blob: 8218ee31292c66faf623f7b0d177c2effc9163bf [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Portions of this code based on Mozilla:
// (netwerk/cookie/src/nsCookieService.cpp)
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Daniel Witte (dwitte@stanford.edu)
* Michiel van Leeuwen (mvl@exedo.nl)
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "net/cookies/cookie_monster.h"
#include <functional>
#include <set>
#include "base/bind.h"
#include "base/callback.h"
#include "base/debug/dump_without_crashing.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/metrics/field_trial.h"
#include "base/metrics/histogram.h"
#include "base/metrics/histogram_macros.h"
#include "base/single_thread_task_runner.h"
#include "base/stl_util.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/timer/elapsed_timer.h"
#include "base/trace_event/process_memory_dump.h"
#include "net/base/registry_controlled_domains/registry_controlled_domain.h"
#include "net/cookies/canonical_cookie.h"
#include "net/cookies/cookie_monster_change_dispatcher.h"
#include "net/cookies/cookie_util.h"
#include "net/cookies/parsed_cookie.h"
#include "net/ssl/channel_id_service.h"
#include "url/origin.h"
using base::Time;
using base::TimeDelta;
using base::TimeTicks;
using TimeRange = net::CookieDeletionInfo::TimeRange;
// In steady state, most cookie requests can be satisfied by the in memory
// cookie monster store. If the cookie request cannot be satisfied by the in
// memory store, the relevant cookies must be fetched from the persistent
// store. The task is queued in CookieMonster::tasks_pending_ if it requires
// all cookies to be loaded from the backend, or tasks_pending_for_key_ if it
// only requires all cookies associated with an eTLD+1.
//
// On the browser critical paths (e.g. for loading initial web pages in a
// session restore) it may take too long to wait for the full load. If a cookie
// request is for a specific URL, DoCookieCallbackForURL is called, which
// triggers a priority load if the key is not loaded yet by calling
// PersistentCookieStore::LoadCookiesForKey. The request is queued in
// CookieMonster::tasks_pending_for_key_ and executed upon receiving
// notification of key load completion via CookieMonster::OnKeyLoaded(). If
// multiple requests for the same eTLD+1 are received before key load
// completion, only the first request calls
// PersistentCookieStore::LoadCookiesForKey, all subsequent requests are queued
// in CookieMonster::tasks_pending_for_key_ and executed upon receiving
// notification of key load completion triggered by the first request for the
// same eTLD+1.
static const int kMinutesInTenYears = 10 * 365 * 24 * 60;
namespace {
void MaybeRunDeleteCallback(base::WeakPtr<net::CookieMonster> cookie_monster,
base::OnceClosure callback) {
if (cookie_monster && callback)
std::move(callback).Run();
}
void MaybeRunCookieCallback(base::OnceClosure callback) {
if (callback)
std::move(callback).Run();
}
template <typename T>
void MaybeRunCookieCallback(base::OnceCallback<void(const T&)> callback,
const T& result) {
if (callback)
std::move(callback).Run(result);
}
template <typename T>
void MaybeRunCookieCallback(base::OnceCallback<void(T)> callback,
const T& result) {
if (callback)
std::move(callback).Run(result);
}
// Wraps a OnceClosure -- specifically one used by
// |GetCookieListWithOptionsAsync()| -- with additional bound state to track the
// duration between when its creation and destruction time.
// See https://crbug.com/824024 for context.
base::OnceClosure InstrumentGetCookieListClosure(base::OnceClosure closure) {
return base::BindOnce(
[](std::unique_ptr<base::ElapsedTimer> timer, base::OnceClosure closure) {
UMA_HISTOGRAM_CUSTOM_TIMES("Cookie.GetCookieListCompletionTime",
timer->Elapsed(),
base::TimeDelta::FromMilliseconds(10),
base::TimeDelta::FromSeconds(60), 50);
std::move(closure).Run();
},
std::make_unique<base::ElapsedTimer>(), std::move(closure));
}
} // namespace
namespace net {
// See comments at declaration of these variables in cookie_monster.h
// for details.
const size_t CookieMonster::kDomainMaxCookies = 180;
const size_t CookieMonster::kDomainPurgeCookies = 30;
const size_t CookieMonster::kMaxCookies = 3300;
const size_t CookieMonster::kPurgeCookies = 300;
const size_t CookieMonster::kDomainCookiesQuotaLow = 30;
const size_t CookieMonster::kDomainCookiesQuotaMedium = 50;
const size_t CookieMonster::kDomainCookiesQuotaHigh =
kDomainMaxCookies - kDomainPurgeCookies - kDomainCookiesQuotaLow -
kDomainCookiesQuotaMedium;
const int CookieMonster::kSafeFromGlobalPurgeDays = 30;
namespace {
bool ContainsControlCharacter(const std::string& s) {
for (std::string::const_iterator i = s.begin(); i != s.end(); ++i) {
if ((*i >= 0) && (*i <= 31))
return true;
}
return false;
}
typedef std::vector<CanonicalCookie*> CanonicalCookieVector;
// Default minimum delay after updating a cookie's LastAccessDate before we
// will update it again.
const int kDefaultAccessUpdateThresholdSeconds = 60;
// Comparator to sort cookies from highest creation date to lowest
// creation date.
struct OrderByCreationTimeDesc {
bool operator()(const CookieMonster::CookieMap::iterator& a,
const CookieMonster::CookieMap::iterator& b) const {
return a->second->CreationDate() > b->second->CreationDate();
}
};
// Constants for use in VLOG
const int kVlogPerCookieMonster = 1;
const int kVlogGarbageCollection = 5;
const int kVlogSetCookies = 7;
// Mozilla sorts on the path length (longest first), and then it
// sorts by creation time (oldest first).
// The RFC says the sort order for the domain attribute is undefined.
bool CookieSorter(CanonicalCookie* cc1, CanonicalCookie* cc2) {
if (cc1->Path().length() == cc2->Path().length())
return cc1->CreationDate() < cc2->CreationDate();
return cc1->Path().length() > cc2->Path().length();
}
bool LRACookieSorter(const CookieMonster::CookieMap::iterator& it1,
const CookieMonster::CookieMap::iterator& it2) {
if (it1->second->LastAccessDate() != it2->second->LastAccessDate())
return it1->second->LastAccessDate() < it2->second->LastAccessDate();
// Ensure stability for == last access times by falling back to creation.
return it1->second->CreationDate() < it2->second->CreationDate();
}
// Our strategy to find duplicates is:
// (1) Build a map from (cookiename, cookiepath) to
// {list of cookies with this signature, sorted by creation time}.
// (2) For each list with more than 1 entry, keep the cookie having the
// most recent creation time, and delete the others.
//
// Two cookies are considered equivalent if they have the same domain,
// name, and path.
struct CookieSignature {
public:
CookieSignature(const std::string& name,
const std::string& domain,
const std::string& path)
: name(name), domain(domain), path(path) {}
// To be a key for a map this class needs to be assignable, copyable,
// and have an operator<. The default assignment operator
// and copy constructor are exactly what we want.
bool operator<(const CookieSignature& cs) const {
// Name compare dominates, then domain, then path.
int diff = name.compare(cs.name);
if (diff != 0)
return diff < 0;
diff = domain.compare(cs.domain);
if (diff != 0)
return diff < 0;
return path.compare(cs.path) < 0;
}
std::string name;
std::string domain;
std::string path;
};
// For a CookieItVector iterator range [|it_begin|, |it_end|),
// sorts the first |num_sort| elements by LastAccessDate().
void SortLeastRecentlyAccessed(CookieMonster::CookieItVector::iterator it_begin,
CookieMonster::CookieItVector::iterator it_end,
size_t num_sort) {
DCHECK_LE(static_cast<int>(num_sort), it_end - it_begin);
std::partial_sort(it_begin, it_begin + num_sort, it_end, LRACookieSorter);
}
// Given a single cookie vector |cookie_its|, pushs all of the secure cookies in
// |cookie_its| into |secure_cookie_its| and all of the non-secure cookies into
// |non_secure_cookie_its|. Both |secure_cookie_its| and |non_secure_cookie_its|
// must be non-NULL.
void SplitCookieVectorIntoSecureAndNonSecure(
const CookieMonster::CookieItVector& cookie_its,
CookieMonster::CookieItVector* secure_cookie_its,
CookieMonster::CookieItVector* non_secure_cookie_its) {
DCHECK(secure_cookie_its && non_secure_cookie_its);
for (const auto& curit : cookie_its) {
if (curit->second->IsSecure())
secure_cookie_its->push_back(curit);
else
non_secure_cookie_its->push_back(curit);
}
}
bool LowerBoundAccessDateComparator(const CookieMonster::CookieMap::iterator it,
const Time& access_date) {
return it->second->LastAccessDate() < access_date;
}
// For a CookieItVector iterator range [|it_begin|, |it_end|)
// from a CookieItVector sorted by LastAccessDate(), returns the
// first iterator with access date >= |access_date|, or cookie_its_end if this
// holds for all.
CookieMonster::CookieItVector::iterator LowerBoundAccessDate(
const CookieMonster::CookieItVector::iterator its_begin,
const CookieMonster::CookieItVector::iterator its_end,
const Time& access_date) {
return std::lower_bound(its_begin, its_end, access_date,
LowerBoundAccessDateComparator);
}
// Mapping between DeletionCause and CookieChangeCause; the
// mapping also provides a boolean that specifies whether or not an
// OnCookieChange notification ought to be generated.
typedef struct ChangeCausePair_struct {
CookieChangeCause cause;
bool notify;
} ChangeCausePair;
const ChangeCausePair kChangeCauseMapping[] = {
// DELETE_COOKIE_EXPLICIT
{CookieChangeCause::EXPLICIT, true},
// DELETE_COOKIE_OVERWRITE
{CookieChangeCause::OVERWRITE, true},
// DELETE_COOKIE_EXPIRED
{CookieChangeCause::EXPIRED, true},
// DELETE_COOKIE_EVICTED
{CookieChangeCause::EVICTED, true},
// DELETE_COOKIE_DUPLICATE_IN_BACKING_STORE
{CookieChangeCause::EXPLICIT, false},
// DELETE_COOKIE_DONT_RECORD
{CookieChangeCause::EXPLICIT, false},
// DELETE_COOKIE_EVICTED_DOMAIN
{CookieChangeCause::EVICTED, true},
// DELETE_COOKIE_EVICTED_GLOBAL
{CookieChangeCause::EVICTED, true},
// DELETE_COOKIE_EVICTED_DOMAIN_PRE_SAFE
{CookieChangeCause::EVICTED, true},
// DELETE_COOKIE_EVICTED_DOMAIN_POST_SAFE
{CookieChangeCause::EVICTED, true},
// DELETE_COOKIE_EXPIRED_OVERWRITE
{CookieChangeCause::EXPIRED_OVERWRITE, true},
// DELETE_COOKIE_CONTROL_CHAR
{CookieChangeCause::EVICTED, true},
// DELETE_COOKIE_NON_SECURE
{CookieChangeCause::EVICTED, true},
// DELETE_COOKIE_LAST_ENTRY
{CookieChangeCause::EXPLICIT, false}};
bool IsCookieEligibleForEviction(CookiePriority current_priority_level,
bool protect_secure_cookies,
const CanonicalCookie* cookie) {
if (cookie->Priority() == current_priority_level && protect_secure_cookies)
return !cookie->IsSecure();
return cookie->Priority() == current_priority_level;
}
size_t CountCookiesForPossibleDeletion(
CookiePriority priority,
const CookieMonster::CookieItVector* cookies,
bool protect_secure_cookies) {
size_t cookies_count = 0U;
for (const auto& cookie : *cookies) {
if (cookie->second->Priority() == priority) {
if (!protect_secure_cookies || cookie->second->IsSecure())
cookies_count++;
}
}
return cookies_count;
}
} // namespace
CookieMonster::CookieMonster(scoped_refptr<PersistentCookieStore> store)
: CookieMonster(
std::move(store),
nullptr,
base::TimeDelta::FromSeconds(kDefaultAccessUpdateThresholdSeconds)) {}
CookieMonster::CookieMonster(scoped_refptr<PersistentCookieStore> store,
ChannelIDService* channel_id_service)
: CookieMonster(
std::move(store),
channel_id_service,
base::TimeDelta::FromSeconds(kDefaultAccessUpdateThresholdSeconds)) {}
CookieMonster::CookieMonster(scoped_refptr<PersistentCookieStore> store,
base::TimeDelta last_access_threshold)
: CookieMonster(std::move(store), nullptr, last_access_threshold) {}
CookieMonster::CookieMonster(scoped_refptr<PersistentCookieStore> store,
ChannelIDService* channel_id_service,
base::TimeDelta last_access_threshold)
: initialized_(false),
started_fetching_all_cookies_(false),
finished_fetching_all_cookies_(false),
seen_global_task_(false),
store_(std::move(store)),
last_access_threshold_(last_access_threshold),
channel_id_service_(channel_id_service),
last_statistic_record_time_(base::Time::Now()),
persist_session_cookies_(false),
weak_ptr_factory_(this) {
InitializeHistograms();
cookieable_schemes_.insert(
cookieable_schemes_.begin(), kDefaultCookieableSchemes,
kDefaultCookieableSchemes + kDefaultCookieableSchemesCount);
if (channel_id_service_ && store_) {
// |store_| can outlive this CookieMonster, but there are no guarantees
// about the lifetime of |channel_id_service_| relative to |store_|. The
// only guarantee is that |channel_id_service_| will outlive this
// CookieMonster. To avoid the PersistentCookieStore retaining a pointer to
// the ChannelIDStore via this callback after this CookieMonster is
// destroyed, CookieMonster's d'tor sets the callback to a null callback.
store_->SetBeforeFlushCallback(
base::Bind(&ChannelIDStore::Flush,
base::Unretained(channel_id_service_->GetChannelIDStore())));
}
}
// Asynchronous CookieMonster API
void CookieMonster::FlushStore(base::OnceClosure callback) {
DCHECK(thread_checker_.CalledOnValidThread());
if (initialized_ && store_.get()) {
store_->Flush(std::move(callback));
} else if (callback) {
base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
std::move(callback));
}
}
void CookieMonster::SetForceKeepSessionState() {
DCHECK(thread_checker_.CalledOnValidThread());
if (store_)
store_->SetForceKeepSessionState();
}
void CookieMonster::SetAllCookiesAsync(const CookieList& list,
SetCookiesCallback callback) {
DoCookieCallback(base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::SetAllCookies, base::Unretained(this), list,
std::move(callback)));
}
void CookieMonster::SetCanonicalCookieAsync(
std::unique_ptr<CanonicalCookie> cookie,
bool secure_source,
bool modify_http_only,
SetCookiesCallback callback) {
DCHECK(cookie->IsCanonical());
std::string domain = cookie->Domain();
DoCookieCallbackForHostOrDomain(
base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::SetCanonicalCookie, base::Unretained(this),
std::move(cookie), secure_source, modify_http_only,
std::move(callback)),
domain);
}
void CookieMonster::SetCookieWithOptionsAsync(const GURL& url,
const std::string& cookie_line,
const CookieOptions& options,
SetCookiesCallback callback) {
DoCookieCallbackForURL(
base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::SetCookieWithOptions, base::Unretained(this), url,
cookie_line, options, std::move(callback)),
url);
}
void CookieMonster::GetCookieListWithOptionsAsync(
const GURL& url,
const CookieOptions& options,
GetCookieListCallback callback) {
DoCookieCallbackForURL(
InstrumentGetCookieListClosure(base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::GetCookieListWithOptions, base::Unretained(this), url,
options, std::move(callback))),
url);
}
void CookieMonster::GetAllCookiesAsync(GetCookieListCallback callback) {
DoCookieCallback(base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::GetAllCookies, base::Unretained(this),
std::move(callback)));
}
void CookieMonster::DeleteCookieAsync(const GURL& url,
const std::string& cookie_name,
base::OnceClosure callback) {
DoCookieCallbackForURL(
base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::DeleteCookie, base::Unretained(this), url,
cookie_name, std::move(callback)),
url);
}
void CookieMonster::DeleteCanonicalCookieAsync(const CanonicalCookie& cookie,
DeleteCallback callback) {
DoCookieCallback(base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::DeleteCanonicalCookie, base::Unretained(this), cookie,
std::move(callback)));
}
void CookieMonster::DeleteAllCreatedInTimeRangeAsync(
const TimeRange& creation_range,
DeleteCallback callback) {
DoCookieCallback(base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::DeleteAllCreatedInTimeRange, base::Unretained(this),
creation_range, std::move(callback)));
}
void CookieMonster::DeleteAllMatchingInfoAsync(CookieDeletionInfo delete_info,
DeleteCallback callback) {
DoCookieCallback(base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::DeleteAllMatchingInfo, base::Unretained(this),
std::move(delete_info), std::move(callback)));
}
void CookieMonster::DeleteSessionCookiesAsync(
CookieStore::DeleteCallback callback) {
DoCookieCallback(base::BindOnce(
// base::Unretained is safe as DoCookieCallbackForURL stores
// the callback on |*this|, so the callback will not outlive
// the object.
&CookieMonster::DeleteSessionCookies, base::Unretained(this),
std::move(callback)));
}
void CookieMonster::SetCookieableSchemes(
const std::vector<std::string>& schemes) {
DCHECK(thread_checker_.CalledOnValidThread());
// Calls to this method will have no effect if made after a WebView or
// CookieManager instance has been created.
if (initialized_)
return;
cookieable_schemes_ = schemes;
}
// This function must be called before the CookieMonster is used.
void CookieMonster::SetPersistSessionCookies(bool persist_session_cookies) {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(!initialized_);
persist_session_cookies_ = persist_session_cookies;
}
bool CookieMonster::IsCookieableScheme(const std::string& scheme) {
DCHECK(thread_checker_.CalledOnValidThread());
return base::ContainsValue(cookieable_schemes_, scheme);
}
const char* const CookieMonster::kDefaultCookieableSchemes[] = {"http", "https",
"ws", "wss"};
const int CookieMonster::kDefaultCookieableSchemesCount =
base::size(kDefaultCookieableSchemes);
CookieChangeDispatcher& CookieMonster::GetChangeDispatcher() {
return change_dispatcher_;
}
bool CookieMonster::IsEphemeral() {
return store_.get() == nullptr;
}
void CookieMonster::DumpMemoryStats(
base::trace_event::ProcessMemoryDump* pmd,
const std::string& parent_absolute_name) const {
const char kRelPath[] = "/cookie_monster";
pmd->CreateAllocatorDump(parent_absolute_name + kRelPath + "/cookies")
->AddScalar(base::trace_event::MemoryAllocatorDump::kNameObjectCount,
base::trace_event::MemoryAllocatorDump::kUnitsObjects,
cookies_.size());
pmd->CreateAllocatorDump(parent_absolute_name + kRelPath +
"/tasks_pending_global")
->AddScalar(base::trace_event::MemoryAllocatorDump::kNameObjectCount,
base::trace_event::MemoryAllocatorDump::kUnitsObjects,
tasks_pending_.size());
size_t total_pending_for_key = 0;
for (const auto& kv : tasks_pending_for_key_)
total_pending_for_key += kv.second.size();
pmd->CreateAllocatorDump(parent_absolute_name + kRelPath +
"/tasks_pending_for_key")
->AddScalar(base::trace_event::MemoryAllocatorDump::kNameObjectCount,
base::trace_event::MemoryAllocatorDump::kUnitsObjects,
total_pending_for_key);
}
CookieMonster::~CookieMonster() {
DCHECK(thread_checker_.CalledOnValidThread());
if (channel_id_service_ && store_) {
store_->SetBeforeFlushCallback(base::Closure());
}
// TODO(mmenke): Does it really make sense to run
// CookieChanged callbacks when the CookieStore is destroyed?
for (CookieMap::iterator cookie_it = cookies_.begin();
cookie_it != cookies_.end();) {
CookieMap::iterator current_cookie_it = cookie_it;
++cookie_it;
InternalDeleteCookie(current_cookie_it, false /* sync_to_store */,
DELETE_COOKIE_DONT_RECORD);
}
}
void CookieMonster::GetAllCookies(GetCookieListCallback callback) {
DCHECK(thread_checker_.CalledOnValidThread());
// This function is being called to scrape the cookie list for management UI
// or similar. We shouldn't show expired cookies in this list since it will
// just be confusing to users, and this function is called rarely enough (and
// is already slow enough) that it's OK to take the time to garbage collect
// the expired cookies now.
//
// Note that this does not prune cookies to be below our limits (if we've
// exceeded them) the way that calling GarbageCollect() would.
GarbageCollectExpired(
Time::Now(), CookieMapItPair(cookies_.begin(), cookies_.end()), NULL);
// Copy the CanonicalCookie pointers from the map so that we can use the same
// sorter as elsewhere, then copy the result out.
std::vector<CanonicalCookie*> cookie_ptrs;
cookie_ptrs.reserve(cookies_.size());
for (const auto& cookie : cookies_)
cookie_ptrs.push_back(cookie.second.get());
std::sort(cookie_ptrs.begin(), cookie_ptrs.end(), CookieSorter);
CookieList cookie_list;
cookie_list.reserve(cookie_ptrs.size());
for (auto* cookie_ptr : cookie_ptrs)
cookie_list.push_back(*cookie_ptr);
MaybeRunCookieCallback(std::move(callback), cookie_list);
}
void CookieMonster::GetCookieListWithOptions(const GURL& url,
const CookieOptions& options,
GetCookieListCallback callback) {
DCHECK(thread_checker_.CalledOnValidThread());
CookieList cookies;
if (HasCookieableScheme(url)) {
std::vector<CanonicalCookie*> cookie_ptrs;
FindCookiesForHostAndDomain(url, options, &cookie_ptrs);
std::sort(cookie_ptrs.begin(), cookie_ptrs.end(), CookieSorter);
cookies.reserve(cookie_ptrs.size());
for (std::vector<CanonicalCookie*>::const_iterator it = cookie_ptrs.begin();
it != cookie_ptrs.end(); it++)
cookies.push_back(**it);
}
MaybeRunCookieCallback(std::move(callback), cookies);
}
void CookieMonster::DeleteAllCreatedInTimeRange(const TimeRange& creation_range,
DeleteCallback callback) {
DCHECK(thread_checker_.CalledOnValidThread());
uint32_t num_deleted = 0;
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
CanonicalCookie* cc = curit->second.get();
++it;
if (creation_range.Contains(cc->CreationDate())) {
InternalDeleteCookie(curit, true, /*sync_to_store*/
DELETE_COOKIE_EXPLICIT);
++num_deleted;
}
}
FlushStore(
base::BindOnce(&MaybeRunDeleteCallback, weak_ptr_factory_.GetWeakPtr(),
callback ? base::BindOnce(std::move(callback), num_deleted)
: base::OnceClosure()));
}
void CookieMonster::DeleteAllMatchingInfo(CookieDeletionInfo delete_info,
DeleteCallback callback) {
uint32_t num_deleted = 0;
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
CanonicalCookie* cc = curit->second.get();
++it;
if (delete_info.Matches(*cc)) {
InternalDeleteCookie(curit, true, /*sync_to_store*/
DELETE_COOKIE_EXPLICIT);
++num_deleted;
}
}
FlushStore(
base::BindOnce(&MaybeRunDeleteCallback, weak_ptr_factory_.GetWeakPtr(),
callback ? base::BindOnce(std::move(callback), num_deleted)
: base::OnceClosure()));
}
void CookieMonster::SetCookieWithOptions(const GURL& url,
const std::string& cookie_line,
const CookieOptions& options,
SetCookiesCallback callback) {
DCHECK(thread_checker_.CalledOnValidThread());
if (!HasCookieableScheme(url)) {
MaybeRunCookieCallback(std::move(callback), false);
return;
}
VLOG(kVlogSetCookies) << "SetCookie() line: " << cookie_line;
Time creation_time = CurrentTime();
last_time_seen_ = creation_time;
std::unique_ptr<CanonicalCookie> cc(
CanonicalCookie::Create(url, cookie_line, creation_time, options));
if (!cc.get()) {
VLOG(kVlogSetCookies) << "WARNING: Failed to allocate CanonicalCookie";
MaybeRunCookieCallback(std::move(callback), false);
return;
}
SetCanonicalCookie(std::move(cc), url.SchemeIsCryptographic(),
!options.exclude_httponly(), std::move(callback));
}
void CookieMonster::DeleteCookie(const GURL& url,
const std::string& cookie_name,
base::OnceClosure callback) {
DCHECK(thread_checker_.CalledOnValidThread());
if (!HasCookieableScheme(url)) {
// TODO(rdsmith): Would be good to provide a failure indication here.
MaybeRunCookieCallback(std::move(callback));
return;
}
CookieOptions options;
options.set_include_httponly();
options.set_same_site_cookie_mode(
CookieOptions::SameSiteCookieMode::INCLUDE_STRICT_AND_LAX);
// Get the cookies for this host and its domain(s).
std::vector<CanonicalCookie*> cookies;
FindCookiesForHostAndDomain(url, options, &cookies);
std::set<CanonicalCookie*> matching_cookies;
for (auto* cookie : cookies) {
if (cookie->Name() != cookie_name)
continue;
if (!cookie->IsOnPath(url.path()))
continue;
matching_cookies.insert(cookie);
}
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
++it;
if (matching_cookies.find(curit->second.get()) != matching_cookies.end()) {
InternalDeleteCookie(curit, true, DELETE_COOKIE_EXPLICIT);
}
}
FlushStore(base::BindOnce(&MaybeRunDeleteCallback,
weak_ptr_factory_.GetWeakPtr(),
// No callback null check needed as BindOnce
// is not being called and MaybeRunDeleteCallback
// has its own check.
std::move(callback)));
}
void CookieMonster::DeleteCanonicalCookie(const CanonicalCookie& cookie,
DeleteCallback callback) {
DCHECK(thread_checker_.CalledOnValidThread());
uint32_t result = 0u;
for (CookieMapItPair its = cookies_.equal_range(GetKey(cookie.Domain()));
its.first != its.second; ++its.first) {
const std::unique_ptr<CanonicalCookie>& candidate = its.first->second;
// Historically, this has refused modification if the cookie has changed
// value in between the CanonicalCookie object was returned by a getter
// and when this ran. The later parts of the conditional (everything but
// the equivalence check) attempt to preserve this behavior.
if (candidate->IsEquivalent(cookie) &&
candidate->CreationDate() == cookie.CreationDate() &&
candidate->Value() == cookie.Value()) {
InternalDeleteCookie(its.first, true, DELETE_COOKIE_EXPLICIT);
result = 1u;
break;
}
}
FlushStore(
base::BindOnce(&MaybeRunDeleteCallback, weak_ptr_factory_.GetWeakPtr(),
callback ? base::BindOnce(std::move(callback), result)
: base::OnceClosure()));
}
void CookieMonster::DeleteSessionCookies(DeleteCallback callback) {
DCHECK(thread_checker_.CalledOnValidThread());
uint32_t num_deleted = 0;
for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) {
CookieMap::iterator curit = it;
CanonicalCookie* cc = curit->second.get();
++it;
if (!cc->IsPersistent()) {
InternalDeleteCookie(curit, true, /*sync_to_store*/
DELETE_COOKIE_EXPIRED);
++num_deleted;
}
}
FlushStore(
base::BindOnce(&MaybeRunDeleteCallback, weak_ptr_factory_.GetWeakPtr(),
callback ? base::BindOnce(std::move(callback), num_deleted)
: base::OnceClosure()));
}
void CookieMonster::MarkCookieStoreAsInitialized() {
DCHECK(thread_checker_.CalledOnValidThread());
initialized_ = true;
}
void CookieMonster::FetchAllCookiesIfNecessary() {
DCHECK(thread_checker_.CalledOnValidThread());
if (store_.get() && !started_fetching_all_cookies_) {
started_fetching_all_cookies_ = true;
FetchAllCookies();
}
}
void CookieMonster::FetchAllCookies() {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(store_.get()) << "Store must exist to initialize";
DCHECK(!finished_fetching_all_cookies_)
<< "All cookies have already been fetched.";
// We bind in the current time so that we can report the wall-clock time for
// loading cookies.
store_->Load(base::Bind(&CookieMonster::OnLoaded,
weak_ptr_factory_.GetWeakPtr(), TimeTicks::Now()));
}
void CookieMonster::OnLoaded(
TimeTicks beginning_time,
std::vector<std::unique_ptr<CanonicalCookie>> cookies) {
DCHECK(thread_checker_.CalledOnValidThread());
StoreLoadedCookies(std::move(cookies));
histogram_time_blocked_on_load_->AddTime(TimeTicks::Now() - beginning_time);
// Invoke the task queue of cookie request.
InvokeQueue();
}
void CookieMonster::OnKeyLoaded(
const std::string& key,
std::vector<std::unique_ptr<CanonicalCookie>> cookies) {
DCHECK(thread_checker_.CalledOnValidThread());
StoreLoadedCookies(std::move(cookies));
auto tasks_pending_for_key = tasks_pending_for_key_.find(key);
// TODO(mmenke): Can this be turned into a DCHECK?
if (tasks_pending_for_key == tasks_pending_for_key_.end())
return;
// Run all tasks for the key. Note that running a task can result in multiple
// tasks being added to the back of the deque.
while (!tasks_pending_for_key->second.empty()) {
base::OnceClosure task = std::move(tasks_pending_for_key->second.front());
tasks_pending_for_key->second.pop_front();
std::move(task).Run();
}
tasks_pending_for_key_.erase(tasks_pending_for_key);
// This has to be done last, in case running a task queues a new task for the
// key, to ensure tasks are run in the correct order.
keys_loaded_.insert(key);
}
void CookieMonster::StoreLoadedCookies(
std::vector<std::unique_ptr<CanonicalCookie>> cookies) {
DCHECK(thread_checker_.CalledOnValidThread());
// Even if a key is expired, insert it so it can be garbage collected,
// removed, and sync'd.
CookieItVector cookies_with_control_chars;
for (auto& cookie : cookies) {
CanonicalCookie* cookie_ptr = cookie.get();
CookieMap::iterator inserted = InternalInsertCookie(
GetKey(cookie_ptr->Domain()), std::move(cookie), false);
const Time cookie_access_time(cookie_ptr->LastAccessDate());
if (earliest_access_time_.is_null() ||
cookie_access_time < earliest_access_time_)
earliest_access_time_ = cookie_access_time;
if (ContainsControlCharacter(cookie_ptr->Name()) ||
ContainsControlCharacter(cookie_ptr->Value())) {
cookies_with_control_chars.push_back(inserted);
}
}
// Any cookies that contain control characters that we have loaded from the
// persistent store should be deleted. See http://crbug.com/238041.
for (CookieItVector::iterator it = cookies_with_control_chars.begin();
it != cookies_with_control_chars.end();) {
CookieItVector::iterator curit = it;
++it;
InternalDeleteCookie(*curit, true, DELETE_COOKIE_CONTROL_CHAR);
}
// After importing cookies from the PersistentCookieStore, verify that
// none of our other constraints are violated.
// In particular, the backing store might have given us duplicate cookies.
// This method could be called multiple times due to priority loading, thus
// cookies loaded in previous runs will be validated again, but this is OK
// since they are expected to be much fewer than total DB.
EnsureCookiesMapIsValid();
}
void CookieMonster::InvokeQueue() {
DCHECK(thread_checker_.CalledOnValidThread());
// Move all per-key tasks into the global queue, if there are any. This is
// protection about a race where the store learns about all cookies loading
// before it learned about the cookies for a key loading.
// Needed to prevent any recursively queued tasks from going back into the
// per-key queues.
seen_global_task_ = true;
for (auto& tasks_for_key : tasks_pending_for_key_) {
tasks_pending_.insert(tasks_pending_.begin(),
std::make_move_iterator(tasks_for_key.second.begin()),
std::make_move_iterator(tasks_for_key.second.end()));
}
tasks_pending_for_key_.clear();
while (!tasks_pending_.empty()) {
base::OnceClosure request_task = std::move(tasks_pending_.front());
tasks_pending_.pop_front();
std::move(request_task).Run();
}
DCHECK(tasks_pending_for_key_.empty());
finished_fetching_all_cookies_ = true;
keys_loaded_.clear();
}
void CookieMonster::EnsureCookiesMapIsValid() {
DCHECK(thread_checker_.CalledOnValidThread());
// Iterate through all the of the cookies, grouped by host.
CookieMap::iterator prev_range_end = cookies_.begin();
while (prev_range_end != cookies_.end()) {
CookieMap::iterator cur_range_begin = prev_range_end;
const std::string key = cur_range_begin->first; // Keep a copy.
CookieMap::iterator cur_range_end = cookies_.upper_bound(key);
prev_range_end = cur_range_end;
// Ensure no equivalent cookies for this host.
TrimDuplicateCookiesForKey(key, cur_range_begin, cur_range_end);
}
}
void CookieMonster::TrimDuplicateCookiesForKey(const std::string& key,
CookieMap::iterator begin,
CookieMap::iterator end) {
DCHECK(thread_checker_.CalledOnValidThread());
// Set of cookies ordered by creation time.
typedef std::multiset<CookieMap::iterator, OrderByCreationTimeDesc> CookieSet;
// Helper map we populate to find the duplicates.
typedef std::map<CookieSignature, CookieSet> EquivalenceMap;
EquivalenceMap equivalent_cookies;
// The number of duplicate cookies that have been found.
int num_duplicates = 0;
// Iterate through all of the cookies in our range, and insert them into
// the equivalence map.
for (CookieMap::iterator it = begin; it != end; ++it) {
DCHECK_EQ(key, it->first);
CanonicalCookie* cookie = it->second.get();
CookieSignature signature(cookie->Name(), cookie->Domain(), cookie->Path());
CookieSet& set = equivalent_cookies[signature];
// We found a duplicate!
if (!set.empty())
num_duplicates++;
// We save the iterator into |cookies_| rather than the actual cookie
// pointer, since we may need to delete it later.
set.insert(it);
}
// If there were no duplicates, we are done!
if (num_duplicates == 0)
return;
// Make sure we find everything below that we did above.
int num_duplicates_found = 0;
// Otherwise, delete all the duplicate cookies, both from our in-memory store
// and from the backing store.
for (EquivalenceMap::iterator it = equivalent_cookies.begin();
it != equivalent_cookies.end(); ++it) {
const CookieSignature& signature = it->first;
CookieSet& dupes = it->second;
if (dupes.size() <= 1)
continue; // This cookiename/path has no duplicates.
num_duplicates_found += dupes.size() - 1;
// Since |dupes| is sorted by creation time (descending), the first cookie
// is the most recent one (or tied for it), so we will keep it. The rest are
// duplicates.
dupes.erase(dupes.begin());
LOG(ERROR) << base::StringPrintf(
"Found %d duplicate cookies for host='%s', "
"with {name='%s', domain='%s', path='%s'}",
static_cast<int>(dupes.size()), key.c_str(), signature.name.c_str(),
signature.domain.c_str(), signature.path.c_str());
// Remove all the cookies identified by |dupes|. It is valid to delete our
// list of iterators one at a time, since |cookies_| is a multimap (they
// don't invalidate existing iterators following deletion).
for (CookieSet::iterator dupes_it = dupes.begin(); dupes_it != dupes.end();
++dupes_it) {
InternalDeleteCookie(*dupes_it, true,
DELETE_COOKIE_DUPLICATE_IN_BACKING_STORE);
}
}
DCHECK_EQ(num_duplicates, num_duplicates_found);
}
void CookieMonster::FindCookiesForHostAndDomain(
const GURL& url,
const CookieOptions& options,
std::vector<CanonicalCookie*>* cookies) {
DCHECK(thread_checker_.CalledOnValidThread());
const Time current_time(CurrentTime());
// Probe to save statistics relatively frequently. We do it here rather
// than in the set path as many websites won't set cookies, and we
// want to collect statistics whenever the browser's being used.
RecordPeriodicStats(current_time);
// Can just dispatch to FindCookiesForKey
const std::string key(GetKey(url.host_piece()));
FindCookiesForKey(key, url, options, current_time, cookies);
}
void CookieMonster::FindCookiesForKey(const std::string& key,
const GURL& url,
const CookieOptions& options,
const Time& current,
std::vector<CanonicalCookie*>* cookies) {
DCHECK(thread_checker_.CalledOnValidThread());
for (CookieMapItPair its = cookies_.equal_range(key);
its.first != its.second;) {
CookieMap::iterator curit = its.first;
CanonicalCookie* cc = curit->second.get();
++its.first;
// If the cookie is expired, delete it.
if (cc->IsExpired(current)) {
InternalDeleteCookie(curit, true, DELETE_COOKIE_EXPIRED);
continue;
}
// Filter out cookies that should not be included for a request to the
// given |url|. HTTP only cookies are filtered depending on the passed
// cookie |options|.
if (!cc->IncludeForRequestURL(url, options))
continue;
// Add this cookie to the set of matching cookies. Update the access
// time if we've been requested to do so.
if (options.update_access_time()) {
InternalUpdateCookieAccessTime(cc, current);
}
cookies->push_back(cc);
}
}
bool CookieMonster::DeleteAnyEquivalentCookie(
const std::string& key,
const CanonicalCookie& ecc,
bool source_secure,
bool skip_httponly,
bool already_expired,
base::Time* creation_date_to_inherit) {
DCHECK(thread_checker_.CalledOnValidThread());
bool found_equivalent_cookie = false;
bool skipped_httponly = false;
bool skipped_secure_cookie = false;
histogram_cookie_delete_equivalent_->Add(COOKIE_DELETE_EQUIVALENT_ATTEMPT);
for (CookieMapItPair its = cookies_.equal_range(key);
its.first != its.second;) {
CookieMap::iterator curit = its.first;
CanonicalCookie* cc = curit->second.get();
++its.first;
// If the cookie is being set from an insecure scheme, then if a cookie
// already exists with the same name and it is Secure, then the cookie
// should *not* be updated if they domain-match and ignoring the path
// attribute.
//
// See: https://tools.ietf.org/html/draft-ietf-httpbis-cookie-alone
if (cc->IsSecure() && !source_secure &&
ecc.IsEquivalentForSecureCookieMatching(*cc)) {
skipped_secure_cookie = true;
histogram_cookie_delete_equivalent_->Add(
COOKIE_DELETE_EQUIVALENT_SKIPPING_SECURE);
// If the cookie is equivalent to the new cookie and wouldn't have been
// skipped for being HTTP-only, record that it is a skipped secure cookie
// that would have been deleted otherwise.
if (ecc.IsEquivalent(*cc)) {
found_equivalent_cookie = true;
if (!skip_httponly || !cc->IsHttpOnly()) {
histogram_cookie_delete_equivalent_->Add(
COOKIE_DELETE_EQUIVALENT_WOULD_HAVE_DELETED);
}
}
} else if (ecc.IsEquivalent(*cc)) {
// We should never have more than one equivalent cookie, since they should
// overwrite each other, unless secure cookies require secure scheme is
// being enforced. In that case, cookies with different paths might exist
// and be considered equivalent.
CHECK(!found_equivalent_cookie)
<< "Duplicate equivalent cookies found, cookie store is corrupted.";
if (skip_httponly && cc->IsHttpOnly()) {
skipped_httponly = true;
} else {
histogram_cookie_delete_equivalent_->Add(
COOKIE_DELETE_EQUIVALENT_FOUND);
if (cc->Value() == ecc.Value()) {
*creation_date_to_inherit = cc->CreationDate();
histogram_cookie_delete_equivalent_->Add(
COOKIE_DELETE_EQUIVALENT_FOUND_WITH_SAME_VALUE);
}
InternalDeleteCookie(curit, true, already_expired
? DELETE_COOKIE_EXPIRED_OVERWRITE
: DELETE_COOKIE_OVERWRITE);
}
found_equivalent_cookie = true;
}
}
return skipped_httponly || skipped_secure_cookie;
}
CookieMonster::CookieMap::iterator CookieMonster::InternalInsertCookie(
const std::string& key,
std::unique_ptr<CanonicalCookie> cc,
bool sync_to_store) {
DCHECK(thread_checker_.CalledOnValidThread());
CanonicalCookie* cc_ptr = cc.get();
if ((cc_ptr->IsPersistent() || persist_session_cookies_) && store_.get() &&
sync_to_store)
store_->AddCookie(*cc_ptr);
CookieMap::iterator inserted =
cookies_.insert(CookieMap::value_type(key, std::move(cc)));
// See InitializeHistograms() for details.
int32_t type_sample = cc_ptr->SameSite() != CookieSameSite::NO_RESTRICTION
? 1 << COOKIE_TYPE_SAME_SITE
: 0;
type_sample |= cc_ptr->IsHttpOnly() ? 1 << COOKIE_TYPE_HTTPONLY : 0;
type_sample |= cc_ptr->IsSecure() ? 1 << COOKIE_TYPE_SECURE : 0;
histogram_cookie_type_->Add(type_sample);
change_dispatcher_.DispatchChange(*cc_ptr, CookieChangeCause::INSERTED, true);
return inserted;
}
void CookieMonster::SetCanonicalCookie(std::unique_ptr<CanonicalCookie> cc,
bool secure_source,
bool modify_http_only,
SetCookiesCallback callback) {
DCHECK(thread_checker_.CalledOnValidThread());
if ((cc->IsSecure() && !secure_source) ||
(cc->IsHttpOnly() && !modify_http_only)) {
MaybeRunCookieCallback(std::move(callback), false);
return;
}
const std::string key(GetKey(cc->Domain()));
// TODO(mmenke): This class assumes each cookie to have a unique creation
// time. Allowing the caller to set the creation time violates that
// assumption. Worth fixing? Worth noting that time changes between browser
// restarts can cause the same issue.
base::Time creation_date = cc->CreationDate();
if (creation_date.is_null()) {
creation_date = CurrentTime();
cc->SetCreationDate(creation_date);
last_time_seen_ = creation_date;
}
bool already_expired = cc->IsExpired(creation_date);
base::Time creation_date_to_inherit;
if (DeleteAnyEquivalentCookie(key, *cc, secure_source, !modify_http_only,
already_expired, &creation_date_to_inherit)) {
std::string error;
error =
"SetCookie() not clobbering httponly cookie or secure cookie for "
"insecure scheme";
VLOG(kVlogSetCookies) << error;
MaybeRunCookieCallback(std::move(callback), false);
return;
}
VLOG(kVlogSetCookies) << "SetCookie() key: " << key
<< " cc: " << cc->DebugString();
// Realize that we might be setting an expired cookie, and the only point
// was to delete the cookie which we've already done.
if (!already_expired) {
// See InitializeHistograms() for details.
if (cc->IsPersistent()) {
histogram_expiration_duration_minutes_->Add(
(cc->ExpiryDate() - creation_date).InMinutes());
}
// Histogram the type of scheme used on URLs that set cookies. This
// intentionally includes cookies that are set or overwritten by
// http:// URLs, but not cookies that are cleared by http:// URLs, to
// understand if the former behavior can be deprecated for Secure
// cookies.
CookieSource cookie_source_sample =
(secure_source
? (cc->IsSecure()
? COOKIE_SOURCE_SECURE_COOKIE_CRYPTOGRAPHIC_SCHEME
: COOKIE_SOURCE_NONSECURE_COOKIE_CRYPTOGRAPHIC_SCHEME)
: (cc->IsSecure()
? COOKIE_SOURCE_SECURE_COOKIE_NONCRYPTOGRAPHIC_SCHEME
: COOKIE_SOURCE_NONSECURE_COOKIE_NONCRYPTOGRAPHIC_SCHEME));
histogram_cookie_source_scheme_->Add(cookie_source_sample);
if (!creation_date_to_inherit.is_null()) {
cc->SetCreationDate(creation_date_to_inherit);
// |last_time_seen_| is intentionally not updated, as moving it into the
// past might cause duplicate cookie creation dates. See
// `CookieMonster::CurrentTime()` for details.
}
InternalInsertCookie(key, std::move(cc), true);
} else {
VLOG(kVlogSetCookies) << "SetCookie() not storing already expired cookie.";
}
// We assume that hopefully setting a cookie will be less common than
// querying a cookie. Since setting a cookie can put us over our limits,
// make sure that we garbage collect... We can also make the assumption that
// if a cookie was set, in the common case it will be used soon after,
// and we will purge the expired cookies in GetCookies().
GarbageCollect(creation_date, key);
MaybeRunCookieCallback(std::move(callback), true);
}
void CookieMonster::SetAllCookies(CookieList list,
SetCookiesCallback callback) {
DCHECK(thread_checker_.CalledOnValidThread());
// Nuke the existing store.
while (!cookies_.empty()) {
// TODO(rdsmith): The CANONICAL is a lie.
InternalDeleteCookie(cookies_.begin(), true, DELETE_COOKIE_EXPLICIT);
}
// Set all passed in cookies.
for (const auto& cookie : list) {
const std::string key(GetKey(cookie.Domain()));
Time creation_time = cookie.CreationDate();
if (cookie.IsExpired(creation_time))
continue;
if (cookie.IsPersistent()) {
histogram_expiration_duration_minutes_->Add(
(cookie.ExpiryDate() - creation_time).InMinutes());
}
InternalInsertCookie(key, std::make_unique<CanonicalCookie>(cookie), true);
GarbageCollect(creation_time, key);
}
// TODO(rdsmith): If this function always returns the same value, it
// shouldn't have a return value. But it should also be deleted (see
// https://codereview.chromium.org/2882063002/#msg64), which would
// solve the return value problem.
MaybeRunCookieCallback(std::move(callback), true);
}
void CookieMonster::InternalUpdateCookieAccessTime(CanonicalCookie* cc,
const Time& current) {
DCHECK(thread_checker_.CalledOnValidThread());
// Based off the Mozilla code. When a cookie has been accessed recently,
// don't bother updating its access time again. This reduces the number of
// updates we do during pageload, which in turn reduces the chance our storage
// backend will hit its batch thresholds and be forced to update.
if ((current - cc->LastAccessDate()) < last_access_threshold_)
return;
cc->SetLastAccessDate(current);
if ((cc->IsPersistent() || persist_session_cookies_) && store_.get())
store_->UpdateCookieAccessTime(*cc);
}
// InternalDeleteCookies must not invalidate iterators other than the one being
// deleted.
void CookieMonster::InternalDeleteCookie(CookieMap::iterator it,
bool sync_to_store,
DeletionCause deletion_cause) {
DCHECK(thread_checker_.CalledOnValidThread());
// Ideally, this would be asserted up where we define kChangeCauseMapping,
// but DeletionCause's visibility (or lack thereof) forces us to make
// this check here.
static_assert(base::size(kChangeCauseMapping) == DELETE_COOKIE_LAST_ENTRY + 1,
"kChangeCauseMapping size should match DeletionCause size");
CanonicalCookie* cc = it->second.get();
VLOG(kVlogSetCookies) << "InternalDeleteCookie()"
<< ", cause:" << deletion_cause
<< ", cc: " << cc->DebugString();
if ((cc->IsPersistent() || persist_session_cookies_) && store_.get() &&
sync_to_store)
store_->DeleteCookie(*cc);
ChangeCausePair mapping = kChangeCauseMapping[deletion_cause];
change_dispatcher_.DispatchChange(*cc, mapping.cause, mapping.notify);
cookies_.erase(it);
}
// Domain expiry behavior is unchanged by key/expiry scheme (the
// meaning of the key is different, but that's not visible to this routine).
size_t CookieMonster::GarbageCollect(const Time& current,
const std::string& key) {
DCHECK(thread_checker_.CalledOnValidThread());
size_t num_deleted = 0;
Time safe_date(Time::Now() - TimeDelta::FromDays(kSafeFromGlobalPurgeDays));
// Collect garbage for this key, minding cookie priorities.
if (cookies_.count(key) > kDomainMaxCookies) {
VLOG(kVlogGarbageCollection) << "GarbageCollect() key: " << key;
CookieItVector* cookie_its;
CookieItVector non_expired_cookie_its;
cookie_its = &non_expired_cookie_its;
num_deleted +=
GarbageCollectExpired(current, cookies_.equal_range(key), cookie_its);
if (cookie_its->size() > kDomainMaxCookies) {
VLOG(kVlogGarbageCollection) << "Deep Garbage Collect domain.";
size_t purge_goal =
cookie_its->size() - (kDomainMaxCookies - kDomainPurgeCookies);
DCHECK(purge_goal > kDomainPurgeCookies);
// Sort the cookies by access date, from least-recent to most-recent.
std::sort(cookie_its->begin(), cookie_its->end(), LRACookieSorter);
// Remove all but the kDomainCookiesQuotaLow most-recently accessed
// cookies with low-priority. Then, if cookies still need to be removed,
// bump the quota and remove low- and medium-priority. Then, if cookies
// _still_ need to be removed, bump the quota and remove cookies with
// any priority.
//
// 1. Low-priority non-secure cookies.
// 2. Low-priority secure cookies.
// 3. Medium-priority non-secure cookies.
// 4. High-priority non-secure cookies.
// 5. Medium-priority secure cookies.
// 6. High-priority secure cookies.
const static struct {
CookiePriority priority;
bool protect_secure_cookies;
} purge_rounds[] = {
// 1. Low-priority non-secure cookies.
{COOKIE_PRIORITY_LOW, true},
// 2. Low-priority secure cookies.
{COOKIE_PRIORITY_LOW, false},
// 3. Medium-priority non-secure cookies.
{COOKIE_PRIORITY_MEDIUM, true},
// 4. High-priority non-secure cookies.
{COOKIE_PRIORITY_HIGH, true},
// 5. Medium-priority secure cookies.
{COOKIE_PRIORITY_MEDIUM, false},
// 6. High-priority secure cookies.
{COOKIE_PRIORITY_HIGH, false},
};
size_t quota = 0;
for (const auto& purge_round : purge_rounds) {
// Adjust quota according to the priority of cookies. Each round should
// protect certain number of cookies in order to avoid starvation.
// For example, when each round starts to remove cookies, the number of
// cookies of that priority are counted and a decision whether they
// should be deleted or not is made. If yes, some number of cookies of
// that priority are deleted considering the quota.
switch (purge_round.priority) {
case COOKIE_PRIORITY_LOW:
quota = kDomainCookiesQuotaLow;
break;
case COOKIE_PRIORITY_MEDIUM:
quota = kDomainCookiesQuotaMedium;
break;
case COOKIE_PRIORITY_HIGH:
quota = kDomainCookiesQuotaHigh;
break;
}
size_t just_deleted = 0u;
// Purge up to |purge_goal| for all cookies at the given priority. This
// path will be taken only if the initial non-secure purge did not evict
// enough cookies.
if (purge_goal > 0) {
just_deleted = PurgeLeastRecentMatches(
cookie_its, purge_round.priority, quota, purge_goal,
purge_round.protect_secure_cookies);
DCHECK_LE(just_deleted, purge_goal);
purge_goal -= just_deleted;
num_deleted += just_deleted;
}
}
DCHECK_EQ(0u, purge_goal);
}
}
// Collect garbage for everything. With firefox style we want to preserve
// cookies accessed in kSafeFromGlobalPurgeDays, otherwise evict.
if (cookies_.size() > kMaxCookies && earliest_access_time_ < safe_date) {
VLOG(kVlogGarbageCollection) << "GarbageCollect() everything";
CookieItVector cookie_its;
num_deleted += GarbageCollectExpired(
current, CookieMapItPair(cookies_.begin(), cookies_.end()),
&cookie_its);
if (cookie_its.size() > kMaxCookies) {
VLOG(kVlogGarbageCollection) << "Deep Garbage Collect everything.";
size_t purge_goal = cookie_its.size() - (kMaxCookies - kPurgeCookies);
DCHECK(purge_goal > kPurgeCookies);
CookieItVector secure_cookie_its;
CookieItVector non_secure_cookie_its;
SplitCookieVectorIntoSecureAndNonSecure(cookie_its, &secure_cookie_its,
&non_secure_cookie_its);
size_t non_secure_purge_goal =
std::min<size_t>(purge_goal, non_secure_cookie_its.size());
base::Time earliest_non_secure_access_time;
size_t just_deleted = GarbageCollectLeastRecentlyAccessed(
current, safe_date, non_secure_purge_goal, non_secure_cookie_its,
&earliest_non_secure_access_time);
num_deleted += just_deleted;
if (secure_cookie_its.size() == 0) {
// This case is unlikely, but should still update
// |earliest_access_time_| if only have non-secure cookies.
earliest_access_time_ = earliest_non_secure_access_time;
// Garbage collection can't delete all cookies.
DCHECK(!earliest_access_time_.is_null());
} else if (just_deleted < purge_goal) {
size_t secure_purge_goal = std::min<size_t>(purge_goal - just_deleted,
secure_cookie_its.size());
base::Time earliest_secure_access_time;
num_deleted += GarbageCollectLeastRecentlyAccessed(
current, safe_date, secure_purge_goal, secure_cookie_its,
&earliest_secure_access_time);
if (!earliest_non_secure_access_time.is_null() &&
earliest_non_secure_access_time < earliest_secure_access_time) {
earliest_access_time_ = earliest_non_secure_access_time;
} else {
earliest_access_time_ = earliest_secure_access_time;
}
// Garbage collection can't delete all cookies.
DCHECK(!earliest_access_time_.is_null());
}
// If there are secure cookies, but deleting non-secure cookies was enough
// to meet the purge goal, secure cookies are never examined, so
// |earliest_access_time_| can't be determined. Leaving it alone will mean
// it's no later than the real earliest last access time, so this won't
// lead to any problems.
}
}
return num_deleted;
}
size_t CookieMonster::PurgeLeastRecentMatches(CookieItVector* cookies,
CookiePriority priority,
size_t to_protect,
size_t purge_goal,
bool protect_secure_cookies) {
DCHECK(thread_checker_.CalledOnValidThread());
// 1. Count number of the cookies at |priority|
size_t cookies_count_possibly_to_be_deleted = CountCookiesForPossibleDeletion(
priority, cookies, false /* count all cookies */);
// 2. If |cookies_count_possibly_to_be_deleted| at |priority| is less than or
// equal |to_protect|, skip round in order to preserve the quota. This
// involves secure and non-secure cookies at |priority|.
if (cookies_count_possibly_to_be_deleted <= to_protect)
return 0u;
// 3. Calculate number of secure cookies at |priority|
// and number of cookies at |priority| that can possibly be deleted.
// It is guaranteed we do not delete more than |purge_goal| even if
// |cookies_count_possibly_to_be_deleted| is higher.
size_t secure_cookies = 0u;
if (protect_secure_cookies) {
secure_cookies = CountCookiesForPossibleDeletion(
priority, cookies, protect_secure_cookies /* count secure cookies */);
cookies_count_possibly_to_be_deleted -=
std::max(secure_cookies, to_protect - secure_cookies);
} else {
cookies_count_possibly_to_be_deleted -= to_protect;
}
size_t removed = 0u;
size_t current = 0u;
while ((removed < purge_goal && current < cookies->size()) &&
cookies_count_possibly_to_be_deleted > 0) {
const CanonicalCookie* current_cookie = cookies->at(current)->second.get();
// Only delete the current cookie if the priority is equal to
// the current level.
if (IsCookieEligibleForEviction(priority, protect_secure_cookies,
current_cookie)) {
InternalDeleteCookie(cookies->at(current), true,
DELETE_COOKIE_EVICTED_DOMAIN);
cookies->erase(cookies->begin() + current);
removed++;
cookies_count_possibly_to_be_deleted--;
} else {
current++;
}
}
return removed;
}
size_t CookieMonster::GarbageCollectExpired(const Time& current,
const CookieMapItPair& itpair,
CookieItVector* cookie_its) {
DCHECK(thread_checker_.CalledOnValidThread());
int num_deleted = 0;
for (CookieMap::iterator it = itpair.first, end = itpair.second; it != end;) {
CookieMap::iterator curit = it;
++it;
if (curit->second->IsExpired(current)) {
InternalDeleteCookie(curit, true, DELETE_COOKIE_EXPIRED);
++num_deleted;
} else if (cookie_its) {
cookie_its->push_back(curit);
}
}
return num_deleted;
}
size_t CookieMonster::GarbageCollectDeleteRange(
const Time& current,
DeletionCause cause,
CookieItVector::iterator it_begin,
CookieItVector::iterator it_end) {
DCHECK(thread_checker_.CalledOnValidThread());
for (CookieItVector::iterator it = it_begin; it != it_end; it++) {
InternalDeleteCookie((*it), true, cause);
}
return it_end - it_begin;
}
size_t CookieMonster::GarbageCollectLeastRecentlyAccessed(
const base::Time& current,
const base::Time& safe_date,
size_t purge_goal,
CookieItVector cookie_its,
base::Time* earliest_time) {
DCHECK_LE(purge_goal, cookie_its.size());
DCHECK(thread_checker_.CalledOnValidThread());
// Sorts up to *and including* |cookie_its[purge_goal]| (if it exists), so
// |earliest_time| will be properly assigned even if
// |global_purge_it| == |cookie_its.begin() + purge_goal|.
SortLeastRecentlyAccessed(
cookie_its.begin(), cookie_its.end(),
cookie_its.size() < purge_goal ? purge_goal + 1 : purge_goal);
// Find boundary to cookies older than safe_date.
CookieItVector::iterator global_purge_it = LowerBoundAccessDate(
cookie_its.begin(), cookie_its.begin() + purge_goal, safe_date);
// Only delete the old cookies and delete non-secure ones first.
size_t num_deleted =
GarbageCollectDeleteRange(current, DELETE_COOKIE_EVICTED_GLOBAL,
cookie_its.begin(), global_purge_it);
if (global_purge_it != cookie_its.end())
*earliest_time = (*global_purge_it)->second->LastAccessDate();
return num_deleted;
}
// A wrapper around registry_controlled_domains::GetDomainAndRegistry
// to make clear we're creating a key for our local map or for the persistent
// store's use. Here and in FindCookiesForHostAndDomain() are the only two
// places where we need to conditionalize based on key type.
//
// Note that this key algorithm explicitly ignores the scheme. This is
// because when we're entering cookies into the map from the backing store,
// we in general won't have the scheme at that point.
// In practical terms, this means that file cookies will be stored
// in the map either by an empty string or by UNC name (and will be
// limited by kMaxCookiesPerHost), and extension cookies will be stored
// based on the single extension id, as the extension id won't have the
// form of a DNS host and hence GetKey() will return it unchanged.
//
// Arguably the right thing to do here is to make the key
// algorithm dependent on the scheme, and make sure that the scheme is
// available everywhere the key must be obtained (specfically at backing
// store load time). This would require either changing the backing store
// database schema to include the scheme (far more trouble than it's worth), or
// separating out file cookies into their own CookieMonster instance and
// thus restricting each scheme to a single cookie monster (which might
// be worth it, but is still too much trouble to solve what is currently a
// non-problem).
//
// static
std::string CookieMonster::GetKey(base::StringPiece domain) {
std::string effective_domain(
registry_controlled_domains::GetDomainAndRegistry(
domain, registry_controlled_domains::INCLUDE_PRIVATE_REGISTRIES));
if (effective_domain.empty())
domain.CopyToString(&effective_domain);
if (!effective_domain.empty() && effective_domain[0] == '.')
return effective_domain.substr(1);
return effective_domain;
}
bool CookieMonster::HasCookieableScheme(const GURL& url) {
DCHECK(thread_checker_.CalledOnValidThread());
// Make sure the request is on a cookie-able url scheme.
for (size_t i = 0; i < cookieable_schemes_.size(); ++i) {
// We matched a scheme.
if (url.SchemeIs(cookieable_schemes_[i].c_str())) {
// We've matched a supported scheme.
return true;
}
}
// The scheme didn't match any in our whitelist.
VLOG(kVlogPerCookieMonster)
<< "WARNING: Unsupported cookie scheme: " << url.scheme();
return false;
}
// Test to see if stats should be recorded, and record them if so.
// The goal here is to get sampling for the average browser-hour of
// activity. We won't take samples when the web isn't being surfed,
// and when the web is being surfed, we'll take samples about every
// kRecordStatisticsIntervalSeconds.
// last_statistic_record_time_ is initialized to Now() rather than null
// in the constructor so that we won't take statistics right after
// startup, to avoid bias from browsers that are started but not used.
void CookieMonster::RecordPeriodicStats(const base::Time& current_time) {
DCHECK(thread_checker_.CalledOnValidThread());
const base::TimeDelta kRecordStatisticsIntervalTime(
base::TimeDelta::FromSeconds(kRecordStatisticsIntervalSeconds));
// If we've taken statistics recently, return.
if (current_time - last_statistic_record_time_ <=
kRecordStatisticsIntervalTime) {
return;
}
// See InitializeHistograms() for details.
histogram_count_->Add(cookies_.size());
// More detailed statistics on cookie counts at different granularities.
last_statistic_record_time_ = current_time;
}
// Initialize all histogram counter variables used in this class.
//
// Normal histogram usage involves using the macros defined in
// histogram.h, which automatically takes care of declaring these
// variables (as statics), initializing them, and accumulating into
// them, all from a single entry point. Unfortunately, that solution
// doesn't work for the CookieMonster, as it's vulnerable to races between
// separate threads executing the same functions and hence initializing the
// same static variables. There isn't a race danger in the histogram
// accumulation calls; they are written to be resilient to simultaneous
// calls from multiple threads.
//
// The solution taken here is to have per-CookieMonster instance
// variables that are constructed during CookieMonster construction.
// Note that these variables refer to the same underlying histogram,
// so we still race (but safely) with other CookieMonster instances
// for accumulation.
//
// To do this we've expanded out the individual histogram macros calls,
// with declarations of the variables in the class decl, initialization here
// (done from the class constructor) and direct calls to the accumulation
// methods where needed. The specific histogram macro calls on which the
// initialization is based are included in comments below.
void CookieMonster::InitializeHistograms() {
DCHECK(thread_checker_.CalledOnValidThread());
// From UMA_HISTOGRAM_CUSTOM_COUNTS
histogram_expiration_duration_minutes_ = base::Histogram::FactoryGet(
"Cookie.ExpirationDurationMinutes", 1, kMinutesInTenYears, 50,
base::Histogram::kUmaTargetedHistogramFlag);
histogram_count_ = base::Histogram::FactoryGet(
"Cookie.Count", 1, 4000, 50, base::Histogram::kUmaTargetedHistogramFlag);
// From UMA_HISTOGRAM_ENUMERATION
histogram_cookie_type_ = base::LinearHistogram::FactoryGet(
"Cookie.Type", 1, (1 << COOKIE_TYPE_LAST_ENTRY) - 1,
1 << COOKIE_TYPE_LAST_ENTRY, base::Histogram::kUmaTargetedHistogramFlag);
histogram_cookie_source_scheme_ = base::LinearHistogram::FactoryGet(
"Cookie.CookieSourceScheme", 1, COOKIE_SOURCE_LAST_ENTRY - 1,
COOKIE_SOURCE_LAST_ENTRY, base::Histogram::kUmaTargetedHistogramFlag);
histogram_cookie_delete_equivalent_ = base::LinearHistogram::FactoryGet(
"Cookie.CookieDeleteEquivalent", 1,
COOKIE_DELETE_EQUIVALENT_LAST_ENTRY - 1,
COOKIE_DELETE_EQUIVALENT_LAST_ENTRY,
base::Histogram::kUmaTargetedHistogramFlag);
// From UMA_HISTOGRAM_{CUSTOM_,}TIMES
histogram_time_blocked_on_load_ = base::Histogram::FactoryTimeGet(
"Cookie.TimeBlockedOnLoad", base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(1), 50,
base::Histogram::kUmaTargetedHistogramFlag);
}
// The system resolution is not high enough, so we can have multiple
// set cookies that result in the same system time. When this happens, we
// increment by one Time unit. Let's hope computers don't get too fast.
Time CookieMonster::CurrentTime() {
return std::max(Time::Now(), Time::FromInternalValue(
last_time_seen_.ToInternalValue() + 1));
}
void CookieMonster::DoCookieCallback(base::OnceClosure callback) {
DCHECK(thread_checker_.CalledOnValidThread());
MarkCookieStoreAsInitialized();
FetchAllCookiesIfNecessary();
seen_global_task_ = true;
if (!finished_fetching_all_cookies_ && store_.get()) {
tasks_pending_.push_back(std::move(callback));
return;
}
std::move(callback).Run();
}
void CookieMonster::DoCookieCallbackForURL(base::OnceClosure callback,
const GURL& url) {
DoCookieCallbackForHostOrDomain(std::move(callback), url.host_piece());
}
void CookieMonster::DoCookieCallbackForHostOrDomain(
base::OnceClosure callback,
base::StringPiece host_or_domain) {
MarkCookieStoreAsInitialized();
FetchAllCookiesIfNecessary();
// If cookies for the requested domain key (eTLD+1) have been loaded from DB
// then run the task, otherwise load from DB.
if (!finished_fetching_all_cookies_ && store_.get()) {
// If a global task has been previously seen, queue the task as a global
// task. Note that the CookieMonster may be in the middle of executing
// the global queue, |tasks_pending_| may be empty, which is why another
// bool is needed.
if (seen_global_task_) {
tasks_pending_.push_back(std::move(callback));
return;
}
// Checks if the domain key has been loaded.
std::string key = GetKey(host_or_domain);
if (keys_loaded_.find(key) == keys_loaded_.end()) {
std::map<std::string, base::circular_deque<base::OnceClosure>>::iterator
it = tasks_pending_for_key_.find(key);
if (it == tasks_pending_for_key_.end()) {
store_->LoadCookiesForKey(
key, base::Bind(&CookieMonster::OnKeyLoaded,
weak_ptr_factory_.GetWeakPtr(), key));
it = tasks_pending_for_key_
.insert(std::make_pair(
key, base::circular_deque<base::OnceClosure>()))
.first;
}
it->second.push_back(std::move(callback));
return;
}
}
std::move(callback).Run();
}
} // namespace net