blob: 0b4d127d248fd41893ef4d8e8b7905145e530fdb [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/assembler-inl.h"
#include "src/ast/compile-time-value.h"
#include "src/ast/scopes.h"
#include "src/builtins/builtins-constructor.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/compilation-info.h"
#include "src/compiler.h"
#include "src/debug/debug.h"
#include "src/full-codegen/full-codegen.h"
#include "src/heap/heap-inl.h"
#include "src/ic/ic.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm())
class JumpPatchSite BASE_EMBEDDED {
public:
explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
#ifdef DEBUG
info_emitted_ = false;
#endif
}
~JumpPatchSite() {
DCHECK(patch_site_.is_bound() == info_emitted_);
}
void EmitJumpIfNotSmi(Register reg,
Label* target,
Label::Distance near_jump = Label::kFar) {
__ testb(reg, Immediate(kSmiTagMask));
EmitJump(not_carry, target, near_jump); // Always taken before patched.
}
void EmitJumpIfSmi(Register reg,
Label* target,
Label::Distance near_jump = Label::kFar) {
__ testb(reg, Immediate(kSmiTagMask));
EmitJump(carry, target, near_jump); // Never taken before patched.
}
void EmitPatchInfo() {
if (patch_site_.is_bound()) {
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
DCHECK(is_uint8(delta_to_patch_site));
__ testl(rax, Immediate(delta_to_patch_site));
#ifdef DEBUG
info_emitted_ = true;
#endif
} else {
__ nop(); // Signals no inlined code.
}
}
private:
// jc will be patched with jz, jnc will become jnz.
void EmitJump(Condition cc, Label* target, Label::Distance near_jump) {
DCHECK(!patch_site_.is_bound() && !info_emitted_);
DCHECK(cc == carry || cc == not_carry);
__ bind(&patch_site_);
__ j(cc, target, near_jump);
}
MacroAssembler* masm() { return masm_; }
MacroAssembler* masm_;
Label patch_site_;
#ifdef DEBUG
bool info_emitted_;
#endif
};
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right, with the
// return address on top of them. The actual argument count matches the
// formal parameter count expected by the function.
//
// The live registers are:
// o rdi: the JS function object being called (i.e. ourselves)
// o rdx: the new target value
// o rsi: our context
// o rbp: our caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-x64.h for its layout.
void FullCodeGenerator::Generate() {
CompilationInfo* info = info_;
DCHECK_EQ(scope(), info->scope());
profiling_counter_ = isolate()->factory()->NewCell(
Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
SetFunctionPosition(literal());
Comment cmnt(masm_, "[ function compiled by full code generator");
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
StackArgumentsAccessor args(rsp, info->scope()->num_parameters());
__ movp(rcx, args.GetReceiverOperand());
__ AssertNotSmi(rcx);
__ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rcx);
__ Assert(above_equal, kSloppyFunctionExpectsJSReceiverReceiver);
}
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
info->set_prologue_offset(masm_->pc_offset());
__ Prologue(info->GeneratePreagedPrologue());
// Increment invocation count for the function.
{
Comment cmnt(masm_, "[ Increment invocation count");
__ movp(rcx, FieldOperand(rdi, JSFunction::kFeedbackVectorOffset));
__ movp(rcx, FieldOperand(rcx, Cell::kValueOffset));
__ SmiAddConstant(
FieldOperand(rcx, FeedbackVector::kInvocationCountIndex * kPointerSize +
FeedbackVector::kHeaderSize),
Smi::FromInt(1));
}
{ Comment cmnt(masm_, "[ Allocate locals");
int locals_count = info->scope()->num_stack_slots();
OperandStackDepthIncrement(locals_count);
if (locals_count == 1) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
} else if (locals_count > 1) {
if (locals_count >= 128) {
Label ok;
__ movp(rcx, rsp);
__ subp(rcx, Immediate(locals_count * kPointerSize));
__ CompareRoot(rcx, Heap::kRealStackLimitRootIndex);
__ j(above_equal, &ok, Label::kNear);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
}
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
const int kMaxPushes = 32;
if (locals_count >= kMaxPushes) {
int loop_iterations = locals_count / kMaxPushes;
__ movp(rcx, Immediate(loop_iterations));
Label loop_header;
__ bind(&loop_header);
// Do pushes.
for (int i = 0; i < kMaxPushes; i++) {
__ Push(rax);
}
// Continue loop if not done.
__ decp(rcx);
__ j(not_zero, &loop_header, Label::kNear);
}
int remaining = locals_count % kMaxPushes;
// Emit the remaining pushes.
for (int i = 0; i < remaining; i++) {
__ Push(rax);
}
}
}
bool function_in_register = true;
// Possibly allocate a local context.
if (info->scope()->NeedsContext()) {
Comment cmnt(masm_, "[ Allocate context");
bool need_write_barrier = true;
int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
// Argument to NewContext is the function, which is still in rdi.
if (info->scope()->is_script_scope()) {
__ Push(rdi);
__ Push(info->scope()->scope_info());
__ CallRuntime(Runtime::kNewScriptContext);
// The new target value is not used, clobbering is safe.
DCHECK_NULL(info->scope()->new_target_var());
} else {
if (info->scope()->new_target_var() != nullptr) {
__ Push(rdx); // Preserve new target.
}
if (slots <= ConstructorBuiltins::MaximumFunctionContextSlots()) {
Callable callable = CodeFactory::FastNewFunctionContext(
isolate(), info->scope()->scope_type());
__ Set(FastNewFunctionContextDescriptor::SlotsRegister(), slots);
__ Call(callable.code(), RelocInfo::CODE_TARGET);
// Result of the FastNewFunctionContext builtin is always in new space.
need_write_barrier = false;
} else {
__ Push(rdi);
__ Push(Smi::FromInt(info->scope()->scope_type()));
__ CallRuntime(Runtime::kNewFunctionContext);
}
if (info->scope()->new_target_var() != nullptr) {
__ Pop(rdx); // Restore new target.
}
}
function_in_register = false;
// Context is returned in rax. It replaces the context passed to us.
// It's saved in the stack and kept live in rsi.
__ movp(rsi, rax);
__ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
// Copy any necessary parameters into the context.
int num_parameters = info->scope()->num_parameters();
int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
for (int i = first_parameter; i < num_parameters; i++) {
Variable* var =
(i == -1) ? info->scope()->receiver() : info->scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ movp(rax, Operand(rbp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(var->index());
__ movp(Operand(rsi, context_offset), rax);
// Update the write barrier. This clobbers rax and rbx.
if (need_write_barrier) {
__ RecordWriteContextSlot(
rsi, context_offset, rax, rbx, kDontSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
}
// We don't support new.target and rest parameters here.
DCHECK_NULL(info->scope()->new_target_var());
DCHECK_NULL(info->scope()->rest_parameter());
DCHECK_NULL(info->scope()->this_function_var());
// Possibly allocate an arguments object.
DCHECK_EQ(scope(), info->scope());
Variable* arguments = info->scope()->arguments();
if (arguments != NULL) {
// Arguments object must be allocated after the context object, in
// case the "arguments" or ".arguments" variables are in the context.
Comment cmnt(masm_, "[ Allocate arguments object");
if (!function_in_register) {
__ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
if (is_strict(language_mode()) || !has_simple_parameters()) {
__ call(isolate()->builtins()->FastNewStrictArguments(),
RelocInfo::CODE_TARGET);
RestoreContext();
} else if (literal()->has_duplicate_parameters()) {
__ Push(rdi);
__ CallRuntime(Runtime::kNewSloppyArguments_Generic);
} else {
__ call(isolate()->builtins()->FastNewSloppyArguments(),
RelocInfo::CODE_TARGET);
RestoreContext();
}
SetVar(arguments, rax, rbx, rdx);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter);
}
// Visit the declarations and body unless there is an illegal
// redeclaration.
{
Comment cmnt(masm_, "[ Declarations");
VisitDeclarations(info->scope()->declarations());
}
// Assert that the declarations do not use ICs. Otherwise the debugger
// won't be able to redirect a PC at an IC to the correct IC in newly
// recompiled code.
DCHECK_EQ(0, ic_total_count_);
{
Comment cmnt(masm_, "[ Stack check");
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok, Label::kNear);
__ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
__ bind(&ok);
}
{
Comment cmnt(masm_, "[ Body");
DCHECK(loop_depth() == 0);
VisitStatements(literal()->body());
DCHECK(loop_depth() == 0);
}
// Always emit a 'return undefined' in case control fell off the end of
// the body.
{ Comment cmnt(masm_, "[ return <undefined>;");
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
EmitReturnSequence();
}
}
void FullCodeGenerator::ClearAccumulator() {
__ Set(rax, 0);
}
void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
__ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
__ SmiAddConstant(FieldOperand(rbx, Cell::kValueOffset),
Smi::FromInt(-delta));
}
void FullCodeGenerator::EmitProfilingCounterReset() {
int reset_value = FLAG_interrupt_budget;
__ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
__ Move(kScratchRegister, Smi::FromInt(reset_value));
__ movp(FieldOperand(rbx, Cell::kValueOffset), kScratchRegister);
}
static const byte kJnsOffset = kPointerSize == kInt64Size ? 0x1d : 0x14;
void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
Label* back_edge_target) {
Comment cmnt(masm_, "[ Back edge bookkeeping");
Label ok;
DCHECK(back_edge_target->is_bound());
int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
int weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kCodeSizeMultiplier));
EmitProfilingCounterDecrement(weight);
__ j(positive, &ok, Label::kNear);
{
PredictableCodeSizeScope predictible_code_size_scope(masm_, kJnsOffset);
DontEmitDebugCodeScope dont_emit_debug_code_scope(masm_);
__ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
// Record a mapping of this PC offset to the OSR id. This is used to find
// the AST id from the unoptimized code in order to use it as a key into
// the deoptimization input data found in the optimized code.
RecordBackEdge(stmt->OsrEntryId());
EmitProfilingCounterReset();
}
__ bind(&ok);
}
void FullCodeGenerator::EmitProfilingCounterHandlingForReturnSequence(
bool is_tail_call) {
// Pretend that the exit is a backwards jump to the entry.
int weight = 1;
if (info_->ShouldSelfOptimize()) {
weight = FLAG_interrupt_budget / FLAG_self_opt_count;
} else {
int distance = masm_->pc_offset();
weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
}
EmitProfilingCounterDecrement(weight);
Label ok;
__ j(positive, &ok, Label::kNear);
// Don't need to save result register if we are going to do a tail call.
if (!is_tail_call) {
__ Push(rax);
}
__ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
if (!is_tail_call) {
__ Pop(rax);
}
EmitProfilingCounterReset();
__ bind(&ok);
}
void FullCodeGenerator::EmitReturnSequence() {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ jmp(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
__ Push(rax);
__ CallRuntime(Runtime::kTraceExit);
}
EmitProfilingCounterHandlingForReturnSequence(false);
SetReturnPosition(literal());
__ leave();
int arg_count = info_->scope()->num_parameters() + 1;
int arguments_bytes = arg_count * kPointerSize;
__ Ret(arguments_bytes, rcx);
}
}
void FullCodeGenerator::RestoreContext() {
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
MemOperand operand = codegen()->VarOperand(var, result_register());
codegen()->PushOperand(operand);
}
void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
}
void FullCodeGenerator::StackValueContext::Plug(
Heap::RootListIndex index) const {
codegen()->OperandStackDepthIncrement(1);
__ PushRoot(index);
}
void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
if (index == Heap::kUndefinedValueRootIndex ||
index == Heap::kNullValueRootIndex ||
index == Heap::kFalseValueRootIndex) {
if (false_label_ != fall_through_) __ jmp(false_label_);
} else if (index == Heap::kTrueValueRootIndex) {
if (true_label_ != fall_through_) __ jmp(true_label_);
} else {
__ LoadRoot(result_register(), index);
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Handle<Object> lit) const {
if (lit->IsSmi()) {
__ SafeMove(result_register(), Smi::cast(*lit));
} else {
__ Move(result_register(), Handle<HeapObject>::cast(lit));
}
}
void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
codegen()->OperandStackDepthIncrement(1);
if (lit->IsSmi()) {
__ SafePush(Smi::cast(*lit));
} else {
__ Push(Handle<HeapObject>::cast(lit));
}
}
void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
DCHECK(lit->IsNullOrUndefined(isolate()) || !lit->IsUndetectable());
if (lit->IsNullOrUndefined(isolate()) || lit->IsFalse(isolate())) {
if (false_label_ != fall_through_) __ jmp(false_label_);
} else if (lit->IsTrue(isolate()) || lit->IsJSObject()) {
if (true_label_ != fall_through_) __ jmp(true_label_);
} else if (lit->IsString()) {
if (String::cast(*lit)->length() == 0) {
if (false_label_ != fall_through_) __ jmp(false_label_);
} else {
if (true_label_ != fall_through_) __ jmp(true_label_);
}
} else if (lit->IsSmi()) {
if (Smi::ToInt(*lit) == 0) {
if (false_label_ != fall_through_) __ jmp(false_label_);
} else {
if (true_label_ != fall_through_) __ jmp(true_label_);
}
} else {
// For simplicity we always test the accumulator register.
__ Move(result_register(), Handle<HeapObject>::cast(lit));
codegen()->DoTest(this);
}
}
void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
if (count > 1) codegen()->DropOperands(count - 1);
__ movp(Operand(rsp, 0), reg);
}
void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
Label* materialize_false) const {
DCHECK(materialize_true == materialize_false);
__ bind(materialize_true);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ Move(result_register(), isolate()->factory()->true_value());
__ jmp(&done, Label::kNear);
__ bind(materialize_false);
__ Move(result_register(), isolate()->factory()->false_value());
__ bind(&done);
}
void FullCodeGenerator::StackValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
codegen()->OperandStackDepthIncrement(1);
Label done;
__ bind(materialize_true);
__ Push(isolate()->factory()->true_value());
__ jmp(&done, Label::kNear);
__ bind(materialize_false);
__ Push(isolate()->factory()->false_value());
__ bind(&done);
}
void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
Label* materialize_false) const {
DCHECK(materialize_true == true_label_);
DCHECK(materialize_false == false_label_);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(result_register(), value_root_index);
}
void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
codegen()->OperandStackDepthIncrement(1);
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ PushRoot(value_root_index);
}
void FullCodeGenerator::TestContext::Plug(bool flag) const {
if (flag) {
if (true_label_ != fall_through_) __ jmp(true_label_);
} else {
if (false_label_ != fall_through_) __ jmp(false_label_);
}
}
void FullCodeGenerator::DoTest(Expression* condition,
Label* if_true,
Label* if_false,
Label* fall_through) {
Callable callable = Builtins::CallableFor(isolate(), Builtins::kToBoolean);
__ Call(callable.code(), RelocInfo::CODE_TARGET);
RestoreContext();
__ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
Split(equal, if_true, if_false, fall_through);
}
void FullCodeGenerator::Split(Condition cc,
Label* if_true,
Label* if_false,
Label* fall_through) {
if (if_false == fall_through) {
__ j(cc, if_true);
} else if (if_true == fall_through) {
__ j(NegateCondition(cc), if_false);
} else {
__ j(cc, if_true);
__ jmp(if_false);
}
}
MemOperand FullCodeGenerator::StackOperand(Variable* var) {
DCHECK(var->IsStackAllocated());
// Offset is negative because higher indexes are at lower addresses.
int offset = -var->index() * kPointerSize;
// Adjust by a (parameter or local) base offset.
if (var->IsParameter()) {
offset += kFPOnStackSize + kPCOnStackSize +
(info_->scope()->num_parameters() - 1) * kPointerSize;
} else {
offset += JavaScriptFrameConstants::kLocal0Offset;
}
return Operand(rbp, offset);
}
MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
if (var->IsContextSlot()) {
int context_chain_length = scope()->ContextChainLength(var->scope());
__ LoadContext(scratch, context_chain_length);
return ContextOperand(scratch, var->index());
} else {
return StackOperand(var);
}
}
void FullCodeGenerator::GetVar(Register dest, Variable* var) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
MemOperand location = VarOperand(var, dest);
__ movp(dest, location);
}
void FullCodeGenerator::SetVar(Variable* var,
Register src,
Register scratch0,
Register scratch1) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
DCHECK(!scratch0.is(src));
DCHECK(!scratch0.is(scratch1));
DCHECK(!scratch1.is(src));
MemOperand location = VarOperand(var, scratch0);
__ movp(location, src);
// Emit the write barrier code if the location is in the heap.
if (var->IsContextSlot()) {
int offset = Context::SlotOffset(var->index());
__ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
}
}
void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
// The variable in the declaration always resides in the current context.
DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
if (FLAG_debug_code) {
// Check that we're not inside a with or catch context.
__ movp(rbx, FieldOperand(rsi, HeapObject::kMapOffset));
__ CompareRoot(rbx, Heap::kWithContextMapRootIndex);
__ Check(not_equal, kDeclarationInWithContext);
__ CompareRoot(rbx, Heap::kCatchContextMapRootIndex);
__ Check(not_equal, kDeclarationInCatchContext);
}
}
void FullCodeGenerator::VisitVariableDeclaration(
VariableDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case VariableLocation::UNALLOCATED: {
DCHECK(!variable->binding_needs_init());
globals_->Add(variable->name(), zone());
FeedbackSlot slot = proxy->VariableFeedbackSlot();
DCHECK(!slot.IsInvalid());
globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
globals_->Add(isolate()->factory()->undefined_value(), zone());
globals_->Add(isolate()->factory()->undefined_value(), zone());
break;
}
case VariableLocation::PARAMETER:
case VariableLocation::LOCAL:
if (variable->binding_needs_init()) {
Comment cmnt(masm_, "[ VariableDeclaration");
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
__ movp(StackOperand(variable), kScratchRegister);
}
break;
case VariableLocation::CONTEXT:
if (variable->binding_needs_init()) {
Comment cmnt(masm_, "[ VariableDeclaration");
EmitDebugCheckDeclarationContext(variable);
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
__ movp(ContextOperand(rsi, variable->index()), kScratchRegister);
// No write barrier since the hole value is in old space.
}
break;
case VariableLocation::LOOKUP:
case VariableLocation::MODULE:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitFunctionDeclaration(
FunctionDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case VariableLocation::UNALLOCATED: {
globals_->Add(variable->name(), zone());
FeedbackSlot slot = proxy->VariableFeedbackSlot();
DCHECK(!slot.IsInvalid());
globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
// We need the slot where the literals array lives, too.
slot = declaration->fun()->LiteralFeedbackSlot();
DCHECK(!slot.IsInvalid());
globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
Handle<SharedFunctionInfo> function =
Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
// Check for stack-overflow exception.
if (function.is_null()) return SetStackOverflow();
globals_->Add(function, zone());
break;
}
case VariableLocation::PARAMETER:
case VariableLocation::LOCAL: {
Comment cmnt(masm_, "[ FunctionDeclaration");
VisitForAccumulatorValue(declaration->fun());
__ movp(StackOperand(variable), result_register());
break;
}
case VariableLocation::CONTEXT: {
Comment cmnt(masm_, "[ FunctionDeclaration");
EmitDebugCheckDeclarationContext(variable);
VisitForAccumulatorValue(declaration->fun());
__ movp(ContextOperand(rsi, variable->index()), result_register());
int offset = Context::SlotOffset(variable->index());
// We know that we have written a function, which is not a smi.
__ RecordWriteContextSlot(rsi,
offset,
result_register(),
rcx,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
break;
}
case VariableLocation::LOOKUP:
case VariableLocation::MODULE:
UNREACHABLE();
}
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
__ Push(pairs);
__ Push(Smi::FromInt(DeclareGlobalsFlags()));
__ EmitLoadFeedbackVector(rax);
__ Push(rax);
__ CallRuntime(Runtime::kDeclareGlobals);
// Return value is ignored.
}
void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
Comment cmnt(masm_, "[ SwitchStatement");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
// Keep the switch value on the stack until a case matches.
VisitForStackValue(stmt->tag());
ZoneList<CaseClause*>* clauses = stmt->cases();
CaseClause* default_clause = NULL; // Can occur anywhere in the list.
Label next_test; // Recycled for each test.
// Compile all the tests with branches to their bodies.
for (int i = 0; i < clauses->length(); i++) {
CaseClause* clause = clauses->at(i);
clause->body_target()->Unuse();
// The default is not a test, but remember it as final fall through.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
__ bind(&next_test);
next_test.Unuse();
// Compile the label expression.
VisitForAccumulatorValue(clause->label());
// Perform the comparison as if via '==='.
__ movp(rdx, Operand(rsp, 0)); // Switch value.
bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ movp(rcx, rdx);
__ orp(rcx, rax);
patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
__ cmpp(rdx, rax);
__ j(not_equal, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ jmp(clause->body_target());
__ bind(&slow_case);
}
// Record position before stub call for type feedback.
SetExpressionPosition(clause);
Handle<Code> ic =
CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
CallIC(ic);
patch_site.EmitPatchInfo();
Label skip;
__ jmp(&skip, Label::kNear);
__ CompareRoot(rax, Heap::kTrueValueRootIndex);
__ j(not_equal, &next_test);
__ Drop(1);
__ jmp(clause->body_target());
__ bind(&skip);
__ testp(rax, rax);
__ j(not_equal, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ jmp(clause->body_target());
}
// Discard the test value and jump to the default if present, otherwise to
// the end of the statement.
__ bind(&next_test);
DropOperands(1); // Switch value is no longer needed.
if (default_clause == NULL) {
__ jmp(nested_statement.break_label());
} else {
__ jmp(default_clause->body_target());
}
// Compile all the case bodies.
for (int i = 0; i < clauses->length(); i++) {
Comment cmnt(masm_, "[ Case body");
CaseClause* clause = clauses->at(i);
__ bind(clause->body_target());
VisitStatements(clause->statements());
}
__ bind(nested_statement.break_label());
}
void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
Comment cmnt(masm_, "[ ForInStatement");
SetStatementPosition(stmt, SKIP_BREAK);
FeedbackSlot slot = stmt->ForInFeedbackSlot();
// Get the object to enumerate over.
SetExpressionAsStatementPosition(stmt->enumerable());
VisitForAccumulatorValue(stmt->enumerable());
OperandStackDepthIncrement(5);
Label loop, exit;
Iteration loop_statement(this, stmt);
increment_loop_depth();
// If the object is null or undefined, skip over the loop, otherwise convert
// it to a JS receiver. See ECMA-262 version 5, section 12.6.4.
Label convert, done_convert;
__ JumpIfSmi(rax, &convert, Label::kNear);
__ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
__ j(above_equal, &done_convert, Label::kNear);
__ CompareRoot(rax, Heap::kNullValueRootIndex);
__ j(equal, &exit);
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(equal, &exit);
__ bind(&convert);
__ Call(isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET);
RestoreContext();
__ bind(&done_convert);
__ Push(rax);
// Check cache validity in generated code. If we cannot guarantee cache
// validity, call the runtime system to check cache validity or get the
// property names in a fixed array. Note: Proxies never have an enum cache,
// so will always take the slow path.
Label call_runtime;
__ CheckEnumCache(&call_runtime);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
Label use_cache;
__ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
__ jmp(&use_cache, Label::kNear);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ Push(rax); // Duplicate the enumerable object on the stack.
__ CallRuntime(Runtime::kForInEnumerate);
// If we got a map from the runtime call, we can do a fast
// modification check. Otherwise, we got a fixed array, and we have
// to do a slow check.
Label fixed_array;
__ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
Heap::kMetaMapRootIndex);
__ j(not_equal, &fixed_array);
// We got a map in register rax. Get the enumeration cache from it.
__ bind(&use_cache);
Label no_descriptors;
__ EnumLength(rdx, rax);
__ Cmp(rdx, Smi::kZero);
__ j(equal, &no_descriptors);
__ LoadInstanceDescriptors(rax, rcx);
__ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeOffset));
__ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
// Set up the four remaining stack slots.
__ Push(rax); // Map.
__ Push(rcx); // Enumeration cache.
__ Push(rdx); // Number of valid entries for the map in the enum cache.
__ Push(Smi::kZero); // Initial index.
__ jmp(&loop);
__ bind(&no_descriptors);
__ addp(rsp, Immediate(kPointerSize));
__ jmp(&exit);
// We got a fixed array in register rax. Iterate through that.
__ bind(&fixed_array);
__ movp(rcx, Operand(rsp, 0 * kPointerSize)); // Get enumerated object
__ Push(Smi::FromInt(1)); // Smi(1) indicates slow check
__ Push(rax); // Array
__ movp(rax, FieldOperand(rax, FixedArray::kLengthOffset));
__ Push(rax); // Fixed array length (as smi).
__ Push(Smi::kZero); // Initial index.
// Generate code for doing the condition check.
__ bind(&loop);
SetExpressionAsStatementPosition(stmt->each());
__ movp(rax, Operand(rsp, 0 * kPointerSize)); // Get the current index.
__ cmpp(rax, Operand(rsp, 1 * kPointerSize)); // Compare to the array length.
__ j(above_equal, loop_statement.break_label());
// Get the current entry of the array into register rax.
__ movp(rbx, Operand(rsp, 2 * kPointerSize));
SmiIndex index = masm()->SmiToIndex(rax, rax, kPointerSizeLog2);
__ movp(rax,
FieldOperand(rbx, index.reg, index.scale, FixedArray::kHeaderSize));
// Get the expected map from the stack or a smi in the
// permanent slow case into register rdx.
__ movp(rdx, Operand(rsp, 3 * kPointerSize));
// Check if the expected map still matches that of the enumerable.
// If not, we may have to filter the key.
Label update_each;
__ movp(rbx, Operand(rsp, 4 * kPointerSize));
__ cmpp(rdx, FieldOperand(rbx, HeapObject::kMapOffset));
__ j(equal, &update_each, Label::kNear);
// We need to filter the key, record slow-path here.
int const vector_index = SmiFromSlot(slot)->value();
__ EmitLoadFeedbackVector(rdx);
__ Move(FieldOperand(rdx, FixedArray::OffsetOfElementAt(vector_index)),
FeedbackVector::MegamorphicSentinel(isolate()));
// rax contains the key. The receiver in rbx is the second argument to
// ForInFilter. ForInFilter returns undefined if the receiver doesn't
// have the key or returns the name-converted key.
__ Call(isolate()->builtins()->ForInFilter(), RelocInfo::CODE_TARGET);
RestoreContext();
__ JumpIfRoot(result_register(), Heap::kUndefinedValueRootIndex,
loop_statement.continue_label());
// Update the 'each' property or variable from the possibly filtered
// entry in register rax.
__ bind(&update_each);
// Perform the assignment as if via '='.
{ EffectContext context(this);
EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
}
// Generate code for the body of the loop.
Visit(stmt->body());
// Generate code for going to the next element by incrementing the
// index (smi) stored on top of the stack.
__ bind(loop_statement.continue_label());
__ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1));
EmitBackEdgeBookkeeping(stmt, &loop);
__ jmp(&loop);
// Remove the pointers stored on the stack.
__ bind(loop_statement.break_label());
DropOperands(5);
// Exit and decrement the loop depth.
__ bind(&exit);
decrement_loop_depth();
}
void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
FeedbackSlot slot) {
DCHECK(NeedsHomeObject(initializer));
__ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
__ movp(StoreDescriptor::ValueRegister(),
Operand(rsp, offset * kPointerSize));
CallStoreIC(slot, isolate()->factory()->home_object_symbol());
}
void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
int offset,
FeedbackSlot slot) {
DCHECK(NeedsHomeObject(initializer));
__ movp(StoreDescriptor::ReceiverRegister(), rax);
__ movp(StoreDescriptor::ValueRegister(),
Operand(rsp, offset * kPointerSize));
CallStoreIC(slot, isolate()->factory()->home_object_symbol());
}
void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
TypeofMode typeof_mode) {
// Record position before possible IC call.
SetExpressionPosition(proxy);
Variable* var = proxy->var();
// Two cases: global variable, and all other types of variables.
switch (var->location()) {
case VariableLocation::UNALLOCATED: {
Comment cmnt(masm_, "[ Global variable");
EmitGlobalVariableLoad(proxy, typeof_mode);
context()->Plug(rax);
break;
}
case VariableLocation::PARAMETER:
case VariableLocation::LOCAL:
case VariableLocation::CONTEXT: {
DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
Comment cmnt(masm_, var->IsContextSlot() ? "[ Context slot"
: "[ Stack slot");
if (proxy->hole_check_mode() == HoleCheckMode::kRequired) {
// Throw a reference error when using an uninitialized let/const
// binding in harmony mode.
DCHECK(IsLexicalVariableMode(var->mode()));
Label done;
GetVar(rax, var);
__ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &done, Label::kNear);
__ Push(var->name());
__ CallRuntime(Runtime::kThrowReferenceError);
__ bind(&done);
context()->Plug(rax);
break;
}
context()->Plug(var);
break;
}
case VariableLocation::LOOKUP:
case VariableLocation::MODULE:
UNREACHABLE();
}
}
void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
Expression* expression = (property == NULL) ? NULL : property->value();
if (expression == NULL) {
OperandStackDepthIncrement(1);
__ PushRoot(Heap::kNullValueRootIndex);
} else {
VisitForStackValue(expression);
if (NeedsHomeObject(expression)) {
DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
property->kind() == ObjectLiteral::Property::SETTER);
int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
EmitSetHomeObject(expression, offset, property->GetSlot());
}
}
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
Handle<BoilerplateDescription> constant_properties =
expr->GetOrBuildConstantProperties(isolate());
int flags = expr->ComputeFlags();
if (MustCreateObjectLiteralWithRuntime(expr)) {
__ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ Push(SmiFromSlot(expr->literal_slot()));
__ Push(constant_properties);
__ Push(Smi::FromInt(flags));
__ CallRuntime(Runtime::kCreateObjectLiteral);
} else {
__ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ Move(rbx, SmiFromSlot(expr->literal_slot()));
__ Move(rcx, constant_properties);
__ Move(rdx, Smi::FromInt(flags));
Callable callable =
Builtins::CallableFor(isolate(), Builtins::kFastCloneShallowObject);
__ Call(callable.code(), RelocInfo::CODE_TARGET);
RestoreContext();
}
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in rax.
bool result_saved = false;
AccessorTable accessor_table(zone());
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
DCHECK(!property->is_computed_name());
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key()->AsLiteral();
Expression* value = property->value();
if (!result_saved) {
PushOperand(rax); // Save result on the stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::SPREAD:
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
// It is safe to use [[Put]] here because the boilerplate already
// contains computed properties with an uninitialized value.
if (key->IsStringLiteral()) {
DCHECK(key->IsPropertyName());
if (property->emit_store()) {
VisitForAccumulatorValue(value);
DCHECK(StoreDescriptor::ValueRegister().is(rax));
__ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
CallStoreIC(property->GetSlot(0), key->value(), kStoreOwn);
if (NeedsHomeObject(value)) {
EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
}
} else {
VisitForEffect(value);
}
break;
}
PushOperand(Operand(rsp, 0)); // Duplicate receiver.
VisitForStackValue(key);
VisitForStackValue(value);
if (property->emit_store()) {
if (NeedsHomeObject(value)) {
EmitSetHomeObject(value, 2, property->GetSlot());
}
PushOperand(Smi::FromInt(SLOPPY)); // Language mode
CallRuntimeWithOperands(Runtime::kSetProperty);
} else {
DropOperands(3);
}
break;
case ObjectLiteral::Property::PROTOTYPE:
PushOperand(Operand(rsp, 0)); // Duplicate receiver.
VisitForStackValue(value);
DCHECK(property->emit_store());
CallRuntimeWithOperands(Runtime::kInternalSetPrototype);
break;
case ObjectLiteral::Property::GETTER:
if (property->emit_store()) {
AccessorTable::Iterator it = accessor_table.lookup(key);
it->second->getter = property;
}
break;
case ObjectLiteral::Property::SETTER:
if (property->emit_store()) {
AccessorTable::Iterator it = accessor_table.lookup(key);
it->second->setter = property;
}
break;
}
}
// Emit code to define accessors, using only a single call to the runtime for
// each pair of corresponding getters and setters.
for (AccessorTable::Iterator it = accessor_table.begin();
it != accessor_table.end();
++it) {
PushOperand(Operand(rsp, 0)); // Duplicate receiver.
VisitForStackValue(it->first);
EmitAccessor(it->second->getter);
EmitAccessor(it->second->setter);
PushOperand(Smi::FromInt(NONE));
CallRuntimeWithOperands(Runtime::kDefineAccessorPropertyUnchecked);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(rax);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
Handle<ConstantElementsPair> constant_elements =
expr->GetOrBuildConstantElements(isolate());
if (MustCreateArrayLiteralWithRuntime(expr)) {
__ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ Push(SmiFromSlot(expr->literal_slot()));
__ Push(constant_elements);
__ Push(Smi::FromInt(expr->ComputeFlags()));
__ CallRuntime(Runtime::kCreateArrayLiteral);
} else {
__ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ Move(rbx, SmiFromSlot(expr->literal_slot()));
__ Move(rcx, constant_elements);
Callable callable =
CodeFactory::FastCloneShallowArray(isolate(), TRACK_ALLOCATION_SITE);
__ Call(callable.code(), RelocInfo::CODE_TARGET);
RestoreContext();
}
bool result_saved = false; // Is the result saved to the stack?
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
for (int array_index = 0; array_index < length; array_index++) {
Expression* subexpr = subexprs->at(array_index);
DCHECK(!subexpr->IsSpread());
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
if (!result_saved) {
PushOperand(rax); // array literal
result_saved = true;
}
VisitForAccumulatorValue(subexpr);
__ Move(StoreDescriptor::NameRegister(), Smi::FromInt(array_index));
__ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
CallKeyedStoreIC(expr->LiteralFeedbackSlot());
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(rax);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
Comment cmnt(masm_, "[ Assignment");
Property* property = expr->target()->AsProperty();
LhsKind assign_type = Property::GetAssignType(property);
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the register.
VisitForStackValue(property->obj());
__ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
} else {
VisitForStackValue(property->obj());
}
break;
case KEYED_PROPERTY: {
if (expr->is_compound()) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
__ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize));
__ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0));
} else {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
}
break;
}
case NAMED_SUPER_PROPERTY:
case KEYED_SUPER_PROPERTY:
UNREACHABLE();
break;
}
// For compound assignments we need another deoptimization point after the
// variable/property load.
if (expr->is_compound()) {
{ AccumulatorValueContext context(this);
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy());
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(property);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(property);
break;
case NAMED_SUPER_PROPERTY:
case KEYED_SUPER_PROPERTY:
UNREACHABLE();
break;
}
}
Token::Value op = expr->binary_op();
PushOperand(rax); // Left operand goes on the stack.
VisitForAccumulatorValue(expr->value());
AccumulatorValueContext context(this);
EmitBinaryOp(expr->binary_operation(), op);
} else {
VisitForAccumulatorValue(expr->value());
}
SetExpressionPosition(expr);
// Store the value.
switch (assign_type) {
case VARIABLE: {
VariableProxy* proxy = expr->target()->AsVariableProxy();
EmitVariableAssignment(proxy->var(), expr->op(), expr->AssignmentSlot(),
proxy->hole_check_mode());
context()->Plug(rax);
break;
}
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
case NAMED_SUPER_PROPERTY:
case KEYED_SUPER_PROPERTY:
UNREACHABLE();
break;
}
}
void FullCodeGenerator::PushOperand(MemOperand operand) {
OperandStackDepthIncrement(1);
__ Push(operand);
}
void FullCodeGenerator::EmitOperandStackDepthCheck() {
if (FLAG_debug_code) {
int expected_diff = StandardFrameConstants::kFixedFrameSizeFromFp +
operand_stack_depth_ * kPointerSize;
__ movp(rax, rbp);
__ subp(rax, rsp);
__ cmpp(rax, Immediate(expected_diff));
__ Assert(equal, kUnexpectedStackDepth);
}
}
void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
PopOperand(rdx);
Handle<Code> code = CodeFactory::BinaryOperation(isolate(), op).code();
__ Call(code, RelocInfo::CODE_TARGET);
RestoreContext();
context()->Plug(rax);
}
void FullCodeGenerator::EmitAssignment(Expression* expr, FeedbackSlot slot) {
DCHECK(expr->IsValidReferenceExpressionOrThis());
Property* prop = expr->AsProperty();
LhsKind assign_type = Property::GetAssignType(prop);
switch (assign_type) {
case VARIABLE: {
VariableProxy* proxy = expr->AsVariableProxy();
EffectContext context(this);
EmitVariableAssignment(proxy->var(), Token::ASSIGN, slot,
proxy->hole_check_mode());
break;
}
case NAMED_PROPERTY: {
PushOperand(rax); // Preserve value.
VisitForAccumulatorValue(prop->obj());
__ Move(StoreDescriptor::ReceiverRegister(), rax);
PopOperand(StoreDescriptor::ValueRegister()); // Restore value.
CallStoreIC(slot, prop->key()->AsLiteral()->value());
break;
}
case KEYED_PROPERTY: {
PushOperand(rax); // Preserve value.
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ Move(StoreDescriptor::NameRegister(), rax);
PopOperand(StoreDescriptor::ReceiverRegister());
PopOperand(StoreDescriptor::ValueRegister()); // Restore value.
CallKeyedStoreIC(slot);
break;
}
case NAMED_SUPER_PROPERTY:
case KEYED_SUPER_PROPERTY:
UNREACHABLE();
break;
}
context()->Plug(rax);
}
void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
Variable* var, MemOperand location) {
__ movp(location, rax);
if (var->IsContextSlot()) {
__ movp(rdx, rax);
__ RecordWriteContextSlot(
rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs);
}
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
FeedbackSlot slot,
HoleCheckMode hole_check_mode) {
if (var->IsUnallocated()) {
// Global var, const, or let.
__ LoadGlobalObject(StoreDescriptor::ReceiverRegister());
CallStoreIC(slot, var->name(), kStoreGlobal);
} else if (IsLexicalVariableMode(var->mode()) && op != Token::INIT) {
DCHECK(!var->IsLookupSlot());
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
MemOperand location = VarOperand(var, rcx);
// Perform an initialization check for lexically declared variables.
if (hole_check_mode == HoleCheckMode::kRequired) {
Label assign;
__ movp(rdx, location);
__ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &assign, Label::kNear);
__ Push(var->name());
__ CallRuntime(Runtime::kThrowReferenceError);
__ bind(&assign);
}
if (var->mode() != CONST) {
EmitStoreToStackLocalOrContextSlot(var, location);
} else if (var->throw_on_const_assignment(language_mode())) {
__ CallRuntime(Runtime::kThrowConstAssignError);
}
} else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
// Initializing assignment to const {this} needs a write barrier.
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label uninitialized_this;
MemOperand location = VarOperand(var, rcx);
__ movp(rdx, location);
__ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
__ j(equal, &uninitialized_this);
__ Push(var->name());
__ CallRuntime(Runtime::kThrowReferenceError);
__ bind(&uninitialized_this);
EmitStoreToStackLocalOrContextSlot(var, location);
} else {
DCHECK(var->mode() != CONST || op == Token::INIT);
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
DCHECK(!var->IsLookupSlot());
// Assignment to var or initializing assignment to let/const in harmony
// mode.
MemOperand location = VarOperand(var, rcx);
EmitStoreToStackLocalOrContextSlot(var, location);
}
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
DCHECK(prop != NULL);
DCHECK(prop->key()->IsLiteral());
PopOperand(StoreDescriptor::ReceiverRegister());
CallStoreIC(expr->AssignmentSlot(), prop->key()->AsLiteral()->value());
context()->Plug(rax);
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
PopOperand(StoreDescriptor::NameRegister()); // Key.
PopOperand(StoreDescriptor::ReceiverRegister());
DCHECK(StoreDescriptor::ValueRegister().is(rax));
CallKeyedStoreIC(expr->AssignmentSlot());
context()->Plug(rax);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
Expression* callee = expr->expression();
// Get the target function.
ConvertReceiverMode convert_mode;
if (callee->IsVariableProxy()) {
{ StackValueContext context(this);
EmitVariableLoad(callee->AsVariableProxy());
}
// Push undefined as receiver. This is patched in the Call builtin if it
// is a sloppy mode method.
PushOperand(isolate()->factory()->undefined_value());
convert_mode = ConvertReceiverMode::kNullOrUndefined;
} else {
// Load the function from the receiver.
DCHECK(callee->IsProperty());
DCHECK(!callee->AsProperty()->IsSuperAccess());
__ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
EmitNamedPropertyLoad(callee->AsProperty());
// Push the target function under the receiver.
PushOperand(Operand(rsp, 0));
__ movp(Operand(rsp, kPointerSize), rax);
convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
}
EmitCall(expr, convert_mode);
}
// Common code for calls using the IC.
void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
Expression* key) {
// Load the key.
VisitForAccumulatorValue(key);
Expression* callee = expr->expression();
// Load the function from the receiver.
DCHECK(callee->IsProperty());
__ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
__ Move(LoadDescriptor::NameRegister(), rax);
EmitKeyedPropertyLoad(callee->AsProperty());
// Push the target function under the receiver.
PushOperand(Operand(rsp, 0));
__ movp(Operand(rsp, kPointerSize), rax);
EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
}
void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
// Load the arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
SetCallPosition(expr);
Handle<Code> code = CodeFactory::CallICTrampoline(isolate(), mode).code();
__ Set(rdx, IntFromSlot(expr->CallFeedbackICSlot()));
__ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
__ Set(rax, arg_count);
CallIC(code);
OperandStackDepthDecrement(arg_count + 1);
RestoreContext();
// Discard the function left on TOS.
context()->DropAndPlug(1, rax);
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push constructor on the stack. If it's not a function it's used as
// receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
// ignored.
DCHECK(!expr->expression()->IsSuperPropertyReference());
VisitForStackValue(expr->expression());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetConstructCallPosition(expr);
// Load function and argument count into rdi and rax.
__ Set(rax, arg_count);
__ movp(rdi, Operand(rsp, arg_count * kPointerSize));
// Record call targets in unoptimized code, but not in the snapshot.
__ EmitLoadFeedbackVector(rbx);
__ Move(rdx, SmiFromSlot(expr->CallNewFeedbackSlot()));
CallConstructStub stub(isolate());
CallIC(stub.GetCode());
OperandStackDepthDecrement(arg_count + 1);
RestoreContext();
context()->Plug(rax);
}
void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(rax, if_true);
__ jmp(if_false);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rbx);
Split(above_equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, JS_ARRAY_TYPE, rbx);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, JS_TYPED_ARRAY_TYPE, rbx);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, JS_PROXY_TYPE, rbx);
Split(equal, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
Label done, null, function, non_function_constructor;
VisitForAccumulatorValue(args->at(0));
// If the object is not a JSReceiver, we return null.
__ JumpIfSmi(rax, &null, Label::kNear);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rax);
__ j(below, &null, Label::kNear);
// Return 'Function' for JSFunction and JSBoundFunction objects.
__ CmpInstanceType(rax, FIRST_FUNCTION_TYPE);
STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
__ j(above_equal, &function, Label::kNear);
// Check if the constructor in the map is a JS function.
__ GetMapConstructor(rax, rax, rbx);
__ CmpInstanceType(rbx, JS_FUNCTION_TYPE);
__ j(not_equal, &non_function_constructor, Label::kNear);
// rax now contains the constructor function. Grab the
// instance class name from there.
__ movp(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
__ movp(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset));
__ jmp(&done, Label::kNear);
// Non-JS objects have class null.
__ bind(&null);
__ LoadRoot(rax, Heap::kNullValueRootIndex);
__ jmp(&done, Label::kNear);
// Functions have class 'Function'.
__ bind(&function);
__ LoadRoot(rax, Heap::kFunction_stringRootIndex);
__ jmp(&done, Label::kNear);
// Objects with a non-function constructor have class 'Object'.
__ bind(&non_function_constructor);
__ LoadRoot(rax, Heap::kObject_stringRootIndex);
// All done.
__ bind(&done);
context()->Plug(rax);
}
void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Register object = rbx;
Register index = rax;
Register result = rdx;
PopOperand(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharCodeAtGenerator generator(object, index, result, &need_conversion,
&need_conversion, &index_out_of_range);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result, Heap::kNanValueRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Move the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitCall(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_LE(2, args->length());
// Push target, receiver and arguments onto the stack.
for (Expression* const arg : *args) {
VisitForStackValue(arg);
}
// Move target to rdi.
int const argc = args->length() - 2;
__ movp(rdi, Operand(rsp, (argc + 1) * kPointerSize));
// Call the target.
__ Set(rax, argc);
__ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
OperandStackDepthDecrement(argc + 1);
RestoreContext();
// Discard the function left on TOS.
context()->DropAndPlug(1, rax);
}
void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(1, args->length());
VisitForAccumulatorValue(args->at(0));
__ AssertFunction(rax);
__ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
__ movp(rax, FieldOperand(rax, Map::kPrototypeOffset));
context()->Plug(rax);
}
void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 0);
ExternalReference debug_is_active =
ExternalReference::debug_is_active_address(isolate());
__ Move(kScratchRegister, debug_is_active);
__ movzxbp(rax, Operand(kScratchRegister, 0));
__ Integer32ToSmi(rax, rax);
context()->Plug(rax);
}
void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
// Push function.
__ LoadNativeContextSlot(expr->context_index(), rax);
PushOperand(rax);
// Push undefined as receiver.
OperandStackDepthIncrement(1);
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
SetCallPosition(expr);
__ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
__ Set(rax, arg_count);
__ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
RelocInfo::CODE_TARGET);
OperandStackDepthDecrement(arg_count + 1);
RestoreContext();
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::DELETE: {
Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
Property* property = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (property != NULL) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
PushOperand(Smi::FromInt(language_mode()));
CallRuntimeWithOperands(Runtime::kDeleteProperty);
context()->Plug(rax);
} else if (proxy != NULL) {
Variable* var = proxy->var();
// Delete of an unqualified identifier is disallowed in strict mode but
// "delete this" is allowed.
bool is_this = var->is_this();
DCHECK(is_sloppy(language_mode()) || is_this);
if (var->IsUnallocated()) {
__ movp(rax, NativeContextOperand());
__ Push(ContextOperand(rax, Context::EXTENSION_INDEX));
__ Push(var->name());
__ Push(Smi::FromInt(SLOPPY));
__ CallRuntime(Runtime::kDeleteProperty);
context()->Plug(rax);
} else {
DCHECK(!var->IsLookupSlot());
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
// Result of deleting non-global variables is false. 'this' is
// not really a variable, though we implement it as one. The
// subexpression does not have side effects.
context()->Plug(is_this);
}
} else {
// Result of deleting non-property, non-variable reference is true.
// The subexpression may have side effects.
VisitForEffect(expr->expression());
context()->Plug(true);
}
break;
}
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
context()->Plug(Heap::kUndefinedValueRootIndex);
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
if (context()->IsEffect()) {
// Unary NOT has no side effects so it's only necessary to visit the
// subexpression. Match the optimizing compiler by not branching.
VisitForEffect(expr->expression());
} else if (context()->IsTest()) {
const TestContext* test = TestContext::cast(context());
// The labels are swapped for the recursive call.
VisitForControl(expr->expression(),
test->false_label(),
test->true_label(),
test->fall_through());
context()->Plug(test->true_label(), test->false_label());
} else {
// We handle value contexts explicitly rather than simply visiting
// for control and plugging the control flow into the context,
// because we need to prepare a pair of extra administrative AST ids
// for the optimizing compiler.
DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
Label materialize_true, materialize_false, done;
VisitForControl(expr->expression(),
&materialize_false,
&materialize_true,
&materialize_true);
if (!context()->IsAccumulatorValue()) OperandStackDepthIncrement(1);
__ bind(&materialize_true);
if (context()->IsAccumulatorValue()) {
__ LoadRoot(rax, Heap::kTrueValueRootIndex);
} else {
__ PushRoot(Heap::kTrueValueRootIndex);
}
__ jmp(&done, Label::kNear);
__ bind(&materialize_false);
if (context()->IsAccumulatorValue()) {
__ LoadRoot(rax, Heap::kFalseValueRootIndex);
} else {
__ PushRoot(Heap::kFalseValueRootIndex);
}
__ bind(&done);
}
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
{
AccumulatorValueContext context(this);
VisitForTypeofValue(expr->expression());
}
__ movp(rbx, rax);
__ Call(isolate()->builtins()->Typeof(), RelocInfo::CODE_TARGET);
context()->Plug(rax);
break;
}
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
Comment cmnt(masm_, "[ CountOperation");
Property* prop = expr->expression()->AsProperty();
LhsKind assign_type = Property::GetAssignType(prop);
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
AccumulatorValueContext context(this);
EmitVariableLoad(expr->expression()->AsVariableProxy());
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && !context()->IsEffect()) {
PushOperand(Smi::kZero);
}
switch (assign_type) {
case NAMED_PROPERTY: {
VisitForStackValue(prop->obj());
__ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
EmitNamedPropertyLoad(prop);
break;
}
case KEYED_PROPERTY: {
VisitForStackValue(prop->obj());
VisitForStackValue(prop->key());
// Leave receiver on stack
__ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize));
// Copy of key, needed for later store.
__ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0));
EmitKeyedPropertyLoad(prop);
break;
}
case NAMED_SUPER_PROPERTY:
case KEYED_SUPER_PROPERTY:
case VARIABLE:
UNREACHABLE();
}
}
// Convert old value into a number.
__ Call(isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
RestoreContext();
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
PushOperand(rax);
break;
case NAMED_PROPERTY:
__ movp(Operand(rsp, kPointerSize), rax);
break;
case KEYED_PROPERTY:
__ movp(Operand(rsp, 2 * kPointerSize), rax);
break;
case NAMED_SUPER_PROPERTY:
case KEYED_SUPER_PROPERTY:
UNREACHABLE();
break;
}
}
}
SetExpressionPosition(expr);
// Call stub for +1/-1.
__ movp(rdx, rax);
__ Move(rax, Smi::FromInt(1));
Handle<Code> code =
CodeFactory::BinaryOperation(isolate(), expr->binary_op()).code();
__ Call(code, RelocInfo::CODE_TARGET);
RestoreContext();
// Store the value returned in rax.
switch (assign_type) {
case VARIABLE: {
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (expr->is_postfix()) {
// Perform the assignment as if via '='.
{ EffectContext context(this);
EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(),
proxy->hole_check_mode());
context.Plug(rax);
}
// For all contexts except kEffect: We have the result on
// top of the stack.
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
// Perform the assignment as if via '='.
EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(),
proxy->hole_check_mode());
context()->Plug(rax);
}
break;
}
case NAMED_PROPERTY: {
PopOperand(StoreDescriptor::ReceiverRegister());
CallStoreIC(expr->CountSlot(), prop->key()->AsLiteral()->value());
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(rax);
}
break;
}
case KEYED_PROPERTY: {
PopOperand(StoreDescriptor::NameRegister());
PopOperand(StoreDescriptor::ReceiverRegister());
CallKeyedStoreIC(expr->CountSlot());
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(rax);
}
break;
}
case NAMED_SUPER_PROPERTY:
case KEYED_SUPER_PROPERTY:
UNREACHABLE();
break;
}
}
void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
Expression* sub_expr,
Handle<String> check) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
{ AccumulatorValueContext context(this);
VisitForTypeofValue(sub_expr);
}
Factory* factory = isolate()->factory();
if (String::Equals(check, factory->number_string())) {
__ JumpIfSmi(rax, if_true);
__ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
__ CompareRoot(rax, Heap::kHeapNumberMapRootIndex);
Split(equal, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->string_string())) {
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx);
Split(below, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->symbol_string())) {
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, SYMBOL_TYPE, rdx);
Split(equal, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->boolean_string())) {
__ CompareRoot(rax, Heap::kTrueValueRootIndex);
__ j(equal, if_true);
__ CompareRoot(rax, Heap::kFalseValueRootIndex);
Split(equal, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->undefined_string())) {
__ CompareRoot(rax, Heap::kNullValueRootIndex);
__ j(equal, if_false);
__ JumpIfSmi(rax, if_false);
// Check for undetectable objects => true.
__ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ testb(FieldOperand(rdx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
Split(not_zero, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->function_string())) {
__ JumpIfSmi(rax, if_false);
// Check for callable and not undetectable objects => true.
__ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbl(rdx, FieldOperand(rdx, Map::kBitFieldOffset));
__ andb(rdx,
Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
__ cmpb(rdx, Immediate(1 << Map::kIsCallable));
Split(equal, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->object_string())) {
__ JumpIfSmi(rax, if_false);
__ CompareRoot(rax, Heap::kNullValueRootIndex);
__ j(equal, if_true);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rdx);
__ j(below, if_false);
// Check for callable or undetectable objects => false.
__ testb(FieldOperand(rdx, Map::kBitFieldOffset),
Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
Split(zero, if_true, if_false, fall_through);
} else {
if (if_false != fall_through) __ jmp(if_false);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
// First we try a fast inlined version of the compare when one of
// the operands is a literal.
if (TryLiteralCompare(expr)) return;
// Always perform the comparison for its control flow. Pack the result
// into the expression's context after the comparison is performed.
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
Token::Value op = expr->op();
VisitForStackValue(expr->left());
switch (op) {
case Token::IN:
VisitForStackValue(expr->right());
SetExpressionPosition(expr);
EmitHasProperty();
__ CompareRoot(rax, Heap::kTrueValueRootIndex);
Split(equal, if_true, if_false, fall_through);
break;
case Token::INSTANCEOF: {
VisitForAccumulatorValue(expr->right());
SetExpressionPosition(expr);
PopOperand(rdx);
__ Call(isolate()->builtins()->InstanceOf(), RelocInfo::CODE_TARGET);
RestoreContext();
__ CompareRoot(rax, Heap::kTrueValueRootIndex);
Split(equal, if_true, if_false, fall_through);
break;
}
default: {
VisitForAccumulatorValue(expr->right());
SetExpressionPosition(expr);
Condition cc = CompareIC::ComputeCondition(op);
PopOperand(rdx);
bool inline_smi_code = ShouldInlineSmiCase(op);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ movp(rcx, rdx);
__ orp(rcx, rax);
patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
__ cmpp(rdx, rax);
Split(cc, if_true, if_false, NULL);
__ bind(&slow_case);
}
Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
CallIC(ic);
patch_site.EmitPatchInfo();
__ testp(rax, rax);
Split(cc, if_true, if_false, fall_through);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
VisitForAccumulatorValue(sub_expr);
if (expr->op() == Token::EQ_STRICT) {
Heap::RootListIndex nil_value = nil == kNullValue ?
Heap::kNullValueRootIndex :
Heap::kUndefinedValueRootIndex;
__ CompareRoot(rax, nil_value);
Split(equal, if_true, if_false, fall_through);
} else {
__ JumpIfSmi(rax, if_false);
__ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
__ testb(FieldOperand(rax, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
Split(not_zero, if_true, if_false, fall_through);
}
context()->Plug(if_true, if_false);
}
Register FullCodeGenerator::result_register() {
return rax;
}
Register FullCodeGenerator::context_register() {
return rsi;
}
void FullCodeGenerator::LoadFromFrameField(int frame_offset, Register value) {
DCHECK(IsAligned(frame_offset, kPointerSize));
__ movp(value, Operand(rbp, frame_offset));
}
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
DCHECK(IsAligned(frame_offset, kPointerSize));
__ movp(Operand(rbp, frame_offset), value);
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ movp(dst, ContextOperand(rsi, context_index));
}
void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
DeclarationScope* closure_scope = scope()->GetClosureScope();
if (closure_scope->is_script_scope() ||
closure_scope->is_module_scope()) {
// Contexts nested in the native context have a canonical empty function
// as their closure, not the anonymous closure containing the global
// code.
__ movp(rax, NativeContextOperand());
PushOperand(ContextOperand(rax, Context::CLOSURE_INDEX));
} else if (closure_scope->is_eval_scope()) {
// Contexts created by a call to eval have the same closure as the
// context calling eval, not the anonymous closure containing the eval
// code. Fetch it from the context.
PushOperand(ContextOperand(rsi, Context::CLOSURE_INDEX));
} else {
DCHECK(closure_scope->is_function_scope());
PushOperand(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
}
#undef __
static const byte kJnsInstruction = 0x79;
static const byte kNopByteOne = 0x66;
static const byte kNopByteTwo = 0x90;
#ifdef DEBUG
static const byte kCallInstruction = 0xe8;
#endif
void BackEdgeTable::PatchAt(Code* unoptimized_code,
Address pc,
BackEdgeState target_state,
Code* replacement_code) {
Address call_target_address = pc - kIntSize;
Address jns_instr_address = call_target_address - 3;
Address jns_offset_address = call_target_address - 2;
switch (target_state) {
case INTERRUPT:
// sub <profiling_counter>, <delta> ;; Not changed
// jns ok
// call <interrupt stub>
// ok:
*jns_instr_address = kJnsInstruction;
*jns_offset_address = kJnsOffset;
break;
case ON_STACK_REPLACEMENT:
// sub <profiling_counter>, <delta> ;; Not changed
// nop
// nop
// call <on-stack replacment>
// ok:
*jns_instr_address = kNopByteOne;
*jns_offset_address = kNopByteTwo;
break;
}
Assembler::set_target_address_at(unoptimized_code->GetIsolate(),
call_target_address, unoptimized_code,
replacement_code->entry());
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, call_target_address, replacement_code);
}
BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
Isolate* isolate,
Code* unoptimized_code,
Address pc) {
Address call_target_address = pc - kIntSize;
Address jns_instr_address = call_target_address - 3;
DCHECK_EQ(kCallInstruction, *(call_target_address - 1));
if (*jns_instr_address == kJnsInstruction) {
DCHECK_EQ(kJnsOffset, *(call_target_address - 2));
DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(),
Assembler::target_address_at(call_target_address,
unoptimized_code));
return INTERRUPT;
}
DCHECK_EQ(kNopByteOne, *jns_instr_address);
DCHECK_EQ(kNopByteTwo, *(call_target_address - 2));
DCHECK_EQ(
isolate->builtins()->OnStackReplacement()->entry(),
Assembler::target_address_at(call_target_address, unoptimized_code));
return ON_STACK_REPLACEMENT;
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64