num_spatial_layers_;
const uint8_t num_temporal_layers_;
};
TEST_P(TestVp9ImplWithLayering, FlexibleMode) {
// In flexible mode encoder wrapper obtains actual list of references from
// encoder and writes it into RTP payload descriptor. Check that reference
// list in payload descriptor matches the predefined one, which is used
// in non-flexible mode.
codec_settings_.VP9()->flexibleMode = true;
codec_settings_.VP9()->frameDroppingOn = false;
codec_settings_.VP9()->numberOfSpatialLayers = num_spatial_layers_;
codec_settings_.VP9()->numberOfTemporalLayers = num_temporal_layers_;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
GofInfoVP9 gof;
if (num_temporal_layers_ == 1) {
gof.SetGofInfoVP9(kTemporalStructureMode1);
} else if (num_temporal_layers_ == 2) {
gof.SetGofInfoVP9(kTemporalStructureMode2);
} else if (num_temporal_layers_ == 3) {
gof.SetGofInfoVP9(kTemporalStructureMode3);
}
// Encode at least (num_frames_in_gof + 1) frames to verify references
// of non-key frame with gof_idx = 0.
for (size_t frame_num = 0; frame_num < gof.num_frames_in_gof + 1;
++frame_num) {
SetWaitForEncodedFramesThreshold(num_spatial_layers_);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
const bool is_key_frame = frame_num == 0;
const size_t gof_idx = frame_num % gof.num_frames_in_gof;
const std::vector<uint8_t> p_diff(std::begin(gof.pid_diff[gof_idx]),
std::end(gof.pid_diff[gof_idx]));
ExpectFrameWith(num_spatial_layers_, gof.temporal_idx[gof_idx],
gof.temporal_up_switch[gof_idx],
is_key_frame ? 0 : gof.num_ref_pics[gof_idx], p_diff);
}
}
TEST_P(TestVp9ImplWithLayering, ExternalRefControl) {
test::ScopedFieldTrials override_field_trials(
"WebRTC-Vp9ExternalRefCtrl/Enabled/");
codec_settings_.VP9()->flexibleMode = true;
codec_settings_.VP9()->frameDroppingOn = false;
codec_settings_.VP9()->numberOfSpatialLayers = num_spatial_layers_;
codec_settings_.VP9()->numberOfTemporalLayers = num_temporal_layers_;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
GofInfoVP9 gof;
if (num_temporal_layers_ == 1) {
gof.SetGofInfoVP9(kTemporalStructureMode1);
} else if (num_temporal_layers_ == 2) {
gof.SetGofInfoVP9(kTemporalStructureMode2);
} else if (num_temporal_layers_ == 3) {
gof.SetGofInfoVP9(kTemporalStructureMode3);
}
// Encode at least (num_frames_in_gof + 1) frames to verify references
// of non-key frame with gof_idx = 0.
for (size_t frame_num = 0; frame_num < gof.num_frames_in_gof + 1;
++frame_num) {
SetWaitForEncodedFramesThreshold(num_spatial_layers_);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
const bool is_key_frame = frame_num == 0;
const size_t gof_idx = frame_num % gof.num_frames_in_gof;
const std::vector<uint8_t> p_diff(std::begin(gof.pid_diff[gof_idx]),
std::end(gof.pid_diff[gof_idx]));
ExpectFrameWith(num_spatial_layers_, gof.temporal_idx[gof_idx],
gof.temporal_up_switch[gof_idx],
is_key_frame ? 0 : gof.num_ref_pics[gof_idx], p_diff);
}
}
INSTANTIATE_TEST_CASE_P(,
TestVp9ImplWithLayering,
::testing::Combine(::testing::Values(1, 2, 3),
::testing::Values(1, 2, 3)));
class TestVp9ImplFrameDropping : public TestVp9Impl {
protected:
void ModifyCodecSettings(VideoCodec* codec_settings) override {
webrtc::test::CodecSettings(kVideoCodecVP9, codec_settings);
// We need to encode quite a lot of frames in this test. Use low resolution
// to reduce execution time.
codec_settings->width = 64;
codec_settings->height = 64;
codec_settings->mode = VideoCodecMode::kScreensharing;
}
};
TEST_F(TestVp9ImplFrameDropping, PreEncodeFrameDropping) {
const size_t num_frames_to_encode = 100;
const float input_framerate_fps = 30.0;
const float video_duration_secs = num_frames_to_encode / input_framerate_fps;
const float expected_framerate_fps = 5.0f;
const float max_abs_framerate_error_fps = expected_framerate_fps * 0.1f;
codec_settings_.maxFramerate = static_cast<uint32_t>(expected_framerate_fps);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
VideoFrame* input_frame = NextInputFrame();
for (size_t frame_num = 0; frame_num < num_frames_to_encode; ++frame_num) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
const size_t timestamp = input_frame->timestamp() +
kVideoPayloadTypeFrequency / input_framerate_fps;
input_frame->set_timestamp(static_cast<uint32_t>(timestamp));
}
const size_t num_encoded_frames = GetNumEncodedFrames();
const float encoded_framerate_fps = num_encoded_frames / video_duration_secs;
EXPECT_NEAR(encoded_framerate_fps, expected_framerate_fps,
max_abs_framerate_error_fps);
}
TEST_F(TestVp9ImplFrameDropping, DifferentFrameratePerSpatialLayer) {
// Assign different frame rate to spatial layers and check that result frame
// rate is close to the assigned one.
const uint8_t num_spatial_layers = 3;
const float input_framerate_fps = 30.0;
const size_t video_duration_secs = 3;
const size_t num_input_frames = video_duration_secs * input_framerate_fps;
codec_settings_.VP9()->numberOfSpatialLayers = num_spatial_layers;
codec_settings_.VP9()->frameDroppingOn = false;
VideoBitrateAllocation bitrate_allocation;
for (uint8_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
// Frame rate increases from low to high layer.
const uint32_t framerate_fps = 10 * (sl_idx + 1);
codec_settings_.spatialLayers[sl_idx].width = codec_settings_.width;
codec_settings_.spatialLayers[sl_idx].height = codec_settings_.height;
codec_settings_.spatialLayers[sl_idx].maxFramerate = framerate_fps;
codec_settings_.spatialLayers[sl_idx].minBitrate =
codec_settings_.startBitrate;
codec_settings_.spatialLayers[sl_idx].maxBitrate =
codec_settings_.startBitrate;
codec_settings_.spatialLayers[sl_idx].targetBitrate =
codec_settings_.startBitrate;
bitrate_allocation.SetBitrate(
sl_idx, 0, codec_settings_.spatialLayers[sl_idx].targetBitrate * 1000);
}
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
VideoFrame* input_frame = NextInputFrame();
for (size_t frame_num = 0; frame_num < num_input_frames; ++frame_num) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
const size_t timestamp = input_frame->timestamp() +
kVideoPayloadTypeFrequency / input_framerate_fps;
input_frame->set_timestamp(static_cast<uint32_t>(timestamp));
}
std::vector<EncodedImage> encoded_frames;
std::vector<CodecSpecificInfo> codec_infos;
ASSERT_TRUE(WaitForEncodedFrames(&encoded_frames, &codec_infos));
std::vector<size_t> num_encoded_frames(num_spatial_layers, 0);
for (EncodedImage& encoded_frame : encoded_frames) {
++num_encoded_frames[encoded_frame.SpatialIndex().value_or(0)];
}
for (uint8_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
const float layer_target_framerate_fps =
codec_settings_.spatialLayers[sl_idx].maxFramerate;
const float layer_output_framerate_fps =
static_cast<float>(num_encoded_frames[sl_idx]) / video_duration_secs;
const float max_framerate_error_fps = layer_target_framerate_fps * 0.1f;
EXPECT_NEAR(layer_output_framerate_fps, layer_target_framerate_fps,
max_framerate_error_fps);
}
}
TEST_F(TestVp9ImplFrameDropping, LayerMaxFramerateIsCappedByCodecMaxFramerate) {
const float input_framerate_fps = 30.0;
const float layer_max_framerate_fps = 30.0;
const uint32_t codec_max_framerate_fps = layer_max_framerate_fps / 3;
const size_t video_duration_secs = 3;
const size_t num_input_frames = video_duration_secs * input_framerate_fps;
VideoBitrateAllocation bitrate_allocation;
codec_settings_.spatialLayers[0].width = codec_settings_.width;
codec_settings_.spatialLayers[0].height = codec_settings_.height;
codec_settings_.spatialLayers[0].maxFramerate = layer_max_framerate_fps;
codec_settings_.spatialLayers[0].minBitrate = codec_settings_.startBitrate;
codec_settings_.spatialLayers[0].maxBitrate = codec_settings_.startBitrate;
codec_settings_.spatialLayers[0].targetBitrate = codec_settings_.startBitrate;
bitrate_allocation.SetBitrate(
0, 0, codec_settings_.spatialLayers[0].targetBitrate * 1000);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
EXPECT_EQ(
WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation, codec_max_framerate_fps));
VideoFrame* input_frame = NextInputFrame();
for (size_t frame_num = 0; frame_num < num_input_frames; ++frame_num) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
const size_t timestamp = input_frame->timestamp() +
kVideoPayloadTypeFrequency / input_framerate_fps;
input_frame->set_timestamp(static_cast<uint32_t>(timestamp));
}
const size_t num_encoded_frames = GetNumEncodedFrames();
const float encoded_framerate_fps = num_encoded_frames / video_duration_secs;
const float max_framerate_error_fps = codec_max_framerate_fps * 0.1f;
EXPECT_NEAR(encoded_framerate_fps, codec_max_framerate_fps,
max_framerate_error_fps);
}
class TestVp9ImplProfile2 : public TestVp9Impl {
protected:
void SetUp() override {
// Profile 2 might not be available on some platforms until
// https://bugs.chromium.org/p/webm/issues/detail?id=1544 is solved.
bool profile_2_is_supported = false;
for (const auto& codec : SupportedVP9Codecs()) {
if (ParseSdpForVP9Profile(codec.parameters)
.value_or(VP9Profile::kProfile0) == VP9Profile::kProfile2) {
profile_2_is_supported = true;
}
}
if (!profile_2_is_supported)
return;
TestVp9Impl::SetUp();
input_frame_generator_ = test::FrameGenerator::CreateSquareGenerator(
codec_settings_.width, codec_settings_.height,
test::FrameGenerator::OutputType::I010, absl::optional<int>());
}
std::unique_ptr<VideoEncoder> CreateEncoder() override {
cricket::VideoCodec profile2_codec;
profile2_codec.SetParam(kVP9FmtpProfileId,
VP9ProfileToString(VP9Profile::kProfile2));
return VP9Encoder::Create(profile2_codec);
}
std::unique_ptr<VideoDecoder> CreateDecoder() override {
return VP9Decoder::Create();
}
};
TEST_F(TestVp9ImplProfile2, EncodeDecode) {
if (!encoder_)
return;
VideoFrame* input_frame = NextInputFrame();
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
// First frame should be a key frame.
encoded_frame._frameType = kVideoFrameKey;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
decoder_->Decode(encoded_frame, false, nullptr, 0));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
// TODO(emircan): Add PSNR for different color depths.
EXPECT_GT(I420PSNR(*input_frame->video_frame_buffer()->ToI420(),
*decoded_frame->video_frame_buffer()->ToI420()),
31);
}
} // namespace webrtc