blob: d1240e0f5328d247b9502c52dee15fd52c84967e [file] [log] [blame]
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#include "platform/audio/HRTFPanner.h"
#include "platform/audio/AudioBus.h"
#include "platform/audio/AudioUtilities.h"
#include "platform/audio/HRTFDatabase.h"
#include "wtf/MathExtras.h"
#include "wtf/RefPtr.h"
namespace blink {
// The value of 2 milliseconds is larger than the largest delay which exists in
// any HRTFKernel from the default HRTFDatabase (0.0136 seconds).
// We ASSERT the delay values used in process() with this value.
const double MaxDelayTimeSeconds = 0.002;
const int UninitializedAzimuth = -1;
const unsigned RenderingQuantum = 128;
HRTFPanner::HRTFPanner(float sampleRate, HRTFDatabaseLoader* databaseLoader)
: Panner(PanningModelHRTF),
m_databaseLoader(databaseLoader),
m_sampleRate(sampleRate),
m_crossfadeSelection(CrossfadeSelection1),
m_azimuthIndex1(UninitializedAzimuth),
m_elevation1(0),
m_azimuthIndex2(UninitializedAzimuth),
m_elevation2(0),
m_crossfadeX(0),
m_crossfadeIncr(0),
m_convolverL1(fftSizeForSampleRate(sampleRate)),
m_convolverR1(fftSizeForSampleRate(sampleRate)),
m_convolverL2(fftSizeForSampleRate(sampleRate)),
m_convolverR2(fftSizeForSampleRate(sampleRate)),
m_delayLineL(MaxDelayTimeSeconds, sampleRate),
m_delayLineR(MaxDelayTimeSeconds, sampleRate),
m_tempL1(RenderingQuantum),
m_tempR1(RenderingQuantum),
m_tempL2(RenderingQuantum),
m_tempR2(RenderingQuantum) {
ASSERT(databaseLoader);
}
HRTFPanner::~HRTFPanner() {}
size_t HRTFPanner::fftSizeForSampleRate(float sampleRate) {
// The HRTF impulse responses (loaded as audio resources) are 512
// sample-frames @44.1KHz. Currently, we truncate the impulse responses to
// half this size, but an FFT-size of twice impulse response size is needed
// (for convolution). So for sample rates around 44.1KHz an FFT size of 512
// is good. For different sample rates, the truncated response is resampled.
// The resampled length is used to compute the FFT size by choosing a power
// of two that is greater than or equal the resampled length. This power of
// two is doubled to get the actual FFT size.
ASSERT(AudioUtilities::isValidAudioBufferSampleRate(sampleRate));
int truncatedImpulseLength = 256;
double sampleRateRatio = sampleRate / 44100;
double resampledLength = truncatedImpulseLength * sampleRateRatio;
return 2 * (1 << static_cast<unsigned>(log2(resampledLength)));
}
void HRTFPanner::reset() {
m_convolverL1.reset();
m_convolverR1.reset();
m_convolverL2.reset();
m_convolverR2.reset();
m_delayLineL.reset();
m_delayLineR.reset();
}
int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth,
double& azimuthBlend) {
// Convert the azimuth angle from the range -180 -> +180 into the range 0 ->
// 360. The azimuth index may then be calculated from this positive value.
if (azimuth < 0)
azimuth += 360.0;
int numberOfAzimuths = HRTFDatabase::numberOfAzimuths();
const double angleBetweenAzimuths = 360.0 / numberOfAzimuths;
// Calculate the azimuth index and the blend (0 -> 1) for interpolation.
double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths;
int desiredAzimuthIndex = static_cast<int>(desiredAzimuthIndexFloat);
azimuthBlend =
desiredAzimuthIndexFloat - static_cast<double>(desiredAzimuthIndex);
// We don't immediately start using this azimuth index, but instead approach
// this index from the last index we rendered at. This minimizes the clicks
// and graininess for moving sources which occur otherwise.
desiredAzimuthIndex = clampTo(desiredAzimuthIndex, 0, numberOfAzimuths - 1);
return desiredAzimuthIndex;
}
void HRTFPanner::pan(double desiredAzimuth,
double elevation,
const AudioBus* inputBus,
AudioBus* outputBus,
size_t framesToProcess,
AudioBus::ChannelInterpretation channelInterpretation) {
unsigned numInputChannels = inputBus ? inputBus->numberOfChannels() : 0;
bool isInputGood = inputBus && numInputChannels >= 1 && numInputChannels <= 2;
ASSERT(isInputGood);
bool isOutputGood = outputBus && outputBus->numberOfChannels() == 2 &&
framesToProcess <= outputBus->length();
ASSERT(isOutputGood);
if (!isInputGood || !isOutputGood) {
if (outputBus)
outputBus->zero();
return;
}
HRTFDatabase* database = m_databaseLoader->database();
if (!database) {
outputBus->copyFrom(*inputBus, channelInterpretation);
return;
}
// IRCAM HRTF azimuths values from the loaded database is reversed from the
// panner's notion of azimuth.
double azimuth = -desiredAzimuth;
bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0;
ASSERT(isAzimuthGood);
if (!isAzimuthGood) {
outputBus->zero();
return;
}
// Normally, we'll just be dealing with mono sources.
// If we have a stereo input, implement stereo panning with left source
// processed by left HRTF, and right source by right HRTF.
const AudioChannel* inputChannelL =
inputBus->channelByType(AudioBus::ChannelLeft);
const AudioChannel* inputChannelR =
numInputChannels > 1 ? inputBus->channelByType(AudioBus::ChannelRight)
: nullptr;
// Get source and destination pointers.
const float* sourceL = inputChannelL->data();
const float* sourceR = numInputChannels > 1 ? inputChannelR->data() : sourceL;
float* destinationL =
outputBus->channelByType(AudioBus::ChannelLeft)->mutableData();
float* destinationR =
outputBus->channelByType(AudioBus::ChannelRight)->mutableData();
double azimuthBlend;
int desiredAzimuthIndex =
calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend);
// Initially snap azimuth and elevation values to first values encountered.
if (m_azimuthIndex1 == UninitializedAzimuth) {
m_azimuthIndex1 = desiredAzimuthIndex;
m_elevation1 = elevation;
}
if (m_azimuthIndex2 == UninitializedAzimuth) {
m_azimuthIndex2 = desiredAzimuthIndex;
m_elevation2 = elevation;
}
// Cross-fade / transition over a period of around 45 milliseconds.
// This is an empirical value tuned to be a reasonable trade-off between
// smoothness and speed.
const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096;
// Check for azimuth and elevation changes, initiating a cross-fade if needed.
if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) {
if (desiredAzimuthIndex != m_azimuthIndex1 || elevation != m_elevation1) {
// Cross-fade from 1 -> 2
m_crossfadeIncr = 1 / fadeFrames;
m_azimuthIndex2 = desiredAzimuthIndex;
m_elevation2 = elevation;
}
}
if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) {
if (desiredAzimuthIndex != m_azimuthIndex2 || elevation != m_elevation2) {
// Cross-fade from 2 -> 1
m_crossfadeIncr = -1 / fadeFrames;
m_azimuthIndex1 = desiredAzimuthIndex;
m_elevation1 = elevation;
}
}
// This algorithm currently requires that we process in power-of-two size
// chunks at least RenderingQuantum.
ASSERT(1UL << static_cast<int>(log2(framesToProcess)) == framesToProcess);
ASSERT(framesToProcess >= RenderingQuantum);
const unsigned framesPerSegment = RenderingQuantum;
const unsigned numberOfSegments = framesToProcess / framesPerSegment;
for (unsigned segment = 0; segment < numberOfSegments; ++segment) {
// Get the HRTFKernels and interpolated delays.
HRTFKernel* kernelL1;
HRTFKernel* kernelR1;
HRTFKernel* kernelL2;
HRTFKernel* kernelR2;
double frameDelayL1;
double frameDelayR1;
double frameDelayL2;
double frameDelayR2;
database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex1,
m_elevation1, kernelL1, kernelR1,
frameDelayL1, frameDelayR1);
database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex2,
m_elevation2, kernelL2, kernelR2,
frameDelayL2, frameDelayR2);
bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2;
ASSERT(areKernelsGood);
if (!areKernelsGood) {
outputBus->zero();
return;
}
ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds &&
frameDelayR1 / sampleRate() < MaxDelayTimeSeconds);
ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds &&
frameDelayR2 / sampleRate() < MaxDelayTimeSeconds);
// Crossfade inter-aural delays based on transitions.
double frameDelayL =
(1 - m_crossfadeX) * frameDelayL1 + m_crossfadeX * frameDelayL2;
double frameDelayR =
(1 - m_crossfadeX) * frameDelayR1 + m_crossfadeX * frameDelayR2;
// Calculate the source and destination pointers for the current segment.
unsigned offset = segment * framesPerSegment;
const float* segmentSourceL = sourceL + offset;
const float* segmentSourceR = sourceR + offset;
float* segmentDestinationL = destinationL + offset;
float* segmentDestinationR = destinationR + offset;
// First run through delay lines for inter-aural time difference.
m_delayLineL.setDelayFrames(frameDelayL);
m_delayLineR.setDelayFrames(frameDelayR);
m_delayLineL.process(segmentSourceL, segmentDestinationL, framesPerSegment);
m_delayLineR.process(segmentSourceR, segmentDestinationR, framesPerSegment);
bool needsCrossfading = m_crossfadeIncr;
// Have the convolvers render directly to the final destination if we're not
// cross-fading.
float* convolutionDestinationL1 =
needsCrossfading ? m_tempL1.data() : segmentDestinationL;
float* convolutionDestinationR1 =
needsCrossfading ? m_tempR1.data() : segmentDestinationR;
float* convolutionDestinationL2 =
needsCrossfading ? m_tempL2.data() : segmentDestinationL;
float* convolutionDestinationR2 =
needsCrossfading ? m_tempR2.data() : segmentDestinationR;
// Now do the convolutions.
// Note that we avoid doing convolutions on both sets of convolvers if we're
// not currently cross-fading.
if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) {
m_convolverL1.process(kernelL1->fftFrame(), segmentDestinationL,
convolutionDestinationL1, framesPerSegment);
m_convolverR1.process(kernelR1->fftFrame(), segmentDestinationR,
convolutionDestinationR1, framesPerSegment);
}
if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) {
m_convolverL2.process(kernelL2->fftFrame(), segmentDestinationL,
convolutionDestinationL2, framesPerSegment);
m_convolverR2.process(kernelR2->fftFrame(), segmentDestinationR,
convolutionDestinationR2, framesPerSegment);
}
if (needsCrossfading) {
// Apply linear cross-fade.
float x = m_crossfadeX;
float incr = m_crossfadeIncr;
for (unsigned i = 0; i < framesPerSegment; ++i) {
segmentDestinationL[i] = (1 - x) * convolutionDestinationL1[i] +
x * convolutionDestinationL2[i];
segmentDestinationR[i] = (1 - x) * convolutionDestinationR1[i] +
x * convolutionDestinationR2[i];
x += incr;
}
// Update cross-fade value from local.
m_crossfadeX = x;
if (m_crossfadeIncr > 0 && fabs(m_crossfadeX - 1) < m_crossfadeIncr) {
// We've fully made the crossfade transition from 1 -> 2.
m_crossfadeSelection = CrossfadeSelection2;
m_crossfadeX = 1;
m_crossfadeIncr = 0;
} else if (m_crossfadeIncr < 0 && fabs(m_crossfadeX) < -m_crossfadeIncr) {
// We've fully made the crossfade transition from 2 -> 1.
m_crossfadeSelection = CrossfadeSelection1;
m_crossfadeX = 0;
m_crossfadeIncr = 0;
}
}
}
}
void HRTFPanner::panWithSampleAccurateValues(
double* desiredAzimuth,
double* elevation,
const AudioBus* inputBus,
AudioBus* outputBus,
size_t framesToProcess,
AudioBus::ChannelInterpretation channelInterpretation) {
// Sample-accurate (a-rate) HRTF panner is not implemented, just k-rate. Just
// grab the current azimuth/elevation and use that.
//
// We are assuming that the inherent smoothing in the HRTF processing is good
// enough, and we don't want to increase the complexity of the HRTF panner by
// 15-20 times. (We need to compute one output sample for each possibly
// different impulse response. That N^2. Previously, we used an FFT to do
// them all at once for a complexity of N/log2(N). Hence, N/log2(N) times
// more complex.)
pan(desiredAzimuth[0], elevation[0], inputBus, outputBus, framesToProcess,
channelInterpretation);
}
double HRTFPanner::tailTime() const {
// Because HRTFPanner is implemented with a DelayKernel and a FFTConvolver,
// the tailTime of the HRTFPanner is the sum of the tailTime of the
// DelayKernel and the tailTime of the FFTConvolver, which is
// MaxDelayTimeSeconds and fftSize() / 2, respectively.
return MaxDelayTimeSeconds +
(fftSize() / 2) / static_cast<double>(sampleRate());
}
double HRTFPanner::latencyTime() const {
// The latency of a FFTConvolver is also fftSize() / 2, and is in addition to
// its tailTime of the same value.
return (fftSize() / 2) / static_cast<double>(sampleRate());
}
} // namespace blink