blob: a7704604903fea2a7a08b93c0b7301e580f5f0f7 [file] [log] [blame]
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "platform/audio/AudioBus.h"
#include "platform/audio/AudioFileReader.h"
#include "platform/audio/DenormalDisabler.h"
#include "platform/audio/SincResampler.h"
#include "platform/audio/VectorMath.h"
#include "public/platform/Platform.h"
#include "public/platform/WebAudioBus.h"
#include "wtf/PtrUtil.h"
#include <algorithm>
#include <assert.h>
#include <math.h>
#include <memory>
namespace blink {
using namespace VectorMath;
const unsigned MaxBusChannels = 32;
PassRefPtr<AudioBus> AudioBus::create(unsigned numberOfChannels,
size_t length,
bool allocate) {
ASSERT(numberOfChannels <= MaxBusChannels);
if (numberOfChannels > MaxBusChannels)
return nullptr;
return adoptRef(new AudioBus(numberOfChannels, length, allocate));
}
AudioBus::AudioBus(unsigned numberOfChannels, size_t length, bool allocate)
: m_length(length), m_busGain(1), m_isFirstTime(true), m_sampleRate(0) {
m_channels.reserveInitialCapacity(numberOfChannels);
for (unsigned i = 0; i < numberOfChannels; ++i) {
std::unique_ptr<AudioChannel> channel =
allocate ? wrapUnique(new AudioChannel(length))
: wrapUnique(new AudioChannel(0, length));
m_channels.append(std::move(channel));
}
m_layout = LayoutCanonical; // for now this is the only layout we define
}
void AudioBus::setChannelMemory(unsigned channelIndex,
float* storage,
size_t length) {
if (channelIndex < m_channels.size()) {
channel(channelIndex)->set(storage, length);
// FIXME: verify that this length matches all the other channel lengths
m_length = length;
}
}
void AudioBus::resizeSmaller(size_t newLength) {
ASSERT(newLength <= m_length);
if (newLength <= m_length)
m_length = newLength;
for (unsigned i = 0; i < m_channels.size(); ++i)
m_channels[i]->resizeSmaller(newLength);
}
void AudioBus::zero() {
for (unsigned i = 0; i < m_channels.size(); ++i)
m_channels[i]->zero();
}
AudioChannel* AudioBus::channelByType(unsigned channelType) {
// For now we only support canonical channel layouts...
if (m_layout != LayoutCanonical)
return nullptr;
switch (numberOfChannels()) {
case 1: // mono
if (channelType == ChannelMono || channelType == ChannelLeft)
return channel(0);
return nullptr;
case 2: // stereo
switch (channelType) {
case ChannelLeft:
return channel(0);
case ChannelRight:
return channel(1);
default:
return nullptr;
}
case 4: // quad
switch (channelType) {
case ChannelLeft:
return channel(0);
case ChannelRight:
return channel(1);
case ChannelSurroundLeft:
return channel(2);
case ChannelSurroundRight:
return channel(3);
default:
return nullptr;
}
case 5: // 5.0
switch (channelType) {
case ChannelLeft:
return channel(0);
case ChannelRight:
return channel(1);
case ChannelCenter:
return channel(2);
case ChannelSurroundLeft:
return channel(3);
case ChannelSurroundRight:
return channel(4);
default:
return nullptr;
}
case 6: // 5.1
switch (channelType) {
case ChannelLeft:
return channel(0);
case ChannelRight:
return channel(1);
case ChannelCenter:
return channel(2);
case ChannelLFE:
return channel(3);
case ChannelSurroundLeft:
return channel(4);
case ChannelSurroundRight:
return channel(5);
default:
return nullptr;
}
}
ASSERT_NOT_REACHED();
return nullptr;
}
const AudioChannel* AudioBus::channelByType(unsigned type) const {
return const_cast<AudioBus*>(this)->channelByType(type);
}
// Returns true if the channel count and frame-size match.
bool AudioBus::topologyMatches(const AudioBus& bus) const {
if (numberOfChannels() != bus.numberOfChannels())
return false; // channel mismatch
// Make sure source bus has enough frames.
if (length() > bus.length())
return false; // frame-size mismatch
return true;
}
PassRefPtr<AudioBus> AudioBus::createBufferFromRange(
const AudioBus* sourceBuffer,
unsigned startFrame,
unsigned endFrame) {
size_t numberOfSourceFrames = sourceBuffer->length();
unsigned numberOfChannels = sourceBuffer->numberOfChannels();
// Sanity checking
bool isRangeSafe = startFrame < endFrame && endFrame <= numberOfSourceFrames;
ASSERT(isRangeSafe);
if (!isRangeSafe)
return nullptr;
size_t rangeLength = endFrame - startFrame;
RefPtr<AudioBus> audioBus = create(numberOfChannels, rangeLength);
audioBus->setSampleRate(sourceBuffer->sampleRate());
for (unsigned i = 0; i < numberOfChannels; ++i)
audioBus->channel(i)->copyFromRange(sourceBuffer->channel(i), startFrame,
endFrame);
return audioBus;
}
float AudioBus::maxAbsValue() const {
float max = 0.0f;
for (unsigned i = 0; i < numberOfChannels(); ++i) {
const AudioChannel* channel = this->channel(i);
max = std::max(max, channel->maxAbsValue());
}
return max;
}
void AudioBus::normalize() {
float max = maxAbsValue();
if (max)
scale(1.0f / max);
}
void AudioBus::scale(float scale) {
for (unsigned i = 0; i < numberOfChannels(); ++i)
channel(i)->scale(scale);
}
void AudioBus::copyFrom(const AudioBus& sourceBus,
ChannelInterpretation channelInterpretation) {
if (&sourceBus == this)
return;
// Copying bus is equivalent to zeroing and then summing.
zero();
sumFrom(sourceBus, channelInterpretation);
}
void AudioBus::sumFrom(const AudioBus& sourceBus,
ChannelInterpretation channelInterpretation) {
if (&sourceBus == this)
return;
unsigned numberOfSourceChannels = sourceBus.numberOfChannels();
unsigned numberOfDestinationChannels = numberOfChannels();
// If the channel numbers are equal, perform channels-wise summing.
if (numberOfSourceChannels == numberOfDestinationChannels) {
for (unsigned i = 0; i < numberOfSourceChannels; ++i)
channel(i)->sumFrom(sourceBus.channel(i));
return;
}
// Otherwise perform up/down-mix or the discrete transfer based on the
// number of channels and the channel interpretation.
switch (channelInterpretation) {
case Speakers:
if (numberOfSourceChannels < numberOfDestinationChannels)
sumFromByUpMixing(sourceBus);
else
sumFromByDownMixing(sourceBus);
break;
case Discrete:
discreteSumFrom(sourceBus);
break;
}
}
void AudioBus::discreteSumFrom(const AudioBus& sourceBus) {
unsigned numberOfSourceChannels = sourceBus.numberOfChannels();
unsigned numberOfDestinationChannels = numberOfChannels();
if (numberOfDestinationChannels < numberOfSourceChannels) {
// Down-mix by summing channels and dropping the remaining.
for (unsigned i = 0; i < numberOfDestinationChannels; ++i)
channel(i)->sumFrom(sourceBus.channel(i));
} else if (numberOfDestinationChannels > numberOfSourceChannels) {
// Up-mix by summing as many channels as we have.
for (unsigned i = 0; i < numberOfSourceChannels; ++i)
channel(i)->sumFrom(sourceBus.channel(i));
}
}
void AudioBus::sumFromByUpMixing(const AudioBus& sourceBus) {
unsigned numberOfSourceChannels = sourceBus.numberOfChannels();
unsigned numberOfDestinationChannels = numberOfChannels();
if ((numberOfSourceChannels == 1 && numberOfDestinationChannels == 2) ||
(numberOfSourceChannels == 1 && numberOfDestinationChannels == 4)) {
// Up-mixing: 1 -> 2, 1 -> 4
// output.L = input
// output.R = input
// output.SL = 0 (in the case of 1 -> 4)
// output.SR = 0 (in the case of 1 -> 4)
const AudioChannel* sourceL = sourceBus.channelByType(ChannelLeft);
channelByType(ChannelLeft)->sumFrom(sourceL);
channelByType(ChannelRight)->sumFrom(sourceL);
} else if (numberOfSourceChannels == 1 && numberOfDestinationChannels == 6) {
// Up-mixing: 1 -> 5.1
// output.L = 0
// output.R = 0
// output.C = input (put in center channel)
// output.LFE = 0
// output.SL = 0
// output.SR = 0
channelByType(ChannelCenter)->sumFrom(sourceBus.channelByType(ChannelLeft));
} else if ((numberOfSourceChannels == 2 &&
numberOfDestinationChannels == 4) ||
(numberOfSourceChannels == 2 &&
numberOfDestinationChannels == 6)) {
// Up-mixing: 2 -> 4, 2 -> 5.1
// output.L = input.L
// output.R = input.R
// output.C = 0 (in the case of 2 -> 5.1)
// output.LFE = 0 (in the case of 2 -> 5.1)
// output.SL = 0
// output.SR = 0
channelByType(ChannelLeft)->sumFrom(sourceBus.channelByType(ChannelLeft));
channelByType(ChannelRight)->sumFrom(sourceBus.channelByType(ChannelRight));
} else if (numberOfSourceChannels == 4 && numberOfDestinationChannels == 6) {
// Up-mixing: 4 -> 5.1
// output.L = input.L
// output.R = input.R
// output.C = 0
// output.LFE = 0
// output.SL = input.SL
// output.SR = input.SR
channelByType(ChannelLeft)->sumFrom(sourceBus.channelByType(ChannelLeft));
channelByType(ChannelRight)->sumFrom(sourceBus.channelByType(ChannelRight));
channelByType(ChannelSurroundLeft)
->sumFrom(sourceBus.channelByType(ChannelSurroundLeft));
channelByType(ChannelSurroundRight)
->sumFrom(sourceBus.channelByType(ChannelSurroundRight));
} else {
// All other cases, fall back to the discrete sum. This will silence the
// excessive channels.
discreteSumFrom(sourceBus);
}
}
void AudioBus::sumFromByDownMixing(const AudioBus& sourceBus) {
unsigned numberOfSourceChannels = sourceBus.numberOfChannels();
unsigned numberOfDestinationChannels = numberOfChannels();
if (numberOfSourceChannels == 2 && numberOfDestinationChannels == 1) {
// Down-mixing: 2 -> 1
// output = 0.5 * (input.L + input.R)
const float* sourceL = sourceBus.channelByType(ChannelLeft)->data();
const float* sourceR = sourceBus.channelByType(ChannelRight)->data();
float* destination = channelByType(ChannelLeft)->mutableData();
float scale = 0.5;
vsma(sourceL, 1, &scale, destination, 1, length());
vsma(sourceR, 1, &scale, destination, 1, length());
} else if (numberOfSourceChannels == 4 && numberOfDestinationChannels == 1) {
// Down-mixing: 4 -> 1
// output = 0.25 * (input.L + input.R + input.SL + input.SR)
const float* sourceL = sourceBus.channelByType(ChannelLeft)->data();
const float* sourceR = sourceBus.channelByType(ChannelRight)->data();
const float* sourceSL =
sourceBus.channelByType(ChannelSurroundLeft)->data();
const float* sourceSR =
sourceBus.channelByType(ChannelSurroundRight)->data();
float* destination = channelByType(ChannelLeft)->mutableData();
float scale = 0.25;
vsma(sourceL, 1, &scale, destination, 1, length());
vsma(sourceR, 1, &scale, destination, 1, length());
vsma(sourceSL, 1, &scale, destination, 1, length());
vsma(sourceSR, 1, &scale, destination, 1, length());
} else if (numberOfSourceChannels == 6 && numberOfDestinationChannels == 1) {
// Down-mixing: 5.1 -> 1
// output = sqrt(1/2) * (input.L + input.R) + input.C
// + 0.5 * (input.SL + input.SR)
const float* sourceL = sourceBus.channelByType(ChannelLeft)->data();
const float* sourceR = sourceBus.channelByType(ChannelRight)->data();
const float* sourceC = sourceBus.channelByType(ChannelCenter)->data();
const float* sourceSL =
sourceBus.channelByType(ChannelSurroundLeft)->data();
const float* sourceSR =
sourceBus.channelByType(ChannelSurroundRight)->data();
float* destination = channelByType(ChannelLeft)->mutableData();
float scaleSqrtHalf = sqrtf(0.5);
float scaleHalf = 0.5;
vsma(sourceL, 1, &scaleSqrtHalf, destination, 1, length());
vsma(sourceR, 1, &scaleSqrtHalf, destination, 1, length());
vadd(sourceC, 1, destination, 1, destination, 1, length());
vsma(sourceSL, 1, &scaleHalf, destination, 1, length());
vsma(sourceSR, 1, &scaleHalf, destination, 1, length());
} else if (numberOfSourceChannels == 4 && numberOfDestinationChannels == 2) {
// Down-mixing: 4 -> 2
// output.L = 0.5 * (input.L + input.SL)
// output.R = 0.5 * (input.R + input.SR)
const float* sourceL = sourceBus.channelByType(ChannelLeft)->data();
const float* sourceR = sourceBus.channelByType(ChannelRight)->data();
const float* sourceSL =
sourceBus.channelByType(ChannelSurroundLeft)->data();
const float* sourceSR =
sourceBus.channelByType(ChannelSurroundRight)->data();
float* destinationL = channelByType(ChannelLeft)->mutableData();
float* destinationR = channelByType(ChannelRight)->mutableData();
float scaleHalf = 0.5;
vsma(sourceL, 1, &scaleHalf, destinationL, 1, length());
vsma(sourceSL, 1, &scaleHalf, destinationL, 1, length());
vsma(sourceR, 1, &scaleHalf, destinationR, 1, length());
vsma(sourceSR, 1, &scaleHalf, destinationR, 1, length());
} else if (numberOfSourceChannels == 6 && numberOfDestinationChannels == 2) {
// Down-mixing: 5.1 -> 2
// output.L = input.L + sqrt(1/2) * (input.C + input.SL)
// output.R = input.R + sqrt(1/2) * (input.C + input.SR)
const float* sourceL = sourceBus.channelByType(ChannelLeft)->data();
const float* sourceR = sourceBus.channelByType(ChannelRight)->data();
const float* sourceC = sourceBus.channelByType(ChannelCenter)->data();
const float* sourceSL =
sourceBus.channelByType(ChannelSurroundLeft)->data();
const float* sourceSR =
sourceBus.channelByType(ChannelSurroundRight)->data();
float* destinationL = channelByType(ChannelLeft)->mutableData();
float* destinationR = channelByType(ChannelRight)->mutableData();
float scaleSqrtHalf = sqrtf(0.5);
vadd(sourceL, 1, destinationL, 1, destinationL, 1, length());
vsma(sourceC, 1, &scaleSqrtHalf, destinationL, 1, length());
vsma(sourceSL, 1, &scaleSqrtHalf, destinationL, 1, length());
vadd(sourceR, 1, destinationR, 1, destinationR, 1, length());
vsma(sourceC, 1, &scaleSqrtHalf, destinationR, 1, length());
vsma(sourceSR, 1, &scaleSqrtHalf, destinationR, 1, length());
} else if (numberOfSourceChannels == 6 && numberOfDestinationChannels == 4) {
// Down-mixing: 5.1 -> 4
// output.L = input.L + sqrt(1/2) * input.C
// output.R = input.R + sqrt(1/2) * input.C
// output.SL = input.SL
// output.SR = input.SR
const float* sourceL = sourceBus.channelByType(ChannelLeft)->data();
const float* sourceR = sourceBus.channelByType(ChannelRight)->data();
const float* sourceC = sourceBus.channelByType(ChannelCenter)->data();
float* destinationL = channelByType(ChannelLeft)->mutableData();
float* destinationR = channelByType(ChannelRight)->mutableData();
float scaleSqrtHalf = sqrtf(0.5);
vadd(sourceL, 1, destinationL, 1, destinationL, 1, length());
vsma(sourceC, 1, &scaleSqrtHalf, destinationL, 1, length());
vadd(sourceR, 1, destinationR, 1, destinationR, 1, length());
vsma(sourceC, 1, &scaleSqrtHalf, destinationR, 1, length());
channel(2)->sumFrom(sourceBus.channel(4));
channel(3)->sumFrom(sourceBus.channel(5));
} else {
// All other cases, fall back to the discrete sum. This will perform
// channel-wise sum until the destination channels run out.
discreteSumFrom(sourceBus);
}
}
void AudioBus::copyWithGainFrom(const AudioBus& sourceBus,
float* lastMixGain,
float targetGain) {
if (!topologyMatches(sourceBus)) {
ASSERT_NOT_REACHED();
zero();
return;
}
if (sourceBus.isSilent()) {
zero();
return;
}
unsigned numberOfChannels = this->numberOfChannels();
ASSERT(numberOfChannels <= MaxBusChannels);
if (numberOfChannels > MaxBusChannels)
return;
// If it is copying from the same bus and no need to change gain, just return.
if (this == &sourceBus && *lastMixGain == targetGain && targetGain == 1)
return;
AudioBus& sourceBusSafe = const_cast<AudioBus&>(sourceBus);
const float* sources[MaxBusChannels];
float* destinations[MaxBusChannels];
for (unsigned i = 0; i < numberOfChannels; ++i) {
sources[i] = sourceBusSafe.channel(i)->data();
destinations[i] = channel(i)->mutableData();
}
// We don't want to suddenly change the gain from mixing one time slice to
// the next, so we "de-zipper" by slowly changing the gain each sample-frame
// until we've achieved the target gain.
// Take master bus gain into account as well as the targetGain.
float totalDesiredGain = static_cast<float>(m_busGain * targetGain);
// First time, snap directly to totalDesiredGain.
float gain =
static_cast<float>(m_isFirstTime ? totalDesiredGain : *lastMixGain);
m_isFirstTime = false;
const float DezipperRate = 0.005f;
unsigned framesToProcess = length();
// If the gain is within epsilon of totalDesiredGain, we can skip dezippering.
// FIXME: this value may need tweaking.
const float epsilon = 0.001f;
float gainDiff = fabs(totalDesiredGain - gain);
// Number of frames to de-zipper before we are close enough to the target
// gain.
// FIXME: framesToDezipper could be smaller when target gain is close enough
// within this process loop.
unsigned framesToDezipper = (gainDiff < epsilon) ? 0 : framesToProcess;
if (framesToDezipper) {
if (!m_dezipperGainValues.get() ||
m_dezipperGainValues->size() < framesToDezipper)
m_dezipperGainValues = wrapUnique(new AudioFloatArray(framesToDezipper));
float* gainValues = m_dezipperGainValues->data();
for (unsigned i = 0; i < framesToDezipper; ++i) {
gain += (totalDesiredGain - gain) * DezipperRate;
// FIXME: If we are clever enough in calculating the framesToDezipper
// value, we can probably get rid of this
// DenormalDisabler::flushDenormalFloatToZero() call.
gain = DenormalDisabler::flushDenormalFloatToZero(gain);
*gainValues++ = gain;
}
for (unsigned channelIndex = 0; channelIndex < numberOfChannels;
++channelIndex) {
vmul(sources[channelIndex], 1, m_dezipperGainValues->data(), 1,
destinations[channelIndex], 1, framesToDezipper);
sources[channelIndex] += framesToDezipper;
destinations[channelIndex] += framesToDezipper;
}
} else
gain = totalDesiredGain;
// Apply constant gain after de-zippering has converged on target gain.
if (framesToDezipper < framesToProcess) {
// Handle gains of 0 and 1 (exactly) specially.
if (gain == 1) {
for (unsigned channelIndex = 0; channelIndex < numberOfChannels;
++channelIndex) {
memcpy(destinations[channelIndex], sources[channelIndex],
(framesToProcess - framesToDezipper) *
sizeof(*destinations[channelIndex]));
}
} else if (gain == 0) {
for (unsigned channelIndex = 0; channelIndex < numberOfChannels;
++channelIndex) {
memset(destinations[channelIndex], 0,
(framesToProcess - framesToDezipper) *
sizeof(*destinations[channelIndex]));
}
} else {
for (unsigned channelIndex = 0; channelIndex < numberOfChannels;
++channelIndex)
vsmul(sources[channelIndex], 1, &gain, destinations[channelIndex], 1,
framesToProcess - framesToDezipper);
}
}
// Save the target gain as the starting point for next time around.
*lastMixGain = gain;
}
void AudioBus::copyWithSampleAccurateGainValuesFrom(
const AudioBus& sourceBus,
float* gainValues,
unsigned numberOfGainValues) {
// Make sure we're processing from the same type of bus.
// We *are* able to process from mono -> stereo
if (sourceBus.numberOfChannels() != 1 && !topologyMatches(sourceBus)) {
ASSERT_NOT_REACHED();
return;
}
if (!gainValues || numberOfGainValues > sourceBus.length()) {
ASSERT_NOT_REACHED();
return;
}
if (sourceBus.length() == numberOfGainValues &&
sourceBus.length() == length() && sourceBus.isSilent()) {
zero();
return;
}
// We handle both the 1 -> N and N -> N case here.
const float* source = sourceBus.channel(0)->data();
for (unsigned channelIndex = 0; channelIndex < numberOfChannels();
++channelIndex) {
if (sourceBus.numberOfChannels() == numberOfChannels())
source = sourceBus.channel(channelIndex)->data();
float* destination = channel(channelIndex)->mutableData();
vmul(source, 1, gainValues, 1, destination, 1, numberOfGainValues);
}
}
PassRefPtr<AudioBus> AudioBus::createBySampleRateConverting(
const AudioBus* sourceBus,
bool mixToMono,
double newSampleRate) {
// sourceBus's sample-rate must be known.
ASSERT(sourceBus && sourceBus->sampleRate());
if (!sourceBus || !sourceBus->sampleRate())
return nullptr;
double sourceSampleRate = sourceBus->sampleRate();
double destinationSampleRate = newSampleRate;
double sampleRateRatio = sourceSampleRate / destinationSampleRate;
unsigned numberOfSourceChannels = sourceBus->numberOfChannels();
if (numberOfSourceChannels == 1)
mixToMono = false; // already mono
if (sourceSampleRate == destinationSampleRate) {
// No sample-rate conversion is necessary.
if (mixToMono)
return AudioBus::createByMixingToMono(sourceBus);
// Return exact copy.
return AudioBus::createBufferFromRange(sourceBus, 0, sourceBus->length());
}
if (sourceBus->isSilent()) {
RefPtr<AudioBus> silentBus =
create(numberOfSourceChannels, sourceBus->length() / sampleRateRatio);
silentBus->setSampleRate(newSampleRate);
return silentBus;
}
// First, mix to mono (if necessary) then sample-rate convert.
const AudioBus* resamplerSourceBus;
RefPtr<AudioBus> mixedMonoBus;
if (mixToMono) {
mixedMonoBus = AudioBus::createByMixingToMono(sourceBus);
resamplerSourceBus = mixedMonoBus.get();
} else {
// Directly resample without down-mixing.
resamplerSourceBus = sourceBus;
}
// Calculate destination length based on the sample-rates.
int sourceLength = resamplerSourceBus->length();
int destinationLength = sourceLength / sampleRateRatio;
// Create destination bus with same number of channels.
unsigned numberOfDestinationChannels = resamplerSourceBus->numberOfChannels();
RefPtr<AudioBus> destinationBus =
create(numberOfDestinationChannels, destinationLength);
// Sample-rate convert each channel.
for (unsigned i = 0; i < numberOfDestinationChannels; ++i) {
const float* source = resamplerSourceBus->channel(i)->data();
float* destination = destinationBus->channel(i)->mutableData();
SincResampler resampler(sampleRateRatio);
resampler.process(source, destination, sourceLength);
}
destinationBus->clearSilentFlag();
destinationBus->setSampleRate(newSampleRate);
return destinationBus;
}
PassRefPtr<AudioBus> AudioBus::createByMixingToMono(const AudioBus* sourceBus) {
if (sourceBus->isSilent())
return create(1, sourceBus->length());
switch (sourceBus->numberOfChannels()) {
case 1:
// Simply create an exact copy.
return AudioBus::createBufferFromRange(sourceBus, 0, sourceBus->length());
case 2: {
unsigned n = sourceBus->length();
RefPtr<AudioBus> destinationBus = create(1, n);
const float* sourceL = sourceBus->channel(0)->data();
const float* sourceR = sourceBus->channel(1)->data();
float* destination = destinationBus->channel(0)->mutableData();
// Do the mono mixdown.
for (unsigned i = 0; i < n; ++i)
destination[i] = (sourceL[i] + sourceR[i]) / 2;
destinationBus->clearSilentFlag();
destinationBus->setSampleRate(sourceBus->sampleRate());
return destinationBus;
}
}
ASSERT_NOT_REACHED();
return nullptr;
}
bool AudioBus::isSilent() const {
for (size_t i = 0; i < m_channels.size(); ++i) {
if (!m_channels[i]->isSilent())
return false;
}
return true;
}
void AudioBus::clearSilentFlag() {
for (size_t i = 0; i < m_channels.size(); ++i)
m_channels[i]->clearSilentFlag();
}
PassRefPtr<AudioBus> decodeAudioFileData(const char* data, size_t size) {
WebAudioBus webAudioBus;
if (Platform::current()->loadAudioResource(&webAudioBus, data, size))
return webAudioBus.release();
return nullptr;
}
PassRefPtr<AudioBus> AudioBus::loadPlatformResource(const char* name,
float sampleRate) {
const WebData& resource = Platform::current()->loadResource(name);
if (resource.isEmpty())
return nullptr;
RefPtr<AudioBus> audioBus =
decodeAudioFileData(resource.data(), resource.size());
if (!audioBus.get())
return nullptr;
// If the bus is already at the requested sample-rate then return as is.
if (audioBus->sampleRate() == sampleRate)
return audioBus;
return AudioBus::createBySampleRateConverting(audioBus.get(), false,
sampleRate);
}
PassRefPtr<AudioBus> createBusFromInMemoryAudioFile(const void* data,
size_t dataSize,
bool mixToMono,
float sampleRate) {
RefPtr<AudioBus> audioBus =
decodeAudioFileData(static_cast<const char*>(data), dataSize);
if (!audioBus.get())
return nullptr;
// If the bus needs no conversion then return as is.
if ((!mixToMono || audioBus->numberOfChannels() == 1) &&
audioBus->sampleRate() == sampleRate)
return audioBus;
return AudioBus::createBySampleRateConverting(audioBus.get(), mixToMono,
sampleRate);
}
} // namespace blink