blob: bedfcfc59c3b2104114849dde0a44cc7c01cbe08 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/code-factory.h"
#include "src/codegen.h"
#include "src/counters.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
// ----------- S t a t e -------------
// -- rax : number of arguments excluding receiver
// -- rdi : target
// -- rdx : new.target
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -- ...
// -- rsp[8 * argc] : first argument
// -- rsp[8 * (argc + 1)] : receiver
// -----------------------------------
__ AssertFunction(rdi);
// The logic contained here is mirrored for TurboFan inlining in
// JSTypedLowering::ReduceJSCall{Function,Construct}. Keep these in sync.
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// JumpToExternalReference expects rax to contain the number of arguments
// including the receiver and the extra arguments.
const int num_extra_args = 3;
__ addp(rax, Immediate(num_extra_args + 1));
// Unconditionally insert argc, target and new target as extra arguments. They
// will be used by stack frame iterators when constructing the stack trace.
__ PopReturnAddressTo(kScratchRegister);
__ Integer32ToSmi(rax, rax);
__ Push(rax);
__ SmiToInteger32(rax, rax);
__ Push(rdi);
__ Push(rdx);
__ PushReturnAddressFrom(kScratchRegister);
__ JumpToExternalReference(ExternalReference(address, masm->isolate()),
exit_frame_type == BUILTIN_EXIT);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ movp(kScratchRegister,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(kScratchRegister,
FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset));
__ leap(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize));
__ jmp(kScratchRegister);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee)
// -- rdx : new target (preserved for callee)
// -- rdi : target function (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the number of arguments to the callee.
__ Integer32ToSmi(rax, rax);
__ Push(rax);
// Push a copy of the target function and the new target.
__ Push(rdi);
__ Push(rdx);
// Function is also the parameter to the runtime call.
__ Push(rdi);
__ CallRuntime(function_id, 1);
__ movp(rbx, rax);
// Restore target function and new target.
__ Pop(rdx);
__ Pop(rdi);
__ Pop(rax);
__ SmiToInteger32(rax, rax);
}
__ leap(rbx, FieldOperand(rbx, Code::kHeaderSize));
__ jmp(rbx);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax: number of arguments
// -- rdi: constructor function
// -- rdx: new target
// -- rsi: context
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ Integer32ToSmi(rcx, rax);
__ Push(rsi);
__ Push(rcx);
// The receiver for the builtin/api call.
__ PushRoot(Heap::kTheHoleValueRootIndex);
// Set up pointer to last argument.
__ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movp(rcx, rax);
// ----------- S t a t e -------------
// -- rax: number of arguments (untagged)
// -- rdi: constructor function
// -- rdx: new target
// -- rbx: pointer to last argument
// -- rcx: counter
// -- sp[0*kPointerSize]: the hole (receiver)
// -- sp[1*kPointerSize]: number of arguments (tagged)
// -- sp[2*kPointerSize]: context
// -----------------------------------
__ jmp(&entry);
__ bind(&loop);
__ Push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decp(rcx);
__ j(greater_equal, &loop);
// Call the function.
// rax: number of arguments (untagged)
// rdi: constructor function
// rdx: new target
ParameterCount actual(rax);
__ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// Restore context from the frame.
__ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ movp(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
__ ret(0);
}
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Generate_JSConstructStubGeneric(MacroAssembler* masm,
bool restrict_constructor_return) {
// ----------- S t a t e -------------
// -- rax: number of arguments (untagged)
// -- rdi: constructor function
// -- rdx: new target
// -- rsi: context
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ Integer32ToSmi(rcx, rax);
__ Push(rsi);
__ Push(rcx);
__ Push(rdi);
__ Push(rdx);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: new target
// -- rdi and sp[1*kPointerSize]: constructor function
// -- sp[2*kPointerSize]: argument count
// -- sp[3*kPointerSize]: context
// -----------------------------------
__ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testl(FieldOperand(rbx, SharedFunctionInfo::kCompilerHintsOffset),
Immediate(SharedFunctionInfo::kDerivedConstructorMask));
__ j(not_zero, &not_create_implicit_receiver);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
__ Call(masm->isolate()->builtins()->FastNewObject(),
RelocInfo::CODE_TARGET);
__ jmp(&post_instantiation_deopt_entry, Label::kNear);
// Else: use TheHoleValue as receiver for constructor call
__ bind(&not_create_implicit_receiver);
__ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
// ----------- S t a t e -------------
// -- rax implicit receiver
// -- Slot 3 / sp[0*kPointerSize] new target
// -- Slot 2 / sp[1*kPointerSize] constructor function
// -- Slot 1 / sp[2*kPointerSize] number of arguments (tagged)
// -- Slot 0 / sp[3*kPointerSize] context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(rdx);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(rax);
__ Push(rax);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize] implicit receiver
// -- sp[1*kPointerSize] implicit receiver
// -- sp[2*kPointerSize] constructor function
// -- sp[3*kPointerSize] number of arguments (tagged)
// -- sp[4*kPointerSize] context
// -----------------------------------
// Restore constructor function and argument count.
__ movp(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset));
__ SmiToInteger32(rax,
Operand(rbp, ConstructFrameConstants::kLengthOffset));
// Set up pointer to last argument.
__ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movp(rcx, rax);
// ----------- S t a t e -------------
// -- rax: number of arguments (untagged)
// -- rdx: new target
// -- rbx: pointer to last argument
// -- rcx: counter (tagged)
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- rdi and sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments (tagged)
// -- sp[4*kPointerSize]: context
// -----------------------------------
__ jmp(&entry, Label::kNear);
__ bind(&loop);
__ Push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decp(rcx);
__ j(greater_equal, &loop);
// Call the function.
ParameterCount actual(rax);
__ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// ----------- S t a t e -------------
// -- rax constructor result
// -- sp[0*kPointerSize] implicit receiver
// -- sp[1*kPointerSize] constructor function
// -- sp[2*kPointerSize] number of arguments
// -- sp[3*kPointerSize] context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore context from the frame.
__ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, other_result, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfRoot(rax, Heap::kUndefinedValueRootIndex, &use_receiver,
Label::kNear);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(rax, &other_result, Label::kNear);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
__ j(above_equal, &leave_frame, Label::kNear);
// The result is now neither undefined nor an object.
__ bind(&other_result);
__ movp(rbx, Operand(rbp, ConstructFrameConstants::kConstructorOffset));
__ movp(rbx, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset));
__ testl(FieldOperand(rbx, SharedFunctionInfo::kCompilerHintsOffset),
Immediate(SharedFunctionInfo::kClassConstructorMask));
if (restrict_constructor_return) {
// Throw if constructor function is a class constructor
__ j(Condition::zero, &use_receiver, Label::kNear);
} else {
__ j(not_zero, &use_receiver, Label::kNear);
__ CallRuntime(
Runtime::kIncrementUseCounterConstructorReturnNonUndefinedPrimitive);
__ jmp(&use_receiver, Label::kNear);
}
__ bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ movp(rax, Operand(rsp, 0 * kPointerSize));
__ JumpIfRoot(rax, Heap::kTheHoleValueRootIndex, &do_throw);
__ bind(&leave_frame);
// Restore the arguments count.
__ movp(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
__ ret(0);
}
} // namespace
void Builtins::Generate_JSConstructStubGenericRestrictedReturn(
MacroAssembler* masm) {
return Generate_JSConstructStubGeneric(masm, true);
}
void Builtins::Generate_JSConstructStubGenericUnrestrictedReturn(
MacroAssembler* masm) {
return Generate_JSConstructStubGeneric(masm, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
enum IsTagged { kRaxIsSmiTagged, kRaxIsUntaggedInt };
// Clobbers rcx, r11, kScratchRegister; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm,
IsTagged rax_is_tagged) {
// rax : the number of items to be pushed to the stack
//
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movp(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subp(rcx, kScratchRegister);
// Make r11 the space we need for the array when it is unrolled onto the
// stack.
if (rax_is_tagged == kRaxIsSmiTagged) {
__ PositiveSmiTimesPowerOfTwoToInteger64(r11, rax, kPointerSizeLog2);
} else {
DCHECK(rax_is_tagged == kRaxIsUntaggedInt);
__ movp(r11, rax);
__ shlq(r11, Immediate(kPointerSizeLog2));
}
// Check if the arguments will overflow the stack.
__ cmpp(rcx, r11);
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Expects five C++ function parameters.
// - Object* new_target
// - JSFunction* function
// - Object* receiver
// - int argc
// - Object*** argv
// (see Handle::Invoke in execution.cc).
// Open a C++ scope for the FrameScope.
{
// Platform specific argument handling. After this, the stack contains
// an internal frame and the pushed function and receiver, and
// register rax and rbx holds the argument count and argument array,
// while rdi holds the function pointer, rsi the context, and rdx the
// new.target.
#ifdef _WIN64
// MSVC parameters in:
// rcx : new_target
// rdx : function
// r8 : receiver
// r9 : argc
// [rsp+0x20] : argv
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(IsolateAddressId::kContextAddress,
masm->isolate());
__ movp(rsi, masm->ExternalOperand(context_address));
// Push the function and the receiver onto the stack.
__ Push(rdx);
__ Push(r8);
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, r9);
// Load the previous frame pointer to access C argument on stack
__ movp(kScratchRegister, Operand(rbp, 0));
__ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
// Load the function pointer into rdi.
__ movp(rdi, rdx);
// Load the new.target into rdx.
__ movp(rdx, rcx);
#else // _WIN64
// GCC parameters in:
// rdi : new_target
// rsi : function
// rdx : receiver
// rcx : argc
// r8 : argv
__ movp(r11, rdi);
__ movp(rdi, rsi);
// rdi : function
// r11 : new_target
// Clear the context before we push it when entering the internal frame.
__ Set(rsi, 0);
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(IsolateAddressId::kContextAddress,
masm->isolate());
__ movp(rsi, masm->ExternalOperand(context_address));
// Push the function and receiver onto the stack.
__ Push(rdi);
__ Push(rdx);
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, rcx);
__ movp(rbx, r8);
// Load the new.target into rdx.
__ movp(rdx, r11);
#endif // _WIN64
// Current stack contents:
// [rsp + 2 * kPointerSize ... ] : Internal frame
// [rsp + kPointerSize] : function
// [rsp] : receiver
// Current register contents:
// rax : argc
// rbx : argv
// rsi : context
// rdi : function
// rdx : new.target
// Check if we have enough stack space to push all arguments.
// Expects argument count in rax. Clobbers rcx, r11.
Generate_CheckStackOverflow(masm, kRaxIsUntaggedInt);
// Copy arguments to the stack in a loop.
// Register rbx points to array of pointers to handle locations.
// Push the values of these handles.
Label loop, entry;
__ Set(rcx, 0); // Set loop variable to 0.
__ jmp(&entry, Label::kNear);
__ bind(&loop);
__ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ Push(Operand(kScratchRegister, 0)); // dereference handle
__ addp(rcx, Immediate(1));
__ bind(&entry);
__ cmpp(rcx, rax);
__ j(not_equal, &loop);
// Invoke the builtin code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the internal frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
}
// TODO(X64): Is argument correct? Is there a receiver to remove?
__ ret(1 * kPointerSize); // Remove receiver.
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the value to pass to the generator
// -- rbx : the JSGeneratorObject to resume
// -- rdx : the resume mode (tagged)
// -- rsp[0] : return address
// -----------------------------------
__ AssertGeneratorObject(rbx);
// Store input value into generator object.
__ movp(FieldOperand(rbx, JSGeneratorObject::kInputOrDebugPosOffset), rax);
__ RecordWriteField(rbx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx,
kDontSaveFPRegs);
// Store resume mode into generator object.
__ movp(FieldOperand(rbx, JSGeneratorObject::kResumeModeOffset), rdx);
// Load suspended function and context.
__ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
Operand debug_hook_operand = masm->ExternalOperand(debug_hook);
__ cmpb(debug_hook_operand, Immediate(0));
__ j(not_equal, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
Operand debug_suspended_generator_operand =
masm->ExternalOperand(debug_suspended_generator);
__ cmpp(rbx, debug_suspended_generator_operand);
__ j(equal, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Pop return address.
__ PopReturnAddressTo(rax);
// Push receiver.
__ Push(FieldOperand(rbx, JSGeneratorObject::kReceiverOffset));
// ----------- S t a t e -------------
// -- rax : return address
// -- rbx : the JSGeneratorObject to resume
// -- rdx : the resume mode (tagged)
// -- rdi : generator function
// -- rsi : generator context
// -- rsp[0] : generator receiver
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movl(rcx,
FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset));
{
Label done_loop, loop;
__ bind(&loop);
__ subl(rcx, Immediate(1));
__ j(carry, &done_loop, Label::kNear);
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ jmp(&loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset));
__ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx);
__ Assert(equal, kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ PushReturnAddressFrom(rax);
__ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movsxlq(rax, FieldOperand(
rax, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ movp(rdx, rbx);
__ jmp(FieldOperand(rdi, JSFunction::kCodeEntryOffset));
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rbx);
__ Push(rdx);
__ Push(rdi);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(rdx);
__ Pop(rbx);
__ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rbx);
__ Push(rdx);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(rdx);
__ Pop(rbx);
__ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
}
static void ReplaceClosureEntryWithOptimizedCode(
MacroAssembler* masm, Register optimized_code_entry, Register closure,
Register scratch1, Register scratch2, Register scratch3) {
Register native_context = scratch1;
// Store the optimized code in the closure.
__ leap(optimized_code_entry,
FieldOperand(optimized_code_entry, Code::kHeaderSize));
__ movp(FieldOperand(closure, JSFunction::kCodeEntryOffset),
optimized_code_entry);
__ RecordWriteCodeEntryField(closure, optimized_code_entry, scratch2);
// Link the closure into the optimized function list.
__ movp(native_context, NativeContextOperand());
__ movp(scratch3,
ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
__ movp(FieldOperand(closure, JSFunction::kNextFunctionLinkOffset), scratch3);
__ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, scratch3,
scratch2, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
const int function_list_offset =
Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
__ movp(ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST),
closure);
// Save closure before the write barrier.
__ movp(scratch3, closure);
__ RecordWriteContextSlot(native_context, function_list_offset, closure,
scratch2, kDontSaveFPRegs);
__ movp(closure, scratch3);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
Register args_count = scratch1;
Register return_pc = scratch2;
// Get the arguments + receiver count.
__ movp(args_count,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ movl(args_count,
FieldOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ leave();
// Drop receiver + arguments.
__ PopReturnAddressTo(return_pc);
__ addp(rsp, args_count);
__ PushReturnAddressFrom(return_pc);
}
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register smi_entry,
OptimizationMarker marker,
Runtime::FunctionId function_id) {
Label no_match;
__ SmiCompare(smi_entry, Smi::FromEnum(marker));
__ j(not_equal, &no_match, Label::kNear);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
Register feedback_vector,
Register scratch1, Register scratch2,
Register scratch3) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee if needed, and caller)
// -- rdx : new target (preserved for callee if needed, and caller)
// -- rdi : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -----------------------------------
DCHECK(!AreAliased(feedback_vector, rax, rdx, rdi, scratch1, scratch2,
scratch3));
Label optimized_code_slot_is_cell, fallthrough;
Register closure = rdi;
Register optimized_code_entry = scratch1;
const int kOptimizedCodeCellOffset =
FeedbackVector::kOptimizedCodeIndex * kPointerSize +
FeedbackVector::kHeaderSize;
__ movp(optimized_code_entry,
FieldOperand(feedback_vector, kOptimizedCodeCellOffset));
// Check if the code entry is a Smi. If yes, we interpret it as an
// optimisation marker. Otherwise, interpret is as a weak cell to a code
// object.
__ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_cell);
{
// Optimized code slot is a Smi optimization marker.
// Fall through if no optimization trigger.
__ SmiCompare(optimized_code_entry,
Smi::FromEnum(OptimizationMarker::kNone));
__ j(equal, &fallthrough);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(
masm, optimized_code_entry,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
{
// Otherwise, the marker is InOptimizationQueue.
if (FLAG_debug_code) {
__ SmiCompare(optimized_code_entry,
Smi::FromEnum(OptimizationMarker::kInOptimizationQueue));
__ Assert(equal, kExpectedOptimizationSentinel);
}
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &fallthrough);
GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
}
}
{
// Optimized code slot is a WeakCell.
__ bind(&optimized_code_slot_is_cell);
__ movp(optimized_code_entry,
FieldOperand(optimized_code_entry, WeakCell::kValueOffset));
__ JumpIfSmi(optimized_code_entry, &fallthrough);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
Label found_deoptimized_code;
__ testl(
FieldOperand(optimized_code_entry, Code::kKindSpecificFlags1Offset),
Immediate(1 << Code::kMarkedForDeoptimizationBit));
__ j(not_zero, &found_deoptimized_code);
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
// The feedback vector is no longer used, so re-use it as a scratch
// register.
ReplaceClosureEntryWithOptimizedCode(masm, optimized_code_entry, closure,
scratch2, scratch3, feedback_vector);
__ jmp(optimized_code_entry);
// Optimized code slot contains deoptimized code, evict it and re-enter the
// closure's code.
__ bind(&found_deoptimized_code);
GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
// Fall-through if the optimized code cell is clear and there is no
// optimization marker.
__ bind(&fallthrough);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o rdi: the JS function object being called
// o rdx: the new target
// o rsi: our context
// o rbp: the caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
Register closure = rdi;
Register feedback_vector = rbx;
// Load the feedback vector from the closure.
__ movp(feedback_vector,
FieldOperand(closure, JSFunction::kFeedbackVectorOffset));
__ movp(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
// Read off the optimized code slot in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, rcx, r14, r15);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ pushq(rbp); // Caller's frame pointer.
__ movp(rbp, rsp);
__ Push(rsi); // Callee's context.
__ Push(rdi); // Callee's JS function.
__ Push(rdx); // Callee's new target.
// Get the bytecode array from the function object (or from the DebugInfo if
// it is present) and load it into kInterpreterBytecodeArrayRegister.
Label maybe_load_debug_bytecode_array, bytecode_array_loaded;
__ movp(rax, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ movp(kInterpreterBytecodeArrayRegister,
FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset));
__ JumpIfNotSmi(FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset),
&maybe_load_debug_bytecode_array);
__ bind(&bytecode_array_loaded);
// Check whether we should continue to use the interpreter.
// TODO(rmcilroy) Remove self healing once liveedit only has to deal with
// Ignition bytecode.
Label switch_to_different_code_kind;
__ Move(rcx, masm->CodeObject()); // Self-reference to this code.
__ cmpp(rcx, FieldOperand(rax, SharedFunctionInfo::kCodeOffset));
__ j(not_equal, &switch_to_different_code_kind);
// Increment invocation count for the function.
__ SmiAddConstant(
FieldOperand(feedback_vector,
FeedbackVector::kInvocationCountIndex * kPointerSize +
FeedbackVector::kHeaderSize),
Smi::FromInt(1));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
rax);
__ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age.
__ movb(FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset),
Immediate(BytecodeArray::kNoAgeBytecodeAge));
// Load initial bytecode offset.
__ movp(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode offset.
__ Push(kInterpreterBytecodeArrayRegister);
__ Integer32ToSmi(rcx, kInterpreterBytecodeOffsetRegister);
__ Push(rcx);
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ movp(rdx, rsp);
__ subp(rdx, rcx);
__ CompareRoot(rdx, Heap::kRealStackLimitRootIndex);
__ j(above_equal, &ok, Label::kNear);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(always, &loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ Push(rdx);
// Continue loop if not done.
__ bind(&loop_check);
__ subp(rcx, Immediate(kPointerSize));
__ j(greater_equal, &loop_header, Label::kNear);
}
// Load accumulator and dispatch table into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Dispatch to the first bytecode handler for the function.
__ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx,
times_pointer_size, 0));
__ call(rbx);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// The return value is in rax.
LeaveInterpreterFrame(masm, rbx, rcx);
__ ret(0);
// Load debug copy of the bytecode array if it exists.
// kInterpreterBytecodeArrayRegister is already loaded with
// SharedFunctionInfo::kFunctionDataOffset.
__ bind(&maybe_load_debug_bytecode_array);
__ movp(rcx, FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset));
__ SmiToInteger32(kScratchRegister,
FieldOperand(rcx, DebugInfo::kFlagsOffset));
__ testl(kScratchRegister, Immediate(DebugInfo::kHasBreakInfo));
__ j(zero, &bytecode_array_loaded);
__ movp(kInterpreterBytecodeArrayRegister,
FieldOperand(rcx, DebugInfo::kDebugBytecodeArrayOffset));
__ jmp(&bytecode_array_loaded);
// If the shared code is no longer this entry trampoline, then the underlying
// function has been switched to a different kind of code and we heal the
// closure by switching the code entry field over to the new code as well.
__ bind(&switch_to_different_code_kind);
__ leave(); // Leave the frame so we can tail call.
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kCodeOffset));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ movp(FieldOperand(rdi, JSFunction::kCodeEntryOffset), rcx);
__ RecordWriteCodeEntryField(rdi, rcx, r15);
__ jmp(rcx);
}
static void Generate_StackOverflowCheck(
MacroAssembler* masm, Register num_args, Register scratch,
Label* stack_overflow,
Label::Distance stack_overflow_distance = Label::kFar) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movp(scratch, rsp);
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
__ subp(scratch, kScratchRegister);
__ sarp(scratch, Immediate(kPointerSizeLog2));
// Check if the arguments will overflow the stack.
__ cmpp(scratch, num_args);
// Signed comparison.
__ j(less_equal, stack_overflow, stack_overflow_distance);
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args,
Register start_address,
Register scratch) {
// Find the address of the last argument.
__ Move(scratch, num_args);
__ shlp(scratch, Immediate(kPointerSizeLog2));
__ negp(scratch);
__ addp(scratch, start_address);
// Push the arguments.
Label loop_header, loop_check;
__ j(always, &loop_check);
__ bind(&loop_header);
__ Push(Operand(start_address, 0));
__ subp(start_address, Immediate(kPointerSize));
__ bind(&loop_check);
__ cmpp(start_address, scratch);
__ j(greater, &loop_header, Label::kNear);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rbx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- rdi : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
// Number of values to be pushed.
__ Move(rcx, rax);
__ addp(rcx, Immediate(1)); // Add one for receiver.
// Add a stack check before pushing arguments.
Generate_StackOverflowCheck(masm, rcx, rdx, &stack_overflow);
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ subp(rcx, Immediate(1)); // Subtract one for receiver.
}
// rbx and rdx will be modified.
Generate_InterpreterPushArgs(masm, rcx, rbx, rdx);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(rbx); // Pass the spread in a register
__ subp(rax, Immediate(1)); // Subtract one for spread
}
// Call the target.
__ PushReturnAddressFrom(kScratchRegister); // Re-push return address.
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ Jump(masm->isolate()->builtins()->CallFunction(receiver_mode),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(masm->isolate()->builtins()->CallWithSpread(),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(receiver_mode),
RelocInfo::CODE_TARGET);
}
// Throw stack overflow exception.
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -- rbx : the allocation site feedback if available, undefined otherwise
// -- rcx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
Label stack_overflow;
// Add a stack check before pushing arguments.
Generate_StackOverflowCheck(masm, rax, r8, &stack_overflow);
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
// Push slot for the receiver to be constructed.
__ Push(Immediate(0));
// rcx and r8 will be modified.
Generate_InterpreterPushArgs(masm, rax, rcx, r8);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(rbx); // Pass the spread in a register
__ subp(rax, Immediate(1)); // Subtract one for spread
// Push return address in preparation for the tail-call.
__ PushReturnAddressFrom(kScratchRegister);
} else {
__ PushReturnAddressFrom(kScratchRegister);
__ AssertUndefinedOrAllocationSite(rbx);
}
if (mode == InterpreterPushArgsMode::kJSFunction) {
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ AssertFunction(rdi);
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
// Jump to the constructor function (rax, rbx, rdx passed on).
__ jmp(rcx);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor (rax, rdx, rdi passed on).
__ Jump(masm->isolate()->builtins()->ConstructWithSpread(),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor (rax, rdx, rdi passed on).
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
// Throw stack overflow exception.
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructArray(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the target to call checked to be Array function.
// -- rbx : the allocation site feedback
// -- rcx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
Label stack_overflow;
// Number of values to be pushed.
__ Move(r8, rax);
// Add a stack check before pushing arguments.
Generate_StackOverflowCheck(masm, r8, rdi, &stack_overflow);
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
// Push slot for the receiver to be constructed.
__ Push(Immediate(0));
// rcx and rdi will be modified.
Generate_InterpreterPushArgs(masm, r8, rcx, rdi);
// Push return address in preparation for the tail-call.
__ PushReturnAddressFrom(kScratchRegister);
// Array constructor expects constructor in rdi. It is same as rdx here.
__ Move(rdi, rdx);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
// Throw stack overflow exception.
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
__ Move(rbx, masm->isolate()->builtins()->InterpreterEntryTrampoline());
__ addp(rbx, Immediate(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
__ Push(rbx);
// Initialize dispatch table register.
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ movp(kInterpreterBytecodeArrayRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
rbx);
__ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ movp(kInterpreterBytecodeOffsetRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiToInteger32(kInterpreterBytecodeOffsetRegister,
kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx,
times_pointer_size, 0));
__ jmp(rbx);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Advance the current bytecode offset stored within the given interpreter
// stack frame. This simulates what all bytecode handlers do upon completion
// of the underlying operation.
__ movp(rbx, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ movp(rdx, Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(kInterpreterAccumulatorRegister);
__ Push(rbx); // First argument is the bytecode array.
__ Push(rdx); // Second argument is the bytecode offset.
__ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset);
__ Move(rdx, rax); // Result is the new bytecode offset.
__ Pop(kInterpreterAccumulatorRegister);
}
__ movp(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rdx);
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_CheckOptimizationMarker(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee)
// -- rdx : new target (preserved for callee)
// -- rdi : target function (preserved for callee)
// -----------------------------------
Register closure = rdi;
// Get the feedback vector.
Register feedback_vector = rbx;
__ movp(feedback_vector,
FieldOperand(closure, JSFunction::kFeedbackVectorOffset));
__ movp(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
// The feedback vector must be defined.
if (FLAG_debug_code) {
__ CompareRoot(feedback_vector, Heap::kUndefinedValueRootIndex);
__ Assert(not_equal, BailoutReason::kExpectedFeedbackVector);
}
// Is there an optimization marker or optimized code in the feedback vector?
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, rcx, r14, r15);
// Otherwise, tail call the SFI code.
GenerateTailCallToSharedCode(masm);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee)
// -- rdx : new target (preserved for callee)
// -- rdi : target function (preserved for callee)
// -----------------------------------
// First lookup code, maybe we don't need to compile!
Label gotta_call_runtime;
Register closure = rdi;
Register feedback_vector = rbx;
// Do we have a valid feedback vector?
__ movp(feedback_vector,
FieldOperand(closure, JSFunction::kFeedbackVectorOffset));
__ movp(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
__ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex,
&gotta_call_runtime);
// Is there an optimization marker or optimized code in the feedback vector?
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, rcx, r14, r15);
// We found no optimized code.
Register entry = rcx;
__ movp(entry, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
// If SFI points to anything other than CompileLazy, install that.
__ movp(entry, FieldOperand(entry, SharedFunctionInfo::kCodeOffset));
__ Move(rbx, masm->CodeObject());
__ cmpp(entry, rbx);
__ j(equal, &gotta_call_runtime);
// Install the SFI's code entry.
__ leap(entry, FieldOperand(entry, Code::kHeaderSize));
__ movp(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry);
__ RecordWriteCodeEntryField(closure, entry, r15);
__ jmp(entry);
__ bind(&gotta_call_runtime);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee)
// -- rdx : new target (preserved for callee)
// -- rdi : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve argument count for later compare.
__ movp(rcx, rax);
// Push the number of arguments to the callee.
__ Integer32ToSmi(rax, rax);
__ Push(rax);
// Push a copy of the target function and the new target.
__ Push(rdi);
__ Push(rdx);
// The function.
__ Push(rdi);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ cmpp(rcx, Immediate(j));
__ j(not_equal, &over, Label::kNear);
}
for (int i = j - 1; i >= 0; --i) {
__ Push(Operand(
rbp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize));
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done, Label::kNear);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(rax, &failed, Label::kNear);
__ Drop(2);
__ Pop(rcx);
__ SmiToInteger32(rcx, rcx);
scope.GenerateLeaveFrame();
__ PopReturnAddressTo(rbx);
__ incp(rcx);
__ leap(rsp, Operand(rsp, rcx, times_pointer_size, 0));
__ PushReturnAddressFrom(rbx);
__ ret(0);
__ bind(&failed);
// Restore target function and new target.
__ Pop(rdx);
__ Pop(rdi);
__ Pop(rax);
__ SmiToInteger32(rax, rax);
}
// On failure, tail call back to regular js.
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Re-execute the code that was patched back to the young age when
// the stub returns.
__ subp(Operand(rsp, 0), Immediate(5));
__ Pushad();
__ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
__ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
}
__ Popad();
__ ret(0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
__ Pushad();
__ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
__ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
__ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
}
__ Popad();
// Perform prologue operations usually performed by the young code stub.
__ PopReturnAddressTo(kScratchRegister);
__ pushq(rbp); // Caller's frame pointer.
__ movp(rbp, rsp);
__ Push(rsi); // Callee's context.
__ Push(rdi); // Callee's JS Function.
__ PushReturnAddressFrom(kScratchRegister);
// Jump to point after the code-age stub.
__ ret(0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
void Builtins::Generate_NotifyBuiltinContinuation(MacroAssembler* masm) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve possible return result from lazy deopt.
__ pushq(rax);
__ CallRuntime(Runtime::kNotifyStubFailure, false);
__ popq(rax);
// Tear down internal frame.
}
__ DropUnderReturnAddress(1); // Ignore state offset
__ ret(0); // Return to ContinueToBuiltin stub still on stack.
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Turbofan());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ movq(Operand(rsp,
config->num_allocatable_general_registers() * kPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize),
rax);
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ popq(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiToInteger32(Register::from_code(code), Register::from_code(code));
}
}
__ movq(
rbp,
Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
const int offsetToPC =
BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kPointerSize;
__ popq(Operand(rsp, offsetToPC));
__ Drop(offsetToPC / kPointerSize);
__ addq(Operand(rsp, 0), Immediate(Code::kHeaderSize - kHeapObjectTag));
__ Ret();
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the deoptimization type to the runtime system.
__ Push(Smi::FromInt(static_cast<int>(type)));
__ CallRuntime(Runtime::kNotifyDeoptimized);
// Tear down internal frame.
}
// Get the full codegen state from the stack and untag it.
__ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize));
// Switch on the state.
Label not_no_registers, not_tos_rax;
__ cmpp(kScratchRegister,
Immediate(static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS)));
__ j(not_equal, &not_no_registers, Label::kNear);
__ ret(1 * kPointerSize); // Remove state.
__ bind(&not_no_registers);
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code());
__ movp(rax, Operand(rsp, kPCOnStackSize + kPointerSize));
__ cmpp(kScratchRegister,
Immediate(static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER)));
__ j(not_equal, &not_tos_rax, Label::kNear);
__ ret(2 * kPointerSize); // Remove state, rax.
__ bind(&not_tos_rax);
__ Abort(kNoCasesLeft);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : argArray
// -- rsp[16] : thisArg
// -- rsp[24] : receiver
// -----------------------------------
// 1. Load receiver into rdi, argArray into rbx (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label no_arg_array, no_this_arg;
StackArgumentsAccessor args(rsp, rax);
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ movp(rbx, rdx);
__ movp(rdi, args.GetReceiverOperand());
__ testp(rax, rax);
__ j(zero, &no_this_arg, Label::kNear);
{
__ movp(rdx, args.GetArgumentOperand(1));
__ cmpp(rax, Immediate(1));
__ j(equal, &no_arg_array, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(2));
__ bind(&no_arg_array);
}
__ bind(&no_this_arg);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ Push(rdx);
__ PushReturnAddressFrom(rcx);
}
// ----------- S t a t e -------------
// -- rbx : argArray
// -- rdi : receiver
// -- rsp[0] : return address
// -- rsp[8] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(rbx, Heap::kNullValueRootIndex, &no_arguments, Label::kNear);
__ JumpIfRoot(rbx, Heap::kUndefinedValueRootIndex, &no_arguments,
Label::kNear);
// 4a. Apply the receiver to the given argArray.
__ Jump(masm->isolate()->builtins()->CallWithArrayLike(),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver. Since we did not create a frame for
// Function.prototype.apply() yet, we use a normal Call builtin here.
__ bind(&no_arguments);
{
__ Set(rax, 0);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// Stack Layout:
// rsp[0] : Return address
// rsp[8] : Argument n
// rsp[16] : Argument n-1
// ...
// rsp[8 * n] : Argument 1
// rsp[8 * (n + 1)] : Receiver (callable to call)
//
// rax contains the number of arguments, n, not counting the receiver.
//
// 1. Make sure we have at least one argument.
{
Label done;
__ testp(rax, rax);
__ j(not_zero, &done, Label::kNear);
__ PopReturnAddressTo(rbx);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ PushReturnAddressFrom(rbx);
__ incp(rax);
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
{
StackArgumentsAccessor args(rsp, rax);
__ movp(rdi, args.GetReceiverOperand());
}
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
{
Label loop;
__ movp(rcx, rax);
StackArgumentsAccessor args(rsp, rcx);
__ bind(&loop);
__ movp(rbx, args.GetArgumentOperand(1));
__ movp(args.GetArgumentOperand(0), rbx);
__ decp(rcx);
__ j(not_zero, &loop); // While non-zero.
__ DropUnderReturnAddress(1, rbx); // Drop one slot under return address.
__ decp(rax); // One fewer argument (first argument is new receiver).
}
// 4. Call the callable.
// Since we did not create a frame for Function.prototype.call() yet,
// we use a normal Call builtin here.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : argumentsList
// -- rsp[16] : thisArgument
// -- rsp[24] : target
// -- rsp[32] : receiver
// -----------------------------------
// 1. Load target into rdi (if present), argumentsList into rbx (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label done;
StackArgumentsAccessor args(rsp, rax);
__ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
__ movp(rdx, rdi);
__ movp(rbx, rdi);
__ cmpp(rax, Immediate(1));
__ j(below, &done, Label::kNear);
__ movp(rdi, args.GetArgumentOperand(1)); // target
__ j(equal, &done, Label::kNear);
__ movp(rdx, args.GetArgumentOperand(2)); // thisArgument
__ cmpp(rax, Immediate(3));
__ j(below, &done, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(3)); // argumentsList
__ bind(&done);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ Push(rdx);
__ PushReturnAddressFrom(rcx);
}
// ----------- S t a t e -------------
// -- rbx : argumentsList
// -- rdi : target
// -- rsp[0] : return address
// -- rsp[8] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(masm->isolate()->builtins()->CallWithArrayLike(),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : new.target (optional)
// -- rsp[16] : argumentsList
// -- rsp[24] : target
// -- rsp[32] : receiver
// -----------------------------------
// 1. Load target into rdi (if present), argumentsList into rbx (if present),
// new.target into rdx (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label done;
StackArgumentsAccessor args(rsp, rax);
__ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
__ movp(rdx, rdi);
__ movp(rbx, rdi);
__ cmpp(rax, Immediate(1));
__ j(below, &done, Label::kNear);
__ movp(rdi, args.GetArgumentOperand(1)); // target
__ movp(rdx, rdi); // new.target defaults to target
__ j(equal, &done, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(2)); // argumentsList
__ cmpp(rax, Immediate(3));
__ j(below, &done, Label::kNear);
__ movp(rdx, args.GetArgumentOperand(3)); // new.target
__ bind(&done);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ PushReturnAddressFrom(rcx);
}
// ----------- S t a t e -------------
// -- rbx : argumentsList
// -- rdx : new.target
// -- rdi : target
// -- rsp[0] : return address
// -- rsp[8] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(masm->isolate()->builtins()->ConstructWithArrayLike(),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the InternalArray function.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
}
__ movp(rdx, rdi);
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Load the first argument into rbx.
Label no_arguments;
{
StackArgumentsAccessor args(rsp, rax);
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(1));
}
// 2a. Convert the first argument to a number.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Integer32ToSmi(rax, rax);
__ EnterBuiltinFrame(rsi, rdi, rax);
__ movp(rax, rbx);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(rsi, rdi, rbx); // Argc popped to rbx.
__ SmiToInteger32(rbx, rbx);
}
{
// Drop all arguments including the receiver.
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rbx, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ Ret();
}
// 2b. No arguments, return +0 (already in rax).
__ bind(&no_arguments);
__ ret(1 * kPointerSize);
}
// static
void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rdx : new target
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Store argc in r8.
__ Integer32ToSmi(r8, rax);
// 2. Load the first argument into rbx.
{
StackArgumentsAccessor args(rsp, rax);
Label no_arguments, done;
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(1));
__ jmp(&done, Label::kNear);
__ bind(&no_arguments);
__ Move(rbx, Smi::kZero);
__ bind(&done);
}
// 3. Make sure rbx is a number.
{
Label done_convert;
__ JumpIfSmi(rbx, &done_convert);
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(equal, &done_convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterBuiltinFrame(rsi, rdi, r8);
__ Push(rdx);
__ Move(rax, rbx);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ Move(rbx, rax);
__ Pop(rdx);
__ LeaveBuiltinFrame(rsi, rdi, r8);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ cmpp(rdx, rdi);
__ j(not_equal, &new_object);
// 5. Allocate a JSValue wrapper for the number.
__ AllocateJSValue(rax, rdi, rbx, rcx, &new_object);
__ jmp(&drop_frame_and_ret, Label::kNear);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterBuiltinFrame(rsi, rdi, r8);
__ Push(rbx); // the first argument
__ Call(masm->isolate()->builtins()->FastNewObject(),
RelocInfo::CODE_TARGET);
__ Pop(FieldOperand(rax, JSValue::kValueOffset));
__ LeaveBuiltinFrame(rsi, rdi, r8);
}
__ bind(&drop_frame_and_ret);
{
// Drop all arguments including the receiver.
__ PopReturnAddressTo(rcx);
__ SmiToInteger32(r8, r8);
__ leap(rsp, Operand(rsp, r8, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ Ret();
}
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Load the first argument into rax.
Label no_arguments;
{
StackArgumentsAccessor args(rsp, rax);
__ Integer32ToSmi(r8, rax); // Store argc in r8.
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rax, args.GetArgumentOperand(1));
}
// 2a. At least one argument, return rax if it's a string, otherwise
// dispatch to appropriate conversion.
Label drop_frame_and_ret, to_string, symbol_descriptive_string;
{
__ JumpIfSmi(rax, &to_string, Label::kNear);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx);
__ j(above, &to_string, Label::kNear);
__ j(equal, &symbol_descriptive_string, Label::kNear);
__ jmp(&drop_frame_and_ret, Label::kNear);
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(rax, Heap::kempty_stringRootIndex);
__ ret(1 * kPointerSize);
}
// 3a. Convert rax to a string.
__ bind(&to_string);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterBuiltinFrame(rsi, rdi, r8);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(rsi, rdi, r8);
}
__ jmp(&drop_frame_and_ret, Label::kNear);
// 3b. Convert symbol in rax to a string.
__ bind(&symbol_descriptive_string);
{
__ PopReturnAddressTo(rcx);
__ SmiToInteger32(r8, r8);
__ leap(rsp, Operand(rsp, r8, times_pointer_size, kPointerSize));
__ Push(rax);
__ PushReturnAddressFrom(rcx);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString);
}
__ bind(&drop_frame_and_ret);
{
// Drop all arguments including the receiver.
__ PopReturnAddressTo(rcx);
__ SmiToInteger32(r8, r8);
__ leap(rsp, Operand(rsp, r8, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ Ret();
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rdx : new target
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Store argc in r8.
__ Integer32ToSmi(r8, rax);
// 2. Load the first argument into rbx.
{
StackArgumentsAccessor args(rsp, rax);
Label no_arguments, done;
__ testp(rax, rax);
__ j(zero, &no_arguments, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(1));
__ jmp(&done, Label::kNear);
__ bind(&no_arguments);
__ LoadRoot(rbx, Heap::kempty_stringRootIndex);
__ bind(&done);
}
// 3. Make sure rbx is a string.
{
Label convert, done_convert;
__ JumpIfSmi(rbx, &convert, Label::kNear);
__ CmpObjectType(rbx, FIRST_NONSTRING_TYPE, rcx);
__ j(below, &done_convert);
__ bind(&convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterBuiltinFrame(rsi, rdi, r8);
__ Push(rdx);
__ Move(rax, rbx);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ Move(rbx, rax);
__ Pop(rdx);
__ LeaveBuiltinFrame(rsi, rdi, r8);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ cmpp(rdx, rdi);
__ j(not_equal, &new_object);
// 5. Allocate a JSValue wrapper for the string.
__ AllocateJSValue(rax, rdi, rbx, rcx, &new_object);
__ jmp(&drop_frame_and_ret, Label::kNear);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterBuiltinFrame(rsi, rdi, r8);
__ Push(rbx); // the first argument
__ Call(masm->isolate()->builtins()->FastNewObject(),
RelocInfo::CODE_TARGET);
__ Pop(FieldOperand(rax, JSValue::kValueOffset));
__ LeaveBuiltinFrame(rsi, rdi, r8);
}
__ bind(&drop_frame_and_ret);
{
// Drop all arguments including the receiver.
__ PopReturnAddressTo(rcx);
__ SmiToInteger32(r8, r8);
__ leap(rsp, Operand(rsp, r8, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ Ret();
}
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ pushq(rbp);
__ movp(rbp, rsp);
// Store the arguments adaptor context sentinel.
__ Push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
// Push the function on the stack.
__ Push(rdi);
// Preserve the number of arguments on the stack. Must preserve rax,
// rbx and rcx because these registers are used when copying the
// arguments and the receiver.
__ Integer32ToSmi(r8, rax);
__ Push(r8);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack. Number is a Smi.
__ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ movp(rsp, rbp);
__ popq(rbp);
// Remove caller arguments from the stack.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
}
// static
void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rdx : requested object size (untagged)
// -- rsp[0] : return address
// -----------------------------------
__ Integer32ToSmi(rdx, rdx);
__ PopReturnAddressTo(rcx);
__ Push(rdx);
__ PushReturnAddressFrom(rcx);
__ Move(rsi, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInNewSpace);
}
// static
void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rdx : requested object size (untagged)
// -- rsp[0] : return address
// -----------------------------------
__ Integer32ToSmi(rdx, rdx);
__ PopReturnAddressTo(rcx);
__ Push(rdx);
__ Push(Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
__ PushReturnAddressFrom(rcx);
__ Move(rsi, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInTargetSpace);
}
// static
void Builtins::Generate_Abort(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rdx : message_id as Smi
// -- rsp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(rcx);
__ Push(rdx);
__ PushReturnAddressFrom(rcx);
__ Move(rsi, Smi::kZero);
__ TailCallRuntime(Runtime::kAbort);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdx : new target (passed through to callee)
// -- rdi : function (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->arguments_adaptors(), 1);
Label enough, too_few;
__ cmpp(rax, rbx);
__ j(less, &too_few);
__ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// The registers rcx and r8 will be modified. The register rbx is only read.
Generate_StackOverflowCheck(masm, rbx, rcx, &stack_overflow);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rax, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(&copy);
__ incp(r8);
__ Push(Operand(rax, 0));
__ subp(rax, Immediate(kPointerSize));
__ cmpp(r8, rbx);
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// The registers rcx and r8 will be modified. The register rbx is only read.
Generate_StackOverflowCheck(masm, rbx, rcx, &stack_overflow);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rdi, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(&copy);
__ incp(r8);
__ Push(Operand(rdi, 0));
__ subp(rdi, Immediate(kPointerSize));
__ cmpp(r8, rax);
__ j(less, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ bind(&fill);
__ incp(r8);
__ Push(kScratchRegister);
__ cmpp(r8, rbx);
__ j(less, &fill);
// Restore function pointer.
__ movp(rdi, Operand(rbp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ movp(rax, rbx);
// rax : expected number of arguments
// rdx : new target (passed through to callee)
// rdi : function (passed through to callee)
__ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ call(rcx);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ jmp(rcx);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- rdi : target
// -- rax : number of parameters on the stack (not including the receiver)
// -- rbx : arguments list (a FixedArray)
// -- rcx : len (number of elements to push from args)
// -- rdx : new.target (for [[Construct]])
// -- rsp[0] : return address
// -----------------------------------
__ AssertFixedArray(rbx);
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movp(r8, rsp);
// Make r8 the space we have left. The stack might already be overflowed
// here which will cause r8 to become negative.
__ subp(r8, kScratchRegister);
__ sarp(r8, Immediate(kPointerSizeLog2));
// Check if the arguments will overflow the stack.
__ cmpp(r8, rcx);
__ j(greater, &done, Label::kNear); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// Push additional arguments onto the stack.
{
__ PopReturnAddressTo(r8);
__ Set(r9, 0);
Label done, push, loop;
__ bind(&loop);
__ cmpl(r9, rcx);
__ j(equal, &done, Label::kNear);
// Turn the hole into undefined as we go.
__ movp(r11,
FieldOperand(rbx, r9, times_pointer_size, FixedArray::kHeaderSize));
__ CompareRoot(r11, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &push, Label::kNear);
__ LoadRoot(r11, Heap::kUndefinedValueRootIndex);
__ bind(&push);
__ Push(r11);
__ incl(r9);
__ jmp(&loop);
__ bind(&done);
__ PushReturnAddressFrom(r8);
__ addq(rax, r9);
}
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (for [[Construct]] calls)
// -- rdi : the target to call (can be any Object)
// -- rcx : start index (to support rest parameters)
// -----------------------------------
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ cmpp(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &arguments_adaptor, Label::kNear);
{
__ movp(r8, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movp(r8, FieldOperand(r8, JSFunction::kSharedFunctionInfoOffset));
__ movl(r8,
FieldOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset));
__ movp(rbx, rbp);
}
__ jmp(&arguments_done, Label::kNear);
__ bind(&arguments_adaptor);
{
__ SmiToInteger32(
r8, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
}
__ bind(&arguments_done);
Label stack_done, stack_overflow;
__ subl(r8, rcx);
__ j(less_equal, &stack_done);
{
// Check for stack overflow.
Generate_StackOverflowCheck(masm, r8, rcx, &stack_overflow, Label::kNear);
// Forward the arguments from the caller frame.
{
Label loop;
__ addl(rax, r8);
__ PopReturnAddressTo(rcx);
__ bind(&loop);
{
StackArgumentsAccessor args(rbx, r8, ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ Push(args.GetArgumentOperand(0));
__ decl(r8);
__ j(not_zero, &loop);
}
__ PushReturnAddressFrom(rcx);
}
}
__ jmp(&stack_done, Label::kNear);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_done);
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the function to call (checked to be a JSFunction)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
__ AssertFunction(rdi);
// ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testl(FieldOperand(rdx, SharedFunctionInfo::kCompilerHintsOffset),
Immediate(SharedFunctionInfo::kClassConstructorMask));
__ j(not_zero, &class_constructor);
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -----------------------------------
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ testl(FieldOperand(rdx, SharedFunctionInfo::kCompilerHintsOffset),
Immediate(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ j(not_zero, &done_convert);
{
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(rcx);
} else {
Label convert_to_object, convert_receiver;
__ movp(rcx, args.GetReceiverOperand());
__ JumpIfSmi(rcx, &convert_to_object, Label::kNear);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx);
__ j(above_equal, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(rcx, Heap::kUndefinedValueRootIndex,
&convert_global_proxy, Label::kNear);
__ JumpIfNotRoot(rcx, Heap::kNullValueRootIndex, &convert_to_object,
Label::kNear);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(rcx);
}
__ jmp(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ Integer32ToSmi(rax, rax);
__ Push(rax);
__ Push(rdi);
__ movp(rax, rcx);
__ Push(rsi);
__ Call(masm->isolate()->builtins()->ToObject(),
RelocInfo::CODE_TARGET);
__ Pop(rsi);
__ movp(rcx, rax);
__ Pop(rdi);
__ Pop(rax);
__ SmiToInteger32(rax, rax);
}
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ movp(args.GetReceiverOperand(), rcx);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
__ movsxlq(
rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(rax);
ParameterCount expected(rbx);
__ InvokeFunctionCode(rdi, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : new.target (only in case of [[Construct]])
// -- rdi : target (checked to be a JSBoundFunction)
// -----------------------------------
// Load [[BoundArguments]] into rcx and length of that into rbx.
Label no_bound_arguments;
__ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
__ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ testl(rbx, rbx);
__ j(zero, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : new.target (only in case of [[Construct]])
// -- rdi : target (checked to be a JSBoundFunction)
// -- rcx : the [[BoundArguments]] (implemented as FixedArray)
// -- rbx : the number of [[BoundArguments]] (checked to be non-zero)
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ leap(kScratchRegister, Operand(rbx, times_pointer_size, 0));
__ subp(rsp, kScratchRegister);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRoot(rsp, Heap::kRealStackLimitRootIndex);
__ j(greater, &done, Label::kNear); // Signed comparison.
// Restore the stack pointer.
__ leap(rsp, Operand(rsp, rbx, times_pointer_size, 0));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Adjust effective number of arguments to include return address.
__ incl(rax);
// Relocate arguments and return address down the stack.
{
Label loop;
__ Set(rcx, 0);
__ leap(rbx, Operand(rsp, rbx, times_pointer_size, 0));
__ bind(&loop);
__ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ movp(Operand(rsp, rcx, times_pointer_size, 0), kScratchRegister);
__ incl(rcx);
__ cmpl(rcx, rax);
__ j(less, &loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
__ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ bind(&loop);
__ decl(rbx);
__ movp(kScratchRegister, FieldOperand(rcx, rbx, times_pointer_size,
FixedArray::kHeaderSize));
__ movp(Operand(rsp, rax, times_pointer_size, 0), kScratchRegister);
__ leal(rax, Operand(rax, 1));
__ j(greater, &loop);
}
// Adjust effective number of arguments (rax contains the number of
// arguments from the call plus return address plus the number of
// [[BoundArguments]]), so we need to subtract one for the return address.
__ decl(rax);
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(rdi);
// Patch the receiver to [[BoundThis]].
StackArgumentsAccessor args(rsp, rax);
__ movp(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset));
__ movp(args.GetReceiverOperand(), rbx);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Load(rcx,
ExternalReference(Builtins::kCall_ReceiverIsAny, masm->isolate()));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the target to call (can be any Object)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
Label non_callable, non_function, non_smi;
__ JumpIfSmi(rdi, &non_callable);
__ bind(&non_smi);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(equal, masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET);
__ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
__ j(equal, masm->isolate()->builtins()->CallBoundFunction(),
RelocInfo::CODE_TARGET);
// Check if target has a [[Call]] internal method.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsCallable));
__ j(zero, &non_callable);
// Check if target is a proxy and call CallProxy external builtin
__ CmpInstanceType(rcx, JS_PROXY_TYPE);
__ j(not_equal, &non_function);
__ Load(rcx, ExternalReference(Builtins::kCallProxy, masm->isolate()));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ movp(args.GetReceiverOperand(), rdi);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (checked to be a constructor)
// -- rdi : the constructor to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(rdi);
// Calling convention for function specific ConstructStubs require
// rbx to contain either an AllocationSite or undefined.
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (checked to be a constructor)
// -- rdi : the constructor to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(rdi);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ cmpp(rdi, rdx);
__ j(not_equal, &done, Label::kNear);
__ movp(rdx,
FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Load(rcx, ExternalReference(Builtins::kConstruct, masm->isolate()));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the constructor to call (checked to be a JSProxy)
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Call into the Runtime for Proxy [[Construct]].
__ PopReturnAddressTo(kScratchRegister);
__ Push(rdi);
__ Push(rdx);
__ PushReturnAddressFrom(kScratchRegister);
// Include the pushed new_target, constructor and the receiver.
__ addp(rax, Immediate(3));
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyConstruct, masm->isolate()));
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(rdi, &non_constructor, Label::kNear);
// Dispatch based on instance type.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(equal, masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET);
// Check if target has a [[Construct]] internal method.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsConstructor));
__ j(zero, &non_constructor, Label::kNear);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
__ j(equal, masm->isolate()->builtins()->ConstructBoundFunction(),
RelocInfo::CODE_TARGET);
// Only dispatch to proxies after checking whether they are constructors.
__ CmpInstanceType(rcx, JS_PROXY_TYPE);
__ j(equal, masm->isolate()->builtins()->ConstructProxy(),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ movp(args.GetReceiverOperand(), rdi);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
RelocInfo::CODE_TARGET);
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ movp(rax, Operand(rax, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ Push(rax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
Label skip;
// If the code object is null, just return to the caller.
__ cmpp(rax, Immediate(0));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
__ bind(&skip);
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ leave();
}
// Load deoptimization data from the code object.
__ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ SmiToInteger32(
rbx, Operand(rbx, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) -
kHeapObjectTag));
// Compute the target address = code_obj + header_size + osr_offset
__ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag));
// Overwrite the return address on the stack.
__ movq(StackOperandForReturnAddress(0), rax);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
constexpr Register gp_regs[]{rax, rbx, rcx, rdx, rsi, rdi};
constexpr XMMRegister xmm_regs[]{xmm1, xmm2, xmm3, xmm4, xmm5, xmm6};
for (auto reg : gp_regs) {
__ Push(reg);
}
__ subp(rsp, Immediate(16 * arraysize(xmm_regs)));
for (int i = 0, e = arraysize(xmm_regs); i < e; ++i) {
__ movdqu(Operand(rsp, 16 * i), xmm_regs[i]);
}
// Initialize rsi register with kZero, CEntryStub will use it to set the
// current context on the isolate.
__ Move(rsi, Smi::kZero);
__ CallRuntime(Runtime::kWasmCompileLazy);
// Store returned instruction start in r11.
__ leap(r11, FieldOperand(rax, Code::kHeaderSize));
// Restore registers.
for (int i = arraysize(xmm_regs) - 1; i >= 0; --i) {
__ movdqu(xmm_regs[i], Operand(rsp, 16 * i));
}
__ addp(rsp, Immediate(16 * arraysize(xmm_regs)));
for (int i = arraysize(gp_regs) - 1; i >= 0; --i) {
__ Pop(gp_regs[i]);
}
}
// Now jump to the instructions of the returned code object.
__ jmp(r11);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64