blob: 92bfbf8010c54392b154b5f6fe2326774fed58f0 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_VECTOR_H_
#define V8_VECTOR_H_
#include <algorithm>
#include <cstring>
#include <iterator>
#include "src/allocation.h"
#include "src/checks.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
template <typename T>
class Vector {
public:
constexpr Vector() : start_(nullptr), length_(0) {}
Vector(T* data, size_t length) : start_(data), length_(length) {
DCHECK(length == 0 || data != nullptr);
}
template <int N>
explicit constexpr Vector(T (&arr)[N]) : start_(arr), length_(N) {}
static Vector<T> New(int length) {
return Vector<T>(NewArray<T>(length), length);
}
// Returns a vector using the same backing storage as this one,
// spanning from and including 'from', to but not including 'to'.
Vector<T> SubVector(size_t from, size_t to) const {
DCHECK_LE(from, to);
DCHECK_LE(to, length_);
return Vector<T>(start() + from, to - from);
}
// Returns the length of the vector.
int length() const {
DCHECK(length_ <= static_cast<size_t>(std::numeric_limits<int>::max()));
return static_cast<int>(length_);
}
// Returns the length of the vector as a size_t.
constexpr size_t size() const { return length_; }
// Returns whether or not the vector is empty.
constexpr bool is_empty() const { return length_ == 0; }
// Returns the pointer to the start of the data in the vector.
constexpr T* start() const { return start_; }
// Access individual vector elements - checks bounds in debug mode.
T& operator[](size_t index) const {
DCHECK_LT(index, length_);
return start_[index];
}
const T& at(size_t index) const { return operator[](index); }
T& first() { return start_[0]; }
T& last() {
DCHECK_LT(0, length_);
return start_[length_ - 1];
}
typedef T* iterator;
constexpr iterator begin() const { return start_; }
constexpr iterator end() const { return start_ + length_; }
// Returns a clone of this vector with a new backing store.
Vector<T> Clone() const {
T* result = NewArray<T>(length_);
for (size_t i = 0; i < length_; i++) result[i] = start_[i];
return Vector<T>(result, length_);
}
template <typename CompareFunction>
void Sort(CompareFunction cmp, size_t s, size_t l) {
std::sort(start() + s, start() + s + l, RawComparer<CompareFunction>(cmp));
}
template <typename CompareFunction>
void Sort(CompareFunction cmp) {
std::sort(start(), start() + length(), RawComparer<CompareFunction>(cmp));
}
void Sort() {
std::sort(start(), start() + length());
}
template <typename CompareFunction>
void StableSort(CompareFunction cmp, size_t s, size_t l) {
std::stable_sort(start() + s, start() + s + l,
RawComparer<CompareFunction>(cmp));
}
template <typename CompareFunction>
void StableSort(CompareFunction cmp) {
std::stable_sort(start(), start() + length(),
RawComparer<CompareFunction>(cmp));
}
void StableSort() { std::stable_sort(start(), start() + length()); }
void Truncate(size_t length) {
DCHECK(length <= length_);
length_ = length;
}
// Releases the array underlying this vector. Once disposed the
// vector is empty.
void Dispose() {
DeleteArray(start_);
start_ = nullptr;
length_ = 0;
}
Vector<T> operator+(size_t offset) {
DCHECK_LE(offset, length_);
return Vector<T>(start_ + offset, length_ - offset);
}
Vector<T> operator+=(size_t offset) {
DCHECK_LE(offset, length_);
start_ += offset;
length_ -= offset;
return *this;
}
// Implicit conversion from Vector<T> to Vector<const T>.
inline operator Vector<const T>() const {
return Vector<const T>::cast(*this);
}
// Factory method for creating empty vectors.
static Vector<T> empty() { return Vector<T>(nullptr, 0); }
template <typename S>
static constexpr Vector<T> cast(Vector<S> input) {
return Vector<T>(reinterpret_cast<T*>(input.start()),
input.length() * sizeof(S) / sizeof(T));
}
bool operator==(const Vector<const T> other) const {
if (length_ != other.length_) return false;
if (start_ == other.start_) return true;
for (size_t i = 0; i < length_; ++i) {
if (start_[i] != other.start_[i]) {
return false;
}
}
return true;
}
private:
T* start_;
size_t length_;
template <typename CookedComparer>
class RawComparer {
public:
explicit RawComparer(CookedComparer cmp) : cmp_(cmp) {}
bool operator()(const T& a, const T& b) {
return cmp_(&a, &b) < 0;
}
private:
CookedComparer cmp_;
};
};
template <typename T>
class ScopedVector : public Vector<T> {
public:
explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
~ScopedVector() {
DeleteArray(this->start());
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
};
template <typename T>
class OwnedVector {
public:
MOVE_ONLY_WITH_DEFAULT_CONSTRUCTORS(OwnedVector);
OwnedVector(std::unique_ptr<T[]> data, size_t length)
: data_(std::move(data)), length_(length) {
DCHECK_IMPLIES(length_ > 0, data_ != nullptr);
}
// Implicit conversion from {OwnedVector<U>} to {OwnedVector<T>}, instantiable
// if {std::unique_ptr<U>} can be converted to {std::unique_ptr<T>}.
// Can be used to convert {OwnedVector<T>} to {OwnedVector<const T>}.
template <typename U,
typename = typename std::enable_if<std::is_convertible<
std::unique_ptr<U>, std::unique_ptr<T>>::value>::type>
OwnedVector(OwnedVector<U>&& other)
: data_(other.ReleaseData()), length_(other.size()) {}
// Returns the length of the vector as a size_t.
constexpr size_t size() const { return length_; }
// Returns whether or not the vector is empty.
constexpr bool is_empty() const { return length_ == 0; }
// Returns the pointer to the start of the data in the vector.
T* start() const {
DCHECK_IMPLIES(length_ > 0, data_ != nullptr);
return data_.get();
}
// Returns a {Vector<T>} view of the data in this vector.
Vector<T> as_vector() const { return Vector<T>(start(), size()); }
// Releases the backing data from this vector and transfers ownership to the
// caller. This vectors data can no longer be used afterwards.
std::unique_ptr<T[]> ReleaseData() { return std::move(data_); }
// Allocates a new vector of the specified size via the default allocator.
static OwnedVector<T> New(size_t size) {
if (size == 0) return {};
return OwnedVector<T>(std::unique_ptr<T[]>(new T[size]), size);
}
// Allocates a new vector containing the specified collection of values.
// {Iterator} is the common type of {std::begin} and {std::end} called on a
// {const U&}. This function is only instantiable if that type exists.
template <typename U, typename Iterator = typename std::common_type<
decltype(std::begin(std::declval<const U&>())),
decltype(std::end(std::declval<const U&>()))>::type>
static OwnedVector<T> Of(const U& collection) {
Iterator begin = std::begin(collection);
Iterator end = std::end(collection);
OwnedVector<T> vec = New(std::distance(begin, end));
std::copy(begin, end, vec.start());
return vec;
}
private:
std::unique_ptr<T[]> data_;
size_t length_ = 0;
};
inline int StrLength(const char* string) {
size_t length = strlen(string);
DCHECK(length == static_cast<size_t>(static_cast<int>(length)));
return static_cast<int>(length);
}
template <size_t N>
constexpr Vector<const uint8_t> StaticCharVector(const char (&array)[N]) {
return Vector<const uint8_t>::cast(Vector<const char>(array, N - 1));
}
inline Vector<const char> CStrVector(const char* data) {
return Vector<const char>(data, StrLength(data));
}
inline Vector<const uint8_t> OneByteVector(const char* data, int length) {
return Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), length);
}
inline Vector<const uint8_t> OneByteVector(const char* data) {
return OneByteVector(data, StrLength(data));
}
inline Vector<char> MutableCStrVector(char* data) {
return Vector<char>(data, StrLength(data));
}
inline Vector<char> MutableCStrVector(char* data, int max) {
int length = StrLength(data);
return Vector<char>(data, (length < max) ? length : max);
}
template <typename T, int N>
inline constexpr Vector<T> ArrayVector(T (&arr)[N]) {
return Vector<T>(arr);
}
// Construct a Vector from a start pointer and a size.
template <typename T>
inline constexpr Vector<T> VectorOf(T* start, size_t size) {
return Vector<T>(start, size);
}
// Construct a Vector from anything providing a {data()} and {size()} accessor.
template <typename Container>
inline constexpr auto VectorOf(Container&& c)
-> decltype(VectorOf(c.data(), c.size())) {
return VectorOf(c.data(), c.size());
}
} // namespace internal
} // namespace v8
#endif // V8_VECTOR_H_