blob: 4134d137a416ade18e305e168c3aeec088c16c34 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
// ----------- S t a t e -------------
// -- a0 : number of arguments excluding receiver
// -- a1 : target
// -- a3 : new.target
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * agrc] : receiver
// -----------------------------------
__ AssertFunction(a1);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// JumpToExternalReference expects a0 to contain the number of arguments
// including the receiver and the extra arguments.
const int num_extra_args = 3;
__ Addu(a0, a0, num_extra_args + 1);
// Insert extra arguments.
__ SmiTag(a0);
__ Push(a0, a1, a3);
__ SmiUntag(a0);
__ JumpToExternalReference(ExternalReference(address, masm->isolate()),
PROTECT, exit_frame_type == BUILTIN_EXIT);
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the InternalArray function from the native context.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result);
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the Array function from the native context.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(a2, t0);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, t0,
Operand(zero_reg));
__ GetObjectType(a2, a3, t0);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction, t0,
Operand(MAP_TYPE));
}
// Run the native code for the InternalArray function called as a normal
// function.
// Tail call a stub.
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code;
// Get the Array function.
GenerateLoadArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(a2, t0);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction1, t0,
Operand(zero_reg));
__ GetObjectType(a2, a3, t0);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction2, t0,
Operand(MAP_TYPE));
}
// Run the native code for the Array function called as a normal function.
// Tail call a stub.
__ mov(a3, a1);
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- cp : context
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into a0.
Label no_arguments;
{
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Subu(t1, a0, Operand(1)); // In delay slot.
__ mov(t0, a0); // Store argc in t0.
__ Lsa(at, sp, t1, kPointerSizeLog2);
__ lw(a0, MemOperand(at));
}
// 2a. Convert first argument to number.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
{
// Drop all arguments including the receiver.
__ Lsa(sp, sp, t0, kPointerSizeLog2);
__ DropAndRet(1);
}
// 2b. No arguments, return +0.
__ bind(&no_arguments);
__ Move(v0, Smi::kZero);
__ DropAndRet(1);
}
// static
void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a3 : new target
// -- cp : context
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// 2. Load the first argument into a0.
{
Label no_arguments, done;
__ mov(t0, a0); // Store argc in t0.
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Subu(t1, a0, Operand(1)); // In delay slot.
__ Lsa(at, sp, t1, kPointerSizeLog2);
__ lw(a0, MemOperand(at));
__ jmp(&done);
__ bind(&no_arguments);
__ Move(a0, Smi::kZero);
__ bind(&done);
}
// 3. Make sure a0 is a number.
{
Label done_convert;
__ JumpIfSmi(a0, &done_convert);
__ GetObjectType(a0, a2, a2);
__ Branch(&done_convert, eq, a2, Operand(HEAP_NUMBER_TYPE));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Push(a3);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ Move(a0, v0);
__ Pop(a3);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ Branch(&new_object, ne, a1, Operand(a3));
// 5. Allocate a JSValue wrapper for the number.
__ AllocateJSValue(v0, a1, a0, a2, t1, &new_object);
__ jmp(&drop_frame_and_ret);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Push(a0); // first argument
__ Call(masm->isolate()->builtins()->FastNewObject(),
RelocInfo::CODE_TARGET);
__ Pop(a0);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ sw(a0, FieldMemOperand(v0, JSValue::kValueOffset));
__ bind(&drop_frame_and_ret);
{
__ Lsa(sp, sp, t0, kPointerSizeLog2);
__ DropAndRet(1);
}
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- cp : context
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into a0.
Label no_arguments;
{
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Subu(t1, a0, Operand(1));
__ mov(t0, a0); // Store argc in t0.
__ Lsa(at, sp, t1, kPointerSizeLog2);
__ lw(a0, MemOperand(at));
}
// 2a. At least one argument, return a0 if it's a string, otherwise
// dispatch to appropriate conversion.
Label drop_frame_and_ret, to_string, symbol_descriptive_string;
{
__ JumpIfSmi(a0, &to_string);
__ GetObjectType(a0, t1, t1);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ Subu(t1, t1, Operand(FIRST_NONSTRING_TYPE));
__ Branch(&symbol_descriptive_string, eq, t1, Operand(zero_reg));
__ Branch(&to_string, gt, t1, Operand(zero_reg));
__ mov(v0, a0);
__ jmp(&drop_frame_and_ret);
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(v0, Heap::kempty_stringRootIndex);
__ DropAndRet(1);
}
// 3a. Convert a0 to a string.
__ bind(&to_string);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ jmp(&drop_frame_and_ret);
// 3b. Convert symbol in a0 to a string.
__ bind(&symbol_descriptive_string);
{
__ Lsa(sp, sp, t0, kPointerSizeLog2);
__ Drop(1);
__ Push(a0);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString);
}
__ bind(&drop_frame_and_ret);
{
__ Lsa(sp, sp, t0, kPointerSizeLog2);
__ DropAndRet(1);
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a3 : new target
// -- cp : context
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// 2. Load the first argument into a0.
{
Label no_arguments, done;
__ mov(t0, a0); // Store argc in t0.
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Subu(t1, a0, Operand(1));
__ Lsa(at, sp, t1, kPointerSizeLog2);
__ lw(a0, MemOperand(at));
__ jmp(&done);
__ bind(&no_arguments);
__ LoadRoot(a0, Heap::kempty_stringRootIndex);
__ bind(&done);
}
// 3. Make sure a0 is a string.
{
Label convert, done_convert;
__ JumpIfSmi(a0, &convert);
__ GetObjectType(a0, a2, a2);
__ And(t1, a2, Operand(kIsNotStringMask));
__ Branch(&done_convert, eq, t1, Operand(zero_reg));
__ bind(&convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Push(a3);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ Move(a0, v0);
__ Pop(a3);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ Branch(&new_object, ne, a1, Operand(a3));
// 5. Allocate a JSValue wrapper for the string.
__ AllocateJSValue(v0, a1, a0, a2, t1, &new_object);
__ jmp(&drop_frame_and_ret);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Push(a0); // first argument
__ Call(masm->isolate()->builtins()->FastNewObject(),
RelocInfo::CODE_TARGET);
__ Pop(a0);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ sw(a0, FieldMemOperand(v0, JSValue::kValueOffset));
__ bind(&drop_frame_and_ret);
{
__ Lsa(sp, sp, t0, kPointerSizeLog2);
__ DropAndRet(1);
}
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
__ Jump(at, a2, Code::kHeaderSize - kHeapObjectTag);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee)
// -- a1 : target function (preserved for callee)
// -- a3 : new target (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function and the new target.
// Push function as parameter to the runtime call.
__ SmiTag(a0);
__ Push(a0, a1, a3, a1);
__ CallRuntime(function_id, 1);
// Restore target function and new target.
__ Pop(a0, a1, a3);
__ SmiUntag(a0);
}
__ Jump(at, v0, Code::kHeaderSize - kHeapObjectTag);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a3 : new target
// -- cp : context
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(a0);
__ Push(cp, a0);
__ SmiUntag(a0);
// The receiver for the builtin/api call.
__ PushRoot(Heap::kTheHoleValueRootIndex);
// Set up pointer to last argument.
__ Addu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(t3, a0);
// ----------- S t a t e -------------
// -- a0: number of arguments (untagged)
// -- a3: new target
// -- t2: pointer to last argument
// -- t3: counter
// -- sp[0*kPointerSize]: the hole (receiver)
// -- sp[1*kPointerSize]: number of arguments (tagged)
// -- sp[2*kPointerSize]: context
// -----------------------------------
__ jmp(&entry);
__ bind(&loop);
__ Lsa(t0, t2, t3, kPointerSizeLog2);
__ lw(t1, MemOperand(t0));
__ push(t1);
__ bind(&entry);
__ Addu(t3, t3, Operand(-1));
__ Branch(&loop, greater_equal, t3, Operand(zero_reg));
// Call the function.
// a0: number of arguments (untagged)
// a1: constructor function
// a3: new target
ParameterCount actual(a0);
__ InvokeFunction(a1, a3, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// Restore context from the frame.
__ lw(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ lw(a1, MemOperand(sp));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ Lsa(sp, sp, a1, kPointerSizeLog2 - 1);
__ Addu(sp, sp, kPointerSize);
__ Ret();
}
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Generate_JSConstructStubGeneric(MacroAssembler* masm,
bool restrict_constructor_return) {
// ----------- S t a t e -------------
// -- a0: number of arguments (untagged)
// -- a1: constructor function
// -- a3: new target
// -- cp: context
// -- ra: return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ SmiTag(a0);
__ Push(cp, a0, a1, a3);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: new target
// -- a1 and sp[1*kPointerSize]: constructor function
// -- sp[2*kPointerSize]: number of arguments (tagged)
// -- sp[3*kPointerSize]: context
// -----------------------------------
__ lw(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(t2, FieldMemOperand(t2, SharedFunctionInfo::kCompilerHintsOffset));
__ And(t2, t2, Operand(SharedFunctionInfo::kDerivedConstructorMask));
__ Branch(&not_create_implicit_receiver, ne, t2, Operand(zero_reg));
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
t2, t3);
__ Call(masm->isolate()->builtins()->FastNewObject(),
RelocInfo::CODE_TARGET);
__ Branch(&post_instantiation_deopt_entry);
// Else: use TheHoleValue as receiver for constructor call
__ bind(&not_create_implicit_receiver);
__ LoadRoot(v0, Heap::kTheHoleValueRootIndex);
// ----------- S t a t e -------------
// -- v0: receiver
// -- Slot 3 / sp[0*kPointerSize]: new target
// -- Slot 2 / sp[1*kPointerSize]: constructor function
// -- Slot 1 / sp[2*kPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[3*kPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(a3);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(v0, v0);
// ----------- S t a t e -------------
// -- r3: new target
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments (tagged)
// -- sp[4*kPointerSize]: context
// -----------------------------------
// Restore constructor function and argument count.
__ lw(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ lw(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(a0);
// Set up pointer to last argument.
__ Addu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(t3, a0);
// ----------- S t a t e -------------
// -- a0: number of arguments (untagged)
// -- a3: new target
// -- t2: pointer to last argument
// -- t3: counter
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- a1 and sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments (tagged)
// -- sp[4*kPointerSize]: context
// -----------------------------------
__ jmp(&entry);
__ bind(&loop);
__ Lsa(t0, t2, t3, kPointerSizeLog2);
__ lw(t1, MemOperand(t0));
__ push(t1);
__ bind(&entry);
__ Addu(t3, t3, Operand(-1));
__ Branch(&loop, greater_equal, t3, Operand(zero_reg));
// Call the function.
ParameterCount actual(a0);
__ InvokeFunction(a1, a3, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// ----------- S t a t e -------------
// -- v0: constructor result
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: constructor function
// -- sp[2*kPointerSize]: number of arguments
// -- sp[3*kPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore the context from the frame.
__ lw(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, other_result, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfRoot(v0, Heap::kUndefinedValueRootIndex, &use_receiver);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(v0, &other_result);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ GetObjectType(v0, t2, t2);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ Branch(&leave_frame, greater_equal, t2, Operand(FIRST_JS_RECEIVER_TYPE));
// The result is now neither undefined nor an object.
__ bind(&other_result);
__ lw(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ lw(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(t2, FieldMemOperand(t2, SharedFunctionInfo::kCompilerHintsOffset));
__ And(t2, t2, Operand(SharedFunctionInfo::kClassConstructorMask));
if (restrict_constructor_return) {
// Throw if constructor function is a class constructor
__ Branch(&use_receiver, eq, t2, Operand(zero_reg));
} else {
__ Branch(&use_receiver, ne, t2, Operand(zero_reg));
__ CallRuntime(
Runtime::kIncrementUseCounterConstructorReturnNonUndefinedPrimitive);
__ Branch(&use_receiver);
}
__ bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ lw(v0, MemOperand(sp, 0 * kPointerSize));
__ JumpIfRoot(v0, Heap::kTheHoleValueRootIndex, &do_throw);
__ bind(&leave_frame);
// Restore smi-tagged arguments count from the frame.
__ lw(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ Lsa(sp, sp, a1, kPointerSizeLog2 - kSmiTagSize);
__ Addu(sp, sp, kPointerSize);
__ Ret();
}
} // namespace
void Builtins::Generate_JSConstructStubGenericRestrictedReturn(
MacroAssembler* masm) {
Generate_JSConstructStubGeneric(masm, true);
}
void Builtins::Generate_JSConstructStubGenericUnrestrictedReturn(
MacroAssembler* masm) {
Generate_JSConstructStubGeneric(masm, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
// Clobbers a2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
IsTagged argc_is_tagged) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
// Make a2 the space we have left. The stack might already be overflowed
// here which will cause a2 to become negative.
__ Subu(a2, sp, a2);
// Check if the arguments will overflow the stack.
if (argc_is_tagged == kArgcIsSmiTagged) {
__ sll(t3, argc, kPointerSizeLog2 - kSmiTagSize);
} else {
DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
__ sll(t3, argc, kPointerSizeLog2);
}
// Signed comparison.
__ Branch(&okay, gt, a2, Operand(t3));
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from JSEntryStub::GenerateBody
// ----------- S t a t e -------------
// -- a0: new.target
// -- a1: function
// -- a2: receiver_pointer
// -- a3: argc
// -- s0: argv
// -----------------------------------
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(IsolateAddressId::kContextAddress,
masm->isolate());
__ li(cp, Operand(context_address));
__ lw(cp, MemOperand(cp));
// Push the function and the receiver onto the stack.
__ Push(a1, a2);
// Check if we have enough stack space to push all arguments.
// Clobbers a2.
Generate_CheckStackOverflow(masm, a3, kArgcIsUntaggedInt);
// Remember new.target.
__ mov(t1, a0);
// Copy arguments to the stack in a loop.
// a3: argc
// s0: argv, i.e. points to first arg
Label loop, entry;
__ Lsa(t2, s0, a3, kPointerSizeLog2);
__ b(&entry);
__ nop(); // Branch delay slot nop.
// t2 points past last arg.
__ bind(&loop);
__ lw(t0, MemOperand(s0)); // Read next parameter.
__ addiu(s0, s0, kPointerSize);
__ lw(t0, MemOperand(t0)); // Dereference handle.
__ push(t0); // Push parameter.
__ bind(&entry);
__ Branch(&loop, ne, s0, Operand(t2));
// Setup new.target and argc.
__ mov(a0, a3);
__ mov(a3, t1);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ mov(s1, t0);
__ mov(s2, t0);
__ mov(s3, t0);
__ mov(s4, t0);
__ mov(s5, t0);
// s6 holds the root address. Do not clobber.
// s7 is cp. Do not init.
// Invoke the code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ Jump(ra);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : the value to pass to the generator
// -- a1 : the JSGeneratorObject to resume
// -- a2 : the resume mode (tagged)
// -- ra : return address
// -----------------------------------
__ AssertGeneratorObject(a1);
// Store input value into generator object.
__ sw(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3,
kRAHasNotBeenSaved, kDontSaveFPRegs);
// Store resume mode into generator object.
__ sw(a2, FieldMemOperand(a1, JSGeneratorObject::kResumeModeOffset));
// Load suspended function and context.
__ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ lw(cp, FieldMemOperand(t0, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ li(t1, Operand(debug_hook));
__ lb(t1, MemOperand(t1));
__ Branch(&prepare_step_in_if_stepping, ne, t1, Operand(zero_reg));
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ li(t1, Operand(debug_suspended_generator));
__ lw(t1, MemOperand(t1));
__ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(t1));
__ bind(&stepping_prepared);
// Push receiver.
__ lw(t1, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset));
__ Push(t1);
// ----------- S t a t e -------------
// -- a1 : the JSGeneratorObject to resume
// -- a2 : the resume mode (tagged)
// -- t0 : generator function
// -- cp : generator context
// -- ra : return address
// -- sp[0] : generator receiver
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ lw(a3, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset));
__ lw(a3,
FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
{
Label done_loop, loop;
__ bind(&loop);
__ Subu(a3, a3, Operand(1));
__ Branch(&done_loop, lt, a3, Operand(zero_reg));
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ Branch(&loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ lw(a3, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset));
__ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset));
__ GetObjectType(a3, a3, a3);
__ Assert(eq, kMissingBytecodeArray, a3, Operand(BYTECODE_ARRAY_TYPE));
}
// Resume (Ignition/TurboFan) generator object.
{
__ lw(a0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset));
__ lw(a0,
FieldMemOperand(a0, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Move(a3, a1);
__ Move(a1, t0);
__ lw(a2, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ Jump(a2);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1, a2, t0);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(a1, a2);
}
__ Branch(USE_DELAY_SLOT, &stepping_prepared);
__ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1, a2);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(a1, a2);
}
__ Branch(USE_DELAY_SLOT, &stepping_prepared);
__ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
}
static void ReplaceClosureEntryWithOptimizedCode(
MacroAssembler* masm, Register optimized_code_entry, Register closure,
Register scratch1, Register scratch2, Register scratch3) {
Register native_context = scratch1;
// Store code entry in the closure.
__ Addu(optimized_code_entry, optimized_code_entry,
Operand(Code::kHeaderSize - kHeapObjectTag));
__ sw(optimized_code_entry,
FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(closure, optimized_code_entry, scratch2);
// Link the closure into the optimized function list.
__ lw(native_context, NativeContextMemOperand());
__ lw(scratch2,
ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
__ sw(scratch2,
FieldMemOperand(closure, JSFunction::kNextFunctionLinkOffset));
__ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, scratch2,
scratch3, kRAHasNotBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
const int function_list_offset =
Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
__ sw(closure,
ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
// Save closure before the write barrier.
__ mov(scratch2, closure);
__ RecordWriteContextSlot(native_context, function_list_offset, closure,
scratch3, kRAHasNotBeenSaved, kDontSaveFPRegs);
__ mov(closure, scratch2);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_count = scratch;
// Get the arguments + receiver count.
__ lw(args_count,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ lw(args_count,
FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
// Drop receiver + arguments.
__ Addu(sp, sp, args_count);
}
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register smi_entry,
OptimizationMarker marker,
Runtime::FunctionId function_id) {
Label no_match;
__ Branch(&no_match, ne, smi_entry, Operand(Smi::FromEnum(marker)));
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
Register feedback_vector,
Register scratch1, Register scratch2,
Register scratch3) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee if needed, and caller)
// -- a3 : new target (preserved for callee if needed, and caller)
// -- a1 : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -----------------------------------
DCHECK(
!AreAliased(feedback_vector, a0, a1, a3, scratch1, scratch2, scratch3));
Label optimized_code_slot_is_cell, fallthrough;
Register closure = a1;
Register optimized_code_entry = scratch1;
const int kOptimizedCodeCellOffset =
FeedbackVector::kOptimizedCodeIndex * kPointerSize +
FeedbackVector::kHeaderSize;
__ lw(optimized_code_entry,
FieldMemOperand(feedback_vector, kOptimizedCodeCellOffset));
// Check if the code entry is a Smi. If yes, we interpret it as an
// optimisation marker. Otherwise, interpret is as a weak cell to a code
// object.
__ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_cell);
{
// Optimized code slot is a Smi optimization marker.
// Fall through if no optimization trigger.
__ Branch(&fallthrough, eq, optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kNone)));
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(
masm, optimized_code_entry,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
{
// Otherwise, the marker is InOptimizationQueue.
if (FLAG_debug_code) {
__ Assert(
eq, kExpectedOptimizationSentinel, optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)));
}
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
__ LoadRoot(at, Heap::kStackLimitRootIndex);
__ Branch(&fallthrough, hs, sp, Operand(at));
GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
}
}
{
// Optimized code slot is a WeakCell.
__ bind(&optimized_code_slot_is_cell);
__ lw(optimized_code_entry,
FieldMemOperand(optimized_code_entry, WeakCell::kValueOffset));
__ JumpIfSmi(optimized_code_entry, &fallthrough);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
Label found_deoptimized_code;
__ lw(scratch2, FieldMemOperand(optimized_code_entry,
Code::kKindSpecificFlags1Offset));
__ And(scratch2, scratch2, Operand(1 << Code::kMarkedForDeoptimizationBit));
__ Branch(&found_deoptimized_code, ne, scratch2, Operand(zero_reg));
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
// The feedback vector is no longer used, so re-use it as a scratch
// register.
ReplaceClosureEntryWithOptimizedCode(masm, optimized_code_entry, closure,
scratch2, scratch3, feedback_vector);
__ Jump(optimized_code_entry);
// Optimized code slot contains deoptimized code, evict it and re-enter the
// losure's code.
__ bind(&found_deoptimized_code);
GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
// Fall-through if the optimized code cell is clear and there is no
// optimization marker.
__ bind(&fallthrough);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o a1: the JS function object being called.
// o a3: the new target
// o cp: our context
// o fp: the caller's frame pointer
// o sp: stack pointer
// o ra: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
Register closure = a1;
Register feedback_vector = a2;
// Load the feedback vector from the closure.
__ lw(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
__ lw(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
// Read off the optimized code slot in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, t0, t3, t1);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushStandardFrame(closure);
// Get the bytecode array from the function object (or from the DebugInfo if
// it is present) and load it into kInterpreterBytecodeArrayRegister.
Label maybe_load_debug_bytecode_array, bytecode_array_loaded;
__ lw(a0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ lw(kInterpreterBytecodeArrayRegister,
FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset));
__ lw(t0, FieldMemOperand(a0, SharedFunctionInfo::kDebugInfoOffset));
__ JumpIfNotSmi(t0, &maybe_load_debug_bytecode_array);
__ bind(&bytecode_array_loaded);
// Check whether we should continue to use the interpreter.
// TODO(rmcilroy) Remove self healing once liveedit only has to deal with
// Ignition bytecode.
Label switch_to_different_code_kind;
__ lw(a0, FieldMemOperand(a0, SharedFunctionInfo::kCodeOffset));
__ Branch(&switch_to_different_code_kind, ne, a0,
Operand(masm->CodeObject())); // Self-reference to this code.
// Increment invocation count for the function.
__ lw(t0,
FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountIndex * kPointerSize +
FeedbackVector::kHeaderSize));
__ Addu(t0, t0, Operand(Smi::FromInt(1)));
__ sw(t0,
FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountIndex * kPointerSize +
FeedbackVector::kHeaderSize));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ SmiTst(kInterpreterBytecodeArrayRegister, t0);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, t0,
Operand(zero_reg));
__ GetObjectType(kInterpreterBytecodeArrayRegister, t0, t0);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, t0,
Operand(BYTECODE_ARRAY_TYPE));
}
// Reset code age.
DCHECK_EQ(0, BytecodeArray::kNoAgeBytecodeAge);
__ sb(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset));
// Load initial bytecode offset.
__ li(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push new.target, bytecode array and Smi tagged bytecode array offset.
__ SmiTag(t0, kInterpreterBytecodeOffsetRegister);
__ Push(a3, kInterpreterBytecodeArrayRegister, t0);
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ lw(t0, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ Subu(t1, sp, Operand(t0));
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
__ Branch(&ok, hs, t1, Operand(a2));
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
__ Branch(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(t1);
// Continue loop if not done.
__ bind(&loop_check);
__ Subu(t0, t0, Operand(kPointerSize));
__ Branch(&loop_header, ge, t0, Operand(zero_reg));
}
// Load accumulator and dispatch table into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ li(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Dispatch to the first bytecode handler for the function.
__ Addu(a0, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ lbu(a0, MemOperand(a0));
__ Lsa(at, kInterpreterDispatchTableRegister, a0, kPointerSizeLog2);
__ lw(at, MemOperand(at));
__ Call(at);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// The return value is in v0.
LeaveInterpreterFrame(masm, t0);
__ Jump(ra);
// Load debug copy of the bytecode array if it exists.
// kInterpreterBytecodeArrayRegister is already loaded with
// SharedFunctionInfo::kFunctionDataOffset.
__ bind(&maybe_load_debug_bytecode_array);
__ lw(t1, FieldMemOperand(t0, DebugInfo::kFlagsOffset));
__ SmiUntag(t1);
__ And(t1, t1, Operand(DebugInfo::kHasBreakInfo));
__ Branch(&bytecode_array_loaded, eq, t1, Operand(zero_reg));
__ lw(kInterpreterBytecodeArrayRegister,
FieldMemOperand(t0, DebugInfo::kDebugBytecodeArrayOffset));
__ Branch(&bytecode_array_loaded);
// If the shared code is no longer this entry trampoline, then the underlying
// function has been switched to a different kind of code and we heal the
// closure by switching the code entry field over to the new code as well.
__ bind(&switch_to_different_code_kind);
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
__ lw(t0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kCodeOffset));
__ Addu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ sw(t0, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(closure, t0, t1);
__ Jump(t0);
}
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch1, Register scratch2,
Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(scratch1, Heap::kRealStackLimitRootIndex);
// Make scratch1 the space we have left. The stack might already be overflowed
// here which will cause scratch1 to become negative.
__ subu(scratch1, sp, scratch1);
// Check if the arguments will overflow the stack.
__ sll(scratch2, num_args, kPointerSizeLog2);
// Signed comparison.
__ Branch(stack_overflow, le, scratch1, Operand(scratch2));
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args, Register index,
Register scratch, Register scratch2) {
// Find the address of the last argument.
__ mov(scratch2, num_args);
__ sll(scratch2, scratch2, kPointerSizeLog2);
__ Subu(scratch2, index, Operand(scratch2));
// Push the arguments.
Label loop_header, loop_check;
__ Branch(&loop_check);
__ bind(&loop_header);
__ lw(scratch, MemOperand(index));
__ Addu(index, index, Operand(-kPointerSize));
__ push(scratch);
__ bind(&loop_check);
__ Branch(&loop_header, gt, index, Operand(scratch2));
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- a1 : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
__ Addu(t0, a0, Operand(1)); // Add one for receiver.
Generate_StackOverflowCheck(masm, t0, t4, t1, &stack_overflow);
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ mov(t0, a0); // No receiver.
}
// This function modifies a2, t4 and t1.
Generate_InterpreterPushArgs(masm, t0, a2, t4, t1);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(a2); // Pass the spread in a register
__ Subu(a0, a0, Operand(1)); // Subtract one for spread
}
// Call the target.
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ Jump(
masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(masm->isolate()->builtins()->CallWithSpread(),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- a0 : argument count (not including receiver)
// -- a3 : new target
// -- a1 : constructor to call
// -- a2 : allocation site feedback if available, undefined otherwise.
// -- t4 : address of the first argument
// -----------------------------------
Label stack_overflow;
// Push a slot for the receiver.
__ push(zero_reg);
Generate_StackOverflowCheck(masm, a0, t1, t0, &stack_overflow);
// This function modified t4, t1 and t0.
Generate_InterpreterPushArgs(masm, a0, t4, t1, t0);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(a2); // Pass the spread in a register
__ Subu(a0, a0, Operand(1)); // Subtract one for spread
} else {
__ AssertUndefinedOrAllocationSite(a2, t0);
}
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ AssertFunction(a1);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kConstructStubOffset));
__ Jump(at, t0, Code::kHeaderSize - kHeapObjectTag);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with a0, a1, and a3 unmodified.
__ Jump(masm->isolate()->builtins()->ConstructWithSpread(),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with a0, a1, and a3 unmodified.
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructArray(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the target to call checked to be Array function.
// -- a2 : allocation site feedback.
// -- a3 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
Label stack_overflow;
// Push a slot for the receiver.
__ push(zero_reg);
Generate_StackOverflowCheck(masm, a0, t1, t4, &stack_overflow);
// This function modifies a3, t1, and t4.
Generate_InterpreterPushArgs(masm, a0, a3, t1, t4);
// ArrayConstructor stub expects constructor in a3. Set it here.
__ mov(a3, a1);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
__ li(t0, Operand(masm->isolate()->builtins()->InterpreterEntryTrampoline()));
__ Addu(ra, t0, Operand(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
// Initialize the dispatch table register.
__ li(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ lw(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ SmiTst(kInterpreterBytecodeArrayRegister, at);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, at,
Operand(zero_reg));
__ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a1,
Operand(BYTECODE_ARRAY_TYPE));
}
// Get the target bytecode offset from the frame.
__ lw(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ Addu(a1, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ lbu(a1, MemOperand(a1));
__ Lsa(a1, kInterpreterDispatchTableRegister, a1, kPointerSizeLog2);
__ lw(a1, MemOperand(a1));
__ Jump(a1);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Advance the current bytecode offset stored within the given interpreter
// stack frame. This simulates what all bytecode handlers do upon completion
// of the underlying operation.
__ lw(a1, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ lw(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(kInterpreterAccumulatorRegister, a1, a2);
__ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset);
__ mov(a2, v0); // Result is the new bytecode offset.
__ Pop(kInterpreterAccumulatorRegister);
}
__ sw(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_CheckOptimizationMarker(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee)
// -- a3 : new target (preserved for callee)
// -- a1 : target function (preserved for callee)
// -----------------------------------
Register closure = a1;
// Get the feedback vector.
Register feedback_vector = a2;
__ lw(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
__ lw(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
// The feedback vector must be defined.
if (FLAG_debug_code) {
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ Assert(ne, BailoutReason::kExpectedFeedbackVector, feedback_vector,
Operand(at));
}
// Is there an optimization marker or optimized code in the feedback vector?
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, t0, t3, t1);
// Otherwise, tail call the SFI code.
GenerateTailCallToSharedCode(masm);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee)
// -- a3 : new target (preserved for callee)
// -- a1 : target function (preserved for callee)
// -----------------------------------
// First lookup code, maybe we don't need to compile!
Label gotta_call_runtime;
Register closure = a1;
Register feedback_vector = a2;
// Do we have a valid feedback vector?
__ lw(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
__ lw(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
__ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex,
&gotta_call_runtime);
// Is there an optimization marker or optimized code in the feedback vector?
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, t0, t3, t1);
// We found no optimized code.
Register entry = t0;
__ lw(entry, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
// If SFI points to anything other than CompileLazy, install that.
__ lw(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset));
__ Move(t1, masm->CodeObject());
__ Branch(&gotta_call_runtime, eq, entry, Operand(t1));
// Install the SFI's code entry.
__ Addu(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ sw(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(closure, entry, t1);
__ Jump(entry);
__ bind(&gotta_call_runtime);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee)
// -- a1 : new target (preserved for callee)
// -- a3 : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve argument count for later compare.
__ Move(t4, a0);
// Push a copy of the target function and the new target.
// Push function as parameter to the runtime call.
__ SmiTag(a0);
__ Push(a0, a1, a3, a1);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ Branch(&over, ne, t4, Operand(j));
}
for (int i = j - 1; i >= 0; --i) {
__ lw(t4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
i * kPointerSize));
__ push(t4);
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(v0, &failed);
__ Drop(2);
__ pop(t4);
__ SmiUntag(t4);
scope.GenerateLeaveFrame();
__ Addu(t4, t4, Operand(1));
__ Lsa(sp, sp, t4, kPointerSizeLog2);
__ Ret();
__ bind(&failed);
// Restore target function and new target.
__ Pop(a0, a1, a3);
__ SmiUntag(a0);
}
// On failure, tail call back to regular js.
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Set a0 to point to the head of the PlatformCodeAge sequence.
__ Subu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
// The following registers must be saved and restored when calling through to
// the runtime:
// a0 - contains return address (beginning of patch sequence)
// a1 - isolate
// a3 - new target
RegList saved_regs =
(a0.bit() | a1.bit() | a3.bit() | ra.bit() | fp.bit()) & ~sp.bit();
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(saved_regs);
__ PrepareCallCFunction(2, 0, a2);
__ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ MultiPop(saved_regs);
__ Jump(a0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
// Set a0 to point to the head of the PlatformCodeAge sequence.
__ Subu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
// The following registers must be saved and restored when calling through to
// the runtime:
// a0 - contains return address (beginning of patch sequence)
// a1 - isolate
// a3 - new target
RegList saved_regs =
(a0.bit() | a1.bit() | a3.bit() | ra.bit() | fp.bit()) & ~sp.bit();
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(saved_regs);
__ PrepareCallCFunction(2, 0, a2);
__ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
__ MultiPop(saved_regs);
// Perform prologue operations usually performed by the young code stub.
__ PushStandardFrame(a1);
// Jump to point after the code-age stub.
__ Jump(a0, kNoCodeAgeSequenceLength);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
void Builtins::Generate_NotifyBuiltinContinuation(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve possible return result from lazy deopt.
__ Push(v0);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, false);
__ Pop(v0);
}
__ Addu(sp, sp, Operand(kPointerSize)); // Ignore state
__ Jump(ra); // Jump to the ContinueToBuiltin stub
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Turbofan());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ sw(v0,
MemOperand(
sp, config->num_allocatable_general_registers() * kPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize));
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ Pop(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code));
}
}
__ lw(fp, MemOperand(
sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
__ Pop(t0);
__ Addu(sp, sp,
Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
__ Pop(ra);
__ Addu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(t0);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
__ push(a0);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
// Get the full codegen state from the stack and untag it -> t2.
__ lw(t2, MemOperand(sp, 0 * kPointerSize));
__ SmiUntag(t2);
// Switch on the state.
Label with_tos_register, unknown_state;
__ Branch(&with_tos_register, ne, t2,
Operand(static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS)));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Addu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
__ bind(&with_tos_register);
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code());
__ lw(v0, MemOperand(sp, 1 * kPointerSize));
__ Branch(&unknown_state, ne, t2,
Operand(static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER)));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Addu(sp, sp, Operand(2 * kPointerSize)); // Remove state.
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ lw(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ lw(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(a0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
__ Ret(eq, v0, Operand(Smi::kZero));
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ LeaveFrame(StackFrame::STUB);
}
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ lw(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ lw(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) -
kHeapObjectTag));
__ SmiUntag(a1);
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ addu(v0, v0, a1);
__ addiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : argArray
// -- sp[4] : thisArg
// -- sp[8] : receiver
// -----------------------------------
// 1. Load receiver into a1, argArray into a0 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label no_arg;
Register scratch = t0;
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
__ mov(a3, a2);
// Lsa() cannot be used hare as scratch value used later.
__ sll(scratch, a0, kPointerSizeLog2);
__ Addu(a0, sp, Operand(scratch));
__ lw(a1, MemOperand(a0)); // receiver
__ Subu(a0, a0, Operand(kPointerSize));
__ Branch(&no_arg, lt, a0, Operand(sp));
__ lw(a2, MemOperand(a0)); // thisArg
__ Subu(a0, a0, Operand(kPointerSize));
__ Branch(&no_arg, lt, a0, Operand(sp));
__ lw(a3, MemOperand(a0)); // argArray
__ bind(&no_arg);
__ Addu(sp, sp, Operand(scratch));
__ sw(a2, MemOperand(sp));
__ mov(a2, a3);
}
// ----------- S t a t e -------------
// -- a2 : argArray
// -- a1 : receiver
// -- sp[0] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(a2, Heap::kNullValueRootIndex, &no_arguments);
__ JumpIfRoot(a2, Heap::kUndefinedValueRootIndex, &no_arguments);
// 4a. Apply the receiver to the given argArray.
__ Jump(masm->isolate()->builtins()->CallWithArrayLike(),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ mov(a0, zero_reg);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// a0: actual number of arguments
{
Label done;
__ Branch(&done, ne, a0, Operand(zero_reg));
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ Addu(a0, a0, Operand(1));
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack.
// a0: actual number of arguments
__ Lsa(at, sp, a0, kPointerSizeLog2);
__ lw(a1, MemOperand(at));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// a0: actual number of arguments
// a1: function
{
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ Lsa(a2, sp, a0, kPointerSizeLog2);
__ bind(&loop);
__ lw(at, MemOperand(a2, -kPointerSize));
__ sw(at, MemOperand(a2));
__ Subu(a2, a2, Operand(kPointerSize));
__ Branch(&loop, ne, a2, Operand(sp));
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ Subu(a0, a0, Operand(1));
__ Pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : argumentsList
// -- sp[4] : thisArgument
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into a1 (if present), argumentsList into a0 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label no_arg;
Register scratch = t0;
__ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
__ mov(a2, a1);
__ mov(a3, a1);
__ sll(scratch, a0, kPointerSizeLog2);
__ mov(a0, scratch);
__ Subu(a0, a0, Operand(kPointerSize));
__ Branch(&no_arg, lt, a0, Operand(zero_reg));
__ Addu(a0, sp, Operand(a0));
__ lw(a1, MemOperand(a0)); // target
__ Subu(a0, a0, Operand(kPointerSize));
__ Branch(&no_arg, lt, a0, Operand(sp));
__ lw(a2, MemOperand(a0)); // thisArgument
__ Subu(a0, a0, Operand(kPointerSize));
__ Branch(&no_arg, lt, a0, Operand(sp));
__ lw(a3, MemOperand(a0)); // argumentsList
__ bind(&no_arg);
__ Addu(sp, sp, Operand(scratch));
__ sw(a2, MemOperand(sp));
__ mov(a2, a3);
}
// ----------- S t a t e -------------
// -- a2 : argumentsList
// -- a1 : target
// -- sp[0] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(masm->isolate()->builtins()->CallWithArrayLike(),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : new.target (optional)
// -- sp[4] : argumentsList
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into a1 (if present), argumentsList into a0 (if present),
// new.target into a3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label no_arg;
Register scratch = t0;
__ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
__ mov(a2, a1);
// Lsa() cannot be used hare as scratch value used later.
__ sll(scratch, a0, kPointerSizeLog2);
__ Addu(a0, sp, Operand(scratch));
__ sw(a2, MemOperand(a0)); // receiver
__ Subu(a0, a0, Operand(kPointerSize));
__ Branch(&no_arg, lt, a0, Operand(sp));
__ lw(a1, MemOperand(a0)); // target
__ mov(a3, a1); // new.target defaults to target
__ Subu(a0, a0, Operand(kPointerSize));
__ Branch(&no_arg, lt, a0, Operand(sp));
__ lw(a2, MemOperand(a0)); // argumentsList
__ Subu(a0, a0, Operand(kPointerSize));
__ Branch(&no_arg, lt, a0, Operand(sp));
__ lw(a3, MemOperand(a0)); // new.target
__ bind(&no_arg);
__ Addu(sp, sp, Operand(scratch));
}
// ----------- S t a t e -------------
// -- a2 : argumentsList
// -- a3 : new.target
// -- a1 : target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(masm->isolate()->builtins()->ConstructWithArrayLike(),
RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ sll(a0, a0, kSmiTagSize);
__ li(t0, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit());
__ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ lw(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
__ mov(sp, fp);
__ MultiPop(fp.bit() | ra.bit());
__ Lsa(sp, sp, a1, kPointerSizeLog2 - kSmiTagSize);
// Adjust for the receiver.
__ Addu(sp, sp, Operand(kPointerSize));
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- a1 : target
// -- a0 : number of parameters on the stack (not including the receiver)
// -- a2 : arguments list (a FixedArray)
// -- t0 : len (number of elements to push from args)
// -- a3 : new.target (for [[Construct]])
// -----------------------------------
__ AssertFixedArray(a2);
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(t1, Heap::kRealStackLimitRootIndex);
// Make ip the space we have left. The stack might already be overflowed
// here which will cause ip to become negative.
__ Subu(t1, sp, t1);
// Check if the arguments will overflow the stack.
__ sll(at, t0, kPointerSizeLog2);
__ Branch(&done, gt, t1, Operand(at)); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// Push arguments onto the stack (thisArgument is already on the stack).
{
__ mov(t2, zero_reg);
Label done, push, loop;
__ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
__ bind(&loop);
__ Branch(&done, eq, t2, Operand(t0));
__ Lsa(at, a2, t2, kPointerSizeLog2);
__ lw(at, FieldMemOperand(at, FixedArray::kHeaderSize));
__ Branch(&push, ne, t1, Operand(at));
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ bind(&push);
__ Push(at);
__ Addu(t2, t2, Operand(1));
__ Branch(&loop);
__ bind(&done);
__ Addu(a0, a0, t2);
}
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a3 : the new.target (for [[Construct]] calls)
// -- a1 : the target to call (can be any Object)
// -- a2 : start index (to support rest parameters)
// -----------------------------------
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ lw(t3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ lw(t2, MemOperand(t3, CommonFrameConstants::kContextOrFrameTypeOffset));
__ Branch(&arguments_adaptor, eq, t2,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
{
__ lw(t2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ lw(t2, FieldMemOperand(t2, JSFunction::kSharedFunctionInfoOffset));
__ lw(t2,
FieldMemOperand(t2, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(t3, fp);
}
__ Branch(&arguments_done);
__ bind(&arguments_adaptor);
{
// Just get the length from the ArgumentsAdaptorFrame.
__ lw(t2, MemOperand(t3, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(t2);
}
__ bind(&arguments_done);
Label stack_done, stack_overflow;
__ Subu(t2, t2, a2);
__ Branch(&stack_done, le, t2, Operand(zero_reg));
{
// Check for stack overflow.
Generate_StackOverflowCheck(masm, t2, t0, t1, &stack_overflow);
// Forward the arguments from the caller frame.
{
Label loop;
__ Addu(a0, a0, t2);
__ bind(&loop);
{
__ Lsa(at, t3, t2, kPointerSizeLog2);
__ lw(at, MemOperand(at, 1 * kPointerSize));
__ push(at);
__ Subu(t2, t2, Operand(1));
__ Branch(&loop, ne, t2, Operand(zero_reg));
}
}
}
__ Branch(&stack_done);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_done);
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(a1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
__ And(at, a3, Operand(SharedFunctionInfo::kClassConstructorMask));
__ Branch(&class_constructor, ne, at, Operand(zero_reg));
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
__ And(at, a3,
Operand(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ Branch(&done_convert, ne, at, Operand(zero_reg));
{
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(a3);
} else {
Label convert_to_object, convert_receiver;
__ Lsa(at, sp, a0, kPointerSizeLog2);
__ lw(a3, MemOperand(at));
__ JumpIfSmi(a3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ GetObjectType(a3, t0, t0);
__ Branch(&done_convert, hs, t0, Operand(FIRST_JS_RECEIVER_TYPE));
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(a3);
}
__ Branch(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ sll(a0, a0, kSmiTagSize); // Smi tagged.
__ Push(a0, a1);
__ mov(a0, a3);
__ Push(cp);
__ Call(masm->isolate()->builtins()->ToObject(),
RelocInfo::CODE_TARGET);
__ Pop(cp);
__ mov(a3, v0);
__ Pop(a0, a1);
__ sra(a0, a0, kSmiTagSize); // Un-tag.
}
__ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ Lsa(at, sp, a0, kPointerSizeLog2);
__ sw(a3, MemOperand(at));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ lw(a2,
FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(a0);
ParameterCount expected(a2);
__ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(a1);
// Patch the receiver to [[BoundThis]].
{
__ lw(at, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset));
__ Lsa(t0, sp, a0, kPointerSizeLog2);
__ sw(at, MemOperand(t0));
}
// Load [[BoundArguments]] into a2 and length of that into t0.
__ lw(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
__ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ SmiUntag(t0);
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a2 : the [[BoundArguments]] (implemented as FixedArray)
// -- t0 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ sll(t1, t0, kPointerSizeLog2);
__ Subu(sp, sp, Operand(t1));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
__ LoadRoot(at, Heap::kRealStackLimitRootIndex);
__ Branch(&done, gt, sp, Operand(at)); // Signed comparison.
// Restore the stack pointer.
__ Addu(sp, sp, Operand(t1));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Relocate arguments down the stack.
{
Label loop, done_loop;
__ mov(t1, zero_reg);
__ bind(&loop);
__ Branch(&done_loop, gt, t1, Operand(a0));
__ Lsa(t2, sp, t0, kPointerSizeLog2);
__ lw(at, MemOperand(t2));
__ Lsa(t2, sp, t1, kPointerSizeLog2);
__ sw(at, MemOperand(t2));
__ Addu(t0, t0, Operand(1));
__ Addu(t1, t1, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop, done_loop;
__ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ SmiUntag(t0);
__ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ Subu(t0, t0, Operand(1));
__ Branch(&done_loop, lt, t0, Operand(zero_reg));
__ Lsa(t1, a2, t0, kPointerSizeLog2);
__ lw(at, MemOperand(t1));
__ Lsa(t1, sp, a0, kPointerSizeLog2);
__ sw(at, MemOperand(t1));
__ Addu(a0, a0, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Call the [[BoundTargetFunction]] via the Call builtin.
__ lw(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ li(at, Operand(ExternalReference(Builtins::kCall_ReceiverIsAny,
masm->isolate())));
__ lw(at, MemOperand(at));
__ Jump(at, Code::kHeaderSize - kHeapObjectTag);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(a1, &non_callable);
__ bind(&non_smi);
__ GetObjectType(a1, t1, t2);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
__ Jump(masm->isolate()->builtins()->CallBoundFunction(),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
// Check if target has a [[Call]] internal method.
__ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t1, t1, Operand(1 << Map::kIsCallable));
__ Branch(&non_callable, eq, t1, Operand(zero_reg));
// Check if target is a proxy and call CallProxy external builtin
__ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE));
__ li(t2, Operand(ExternalReference(Builtins::kCallProxy, masm->isolate())));
__ lw(t2, MemOperand(t2));
__ Jump(t2, Operand(Code::kHeaderSize - kHeapObjectTag));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ Lsa(at, sp, a0, kPointerSizeLog2);
__ sw(a1, MemOperand(at));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (checked to be a JSFunction)
// -- a3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertFunction(a1);
// Calling convention for function specific ConstructStubs require
// a2 to contain either an AllocationSite or undefined.
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kConstructStubOffset));
__ Jump(at, t0, Code::kHeaderSize - kHeapObjectTag);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertBoundFunction(a1);
// Load [[BoundArguments]] into a2 and length of that into t0.
__ lw(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
__ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ SmiUntag(t0);
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a2 : the [[BoundArguments]] (implemented as FixedArray)
// -- a3 : the new target (checked to be a constructor)
// -- t0 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ sll(t1, t0, kPointerSizeLog2);
__ Subu(sp, sp, Operand(t1));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
__ LoadRoot(at, Heap::kRealStackLimitRootIndex);
__ Branch(&done, gt, sp, Operand(at)); // Signed comparison.
// Restore the stack pointer.
__ Addu(sp, sp, Operand(t1));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Relocate arguments down the stack.
{
Label loop, done_loop;
__ mov(t1, zero_reg);
__ bind(&loop);
__ Branch(&done_loop, ge, t1, Operand(a0));
__ Lsa(t2, sp, t0, kPointerSizeLog2);
__ lw(at, MemOperand(t2));
__ Lsa(t2, sp, t1, kPointerSizeLog2);
__ sw(at, MemOperand(t2));
__ Addu(t0, t0, Operand(1));
__ Addu(t1, t1, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop, done_loop;
__ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ SmiUntag(t0);
__ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ Subu(t0, t0, Operand(1));
__ Branch(&done_loop, lt, t0, Operand(zero_reg));
__ Lsa(t1, a2, t0, kPointerSizeLog2);
__ lw(at, MemOperand(t1));
__ Lsa(t1, sp, a0, kPointerSizeLog2);
__ sw(at, MemOperand(t1));
__ Addu(a0, a0, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label skip_load;
__ Branch(&skip_load, ne, a1, Operand(a3));
__ lw(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&skip_load);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ lw(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ li(at, Operand(ExternalReference(Builtins::kConstruct, masm->isolate())));
__ lw(at, MemOperand(at));
__ Jump(at, Code::kHeaderSize - kHeapObjectTag);
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (checked to be a JSProxy)
// -- a3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Call into the Runtime for Proxy [[Construct]].
__ Push(a1, a3);
// Include the pushed new_target, constructor and the receiver.
__ Addu(a0, a0, Operand(3));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyConstruct, masm->isolate()));
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (can be any Object)
// -- a3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(a1, &non_constructor);
// Dispatch based on instance type.
__ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
__ lbu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset));
__ Jump(masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
// Check if target has a [[Construct]] internal method.
__ lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t3, t3, Operand(1 << Map::kIsConstructor));
__ Branch(&non_constructor, eq, t3, Operand(zero_reg));
// Only dispatch to bound functions after checking whether they are
// constructors.
__ Jump(masm->isolate()->builtins()->ConstructBoundFunction(),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
// Only dispatch to proxies after checking whether they are constructors.
__ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET,
eq, t2, Operand(JS_PROXY_TYPE));
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ Lsa(at, sp, a0, kPointerSizeLog2);
__ sw(a1, MemOperand(at));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : requested object size (untagged)
// -- ra : return address
// -----------------------------------
__ SmiTag(a0);
__ Push(a0);
__ Move(cp, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInNewSpace);
}
// static
void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : requested object size (untagged)
// -- ra : return address
// -----------------------------------
__ SmiTag(a0);
__ Move(a1, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
__ Push(a0, a1);
__ Move(cp, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInTargetSpace);
}
// static
void Builtins::Generate_Abort(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : message_id as Smi
// -- ra : return address
// -----------------------------------
__ Push(a0);
__ Move(cp, Smi::kZero);
__ TailCallRuntime(Runtime::kAbort);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// State setup as expected by MacroAssembler::InvokePrologue.
// ----------- S t a t e -------------
// -- a0: actual arguments count
// -- a1: function (passed through to callee)
// -- a2: expected arguments count
// -- a3: new target (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Label enough, too_few;
__ Branch(&dont_adapt_arguments, eq, a2,
Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
// We use Uless as the number of argument should always be greater than 0.
__ Branch(&too_few, Uless, a0, Operand(a2));
{ // Enough parameters: actual >= expected.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, a2, t1, at, &stack_overflow);
// Calculate copy start address into a0 and copy end address into t1.
__ Lsa(a0, fp, a0, kPointerSizeLog2 - kSmiTagSize);
// Adjust for return address and receiver.
__ Addu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address.
__ sll(t1, a2, kPointerSizeLog2);
__ subu(t1, a0, t1);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
// t1: copy end address
Label copy;
__ bind(&copy);
__ lw(t0, MemOperand(a0));
__ push(t0);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(t1));
__ addiu(a0, a0, -kPointerSize); // In delay slot.
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, a2, t1, at, &stack_overflow);
// Calculate copy start address into a0 and copy end address into t3.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
__ Lsa(a0, fp, a0, kPointerSizeLog2 - kSmiTagSize);
// Adjust for return address and receiver.
__ Addu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address. Also adjust for return address.
__ Addu(t3, fp, kPointerSize);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
// t3: copy end address
Label copy;
__ bind(&copy);
__ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver.
__ Subu(sp, sp, kPointerSize);
__ Subu(a0, a0, kPointerSize);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(t3));
__ sw(t0, MemOperand(sp)); // In the delay slot.
// Fill the remaining expected arguments with undefined.
// a1: function
// a2: expected number of arguments
// a3: new target (passed through to callee)
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ sll(t2, a2, kPointerSizeLog2);
__ Subu(t1, fp, Operand(t2));
// Adjust for frame.
__ Subu(t1, t1, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
2 * kPointerSize));
Label fill;
__ bind(&fill);
__ Subu(sp, sp, kPointerSize);
__ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(t1));
__ sw(t0, MemOperand(sp));
}
// Call the entry point.
__ bind(&invoke);
__ mov(a0, a2);
// a0 : expected number of arguments
// a1 : function (passed through to callee)
// a3 : new target (passed through to callee)
__ lw(t0, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ Call(t0);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// -------------------------------------------
// Don't adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ lw(t0, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ Jump(t0);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ break_(0xCC);
}
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
const RegList gp_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
const RegList fp_regs = f2.bit() | f4.bit() | f6.bit() | f8.bit() |
f10.bit() | f12.bit() | f14.bit();
__ MultiPush(gp_regs);
__ MultiPushFPU(fp_regs);
__ Move(kContextRegister, Smi::kZero);
__ CallRuntime(Runtime::kWasmCompileLazy);
// Restore registers.
__ MultiPopFPU(fp_regs);
__ MultiPop(gp_regs);
}
// Now jump to the instructions of the returned code object.
__ Jump(at, v0, Code::kHeaderSize - kHeapObjectTag);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS