blob: 777c31bee4e21df67cd3743db93a90166433a20a [file] [log] [blame]
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "platform/audio/AudioBus.h"
#include "platform/audio/HRTFElevation.h"
#include "platform/audio/HRTFPanner.h"
#include "wtf/PtrUtil.h"
#include "wtf/ThreadingPrimitives.h"
#include "wtf/text/StringHash.h"
#include <algorithm>
#include <math.h>
#include <memory>
namespace blink {
const unsigned HRTFElevation::AzimuthSpacing = 15;
const unsigned HRTFElevation::NumberOfRawAzimuths = 360 / AzimuthSpacing;
const unsigned HRTFElevation::InterpolationFactor = 8;
const unsigned HRTFElevation::NumberOfTotalAzimuths =
NumberOfRawAzimuths * InterpolationFactor;
// Total number of components of an HRTF database.
const size_t TotalNumberOfResponses = 240;
// Number of frames in an individual impulse response.
const size_t ResponseFrameSize = 256;
// Sample-rate of the spatialization impulse responses as stored in the resource
// file. The impulse responses may be resampled to a different sample-rate
// (depending on the audio hardware) when they are loaded.
const float ResponseSampleRate = 44100;
#if USE(CONCATENATED_IMPULSE_RESPONSES)
// This table maps the index into the elevation table with the corresponding
// angle. See https://bugs.webkit.org/show_bug.cgi?id=98294#c9 for the
// elevation angles and their order in the concatenated response.
const int ElevationIndexTableSize = 10;
const int ElevationIndexTable[ElevationIndexTableSize] = {
0, 15, 30, 45, 60, 75, 90, 315, 330, 345};
// Lazily load a concatenated HRTF database for given subject and store it in a
// local hash table to ensure quick efficient future retrievals.
static PassRefPtr<AudioBus> getConcatenatedImpulseResponsesForSubject(
const String& subjectName) {
typedef HashMap<String, RefPtr<AudioBus>> AudioBusMap;
DEFINE_THREAD_SAFE_STATIC_LOCAL(AudioBusMap, audioBusMap, new AudioBusMap());
DEFINE_THREAD_SAFE_STATIC_LOCAL(Mutex, mutex, new Mutex());
MutexLocker locker(mutex);
RefPtr<AudioBus> bus;
AudioBusMap::iterator iterator = audioBusMap.find(subjectName);
if (iterator == audioBusMap.end()) {
RefPtr<AudioBus> concatenatedImpulseResponses(
AudioBus::loadPlatformResource(subjectName.utf8().data(),
ResponseSampleRate));
ASSERT(concatenatedImpulseResponses);
if (!concatenatedImpulseResponses)
return nullptr;
bus = concatenatedImpulseResponses;
audioBusMap.set(subjectName, bus);
} else
bus = iterator->value;
size_t responseLength = bus->length();
size_t expectedLength =
static_cast<size_t>(TotalNumberOfResponses * ResponseFrameSize);
// Check number of channels and length. For now these are fixed and known.
bool isBusGood =
responseLength == expectedLength && bus->numberOfChannels() == 2;
ASSERT(isBusGood);
if (!isBusGood)
return nullptr;
return bus;
}
#endif
bool HRTFElevation::calculateKernelsForAzimuthElevation(
int azimuth,
int elevation,
float sampleRate,
const String& subjectName,
std::unique_ptr<HRTFKernel>& kernelL,
std::unique_ptr<HRTFKernel>& kernelR) {
// Valid values for azimuth are 0 -> 345 in 15 degree increments.
// Valid values for elevation are -45 -> +90 in 15 degree increments.
bool isAzimuthGood =
azimuth >= 0 && azimuth <= 345 && (azimuth / 15) * 15 == azimuth;
ASSERT(isAzimuthGood);
if (!isAzimuthGood)
return false;
bool isElevationGood =
elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
ASSERT(isElevationGood);
if (!isElevationGood)
return false;
// Construct the resource name from the subject name, azimuth, and elevation,
// for example:
// "IRC_Composite_C_R0195_T015_P000"
// Note: the passed in subjectName is not a string passed in via JavaScript or
// the web. It's passed in as an internal ASCII identifier and is an
// implementation detail.
int positiveElevation = elevation < 0 ? elevation + 360 : elevation;
#if USE(CONCATENATED_IMPULSE_RESPONSES)
RefPtr<AudioBus> bus(getConcatenatedImpulseResponsesForSubject(subjectName));
if (!bus)
return false;
// Just sequentially search the table to find the correct index.
int elevationIndex = -1;
for (int k = 0; k < ElevationIndexTableSize; ++k) {
if (ElevationIndexTable[k] == positiveElevation) {
elevationIndex = k;
break;
}
}
bool isElevationIndexGood =
(elevationIndex >= 0) && (elevationIndex < ElevationIndexTableSize);
ASSERT(isElevationIndexGood);
if (!isElevationIndexGood)
return false;
// The concatenated impulse response is a bus containing all
// the elevations per azimuth, for all azimuths by increasing
// order. So for a given azimuth and elevation we need to compute
// the index of the wanted audio frames in the concatenated table.
unsigned index =
((azimuth / AzimuthSpacing) * HRTFDatabase::NumberOfRawElevations) +
elevationIndex;
bool isIndexGood = index < TotalNumberOfResponses;
ASSERT(isIndexGood);
if (!isIndexGood)
return false;
// Extract the individual impulse response from the concatenated
// responses and potentially sample-rate convert it to the desired
// (hardware) sample-rate.
unsigned startFrame = index * ResponseFrameSize;
unsigned stopFrame = startFrame + ResponseFrameSize;
RefPtr<AudioBus> preSampleRateConvertedResponse(
AudioBus::createBufferFromRange(bus.get(), startFrame, stopFrame));
RefPtr<AudioBus> response(AudioBus::createBySampleRateConverting(
preSampleRateConvertedResponse.get(), false, sampleRate));
AudioChannel* leftEarImpulseResponse =
response->channel(AudioBus::ChannelLeft);
AudioChannel* rightEarImpulseResponse =
response->channel(AudioBus::ChannelRight);
#else
String resourceName =
String::format("IRC_%s_C_R0195_T%03d_P%03d", subjectName.utf8().data(),
azimuth, positiveElevation);
RefPtr<AudioBus> impulseResponse(
AudioBus::loadPlatformResource(resourceName.utf8().data(), sampleRate));
ASSERT(impulseResponse.get());
if (!impulseResponse.get())
return false;
size_t responseLength = impulseResponse->length();
size_t expectedLength = static_cast<size_t>(256 * (sampleRate / 44100.0));
// Check number of channels and length. For now these are fixed and known.
bool isBusGood = responseLength == expectedLength &&
impulseResponse->numberOfChannels() == 2;
ASSERT(isBusGood);
if (!isBusGood)
return false;
AudioChannel* leftEarImpulseResponse =
impulseResponse->channelByType(AudioBus::ChannelLeft);
AudioChannel* rightEarImpulseResponse =
impulseResponse->channelByType(AudioBus::ChannelRight);
#endif
// Note that depending on the fftSize returned by the panner, we may be
// truncating the impulse response we just loaded in.
const size_t fftSize = HRTFPanner::fftSizeForSampleRate(sampleRate);
kernelL = HRTFKernel::create(leftEarImpulseResponse, fftSize, sampleRate);
kernelR = HRTFKernel::create(rightEarImpulseResponse, fftSize, sampleRate);
return true;
}
// The range of elevations for the IRCAM impulse responses varies depending on
// azimuth, but the minimum elevation appears to always be -45.
//
// Here's how it goes:
static int maxElevations[] = {
// Azimuth
//
90, // 0
45, // 15
60, // 30
45, // 45
75, // 60
45, // 75
60, // 90
45, // 105
75, // 120
45, // 135
60, // 150
45, // 165
75, // 180
45, // 195
60, // 210
45, // 225
75, // 240
45, // 255
60, // 270
45, // 285
75, // 300
45, // 315
60, // 330
45 // 345
};
std::unique_ptr<HRTFElevation> HRTFElevation::createForSubject(
const String& subjectName,
int elevation,
float sampleRate) {
bool isElevationGood =
elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
ASSERT(isElevationGood);
if (!isElevationGood)
return nullptr;
std::unique_ptr<HRTFKernelList> kernelListL =
wrapUnique(new HRTFKernelList(NumberOfTotalAzimuths));
std::unique_ptr<HRTFKernelList> kernelListR =
wrapUnique(new HRTFKernelList(NumberOfTotalAzimuths));
// Load convolution kernels from HRTF files.
int interpolatedIndex = 0;
for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
// Don't let elevation exceed maximum for this azimuth.
int maxElevation = maxElevations[rawIndex];
int actualElevation = std::min(elevation, maxElevation);
bool success = calculateKernelsForAzimuthElevation(
rawIndex * AzimuthSpacing, actualElevation, sampleRate, subjectName,
kernelListL->at(interpolatedIndex), kernelListR->at(interpolatedIndex));
if (!success)
return nullptr;
interpolatedIndex += InterpolationFactor;
}
// Now go back and interpolate intermediate azimuth values.
for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
// Create the interpolated convolution kernels and delays.
for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
float x =
float(jj) / float(InterpolationFactor); // interpolate from 0 -> 1
(*kernelListL)[i + jj] = HRTFKernel::createInterpolatedKernel(
kernelListL->at(i).get(), kernelListL->at(j).get(), x);
(*kernelListR)[i + jj] = HRTFKernel::createInterpolatedKernel(
kernelListR->at(i).get(), kernelListR->at(j).get(), x);
}
}
std::unique_ptr<HRTFElevation> hrtfElevation = wrapUnique(new HRTFElevation(
std::move(kernelListL), std::move(kernelListR), elevation, sampleRate));
return hrtfElevation;
}
std::unique_ptr<HRTFElevation> HRTFElevation::createByInterpolatingSlices(
HRTFElevation* hrtfElevation1,
HRTFElevation* hrtfElevation2,
float x,
float sampleRate) {
ASSERT(hrtfElevation1 && hrtfElevation2);
if (!hrtfElevation1 || !hrtfElevation2)
return nullptr;
ASSERT(x >= 0.0 && x < 1.0);
std::unique_ptr<HRTFKernelList> kernelListL =
wrapUnique(new HRTFKernelList(NumberOfTotalAzimuths));
std::unique_ptr<HRTFKernelList> kernelListR =
wrapUnique(new HRTFKernelList(NumberOfTotalAzimuths));
HRTFKernelList* kernelListL1 = hrtfElevation1->kernelListL();
HRTFKernelList* kernelListR1 = hrtfElevation1->kernelListR();
HRTFKernelList* kernelListL2 = hrtfElevation2->kernelListL();
HRTFKernelList* kernelListR2 = hrtfElevation2->kernelListR();
// Interpolate kernels of corresponding azimuths of the two elevations.
for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
(*kernelListL)[i] = HRTFKernel::createInterpolatedKernel(
kernelListL1->at(i).get(), kernelListL2->at(i).get(), x);
(*kernelListR)[i] = HRTFKernel::createInterpolatedKernel(
kernelListR1->at(i).get(), kernelListR2->at(i).get(), x);
}
// Interpolate elevation angle.
double angle = (1.0 - x) * hrtfElevation1->elevationAngle() +
x * hrtfElevation2->elevationAngle();
std::unique_ptr<HRTFElevation> hrtfElevation = wrapUnique(
new HRTFElevation(std::move(kernelListL), std::move(kernelListR),
static_cast<int>(angle), sampleRate));
return hrtfElevation;
}
void HRTFElevation::getKernelsFromAzimuth(double azimuthBlend,
unsigned azimuthIndex,
HRTFKernel*& kernelL,
HRTFKernel*& kernelR,
double& frameDelayL,
double& frameDelayR) {
bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
ASSERT(checkAzimuthBlend);
if (!checkAzimuthBlend)
azimuthBlend = 0.0;
unsigned numKernels = m_kernelListL->size();
bool isIndexGood = azimuthIndex < numKernels;
ASSERT(isIndexGood);
if (!isIndexGood) {
kernelL = 0;
kernelR = 0;
return;
}
// Return the left and right kernels.
kernelL = m_kernelListL->at(azimuthIndex).get();
kernelR = m_kernelListR->at(azimuthIndex).get();
frameDelayL = m_kernelListL->at(azimuthIndex)->frameDelay();
frameDelayR = m_kernelListR->at(azimuthIndex)->frameDelay();
int azimuthIndex2 = (azimuthIndex + 1) % numKernels;
double frameDelay2L = m_kernelListL->at(azimuthIndex2)->frameDelay();
double frameDelay2R = m_kernelListR->at(azimuthIndex2)->frameDelay();
// Linearly interpolate delays.
frameDelayL =
(1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
frameDelayR =
(1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
}
} // namespace blink