blob: 613f631f49808b8d83cccb00d30627c0e408ef47 [file] [log] [blame]
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#include "bindings/core/v8/ExceptionState.h"
#include "core/dom/ExceptionCode.h"
#include "modules/webaudio/AudioBuffer.h"
#include "modules/webaudio/AudioNodeInput.h"
#include "modules/webaudio/AudioNodeOutput.h"
#include "modules/webaudio/ConvolverNode.h"
#include "modules/webaudio/ConvolverOptions.h"
#include "platform/audio/Reverb.h"
#include "wtf/PtrUtil.h"
#include <memory>
// Note about empirical tuning:
// The maximum FFT size affects reverb performance and accuracy.
// If the reverb is single-threaded and processes entirely in the real-time
// audio thread, it's important not to make this too high. In this case 8192 is
// a good value. But, the Reverb object is multi-threaded, so we want this as
// high as possible without losing too much accuracy. Very large FFTs will have
// worse phase errors. Given these constraints 32768 is a good compromise.
const size_t MaxFFTSize = 32768;
namespace blink {
ConvolverHandler::ConvolverHandler(AudioNode& node, float sampleRate)
: AudioHandler(NodeTypeConvolver, node, sampleRate), m_normalize(true) {
addInput();
addOutput(2);
// Node-specific default mixing rules.
m_channelCount = 2;
setInternalChannelCountMode(ClampedMax);
setInternalChannelInterpretation(AudioBus::Speakers);
initialize();
}
PassRefPtr<ConvolverHandler> ConvolverHandler::create(AudioNode& node,
float sampleRate) {
return adoptRef(new ConvolverHandler(node, sampleRate));
}
ConvolverHandler::~ConvolverHandler() {
uninitialize();
}
void ConvolverHandler::process(size_t framesToProcess) {
AudioBus* outputBus = output(0).bus();
DCHECK(outputBus);
// Synchronize with possible dynamic changes to the impulse response.
MutexTryLocker tryLocker(m_processLock);
if (tryLocker.locked()) {
if (!isInitialized() || !m_reverb) {
outputBus->zero();
} else {
// Process using the convolution engine.
// Note that we can handle the case where nothing is connected to the
// input, in which case we'll just feed silence into the convolver.
// FIXME: If we wanted to get fancy we could try to factor in the 'tail
// time' and stop processing once the tail dies down if
// we keep getting fed silence.
m_reverb->process(input(0).bus(), outputBus, framesToProcess);
}
} else {
// Too bad - the tryLock() failed. We must be in the middle of setting a
// new impulse response.
outputBus->zero();
}
}
void ConvolverHandler::setBuffer(AudioBuffer* buffer,
ExceptionState& exceptionState) {
DCHECK(isMainThread());
if (!buffer)
return;
if (buffer->sampleRate() != context()->sampleRate()) {
exceptionState.throwDOMException(
NotSupportedError,
"The buffer sample rate of " + String::number(buffer->sampleRate()) +
" does not match the context rate of " +
String::number(context()->sampleRate()) + " Hz.");
return;
}
unsigned numberOfChannels = buffer->numberOfChannels();
size_t bufferLength = buffer->length();
// The current implementation supports only 1-, 2-, or 4-channel impulse
// responses, with the 4-channel response being interpreted as true-stereo
// (see Reverb class).
bool isChannelCountGood =
numberOfChannels == 1 || numberOfChannels == 2 || numberOfChannels == 4;
if (!isChannelCountGood) {
exceptionState.throwDOMException(
NotSupportedError, "The buffer must have 1, 2, or 4 channels, not " +
String::number(numberOfChannels));
return;
}
// Wrap the AudioBuffer by an AudioBus. It's an efficient pointer set and not
// a memcpy(). This memory is simply used in the Reverb constructor and no
// reference to it is kept for later use in that class.
RefPtr<AudioBus> bufferBus =
AudioBus::create(numberOfChannels, bufferLength, false);
for (unsigned i = 0; i < numberOfChannels; ++i)
bufferBus->setChannelMemory(i, buffer->getChannelData(i)->data(),
bufferLength);
bufferBus->setSampleRate(buffer->sampleRate());
// Create the reverb with the given impulse response.
std::unique_ptr<Reverb> reverb = wrapUnique(
new Reverb(bufferBus.get(), ProcessingSizeInFrames, MaxFFTSize, 2,
context() && context()->hasRealtimeConstraint(), m_normalize));
{
// Synchronize with process().
MutexLocker locker(m_processLock);
m_reverb = std::move(reverb);
m_buffer = buffer;
}
}
AudioBuffer* ConvolverHandler::buffer() {
DCHECK(isMainThread());
return m_buffer.get();
}
double ConvolverHandler::tailTime() const {
MutexTryLocker tryLocker(m_processLock);
if (tryLocker.locked())
return m_reverb
? m_reverb->impulseResponseLength() /
static_cast<double>(sampleRate())
: 0;
// Since we don't want to block the Audio Device thread, we return a large
// value instead of trying to acquire the lock.
return std::numeric_limits<double>::infinity();
}
double ConvolverHandler::latencyTime() const {
MutexTryLocker tryLocker(m_processLock);
if (tryLocker.locked())
return m_reverb
? m_reverb->latencyFrames() / static_cast<double>(sampleRate())
: 0;
// Since we don't want to block the Audio Device thread, we return a large
// value instead of trying to acquire the lock.
return std::numeric_limits<double>::infinity();
}
// ----------------------------------------------------------------
ConvolverNode::ConvolverNode(BaseAudioContext& context) : AudioNode(context) {
setHandler(ConvolverHandler::create(*this, context.sampleRate()));
}
ConvolverNode* ConvolverNode::create(BaseAudioContext& context,
ExceptionState& exceptionState) {
DCHECK(isMainThread());
if (context.isContextClosed()) {
context.throwExceptionForClosedState(exceptionState);
return nullptr;
}
return new ConvolverNode(context);
}
ConvolverNode* ConvolverNode::create(BaseAudioContext* context,
const ConvolverOptions& options,
ExceptionState& exceptionState) {
ConvolverNode* node = create(*context, exceptionState);
if (!node)
return nullptr;
node->handleChannelOptions(options, exceptionState);
// It is important to set normalize first because setting the buffer will
// examing the normalize attribute to see if normalization needs to be done.
node->setNormalize(!options.disableNormalization());
if (options.hasBuffer())
node->setBuffer(options.buffer(), exceptionState);
return node;
}
ConvolverHandler& ConvolverNode::convolverHandler() const {
return static_cast<ConvolverHandler&>(handler());
}
AudioBuffer* ConvolverNode::buffer() const {
return convolverHandler().buffer();
}
void ConvolverNode::setBuffer(AudioBuffer* newBuffer,
ExceptionState& exceptionState) {
convolverHandler().setBuffer(newBuffer, exceptionState);
}
bool ConvolverNode::normalize() const {
return convolverHandler().normalize();
}
void ConvolverNode::setNormalize(bool normalize) {
convolverHandler().setNormalize(normalize);
}
} // namespace blink