blob: 2a60ddee289b55ed5ff61616e57919321ce2376c [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h> // For LONG_MIN, LONG_MAX.
#if V8_TARGET_ARCH_MIPS64
#include "src/base/division-by-constant.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/mips64/macro-assembler-mips64.h"
#include "src/register-configuration.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
// Floating point constants.
const uint64_t kDoubleSignMask = Double::kSignMask;
const uint32_t kDoubleExponentShift = HeapNumber::kMantissaBits;
const uint32_t kDoubleNaNShift = kDoubleExponentShift - 1;
const uint64_t kDoubleNaNMask = Double::kExponentMask | (1L << kDoubleNaNShift);
const uint32_t kSingleSignMask = kBinary32SignMask;
const uint32_t kSingleExponentMask = kBinary32ExponentMask;
const uint32_t kSingleExponentShift = kBinary32ExponentShift;
const uint32_t kSingleNaNShift = kSingleExponentShift - 1;
const uint32_t kSingleNaNMask = kSingleExponentMask | (1 << kSingleNaNShift);
MacroAssembler::MacroAssembler(Isolate* isolate, void* buffer, int size,
CodeObjectRequired create_code_object)
: TurboAssembler(isolate, buffer, size, create_code_object) {}
void MacroAssembler::Load(Register dst,
const MemOperand& src,
Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8()) {
Lb(dst, src);
} else if (r.IsUInteger8()) {
Lbu(dst, src);
} else if (r.IsInteger16()) {
Lh(dst, src);
} else if (r.IsUInteger16()) {
Lhu(dst, src);
} else if (r.IsInteger32()) {
Lw(dst, src);
} else {
Ld(dst, src);
}
}
void MacroAssembler::Store(Register src,
const MemOperand& dst,
Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
Sb(src, dst);
} else if (r.IsInteger16() || r.IsUInteger16()) {
Sh(src, dst);
} else if (r.IsInteger32()) {
Sw(src, dst);
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
Sd(src, dst);
}
}
void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
Ld(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index,
Condition cond, Register src1,
const Operand& src2) {
Branch(2, NegateCondition(cond), src1, src2);
Ld(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index) {
DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
Sd(source, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond,
Register src1, const Operand& src2) {
DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
Branch(2, NegateCondition(cond), src1, src2);
Sd(source, MemOperand(s6, index << kPointerSizeLog2));
}
void TurboAssembler::PushCommonFrame(Register marker_reg) {
if (marker_reg.is_valid()) {
Push(ra, fp, marker_reg);
Daddu(fp, sp, Operand(kPointerSize));
} else {
Push(ra, fp);
mov(fp, sp);
}
}
void MacroAssembler::PopCommonFrame(Register marker_reg) {
if (marker_reg.is_valid()) {
Pop(ra, fp, marker_reg);
} else {
Pop(ra, fp);
}
}
void TurboAssembler::PushStandardFrame(Register function_reg) {
int offset = -StandardFrameConstants::kContextOffset;
if (function_reg.is_valid()) {
Push(ra, fp, cp, function_reg);
offset += kPointerSize;
} else {
Push(ra, fp, cp);
}
Daddu(fp, sp, Operand(offset));
}
// Push and pop all registers that can hold pointers.
void MacroAssembler::PushSafepointRegisters() {
// Safepoints expect a block of kNumSafepointRegisters values on the
// stack, so adjust the stack for unsaved registers.
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
DCHECK(num_unsaved >= 0);
if (num_unsaved > 0) {
Dsubu(sp, sp, Operand(num_unsaved * kPointerSize));
}
MultiPush(kSafepointSavedRegisters);
}
void MacroAssembler::PopSafepointRegisters() {
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
MultiPop(kSafepointSavedRegisters);
if (num_unsaved > 0) {
Daddu(sp, sp, Operand(num_unsaved * kPointerSize));
}
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
Sd(src, SafepointRegisterSlot(dst));
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
Ld(dst, SafepointRegisterSlot(src));
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the highest encoding,
// which means that lowest encodings are closest to the stack pointer.
return kSafepointRegisterStackIndexMap[reg_code];
}
MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
UNIMPLEMENTED_MIPS();
// General purpose registers are pushed last on the stack.
int doubles_size = DoubleRegister::kMaxNumRegisters * kDoubleSize;
int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
return MemOperand(sp, doubles_size + register_offset);
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch) {
DCHECK(cc == eq || cc == ne);
CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cc, branch);
}
// Clobbers object, dst, value, and ra, if (ra_status == kRAHasBeenSaved)
// The register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
RAStatus ra_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!AreAliased(value, dst, t8, object));
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
DCHECK(IsAligned(offset, kPointerSize));
Daddu(dst, object, Operand(offset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
And(t8, dst, Operand(kPointerSize - 1));
Branch(&ok, eq, t8, Operand(zero_reg));
stop("Unaligned cell in write barrier");
bind(&ok);
}
RecordWrite(object,
dst,
value,
ra_status,
save_fp,
remembered_set_action,
OMIT_SMI_CHECK,
pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
li(dst, Operand(bit_cast<int64_t>(kZapValue + 8)));
}
}
// Clobbers object, dst, map, and ra, if (ra_status == kRAHasBeenSaved)
void MacroAssembler::RecordWriteForMap(Register object,
Register map,
Register dst,
RAStatus ra_status,
SaveFPRegsMode fp_mode) {
if (emit_debug_code()) {
DCHECK(!dst.is(at));
Ld(dst, FieldMemOperand(map, HeapObject::kMapOffset));
Check(eq,
kWrongAddressOrValuePassedToRecordWrite,
dst,
Operand(isolate()->factory()->meta_map()));
}
if (!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
Ld(at, FieldMemOperand(object, HeapObject::kMapOffset));
Check(eq,
kWrongAddressOrValuePassedToRecordWrite,
map,
Operand(at));
}
Label done;
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
CheckPageFlag(map,
map, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
Daddu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
And(at, dst, Operand(kPointerSize - 1));
Branch(&ok, eq, at, Operand(zero_reg));
stop("Unaligned cell in write barrier");
bind(&ok);
}
// Record the actual write.
if (ra_status == kRAHasNotBeenSaved) {
push(ra);
}
RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
fp_mode);
CallStub(&stub);
if (ra_status == kRAHasNotBeenSaved) {
pop(ra);
}
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, dst);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
li(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
}
}
// Clobbers object, address, value, and ra, if (ra_status == kRAHasBeenSaved)
// The register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(
Register object,
Register address,
Register value,
RAStatus ra_status,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!AreAliased(object, address, value, t8));
DCHECK(!AreAliased(object, address, value, t9));
if (emit_debug_code()) {
Ld(at, MemOperand(address));
Assert(
eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value));
}
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
DCHECK_EQ(0, kSmiTag);
JumpIfSmi(value, &done);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
eq,
&done);
// Record the actual write.
if (ra_status == kRAHasNotBeenSaved) {
push(ra);
}
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
if (ra_status == kRAHasNotBeenSaved) {
pop(ra);
}
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at,
value);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
li(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
li(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
}
}
void MacroAssembler::RecordWriteCodeEntryField(Register js_function,
Register code_entry,
Register scratch) {
const int offset = JSFunction::kCodeEntryOffset;
// Since a code entry (value) is always in old space, we don't need to update
// remembered set. If incremental marking is off, there is nothing for us to
// do.
if (!FLAG_incremental_marking) return;
DCHECK(js_function.is(a1));
DCHECK(code_entry.is(a4));
DCHECK(scratch.is(a5));
AssertNotSmi(js_function);
if (emit_debug_code()) {
Daddu(scratch, js_function, Operand(offset - kHeapObjectTag));
Ld(at, MemOperand(scratch));
Assert(eq, kWrongAddressOrValuePassedToRecordWrite, at,
Operand(code_entry));
}
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis and stores into young gen.
Label done;
CheckPageFlag(code_entry, scratch,
MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
CheckPageFlag(js_function, scratch,
MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
const Register dst = scratch;
Daddu(dst, js_function, Operand(offset - kHeapObjectTag));
// Save caller-saved registers. js_function and code_entry are in the
// caller-saved register list.
DCHECK(kJSCallerSaved & js_function.bit());
DCHECK(kJSCallerSaved & code_entry.bit());
MultiPush(kJSCallerSaved | ra.bit());
int argument_count = 3;
PrepareCallCFunction(argument_count, code_entry);
Move(a0, js_function);
Move(a1, dst);
li(a2, Operand(ExternalReference::isolate_address(isolate())));
{
AllowExternalCallThatCantCauseGC scope(this);
CallCFunction(
ExternalReference::incremental_marking_record_write_code_entry_function(
isolate()),
argument_count);
}
// Restore caller-saved registers.
MultiPop(kJSCallerSaved | ra.bit());
bind(&done);
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register address,
Register scratch,
SaveFPRegsMode fp_mode,
RememberedSetFinalAction and_then) {
Label done;
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok);
stop("Remembered set pointer is in new space");
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
li(t8, Operand(store_buffer));
Ld(scratch, MemOperand(t8));
// Store pointer to buffer and increment buffer top.
Sd(address, MemOperand(scratch));
Daddu(scratch, scratch, kPointerSize);
// Write back new top of buffer.
Sd(scratch, MemOperand(t8));
// Call stub on end of buffer.
// Check for end of buffer.
And(t8, scratch, Operand(StoreBuffer::kStoreBufferMask));
DCHECK(!scratch.is(t8));
if (and_then == kFallThroughAtEnd) {
Branch(&done, ne, t8, Operand(zero_reg));
} else {
DCHECK(and_then == kReturnAtEnd);
Ret(ne, t8, Operand(zero_reg));
}
push(ra);
StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
CallStub(&store_buffer_overflow);
pop(ra);
bind(&done);
if (and_then == kReturnAtEnd) {
Ret();
}
}
// -----------------------------------------------------------------------------
// Allocation support.
// Compute the hash code from the untagged key. This must be kept in sync with
// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
// code-stub-hydrogen.cc
void MacroAssembler::GetNumberHash(Register reg0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiUntag(scratch);
// Xor original key with a seed.
xor_(reg0, reg0, scratch);
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
// The algorithm uses 32-bit integer values.
nor(scratch, reg0, zero_reg);
Lsa(reg0, scratch, reg0, 15);
// hash = hash ^ (hash >> 12);
srl(at, reg0, 12);
xor_(reg0, reg0, at);
// hash = hash + (hash << 2);
Lsa(reg0, reg0, reg0, 2);
// hash = hash ^ (hash >> 4);
srl(at, reg0, 4);
xor_(reg0, reg0, at);
// hash = hash * 2057;
sll(scratch, reg0, 11);
Lsa(reg0, reg0, reg0, 3);
addu(reg0, reg0, scratch);
// hash = hash ^ (hash >> 16);
srl(at, reg0, 16);
xor_(reg0, reg0, at);
And(reg0, reg0, Operand(0x3fffffff));
}
// ---------------------------------------------------------------------------
// Instruction macros.
void TurboAssembler::Addu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
addu(rd, rs, rt.rm());
} else {
if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) {
addiu(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
addu(rd, rs, at);
}
}
}
void TurboAssembler::Daddu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
daddu(rd, rs, rt.rm());
} else {
if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) {
daddiu(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
daddu(rd, rs, at);
}
}
}
void TurboAssembler::Subu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
subu(rd, rs, rt.rm());
} else {
DCHECK(is_int32(rt.immediate()));
if (is_int16(-rt.immediate()) && !MustUseReg(rt.rmode())) {
addiu(rd, rs,
static_cast<int32_t>(
-rt.immediate())); // No subiu instr, use addiu(x, y, -imm).
} else {
DCHECK(!rs.is(at));
if (-rt.immediate() >> 16 == 0 && !MustUseReg(rt.rmode())) {
// Use load -imm and addu when loading -imm generates one instruction.
li(at, -rt.immediate());
addu(rd, rs, at);
} else {
// li handles the relocation.
li(at, rt);
subu(rd, rs, at);
}
}
}
}
void TurboAssembler::Dsubu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
dsubu(rd, rs, rt.rm());
} else if (is_int16(-rt.immediate()) && !MustUseReg(rt.rmode())) {
daddiu(rd, rs,
static_cast<int32_t>(
-rt.immediate())); // No dsubiu instr, use daddiu(x, y, -imm).
} else {
DCHECK(!rs.is(at));
int li_count = InstrCountForLi64Bit(rt.immediate());
int li_neg_count = InstrCountForLi64Bit(-rt.immediate());
if (li_neg_count < li_count && !MustUseReg(rt.rmode())) {
// Use load -imm and daddu when loading -imm generates one instruction.
DCHECK(rt.immediate() != std::numeric_limits<int32_t>::min());
li(at, Operand(-rt.immediate()));
Daddu(rd, rs, at);
} else {
// li handles the relocation.
li(at, rt);
dsubu(rd, rs, at);
}
}
}
void TurboAssembler::Mul(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
mul(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
mul(rd, rs, at);
}
}
void TurboAssembler::Mulh(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
mult(rs, rt.rm());
mfhi(rd);
} else {
muh(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
mult(rs, at);
mfhi(rd);
} else {
muh(rd, rs, at);
}
}
}
void TurboAssembler::Mulhu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
multu(rs, rt.rm());
mfhi(rd);
} else {
muhu(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
multu(rs, at);
mfhi(rd);
} else {
muhu(rd, rs, at);
}
}
}
void TurboAssembler::Dmul(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant == kMips64r6) {
dmul(rd, rs, rt.rm());
} else {
dmult(rs, rt.rm());
mflo(rd);
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant == kMips64r6) {
dmul(rd, rs, at);
} else {
dmult(rs, at);
mflo(rd);
}
}
}
void TurboAssembler::Dmulh(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant == kMips64r6) {
dmuh(rd, rs, rt.rm());
} else {
dmult(rs, rt.rm());
mfhi(rd);
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant == kMips64r6) {
dmuh(rd, rs, at);
} else {
dmult(rs, at);
mfhi(rd);
}
}
}
void TurboAssembler::Mult(Register rs, const Operand& rt) {
if (rt.is_reg()) {
mult(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
mult(rs, at);
}
}
void TurboAssembler::Dmult(Register rs, const Operand& rt) {
if (rt.is_reg()) {
dmult(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
dmult(rs, at);
}
}
void TurboAssembler::Multu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
multu(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
multu(rs, at);
}
}
void TurboAssembler::Dmultu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
dmultu(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
dmultu(rs, at);
}
}
void TurboAssembler::Div(Register rs, const Operand& rt) {
if (rt.is_reg()) {
div(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
div(rs, at);
}
}
void TurboAssembler::Div(Register res, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
div(rs, rt.rm());
mflo(res);
} else {
div(res, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
div(rs, at);
mflo(res);
} else {
div(res, rs, at);
}
}
}
void TurboAssembler::Mod(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
div(rs, rt.rm());
mfhi(rd);
} else {
mod(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
div(rs, at);
mfhi(rd);
} else {
mod(rd, rs, at);
}
}
}
void TurboAssembler::Modu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
divu(rs, rt.rm());
mfhi(rd);
} else {
modu(rd, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
divu(rs, at);
mfhi(rd);
} else {
modu(rd, rs, at);
}
}
}
void TurboAssembler::Ddiv(Register rs, const Operand& rt) {
if (rt.is_reg()) {
ddiv(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddiv(rs, at);
}
}
void TurboAssembler::Ddiv(Register rd, Register rs, const Operand& rt) {
if (kArchVariant != kMips64r6) {
if (rt.is_reg()) {
ddiv(rs, rt.rm());
mflo(rd);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddiv(rs, at);
mflo(rd);
}
} else {
if (rt.is_reg()) {
ddiv(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddiv(rd, rs, at);
}
}
}
void TurboAssembler::Divu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
divu(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
divu(rs, at);
}
}
void TurboAssembler::Divu(Register res, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
divu(rs, rt.rm());
mflo(res);
} else {
divu(res, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
divu(rs, at);
mflo(res);
} else {
divu(res, rs, at);
}
}
}
void TurboAssembler::Ddivu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
ddivu(rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddivu(rs, at);
}
}
void TurboAssembler::Ddivu(Register res, Register rs, const Operand& rt) {
if (rt.is_reg()) {
if (kArchVariant != kMips64r6) {
ddivu(rs, rt.rm());
mflo(res);
} else {
ddivu(res, rs, rt.rm());
}
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
if (kArchVariant != kMips64r6) {
ddivu(rs, at);
mflo(res);
} else {
ddivu(res, rs, at);
}
}
}
void TurboAssembler::Dmod(Register rd, Register rs, const Operand& rt) {
if (kArchVariant != kMips64r6) {
if (rt.is_reg()) {
ddiv(rs, rt.rm());
mfhi(rd);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddiv(rs, at);
mfhi(rd);
}
} else {
if (rt.is_reg()) {
dmod(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
dmod(rd, rs, at);
}
}
}
void TurboAssembler::Dmodu(Register rd, Register rs, const Operand& rt) {
if (kArchVariant != kMips64r6) {
if (rt.is_reg()) {
ddivu(rs, rt.rm());
mfhi(rd);
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
ddivu(rs, at);
mfhi(rd);
}
} else {
if (rt.is_reg()) {
dmodu(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
dmodu(rd, rs, at);
}
}
}
void TurboAssembler::And(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
and_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) {
andi(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
and_(rd, rs, at);
}
}
}
void TurboAssembler::Or(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
or_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) {
ori(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
or_(rd, rs, at);
}
}
}
void TurboAssembler::Xor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
xor_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.immediate()) && !MustUseReg(rt.rmode())) {
xori(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
xor_(rd, rs, at);
}
}
}
void TurboAssembler::Nor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
nor(rd, rs, rt.rm());
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
nor(rd, rs, at);
}
}
void TurboAssembler::Neg(Register rs, const Operand& rt) {
DCHECK(rt.is_reg());
DCHECK(!at.is(rs));
DCHECK(!at.is(rt.rm()));
li(at, -1);
xor_(rs, rt.rm(), at);
}
void TurboAssembler::Slt(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
slt(rd, rs, rt.rm());
} else {
if (is_int16(rt.immediate()) && !MustUseReg(rt.rmode())) {
slti(rd, rs, static_cast<int32_t>(rt.immediate()));
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
slt(rd, rs, at);
}
}
}
void TurboAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
sltu(rd, rs, rt.rm());
} else {
const uint64_t int16_min = std::numeric_limits<int16_t>::min();
if (is_uint15(rt.immediate()) && !MustUseReg(rt.rmode())) {
// Imm range is: [0, 32767].
sltiu(rd, rs, static_cast<int32_t>(rt.immediate()));
} else if (is_uint15(rt.immediate() - int16_min) &&
!MustUseReg(rt.rmode())) {
// Imm range is: [max_unsigned-32767,max_unsigned].
sltiu(rd, rs, static_cast<uint16_t>(rt.immediate()));
} else {
// li handles the relocation.
DCHECK(!rs.is(at));
li(at, rt);
sltu(rd, rs, at);
}
}
}
void TurboAssembler::Ror(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
rotrv(rd, rs, rt.rm());
} else {
int64_t ror_value = rt.immediate() % 32;
if (ror_value < 0) {
ror_value += 32;
}
rotr(rd, rs, ror_value);
}
}
void TurboAssembler::Dror(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
drotrv(rd, rs, rt.rm());
} else {
int64_t dror_value = rt.immediate() % 64;
if (dror_value < 0) dror_value += 64;
if (dror_value <= 31) {
drotr(rd, rs, dror_value);
} else {
drotr32(rd, rs, dror_value - 32);
}
}
}
void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) {
pref(hint, rs);
}
void TurboAssembler::Lsa(Register rd, Register rt, Register rs, uint8_t sa,
Register scratch) {
DCHECK(sa >= 1 && sa <= 31);
if (kArchVariant == kMips64r6 && sa <= 4) {
lsa(rd, rt, rs, sa - 1);
} else {
Register tmp = rd.is(rt) ? scratch : rd;
DCHECK(!tmp.is(rt));
sll(tmp, rs, sa);
Addu(rd, rt, tmp);
}
}
void TurboAssembler::Dlsa(Register rd, Register rt, Register rs, uint8_t sa,
Register scratch) {
DCHECK(sa >= 1 && sa <= 31);
if (kArchVariant == kMips64r6 && sa <= 4) {
dlsa(rd, rt, rs, sa - 1);
} else {
Register tmp = rd.is(rt) ? scratch : rd;
DCHECK(!tmp.is(rt));
dsll(tmp, rs, sa);
Daddu(rd, rt, tmp);
}
}
void TurboAssembler::Bovc(Register rs, Register rt, Label* L) {
if (is_trampoline_emitted()) {
Label skip;
bnvc(rs, rt, &skip);
BranchLong(L, PROTECT);
bind(&skip);
} else {
bovc(rs, rt, L);
}
}
void TurboAssembler::Bnvc(Register rs, Register rt, Label* L) {
if (is_trampoline_emitted()) {
Label skip;
bovc(rs, rt, &skip);
BranchLong(L, PROTECT);
bind(&skip);
} else {
bnvc(rs, rt, L);
}
}
// ------------Pseudo-instructions-------------
// Change endianness
void TurboAssembler::ByteSwapSigned(Register dest, Register src,
int operand_size) {
DCHECK(operand_size == 1 || operand_size == 2 || operand_size == 4 ||
operand_size == 8);
DCHECK(kArchVariant == kMips64r6 || kArchVariant == kMips64r2);
if (operand_size == 1) {
seb(src, src);
sll(src, src, 0);
dsbh(dest, src);
dshd(dest, dest);
} else if (operand_size == 2) {
seh(src, src);
sll(src, src, 0);
dsbh(dest, src);
dshd(dest, dest);
} else if (operand_size == 4) {
sll(src, src, 0);
dsbh(dest, src);
dshd(dest, dest);
} else {
dsbh(dest, src);
dshd(dest, dest);
}
}
void TurboAssembler::ByteSwapUnsigned(Register dest, Register src,
int operand_size) {
DCHECK(operand_size == 1 || operand_size == 2 || operand_size == 4);
if (operand_size == 1) {
andi(src, src, 0xFF);
dsbh(dest, src);
dshd(dest, dest);
} else if (operand_size == 2) {
andi(src, src, 0xFFFF);
dsbh(dest, src);
dshd(dest, dest);
} else {
dsll32(src, src, 0);
dsrl32(src, src, 0);
dsbh(dest, src);
dshd(dest, dest);
}
}
void TurboAssembler::Ulw(Register rd, const MemOperand& rs) {
DCHECK(!rd.is(at));
DCHECK(!rs.rm().is(at));
if (kArchVariant == kMips64r6) {
Lw(rd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
DCHECK(kMipsLwrOffset <= 3 && kMipsLwlOffset <= 3);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 3 fits into int16_t.
AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 3);
if (!rd.is(source.rm())) {
lwr(rd, MemOperand(source.rm(), source.offset() + kMipsLwrOffset));
lwl(rd, MemOperand(source.rm(), source.offset() + kMipsLwlOffset));
} else {
lwr(at, MemOperand(rs.rm(), rs.offset() + kMipsLwrOffset));
lwl(at, MemOperand(rs.rm(), rs.offset() + kMipsLwlOffset));
mov(rd, at);
}
}
}
void TurboAssembler::Ulwu(Register rd, const MemOperand& rs) {
if (kArchVariant == kMips64r6) {
Lwu(rd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
Ulw(rd, rs);
Dext(rd, rd, 0, 32);
}
}
void TurboAssembler::Usw(Register rd, const MemOperand& rs) {
DCHECK(!rd.is(at));
DCHECK(!rs.rm().is(at));
DCHECK(!rd.is(rs.rm()));
if (kArchVariant == kMips64r6) {
Sw(rd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
DCHECK(kMipsSwrOffset <= 3 && kMipsSwlOffset <= 3);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 3 fits into int16_t.
AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 3);
swr(rd, MemOperand(source.rm(), source.offset() + kMipsSwrOffset));
swl(rd, MemOperand(source.rm(), source.offset() + kMipsSwlOffset));
}
}
void TurboAssembler::Ulh(Register rd, const MemOperand& rs) {
DCHECK(!rd.is(at));
DCHECK(!rs.rm().is(at));
if (kArchVariant == kMips64r6) {
Lh(rd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 1 fits into int16_t.
AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 1);
if (source.rm().is(at)) {
#if defined(V8_TARGET_LITTLE_ENDIAN)
Lb(rd, MemOperand(source.rm(), source.offset() + 1));
Lbu(at, source);
#elif defined(V8_TARGET_BIG_ENDIAN)
Lb(rd, source);
Lbu(at, MemOperand(source.rm(), source.offset() + 1));
#endif
} else {
#if defined(V8_TARGET_LITTLE_ENDIAN)
Lbu(at, source);
Lb(rd, MemOperand(source.rm(), source.offset() + 1));
#elif defined(V8_TARGET_BIG_ENDIAN)
Lbu(at, MemOperand(source.rm(), source.offset() + 1));
Lb(rd, source);
#endif
}
dsll(rd, rd, 8);
or_(rd, rd, at);
}
}
void TurboAssembler::Ulhu(Register rd, const MemOperand& rs) {
DCHECK(!rd.is(at));
DCHECK(!rs.rm().is(at));
if (kArchVariant == kMips64r6) {
Lhu(rd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 1 fits into int16_t.
AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 1);
if (source.rm().is(at)) {
#if defined(V8_TARGET_LITTLE_ENDIAN)
Lbu(rd, MemOperand(source.rm(), source.offset() + 1));
Lbu(at, source);
#elif defined(V8_TARGET_BIG_ENDIAN)
Lbu(rd, source);
Lbu(at, MemOperand(source.rm(), source.offset() + 1));
#endif
} else {
#if defined(V8_TARGET_LITTLE_ENDIAN)
Lbu(at, source);
Lbu(rd, MemOperand(source.rm(), source.offset() + 1));
#elif defined(V8_TARGET_BIG_ENDIAN)
Lbu(at, MemOperand(source.rm(), source.offset() + 1));
Lbu(rd, source);
#endif
}
dsll(rd, rd, 8);
or_(rd, rd, at);
}
}
void TurboAssembler::Ush(Register rd, const MemOperand& rs, Register scratch) {
DCHECK(!rd.is(at));
DCHECK(!rs.rm().is(at));
DCHECK(!rs.rm().is(scratch));
DCHECK(!scratch.is(at));
if (kArchVariant == kMips64r6) {
Sh(rd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 1 fits into int16_t.
AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 1);
if (!scratch.is(rd)) {
mov(scratch, rd);
}
#if defined(V8_TARGET_LITTLE_ENDIAN)
Sb(scratch, source);
srl(scratch, scratch, 8);
Sb(scratch, MemOperand(source.rm(), source.offset() + 1));
#elif defined(V8_TARGET_BIG_ENDIAN)
Sb(scratch, MemOperand(source.rm(), source.offset() + 1));
srl(scratch, scratch, 8);
Sb(scratch, source);
#endif
}
}
void TurboAssembler::Uld(Register rd, const MemOperand& rs) {
DCHECK(!rd.is(at));
DCHECK(!rs.rm().is(at));
if (kArchVariant == kMips64r6) {
Ld(rd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
DCHECK(kMipsLdrOffset <= 7 && kMipsLdlOffset <= 7);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 7 fits into int16_t.
AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 7);
if (!rd.is(source.rm())) {
ldr(rd, MemOperand(source.rm(), source.offset() + kMipsLdrOffset));
ldl(rd, MemOperand(source.rm(), source.offset() + kMipsLdlOffset));
} else {
ldr(at, MemOperand(rs.rm(), rs.offset() + kMipsLdrOffset));
ldl(at, MemOperand(rs.rm(), rs.offset() + kMipsLdlOffset));
mov(rd, at);
}
}
}
// Load consequent 32-bit word pair in 64-bit reg. and put first word in low
// bits,
// second word in high bits.
void MacroAssembler::LoadWordPair(Register rd, const MemOperand& rs,
Register scratch) {
Lwu(rd, rs);
Lw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
dsll32(scratch, scratch, 0);
Daddu(rd, rd, scratch);
}
void TurboAssembler::Usd(Register rd, const MemOperand& rs) {
DCHECK(!rd.is(at));
DCHECK(!rs.rm().is(at));
if (kArchVariant == kMips64r6) {
Sd(rd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
DCHECK(kMipsSdrOffset <= 7 && kMipsSdlOffset <= 7);
MemOperand source = rs;
// Adjust offset for two accesses and check if offset + 7 fits into int16_t.
AdjustBaseAndOffset(source, OffsetAccessType::TWO_ACCESSES, 7);
sdr(rd, MemOperand(source.rm(), source.offset() + kMipsSdrOffset));
sdl(rd, MemOperand(source.rm(), source.offset() + kMipsSdlOffset));
}
}
// Do 64-bit store as two consequent 32-bit stores to unaligned address.
void MacroAssembler::StoreWordPair(Register rd, const MemOperand& rs,
Register scratch) {
Sw(rd, rs);
dsrl32(scratch, rd, 0);
Sw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
}
void TurboAssembler::Ulwc1(FPURegister fd, const MemOperand& rs,
Register scratch) {
if (kArchVariant == kMips64r6) {
Lwc1(fd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
Ulw(scratch, rs);
mtc1(scratch, fd);
}
}
void TurboAssembler::Uswc1(FPURegister fd, const MemOperand& rs,
Register scratch) {
if (kArchVariant == kMips64r6) {
Swc1(fd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
mfc1(scratch, fd);
Usw(scratch, rs);
}
}
void TurboAssembler::Uldc1(FPURegister fd, const MemOperand& rs,
Register scratch) {
DCHECK(!scratch.is(at));
if (kArchVariant == kMips64r6) {
Ldc1(fd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
Uld(scratch, rs);
dmtc1(scratch, fd);
}
}
void TurboAssembler::Usdc1(FPURegister fd, const MemOperand& rs,
Register scratch) {
DCHECK(!scratch.is(at));
if (kArchVariant == kMips64r6) {
Sdc1(fd, rs);
} else {
DCHECK(kArchVariant == kMips64r2);
dmfc1(scratch, fd);
Usd(scratch, rs);
}
}
void TurboAssembler::Lb(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
lb(rd, source);
}
void TurboAssembler::Lbu(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
lbu(rd, source);
}
void TurboAssembler::Sb(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
sb(rd, source);
}
void TurboAssembler::Lh(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
lh(rd, source);
}
void TurboAssembler::Lhu(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
lhu(rd, source);
}
void TurboAssembler::Sh(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
sh(rd, source);
}
void TurboAssembler::Lw(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
lw(rd, source);
}
void TurboAssembler::Lwu(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
lwu(rd, source);
}
void TurboAssembler::Sw(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
sw(rd, source);
}
void TurboAssembler::Ld(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
ld(rd, source);
}
void TurboAssembler::Sd(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
sd(rd, source);
}
void TurboAssembler::Lwc1(FPURegister fd, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(tmp);
lwc1(fd, tmp);
}
void TurboAssembler::Swc1(FPURegister fs, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(tmp);
swc1(fs, tmp);
}
void TurboAssembler::Ldc1(FPURegister fd, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(tmp);
ldc1(fd, tmp);
}
void TurboAssembler::Sdc1(FPURegister fs, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(tmp);
sdc1(fs, tmp);
}
void TurboAssembler::li(Register dst, Handle<HeapObject> value, LiFlags mode) {
li(dst, Operand(value), mode);
}
static inline int InstrCountForLiLower32Bit(int64_t value) {
if (!is_int16(static_cast<int32_t>(value)) && (value & kUpper16MaskOf64) &&
(value & kImm16Mask)) {
return 2;
} else {
return 1;
}
}
void TurboAssembler::LiLower32BitHelper(Register rd, Operand j) {
if (is_int16(static_cast<int32_t>(j.immediate()))) {
daddiu(rd, zero_reg, (j.immediate() & kImm16Mask));
} else if (!(j.immediate() & kUpper16MaskOf64)) {
ori(rd, zero_reg, j.immediate() & kImm16Mask);
} else {
lui(rd, j.immediate() >> kLuiShift & kImm16Mask);
if (j.immediate() & kImm16Mask) {
ori(rd, rd, j.immediate() & kImm16Mask);
}
}
}
static inline int InstrCountForLoadReplicatedConst32(int64_t value) {
uint32_t x = static_cast<uint32_t>(value);
uint32_t y = static_cast<uint32_t>(value >> 32);
if (x == y) {
return (is_uint16(x) || is_int16(x) || (x & kImm16Mask) == 0) ? 2 : 3;
}
return INT_MAX;
}
int TurboAssembler::InstrCountForLi64Bit(int64_t value) {
if (is_int32(value)) {
return InstrCountForLiLower32Bit(value);
} else {
int bit31 = value >> 31 & 0x1;
if ((value & kUpper16MaskOf64) == 0 && is_int16(value >> 32) &&
kArchVariant == kMips64r6) {
return 2;
} else if ((value & (kHigher16MaskOf64 | kUpper16MaskOf64)) == 0 &&
kArchVariant == kMips64r6) {
return 2;
} else if ((value & kImm16Mask) == 0 && is_int16((value >> 32) + bit31) &&
kArchVariant == kMips64r6) {
return 2;
} else if ((value & kImm16Mask) == 0 &&
((value >> 31) & 0x1ffff) == ((0x20000 - bit31) & 0x1ffff) &&
kArchVariant == kMips64r6) {
return 2;
} else if (is_int16(static_cast<int32_t>(value)) &&
is_int16((value >> 32) + bit31) && kArchVariant == kMips64r6) {
return 2;
} else if (is_int16(static_cast<int32_t>(value)) &&
((value >> 31) & 0x1ffff) == ((0x20000 - bit31) & 0x1ffff) &&
kArchVariant == kMips64r6) {
return 2;
} else if (base::bits::IsPowerOfTwo(value + 1)) {
return 2;
} else {
int shift_cnt = base::bits::CountTrailingZeros64(value);
int rep32_count = InstrCountForLoadReplicatedConst32(value);
int64_t tmp = value >> shift_cnt;
if (is_uint16(tmp)) {
return 2;
} else if (is_int16(tmp)) {
return 2;
} else if (rep32_count < 3) {
return 2;
} else if (is_int32(tmp)) {
return 3;
} else {
shift_cnt = 16 + base::bits::CountTrailingZeros64(value >> 16);
tmp = value >> shift_cnt;
if (is_uint16(tmp)) {
return 3;
} else if (is_int16(tmp)) {
return 3;
} else if (rep32_count < 4) {
return 3;
} else if (kArchVariant == kMips64r6) {
int64_t imm = value;
int count = InstrCountForLiLower32Bit(imm);
imm = (imm >> 32) + bit31;
if (imm & kImm16Mask) {
count++;
}
imm = (imm >> 16) + (imm >> 15 & 0x1);
if (imm & kImm16Mask) {
count++;
}
return count;
} else {
if (is_int48(value)) {
int64_t k = value >> 16;
int count = InstrCountForLiLower32Bit(k) + 1;
if (value & kImm16Mask) {
count++;
}
return count;
} else {
int64_t k = value >> 32;
int count = InstrCountForLiLower32Bit(k);
if ((value >> 16) & kImm16Mask) {
count += 3;
if (value & kImm16Mask) {
count++;
}
} else {
count++;
if (value & kImm16Mask) {
count++;
}
}
return count;
}
}
}
}
}
UNREACHABLE();
return INT_MAX;
}
void TurboAssembler::li_optimized(Register rd, Operand j, LiFlags mode) {
DCHECK(!j.is_reg());
DCHECK(!MustUseReg(j.rmode()));
DCHECK(mode == OPTIMIZE_SIZE);
BlockTrampolinePoolScope block_trampoline_pool(this);
// Normal load of an immediate value which does not need Relocation Info.
if (is_int32(j.immediate())) {
LiLower32BitHelper(rd, j);
} else {
int bit31 = j.immediate() >> 31 & 0x1;
if ((j.immediate() & kUpper16MaskOf64) == 0 &&
is_int16(j.immediate() >> 32) && kArchVariant == kMips64r6) {
// 64-bit value which consists of an unsigned 16-bit value in its
// least significant 32-bits, and a signed 16-bit value in its
// most significant 32-bits.
ori(rd, zero_reg, j.immediate() & kImm16Mask);
dahi(rd, j.immediate() >> 32 & kImm16Mask);
} else if ((j.immediate() & (kHigher16MaskOf64 | kUpper16MaskOf64)) == 0 &&
kArchVariant == kMips64r6) {
// 64-bit value which consists of an unsigned 16-bit value in its
// least significant 48-bits, and a signed 16-bit value in its
// most significant 16-bits.
ori(rd, zero_reg, j.immediate() & kImm16Mask);
dati(rd, j.immediate() >> 48 & kImm16Mask);
} else if ((j.immediate() & kImm16Mask) == 0 &&
is_int16((j.immediate() >> 32) + bit31) &&
kArchVariant == kMips64r6) {
// 16 LSBs (Least Significant Bits) all set to zero.
// 48 MSBs (Most Significant Bits) hold a signed 32-bit value.
lui(rd, j.immediate() >> kLuiShift & kImm16Mask);
dahi(rd, ((j.immediate() >> 32) + bit31) & kImm16Mask);
} else if ((j.immediate() & kImm16Mask) == 0 &&
((j.immediate() >> 31) & 0x1ffff) ==
((0x20000 - bit31) & 0x1ffff) &&
kArchVariant == kMips64r6) {
// 16 LSBs all set to zero.
// 48 MSBs hold a signed value which can't be represented by signed
// 32-bit number, and the middle 16 bits are all zero, or all one.
lui(rd, j.immediate() >> kLuiShift & kImm16Mask);
dati(rd, ((j.immediate() >> 48) + bit31) & kImm16Mask);
} else if (is_int16(static_cast<int32_t>(j.immediate())) &&
is_int16((j.immediate() >> 32) + bit31) &&
kArchVariant == kMips64r6) {
// 32 LSBs contain a signed 16-bit number.
// 32 MSBs contain a signed 16-bit number.
daddiu(rd, zero_reg, j.immediate() & kImm16Mask);
dahi(rd, ((j.immediate() >> 32) + bit31) & kImm16Mask);
} else if (is_int16(static_cast<int32_t>(j.immediate())) &&
((j.immediate() >> 31) & 0x1ffff) ==
((0x20000 - bit31) & 0x1ffff) &&
kArchVariant == kMips64r6) {
// 48 LSBs contain an unsigned 16-bit number.
// 16 MSBs contain a signed 16-bit number.
daddiu(rd, zero_reg, j.immediate() & kImm16Mask);
dati(rd, ((j.immediate() >> 48) + bit31) & kImm16Mask);
} else if (base::bits::IsPowerOfTwo(j.immediate() + 1)) {
// 64-bit values which have their "n" MSBs set to one, and their
// "64-n" LSBs set to zero. "n" must meet the restrictions 0 < n < 64.
int shift_cnt = 64 - base::bits::CountTrailingZeros64(j.immediate() + 1);
daddiu(rd, zero_reg, -1);
if (shift_cnt < 32) {
dsrl(rd, rd, shift_cnt);
} else {
dsrl32(rd, rd, shift_cnt & 31);
}
} else {
int shift_cnt = base::bits::CountTrailingZeros64(j.immediate());
int rep32_count = InstrCountForLoadReplicatedConst32(j.immediate());
int64_t tmp = j.immediate() >> shift_cnt;
if (is_uint16(tmp)) {
// Value can be computed by loading a 16-bit unsigned value, and
// then shifting left.
ori(rd, zero_reg, tmp & kImm16Mask);
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
} else if (is_int16(tmp)) {
// Value can be computed by loading a 16-bit signed value, and
// then shifting left.
daddiu(rd, zero_reg, static_cast<int32_t>(tmp));
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
} else if (rep32_count < 3) {
// Value being loaded has 32 LSBs equal to the 32 MSBs, and the
// value loaded into the 32 LSBs can be loaded with a single
// MIPS instruction.
LiLower32BitHelper(rd, j);
Dins(rd, rd, 32, 32);
} else if (is_int32(tmp)) {
// Loads with 3 instructions.
// Value can be computed by loading a 32-bit signed value, and
// then shifting left.
lui(rd, tmp >> kLuiShift & kImm16Mask);
ori(rd, rd, tmp & kImm16Mask);
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
} else {
shift_cnt = 16 + base::bits::CountTrailingZeros64(j.immediate() >> 16);
tmp = j.immediate() >> shift_cnt;
if (is_uint16(tmp)) {
// Value can be computed by loading a 16-bit unsigned value,
// shifting left, and "or"ing in another 16-bit unsigned value.
ori(rd, zero_reg, tmp & kImm16Mask);
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
ori(rd, rd, j.immediate() & kImm16Mask);
} else if (is_int16(tmp)) {
// Value can be computed by loading a 16-bit signed value,
// shifting left, and "or"ing in a 16-bit unsigned value.
daddiu(rd, zero_reg, static_cast<int32_t>(tmp));
if (shift_cnt < 32) {
dsll(rd, rd, shift_cnt);
} else {
dsll32(rd, rd, shift_cnt & 31);
}
ori(rd, rd, j.immediate() & kImm16Mask);
} else if (rep32_count < 4) {
// Value being loaded has 32 LSBs equal to the 32 MSBs, and the
// value in the 32 LSBs requires 2 MIPS instructions to load.
LiLower32BitHelper(rd, j);
Dins(rd, rd, 32, 32);
} else if (kArchVariant == kMips64r6) {
// Loads with 3-4 instructions.
// Catch-all case to get any other 64-bit values which aren't
// handled by special cases above.
int64_t imm = j.immediate();
LiLower32BitHelper(rd, j);
imm = (imm >> 32) + bit31;
if (imm & kImm16Mask) {
dahi(rd, imm & kImm16Mask);
}
imm = (imm >> 16) + (imm >> 15 & 0x1);
if (imm & kImm16Mask) {
dati(rd, imm & kImm16Mask);
}
} else {
if (is_int48(j.immediate())) {
Operand k = Operand(j.immediate() >> 16);
LiLower32BitHelper(rd, k);
dsll(rd, rd, 16);
if (j.immediate() & kImm16Mask) {
ori(rd, rd, j.immediate() & kImm16Mask);
}
} else {
Operand k = Operand(j.immediate() >> 32);
LiLower32BitHelper(rd, k);
if ((j.immediate() >> 16) & kImm16Mask) {
dsll(rd, rd, 16);
ori(rd, rd, (j.immediate() >> 16) & kImm16Mask);
dsll(rd, rd, 16);
if (j.immediate() & kImm16Mask) {
ori(rd, rd, j.immediate() & kImm16Mask);
}
} else {
dsll32(rd, rd, 0);
if (j.immediate() & kImm16Mask) {
ori(rd, rd, j.immediate() & kImm16Mask);
}
}
}
}
}
}
}
}
void TurboAssembler::li(Register rd, Operand j, LiFlags mode) {
DCHECK(!j.is_reg());
BlockTrampolinePoolScope block_trampoline_pool(this);
if (!MustUseReg(j.rmode()) && mode == OPTIMIZE_SIZE) {
int li_count = InstrCountForLi64Bit(j.immediate());
int li_neg_count = InstrCountForLi64Bit(-j.immediate());
int li_not_count = InstrCountForLi64Bit(~j.immediate());
// Loading -MIN_INT64 could cause problems, but loading MIN_INT64 takes only
// two instructions so no need to check for this.
if (li_neg_count <= li_not_count && li_neg_count < li_count - 1) {
DCHECK(j.immediate() != std::numeric_limits<int64_t>::min());
li_optimized(rd, Operand(-j.immediate()), mode);
Dsubu(rd, zero_reg, rd);
} else if (li_neg_count > li_not_count && li_not_count < li_count - 1) {
DCHECK(j.immediate() != std::numeric_limits<int64_t>::min());
li_optimized(rd, Operand(~j.immediate()), mode);
nor(rd, rd, rd);
} else {
li_optimized(rd, j, mode);
}
} else if (MustUseReg(j.rmode())) {
int64_t immediate;
if (j.IsHeapObjectRequest()) {
RequestHeapObject(j.heap_object_request());
immediate = 0;
} else {
immediate = j.immediate();
}
RecordRelocInfo(j.rmode(), immediate);
lui(rd, (immediate >> 32) & kImm16Mask);
ori(rd, rd, (immediate >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, immediate & kImm16Mask);
} else if (mode == ADDRESS_LOAD) {
// We always need the same number of instructions as we may need to patch
// this code to load another value which may need all 4 instructions.
lui(rd, (j.immediate() >> 32) & kImm16Mask);
ori(rd, rd, (j.immediate() >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, j.immediate() & kImm16Mask);
} else { // mode == CONSTANT_SIZE - always emit the same instruction
// sequence.
if (kArchVariant == kMips64r6) {
int64_t imm = j.immediate();
lui(rd, imm >> kLuiShift & kImm16Mask);
ori(rd, rd, (imm & kImm16Mask));
imm = (imm >> 32) + ((imm >> 31) & 0x1);
dahi(rd, imm & kImm16Mask & kImm16Mask);
imm = (imm >> 16) + ((imm >> 15) & 0x1);
dati(rd, imm & kImm16Mask & kImm16Mask);
} else {
lui(rd, (j.immediate() >> 48) & kImm16Mask);
ori(rd, rd, (j.immediate() >> 32) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, (j.immediate() >> 16) & kImm16Mask);
dsll(rd, rd, 16);
ori(rd, rd, j.immediate() & kImm16Mask);
}
}
}
void TurboAssembler::MultiPush(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kPointerSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kPointerSize;
Sd(ToRegister(i), MemOperand(sp, stack_offset));
}
}
}
void MacroAssembler::MultiPushReversed(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kPointerSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kPointerSize;
Sd(ToRegister(i), MemOperand(sp, stack_offset));
}
}
}
void TurboAssembler::MultiPop(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
Ld(ToRegister(i), MemOperand(sp, stack_offset));
stack_offset += kPointerSize;
}
}
daddiu(sp, sp, stack_offset);
}
void MacroAssembler::MultiPopReversed(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
Ld(ToRegister(i), MemOperand(sp, stack_offset));
stack_offset += kPointerSize;
}
}
daddiu(sp, sp, stack_offset);
}
void TurboAssembler::MultiPushFPU(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kDoubleSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kDoubleSize;
Sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
}
}
}
void MacroAssembler::MultiPushReversedFPU(RegList regs) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kDoubleSize;
Dsubu(sp, sp, Operand(stack_offset));
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kDoubleSize;
Sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
}
}
}
void TurboAssembler::MultiPopFPU(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
Ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
stack_offset += kDoubleSize;
}
}
daddiu(sp, sp, stack_offset);
}
void MacroAssembler::MultiPopReversedFPU(RegList regs) {
int16_t stack_offset = 0;
for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
Ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
stack_offset += kDoubleSize;
}
}
daddiu(sp, sp, stack_offset);
}
void TurboAssembler::Ext(Register rt, Register rs, uint16_t pos,
uint16_t size) {
DCHECK(pos < 32);
DCHECK(pos + size < 33);
ext_(rt, rs, pos, size);
}
void TurboAssembler::Dext(Register rt, Register rs, uint16_t pos,
uint16_t size) {
DCHECK(pos < 64 && 0 < size && size <= 64 && 0 < pos + size &&
pos + size <= 64);
if (size > 32) {
dextm_(rt, rs, pos, size);
} else if (pos >= 32) {
dextu_(rt, rs, pos, size);
} else {
dext_(rt, rs, pos, size);
}
}
void TurboAssembler::Ins(Register rt, Register rs, uint16_t pos,
uint16_t size) {
DCHECK(pos < 32);
DCHECK(pos + size <= 32);
DCHECK(size != 0);
ins_(rt, rs, pos, size);
}
void TurboAssembler::Dins(Register rt, Register rs, uint16_t pos,
uint16_t size) {
DCHECK(pos < 64 && 0 < size && size <= 64 && 0 < pos + size &&
pos + size <= 64);
if (pos + size <= 32) {
dins_(rt, rs, pos, size);
} else if (pos < 32) {
dinsm_(rt, rs, pos, size);
} else {
dinsu_(rt, rs, pos, size);
}
}
void TurboAssembler::Neg_s(FPURegister fd, FPURegister fs) {
if (kArchVariant == kMips64r6) {
// r6 neg_s changes the sign for NaN-like operands as well.
neg_s(fd, fs);
} else {
DCHECK(kArchVariant == kMips64r2);
Label is_nan, done;
Register scratch1 = t8;
Register scratch2 = t9;
BranchF32(nullptr, &is_nan, eq, fs, fs);
Branch(USE_DELAY_SLOT, &done);
// For NaN input, neg_s will return the same NaN value,
// while the sign has to be changed separately.
neg_s(fd, fs); // In delay slot.
bind(&is_nan);
mfc1(scratch1, fs);
li(scratch2, kBinary32SignMask);
Xor(scratch1, scratch1, scratch2);
mtc1(scratch1, fd);
bind(&done);
}
}
void TurboAssembler::Neg_d(FPURegister fd, FPURegister fs) {
if (kArchVariant == kMips64r6) {
// r6 neg_d changes the sign for NaN-like operands as well.
neg_d(fd, fs);
} else {
DCHECK(kArchVariant == kMips64r2);
Label is_nan, done;
Register scratch1 = t8;
Register scratch2 = t9;
BranchF64(nullptr, &is_nan, eq, fs, fs);
Branch(USE_DELAY_SLOT, &done);
// For NaN input, neg_d will return the same NaN value,
// while the sign has to be changed separately.
neg_d(fd, fs); // In delay slot.
bind(&is_nan);
dmfc1(scratch1, fs);
li(scratch2, Double::kSignMask);
Xor(scratch1, scratch1, scratch2);
dmtc1(scratch1, fd);
bind(&done);
}
}
void TurboAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs) {
// Move the data from fs to t8.
mfc1(t8, fs);
Cvt_d_uw(fd, t8);
}
void TurboAssembler::Cvt_d_uw(FPURegister fd, Register rs) {
// Convert rs to a FP value in fd.
DCHECK(!rs.is(t9));
DCHECK(!rs.is(at));
// Zero extend int32 in rs.
Dext(t9, rs, 0, 32);
dmtc1(t9, fd);
cvt_d_l(fd, fd);
}
void TurboAssembler::Cvt_d_ul(FPURegister fd, FPURegister fs) {
// Move the data from fs to t8.
dmfc1(t8, fs);
Cvt_d_ul(fd, t8);
}
void TurboAssembler::Cvt_d_ul(FPURegister fd, Register rs) {
// Convert rs to a FP value in fd.
DCHECK(!rs.is(t9));
DCHECK(!rs.is(at));
Label msb_clear, conversion_done;
Branch(&msb_clear, ge, rs, Operand(zero_reg));
// Rs >= 2^63
andi(t9, rs, 1);
dsrl(rs, rs, 1);
or_(t9, t9, rs);
dmtc1(t9, fd);
cvt_d_l(fd, fd);
Branch(USE_DELAY_SLOT, &conversion_done);
add_d(fd, fd, fd); // In delay slot.
bind(&msb_clear);
// Rs < 2^63, we can do simple conversion.
dmtc1(rs, fd);
cvt_d_l(fd, fd);
bind(&conversion_done);
}
void TurboAssembler::Cvt_s_uw(FPURegister fd, FPURegister fs) {
// Move the data from fs to t8.
mfc1(t8, fs);
Cvt_s_uw(fd, t8);
}
void TurboAssembler::Cvt_s_uw(FPURegister fd, Register rs) {
// Convert rs to a FP value in fd.
DCHECK(!rs.is(t9));
DCHECK(!rs.is(at));
// Zero extend int32 in rs.
Dext(t9, rs, 0, 32);
dmtc1(t9, fd);
cvt_s_l(fd, fd);
}
void TurboAssembler::Cvt_s_ul(FPURegister fd, FPURegister fs) {
// Move the data from fs to t8.
dmfc1(t8, fs);
Cvt_s_ul(fd, t8);
}
void TurboAssembler::Cvt_s_ul(FPURegister fd, Register rs) {
// Convert rs to a FP value in fd.
DCHECK(!rs.is(t9));
DCHECK(!rs.is(at));
Label positive, conversion_done;
Branch(&positive, ge, rs, Operand(zero_reg));
// Rs >= 2^31.
andi(t9, rs, 1);
dsrl(rs, rs, 1);
or_(t9, t9, rs);
dmtc1(t9, fd);
cvt_s_l(fd, fd);
Branch(USE_DELAY_SLOT, &conversion_done);
add_s(fd, fd, fd); // In delay slot.
bind(&positive);
// Rs < 2^31, we can do simple conversion.
dmtc1(rs, fd);
cvt_s_l(fd, fd);
bind(&conversion_done);
}
void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) {
round_l_d(fd, fs);
}
void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) {
floor_l_d(fd, fs);
}
void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) {
ceil_l_d(fd, fs);
}
void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) {
trunc_l_d(fd, fs);
}
void MacroAssembler::Trunc_l_ud(FPURegister fd,
FPURegister fs,
FPURegister scratch) {
// Load to GPR.
dmfc1(t8, fs);
// Reset sign bit.
li(at, 0x7fffffffffffffff);
and_(t8, t8, at);
dmtc1(t8, fs);
trunc_l_d(fd, fs);
}
void TurboAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs,
FPURegister scratch) {
Trunc_uw_d(fs, t8, scratch);
mtc1(t8, fd);
}
void TurboAssembler::Trunc_uw_s(FPURegister fd, FPURegister fs,
FPURegister scratch) {
Trunc_uw_s(fs, t8, scratch);
mtc1(t8, fd);
}
void TurboAssembler::Trunc_ul_d(FPURegister fd, FPURegister fs,
FPURegister scratch, Register result) {
Trunc_ul_d(fs, t8, scratch, result);
dmtc1(t8, fd);
}
void TurboAssembler::Trunc_ul_s(FPURegister fd, FPURegister fs,
FPURegister scratch, Register result) {
Trunc_ul_s(fs, t8, scratch, result);
dmtc1(t8, fd);
}
void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
trunc_w_d(fd, fs);
}
void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
round_w_d(fd, fs);
}
void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
floor_w_d(fd, fs);
}
void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
ceil_w_d(fd, fs);
}
void TurboAssembler::Trunc_uw_d(FPURegister fd, Register rs,
FPURegister scratch) {
DCHECK(!fd.is(scratch));
DCHECK(!rs.is(at));
// Load 2^31 into scratch as its float representation.
li(at, 0x41E00000);
mtc1(zero_reg, scratch);
mthc1(at, scratch);
// Test if scratch > fd.
// If fd < 2^31 we can convert it normally.
Label simple_convert;
BranchF(&simple_convert, NULL, lt, fd, scratch);
// First we subtract 2^31 from fd, then trunc it to rs
// and add 2^31 to rs.
sub_d(scratch, fd, scratch);
trunc_w_d(scratch, scratch);
mfc1(rs, scratch);
Or(rs, rs, 1 << 31);
Label done;
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_w_d(scratch, fd);
mfc1(rs, scratch);
bind(&done);
}
void TurboAssembler::Trunc_uw_s(FPURegister fd, Register rs,
FPURegister scratch) {
DCHECK(!fd.is(scratch));
DCHECK(!rs.is(at));
// Load 2^31 into scratch as its float representation.
li(at, 0x4F000000);
mtc1(at, scratch);
// Test if scratch > fd.
// If fd < 2^31 we can convert it normally.
Label simple_convert;
BranchF32(&simple_convert, NULL, lt, fd, scratch);
// First we subtract 2^31 from fd, then trunc it to rs
// and add 2^31 to rs.
sub_s(scratch, fd, scratch);
trunc_w_s(scratch, scratch);
mfc1(rs, scratch);
Or(rs, rs, 1 << 31);
Label done;
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_w_s(scratch, fd);
mfc1(rs, scratch);
bind(&done);
}
void TurboAssembler::Trunc_ul_d(FPURegister fd, Register rs,
FPURegister scratch, Register result) {
DCHECK(!fd.is(scratch));
DCHECK(!AreAliased(rs, result, at));
Label simple_convert, done, fail;
if (result.is_valid()) {
mov(result, zero_reg);
Move(scratch, -1.0);
// If fd =< -1 or unordered, then the conversion fails.
BranchF(&fail, &fail, le, fd, scratch);
}
// Load 2^63 into scratch as its double representation.
li(at, 0x43e0000000000000);
dmtc1(at, scratch);
// Test if scratch > fd.
// If fd < 2^63 we can convert it normally.
BranchF(&simple_convert, nullptr, lt, fd, scratch);
// First we subtract 2^63 from fd, then trunc it to rs
// and add 2^63 to rs.
sub_d(scratch, fd, scratch);
trunc_l_d(scratch, scratch);
dmfc1(rs, scratch);
Or(rs, rs, Operand(1UL << 63));
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_l_d(scratch, fd);
dmfc1(rs, scratch);
bind(&done);
if (result.is_valid()) {
// Conversion is failed if the result is negative.
addiu(at, zero_reg, -1);
dsrl(at, at, 1); // Load 2^62.
dmfc1(result, scratch);
xor_(result, result, at);
Slt(result, zero_reg, result);
}
bind(&fail);
}
void TurboAssembler::Trunc_ul_s(FPURegister fd, Register rs,
FPURegister scratch, Register result) {
DCHECK(!fd.is(scratch));
DCHECK(!AreAliased(rs, result, at));
Label simple_convert, done, fail;
if (result.is_valid()) {
mov(result, zero_reg);
Move(scratch, -1.0f);
// If fd =< -1 or unordered, then the conversion fails.
BranchF32(&fail, &fail, le, fd, scratch);
}
// Load 2^63 into scratch as its float representation.
li(at, 0x5f000000);
mtc1(at, scratch);
// Test if scratch > fd.
// If fd < 2^63 we can convert it normally.
BranchF32(&simple_convert, nullptr, lt, fd, scratch);
// First we subtract 2^63 from fd, then trunc it to rs
// and add 2^63 to rs.
sub_s(scratch, fd, scratch);
trunc_l_s(scratch, scratch);
dmfc1(rs, scratch);
Or(rs, rs, Operand(1UL << 63));
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_l_s(scratch, fd);
dmfc1(rs, scratch);
bind(&done);
if (result.is_valid()) {
// Conversion is failed if the result is negative or unordered.
addiu(at, zero_reg, -1);
dsrl(at, at, 1); // Load 2^62.
dmfc1(result, scratch);
xor_(result, result, at);
Slt(result, zero_reg, result);
}
bind(&fail);
}
void MacroAssembler::Madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft, FPURegister scratch) {
DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch));
mul_s(scratch, fs, ft);
add_s(fd, fr, scratch);
}
void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft, FPURegister scratch) {
DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch));
mul_d(scratch, fs, ft);
add_d(fd, fr, scratch);
}
void MacroAssembler::Msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft, FPURegister scratch) {
DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch));
mul_s(scratch, fs, ft);
sub_s(fd, scratch, fr);
}
void MacroAssembler::Msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft, FPURegister scratch) {
DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch));
mul_d(scratch, fs, ft);
sub_d(fd, scratch, fr);
}
void TurboAssembler::BranchFCommon(SecondaryField sizeField, Label* target,
Label* nan, Condition cond, FPURegister cmp1,
FPURegister cmp2, BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (cond == al) {
Branch(bd, target);
return;
}
if (kArchVariant == kMips64r6) {
sizeField = sizeField == D ? L : W;
}
DCHECK(nan || target);
// Check for unordered (NaN) cases.
if (nan) {
bool long_branch =
nan->is_bound() ? !is_near(nan) : is_trampoline_emitted();
if (kArchVariant != kMips64r6) {
if (long_branch) {
Label skip;
c(UN, sizeField, cmp1, cmp2);
bc1f(&skip);
nop();
BranchLong(nan, bd);
bind(&skip);
} else {
c(UN, sizeField, cmp1, cmp2);
bc1t(nan);
if (bd == PROTECT) {
nop();
}
}
} else {
// Use kDoubleCompareReg for comparison result. It has to be unavailable
// to lithium
// register allocator.
DCHECK(!cmp1.is(kDoubleCompareReg) && !cmp2.is(kDoubleCompareReg));
if (long_branch) {
Label skip;
cmp(UN, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1eqz(&skip, kDoubleCompareReg);
nop();
BranchLong(nan, bd);
bind(&skip);
} else {
cmp(UN, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1nez(nan, kDoubleCompareReg);
if (bd == PROTECT) {
nop();
}
}
}
}
if (target) {
bool long_branch =
target->is_bound() ? !is_near(target) : is_trampoline_emitted();
if (long_branch) {
Label skip;
Condition neg_cond = NegateFpuCondition(cond);
BranchShortF(sizeField, &skip, neg_cond, cmp1, cmp2, bd);
BranchLong(target, bd);
bind(&skip);
} else {
BranchShortF(sizeField, target, cond, cmp1, cmp2, bd);
}
}
}
void TurboAssembler::BranchShortF(SecondaryField sizeField, Label* target,
Condition cc, FPURegister cmp1,
FPURegister cmp2, BranchDelaySlot bd) {
if (kArchVariant != kMips64r6) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (target) {
// Here NaN cases were either handled by this function or are assumed to
// have been handled by the caller.
switch (cc) {
case lt:
c(OLT, sizeField, cmp1, cmp2);
bc1t(target);
break;
case ult:
c(ULT, sizeField, cmp1, cmp2);
bc1t(target);
break;
case gt:
c(ULE, sizeField, cmp1, cmp2);
bc1f(target);
break;
case ugt:
c(OLE, sizeField, cmp1, cmp2);
bc1f(target);
break;
case ge:
c(ULT, sizeField, cmp1, cmp2);
bc1f(target);
break;
case uge:
c(OLT, sizeField, cmp1, cmp2);
bc1f(target);
break;
case le:
c(OLE, sizeField, cmp1, cmp2);
bc1t(target);
break;
case ule:
c(ULE, sizeField, cmp1, cmp2);
bc1t(target);
break;
case eq:
c(EQ, sizeField, cmp1, cmp2);
bc1t(target);
break;
case ueq:
c(UEQ, sizeField, cmp1, cmp2);
bc1t(target);
break;
case ne: // Unordered or not equal.
c(EQ, sizeField, cmp1, cmp2);
bc1f(target);
break;
case ogl:
c(UEQ, sizeField, cmp1, cmp2);
bc1f(target);
break;
default:
CHECK(0);
}
}
} else {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (target) {
// Here NaN cases were either handled by this function or are assumed to
// have been handled by the caller.
// Unsigned conditions are treated as their signed counterpart.
// Use kDoubleCompareReg for comparison result, it is valid in fp64 (FR =
// 1) mode.
DCHECK(!cmp1.is(kDoubleCompareReg) && !cmp2.is(kDoubleCompareReg));
switch (cc) {
case lt:
cmp(OLT, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1nez(target, kDoubleCompareReg);
break;
case ult:
cmp(ULT, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1nez(target, kDoubleCompareReg);
break;
case gt:
cmp(ULE, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1eqz(target, kDoubleCompareReg);
break;
case ugt:
cmp(OLE, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1eqz(target, kDoubleCompareReg);
break;
case ge:
cmp(ULT, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1eqz(target, kDoubleCompareReg);
break;
case uge:
cmp(OLT, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1eqz(target, kDoubleCompareReg);
break;
case le:
cmp(OLE, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1nez(target, kDoubleCompareReg);
break;
case ule:
cmp(ULE, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1nez(target, kDoubleCompareReg);
break;
case eq:
cmp(EQ, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1nez(target, kDoubleCompareReg);
break;
case ueq:
cmp(UEQ, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1nez(target, kDoubleCompareReg);
break;
case ne:
cmp(EQ, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1eqz(target, kDoubleCompareReg);
break;
case ogl:
cmp(UEQ, sizeField, kDoubleCompareReg, cmp1, cmp2);
bc1eqz(target, kDoubleCompareReg);
break;
default:
CHECK(0);
}
}
}
if (bd == PROTECT) {
nop();
}
}
void TurboAssembler::BranchMSA(Label* target, MSABranchDF df,
MSABranchCondition cond, MSARegister wt,
BranchDelaySlot bd) {
{
BlockTrampolinePoolScope block_trampoline_pool(this);
if (target) {
bool long_branch =
target->is_bound() ? !is_near(target) : is_trampoline_emitted();
if (long_branch) {
Label skip;
MSABranchCondition neg_cond = NegateMSABranchCondition(cond);
BranchShortMSA(df, &skip, neg_cond, wt, bd);
BranchLong(target, bd);
bind(&skip);
} else {
BranchShortMSA(df, target, cond, wt, bd);
}
}
}
}
void TurboAssembler::BranchShortMSA(MSABranchDF df, Label* target,
MSABranchCondition cond, MSARegister wt,
BranchDelaySlot bd) {
if (kArchVariant == kMips64r6) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (target) {
switch (cond) {
case all_not_zero:
switch (df) {
case MSA_BRANCH_D:
bnz_d(wt, target);
break;
case MSA_BRANCH_W:
bnz_w(wt, target);
break;
case MSA_BRANCH_H:
bnz_h(wt, target);
break;
case MSA_BRANCH_B:
default:
bnz_b(wt, target);
}
break;
case one_elem_not_zero:
bnz_v(wt, target);
break;
case one_elem_zero:
switch (df) {
case MSA_BRANCH_D:
bz_d(wt, target);
break;
case MSA_BRANCH_W:
bz_w(wt, target);
break;
case MSA_BRANCH_H:
bz_h(wt, target);
break;
case MSA_BRANCH_B:
default:
bz_b(wt, target);
}
break;
case all_zero:
bz_v(wt, target);
break;
default:
UNREACHABLE();
}
}
}
if (bd == PROTECT) {
nop();
}
}
void TurboAssembler::FmoveLow(FPURegister dst, Register src_low) {
DCHECK(!src_low.is(at));
mfhc1(at, dst);
mtc1(src_low, dst);
mthc1(at, dst);
}
void TurboAssembler::Move(FPURegister dst, float imm) {
li(at, Operand(bit_cast<int32_t>(imm)));
mtc1(at, dst);
}
void TurboAssembler::Move(FPURegister dst, double imm) {
int64_t imm_bits = bit_cast<int64_t>(imm);
// Handle special values first.
if (imm_bits == bit_cast<int64_t>(0.0) && has_double_zero_reg_set_) {
mov_d(dst, kDoubleRegZero);
} else if (imm_bits == bit_cast<int64_t>(-0.0) && has_double_zero_reg_set_) {
Neg_d(dst, kDoubleRegZero);
} else {
uint32_t lo, hi;
DoubleAsTwoUInt32(imm, &lo, &hi);
// Move the low part of the double into the lower bits of the corresponding
// FPU register.
if (lo != 0) {
li(at, lo);
mtc1(at, dst);
} else {
mtc1(zero_reg, dst);
}
// Move the high part of the double into the high bits of the corresponding
// FPU register.
if (hi != 0) {
li(at, hi);
mthc1(at, dst);
} else {
mthc1(zero_reg, dst);
}
if (dst.is(kDoubleRegZero)) has_double_zero_reg_set_ = true;
}
}
void TurboAssembler::Movz(Register rd, Register rs, Register rt) {
if (kArchVariant == kMips64r6) {
Label done;
Branch(&done, ne, rt, Operand(zero_reg));
mov(rd, rs);
bind(&done);
} else {
movz(rd, rs, rt);
}
}
void TurboAssembler::Movn(Register rd, Register rs, Register rt) {
if (kArchVariant == kMips64r6) {
Label done;
Branch(&done, eq, rt, Operand(zero_reg));
mov(rd, rs);
bind(&done);
} else {
movn(rd, rs, rt);
}
}
void TurboAssembler::Movt(Register rd, Register rs, uint16_t cc) {
movt(rd, rs, cc);
}
void TurboAssembler::Movf(Register rd, Register rs, uint16_t cc) {
movf(rd, rs, cc);
}
void TurboAssembler::Clz(Register rd, Register rs) { clz(rd, rs); }
void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode,
Register result,
DoubleRegister double_input,
Register scratch,
DoubleRegister double_scratch,
Register except_flag,
CheckForInexactConversion check_inexact) {
DCHECK(!result.is(scratch));
DCHECK(!double_input.is(double_scratch));
DCHECK(!except_flag.is(scratch));
Label done;
// Clear the except flag (0 = no exception)
mov(except_flag, zero_reg);
// Test for values that can be exactly represented as a signed 32-bit integer.
cvt_w_d(double_scratch, double_input);
mfc1(result, double_scratch);
cvt_d_w(double_scratch, double_scratch);
BranchF(&done, NULL, eq, double_input, double_scratch);
int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions.
if (check_inexact == kDontCheckForInexactConversion) {
// Ignore inexact exceptions.
except_mask &= ~kFCSRInexactFlagMask;
}
// Save FCSR.
cfc1(scratch, FCSR);
// Disable FPU exceptions.
ctc1(zero_reg, FCSR);
// Do operation based on rounding mode.
switch (rounding_mode) {
case kRoundToNearest:
Round_w_d(double_scratch, double_input);
break;
case kRoundToZero:
Trunc_w_d(double_scratch, double_input);
break;
case kRoundToPlusInf:
Ceil_w_d(double_scratch, double_input);
break;
case kRoundToMinusInf:
Floor_w_d(double_scratch, double_input);
break;
} // End of switch-statement.
// Retrieve FCSR.
cfc1(except_flag, FCSR);
// Restore FCSR.
ctc1(scratch, FCSR);
// Move the converted value into the result register.
mfc1(result, double_scratch);
// Check for fpu exceptions.
And(except_flag, except_flag, Operand(except_mask));
bind(&done);
}
void TurboAssembler::TryInlineTruncateDoubleToI(Register result,
DoubleRegister double_input,
Label* done) {
DoubleRegister single_scratch = kLithiumScratchDouble.low();
Register scratch = at;
Register scratch2 = t9;
// Clear cumulative exception flags and save the FCSR.
cfc1(scratch2, FCSR);
ctc1(zero_reg, FCSR);
// Try a conversion to a signed integer.
trunc_w_d(single_scratch, double_input);
mfc1(result, single_scratch);
// Retrieve and restore the FCSR.
cfc1(scratch, FCSR);
ctc1(scratch2, FCSR);
// Check for overflow and NaNs.
And(scratch,
scratch,
kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
// If we had no exceptions we are done.
Branch(done, eq, scratch, Operand(zero_reg));
}
void TurboAssembler::TruncateDoubleToIDelayed(Zone* zone, Register result,
DoubleRegister double_input) {
Label done;
TryInlineTruncateDoubleToI(result, double_input, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(ra);
Dsubu(sp, sp, Operand(kDoubleSize)); // Put input on stack.
Sdc1(double_input, MemOperand(sp, 0));
CallStubDelayed(new (zone) DoubleToIStub(nullptr, sp, result, 0, true, true));
Daddu(sp, sp, Operand(kDoubleSize));
pop(ra);
bind(&done);
}
void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
Label done;
DoubleRegister double_scratch = f12;
DCHECK(!result.is(object));
Ldc1(double_scratch,
MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag));
TryInlineTruncateDoubleToI(result, double_scratch, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(ra);
DoubleToIStub stub(isolate(),
object,
result,
HeapNumber::kValueOffset - kHeapObjectTag,
true,
true);
CallStub(&stub);
pop(ra);
bind(&done);
}
void MacroAssembler::TruncateNumberToI(Register object,
Register result,
Register heap_number_map,
Register scratch,
Label* not_number) {
Label done;
DCHECK(!result.is(object));
UntagAndJumpIfSmi(result, object, &done);
JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number);
TruncateHeapNumberToI(result, object);
bind(&done);
}
void MacroAssembler::GetLeastBitsFromSmi(Register dst,
Register src,
int num_least_bits) {
// Ext(dst, src, kSmiTagSize, num_least_bits);
SmiUntag(dst, src);
And(dst, dst, Operand((1 << num_least_bits) - 1));
}
void MacroAssembler::GetLeastBitsFromInt32(Register dst,
Register src,
int num_least_bits) {
DCHECK(!src.is(dst));
And(dst, src, Operand((1 << num_least_bits) - 1));
}
// Emulated condtional branches do not emit a nop in the branch delay slot.
//
// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
#define BRANCH_ARGS_CHECK(cond, rs, rt) DCHECK( \
(cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \
(cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
void TurboAssembler::Branch(int32_t offset, BranchDelaySlot bdslot) {
DCHECK(kArchVariant == kMips64r6 ? is_int26(offset) : is_int16(offset));
BranchShort(offset, bdslot);
}
void TurboAssembler::Branch(int32_t offset, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
bool is_near = BranchShortCheck(offset, nullptr, cond, rs, rt, bdslot);
DCHECK(is_near);
USE(is_near);
}
void TurboAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (is_near_branch(L)) {
BranchShort(L, bdslot);
} else {
BranchLong(L, bdslot);
}
} else {
if (is_trampoline_emitted()) {
BranchLong(L, bdslot);
} else {
BranchShort(L, bdslot);
}
}
}
void TurboAssembler::Branch(Label* L, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (!BranchShortCheck(0, L, cond, rs, rt, bdslot)) {
if (cond != cc_always) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
BranchLong(L, bdslot);
bind(&skip);
} else {
BranchLong(L, bdslot);
}
}
} else {
if (is_trampoline_emitted()) {
if (cond != cc_always) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
BranchLong(L, bdslot);
bind(&skip);
} else {
BranchLong(L, bdslot);
}
} else {
BranchShort(L, cond, rs, rt, bdslot);
}
}
}
void TurboAssembler::Branch(Label* L, Condition cond, Register rs,
Heap::RootListIndex index, BranchDelaySlot bdslot) {
LoadRoot(at, index);
Branch(L, cond, rs, Operand(at), bdslot);
}
void TurboAssembler::BranchShortHelper(int16_t offset, Label* L,
BranchDelaySlot bdslot) {
DCHECK(L == nullptr || offset == 0);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
b(offset);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void TurboAssembler::BranchShortHelperR6(int32_t offset, Label* L) {
DCHECK(L == nullptr || offset == 0);
offset = GetOffset(offset, L, OffsetSize::kOffset26);
bc(offset);
}
void TurboAssembler::BranchShort(int32_t offset, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
DCHECK(is_int26(offset));
BranchShortHelperR6(offset, nullptr);
} else {
DCHECK(is_int16(offset));
BranchShortHelper(offset, nullptr, bdslot);
}
}
void TurboAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
BranchShortHelperR6(0, L);
} else {
BranchShortHelper(0, L, bdslot);
}
}
static inline bool IsZero(const Operand& rt) {
if (rt.is_reg()) {
return rt.rm().is(zero_reg);
} else {
return rt.immediate() == 0;
}
}
int32_t TurboAssembler::GetOffset(int32_t offset, Label* L, OffsetSize bits) {
if (L) {
offset = branch_offset_helper(L, bits) >> 2;
} else {
DCHECK(is_intn(offset, bits));
}
return offset;
}
Register TurboAssembler::GetRtAsRegisterHelper(const Operand& rt,
Register scratch) {
Register r2 = no_reg;
if (rt.is_reg()) {
r2 = rt.rm();
} else {
r2 = scratch;
li(r2, rt);
}
return r2;
}
bool TurboAssembler::BranchShortHelperR6(int32_t offset, Label* L,
Condition cond, Register rs,
const Operand& rt) {
DCHECK(L == nullptr || offset == 0);
Register scratch = rs.is(at) ? t8 : at;
OffsetSize bits = OffsetSize::kOffset16;
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bc(offset);
break;
case eq:
if (rs.code() == rt.rm().reg_code) {
// Pre R6 beq is used here to make the code patchable. Otherwise bc
// should be used which has no condition field so is not patchable.
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
beq(rs, scratch, offset);
nop();
} else if (IsZero(rt)) {
bits = OffsetSize::kOffset21;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
beqzc(rs, offset);
} else {
// We don't want any other register but scratch clobbered.
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
beqc(rs, scratch, offset);
}
break;
case ne:
if (rs.code() == rt.rm().reg_code) {
// Pre R6 bne is used here to make the code patchable. Otherwise we
// should not generate any instruction.
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bne(rs, scratch, offset);
nop();
} else if (IsZero(rt)) {
bits = OffsetSize::kOffset21;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bnezc(rs, offset);
} else {
// We don't want any other register but scratch clobbered.
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bnec(rs, scratch, offset);
}
break;
// Signed comparison.
case greater:
// rs > rt
if (rs.code() == rt.rm().reg_code) {
break; // No code needs to be emitted.
} else if (rs.is(zero_reg)) {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bltzc(scratch, offset);
} else if (IsZero(rt)) {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bgtzc(rs, offset);
} else {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
DCHECK(!rs.is(scratch));
offset = GetOffset(offset, L, bits);
bltc(scratch, rs, offset);
}
break;
case greater_equal:
// rs >= rt
if (rs.code() == rt.rm().reg_code) {
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bc(offset);
} else if (rs.is(zero_reg)) {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
blezc(scratch, offset);
} else if (IsZero(rt)) {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bgezc(rs, offset);
} else {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
DCHECK(!rs.is(scratch));
offset = GetOffset(offset, L, bits);
bgec(rs, scratch, offset);
}
break;
case less:
// rs < rt
if (rs.code() == rt.rm().reg_code) {
break; // No code needs to be emitted.
} else if (rs.is(zero_reg)) {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bgtzc(scratch, offset);
} else if (IsZero(rt)) {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bltzc(rs, offset);
} else {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
DCHECK(!rs.is(scratch));
offset = GetOffset(offset, L, bits);
bltc(rs, scratch, offset);
}
break;
case less_equal:
// rs <= rt
if (rs.code() == rt.rm().reg_code) {
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bc(offset);
} else if (rs.is(zero_reg)) {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bgezc(scratch, offset);
} else if (IsZero(rt)) {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
blezc(rs, offset);
} else {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
DCHECK(!rs.is(scratch));
offset = GetOffset(offset, L, bits);
bgec(scratch, rs, offset);
}
break;
// Unsigned comparison.
case Ugreater:
// rs > rt
if (rs.code() == rt.rm().reg_code) {
break; // No code needs to be emitted.
} else if (rs.is(zero_reg)) {
bits = OffsetSize::kOffset21;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bnezc(scratch, offset);
} else if (IsZero(rt)) {
bits = OffsetSize::kOffset21;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bnezc(rs, offset);
} else {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
DCHECK(!rs.is(scratch));
offset = GetOffset(offset, L, bits);
bltuc(scratch, rs, offset);
}
break;
case Ugreater_equal:
// rs >= rt
if (rs.code() == rt.rm().reg_code) {
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bc(offset);
} else if (rs.is(zero_reg)) {
bits = OffsetSize::kOffset21;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
beqzc(scratch, offset);
} else if (IsZero(rt)) {
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bc(offset);
} else {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
DCHECK(!rs.is(scratch));
offset = GetOffset(offset, L, bits);
bgeuc(rs, scratch, offset);
}
break;
case Uless:
// rs < rt
if (rs.code() == rt.rm().reg_code) {
break; // No code needs to be emitted.
} else if (rs.is(zero_reg)) {
bits = OffsetSize::kOffset21;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bnezc(scratch, offset);
} else if (IsZero(rt)) {
break; // No code needs to be emitted.
} else {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
DCHECK(!rs.is(scratch));
offset = GetOffset(offset, L, bits);
bltuc(rs, scratch, offset);
}
break;
case Uless_equal:
// rs <= rt
if (rs.code() == rt.rm().reg_code) {
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bc(offset);
} else if (rs.is(zero_reg)) {
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bc(offset);
} else if (IsZero(rt)) {
bits = OffsetSize::kOffset21;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
beqzc(rs, offset);
} else {
bits = OffsetSize::kOffset16;
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
DCHECK(!rs.is(scratch));
offset = GetOffset(offset, L, bits);
bgeuc(scratch, rs, offset);
}
break;
default:
UNREACHABLE();
}
}
CheckTrampolinePoolQuick(1);
return true;
}
bool TurboAssembler::BranchShortHelper(int16_t offset, Label* L, Condition cond,
Register rs, const Operand& rt,
BranchDelaySlot bdslot) {
DCHECK(L == nullptr || offset == 0);
if (!is_near(L, OffsetSize::kOffset16)) return false;
Register scratch = at;
int32_t offset32;
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
{
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
b(offset32);
break;
case eq:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(rs, zero_reg, offset32);
} else {
// We don't want any other register but scratch clobbered.
scratch = GetRtAsRegisterHelper(rt, scratch);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(rs, scratch, offset32);
}
break;
case ne:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(rs, zero_reg, offset32);
} else {
// We don't want any other register but scratch clobbered.
scratch = GetRtAsRegisterHelper(rt, scratch);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(rs, scratch, offset32);
}
break;
// Signed comparison.
case greater:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bgtz(rs, offset32);
} else {
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(scratch, zero_reg, offset32);
}
break;
case greater_equal:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bgez(rs, offset32);
} else {
Slt(scratch, rs, rt);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(scratch, zero_reg, offset32);
}
break;
case less:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bltz(rs, offset32);
} else {
Slt(scratch, rs, rt);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(scratch, zero_reg, offset32);
}
break;
case less_equal:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
blez(rs, offset32);
} else {
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(scratch, zero_reg, offset32);
}
break;
// Unsigned comparison.
case Ugreater:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(rs, zero_reg, offset32);
} else {
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(scratch, zero_reg, offset32);
}
break;
case Ugreater_equal:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
b(offset32);
} else {
Sltu(scratch, rs, rt);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(scratch, zero_reg, offset32);
}
break;
case Uless:
if (IsZero(rt)) {
return true; // No code needs to be emitted.
} else {
Sltu(scratch, rs, rt);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
bne(scratch, zero_reg, offset32);
}
break;
case Uless_equal:
if (IsZero(rt)) {
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(rs, zero_reg, offset32);
} else {
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset32 = GetOffset(offset, L, OffsetSize::kOffset16);
beq(scratch, zero_reg, offset32);
}
break;
default:
UNREACHABLE();
}
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
return true;
}
bool TurboAssembler::BranchShortCheck(int32_t offset, Label* L, Condition cond,
Register rs, const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
if (!L) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
DCHECK(is_int26(offset));
return BranchShortHelperR6(offset, nullptr, cond, rs, rt);
} else {
DCHECK(is_int16(offset));
return BranchShortHelper(offset, nullptr, cond, rs, rt, bdslot);
}
} else {
DCHECK(offset == 0);
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
return BranchShortHelperR6(0, L, cond, rs, rt);
} else {
return BranchShortHelper(0, L, cond, rs, rt, bdslot);
}
}
return false;
}
void TurboAssembler::BranchShort(int32_t offset, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
BranchShortCheck(offset, nullptr, cond, rs, rt, bdslot);
}
void TurboAssembler::BranchShort(Label* L, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
BranchShortCheck(0, L, cond, rs, rt, bdslot);
}
void TurboAssembler::BranchAndLink(int32_t offset, BranchDelaySlot bdslot) {
BranchAndLinkShort(offset, bdslot);
}
void TurboAssembler::BranchAndLink(int32_t offset, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
bool is_near = BranchAndLinkShortCheck(offset, nullptr, cond, rs, rt, bdslot);
DCHECK(is_near);
USE(is_near);
}
void TurboAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (is_near_branch(L)) {
BranchAndLinkShort(L, bdslot);
} else {
BranchAndLinkLong(L, bdslot);
}
} else {
if (is_trampoline_emitted()) {
BranchAndLinkLong(L, bdslot);
} else {
BranchAndLinkShort(L, bdslot);
}
}
}
void TurboAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bdslot) {
if (L->is_bound()) {
if (!BranchAndLinkShortCheck(0, L, cond, rs, rt, bdslot)) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
BranchAndLinkLong(L, bdslot);
bind(&skip);
}
} else {
if (is_trampoline_emitted()) {
Label skip;
Condition neg_cond = NegateCondition(cond);
BranchShort(&skip, neg_cond, rs, rt);
BranchAndLinkLong(L, bdslot);
bind(&skip);
} else {
BranchAndLinkShortCheck(0, L, cond, rs, rt, bdslot);
}
}
}
void TurboAssembler::BranchAndLinkShortHelper(int16_t offset, Label* L,
BranchDelaySlot bdslot) {
DCHECK(L == nullptr || offset == 0);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bal(offset);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void TurboAssembler::BranchAndLinkShortHelperR6(int32_t offset, Label* L) {
DCHECK(L == nullptr || offset == 0);
offset = GetOffset(offset, L, OffsetSize::kOffset26);
balc(offset);
}
void TurboAssembler::BranchAndLinkShort(int32_t offset,
BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
DCHECK(is_int26(offset));
BranchAndLinkShortHelperR6(offset, nullptr);
} else {
DCHECK(is_int16(offset));
BranchAndLinkShortHelper(offset, nullptr, bdslot);
}
}
void TurboAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
BranchAndLinkShortHelperR6(0, L);
} else {
BranchAndLinkShortHelper(0, L, bdslot);
}
}
bool TurboAssembler::BranchAndLinkShortHelperR6(int32_t offset, Label* L,
Condition cond, Register rs,
const Operand& rt) {
DCHECK(L == nullptr || offset == 0);
Register scratch = rs.is(at) ? t8 : at;
OffsetSize bits = OffsetSize::kOffset16;
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK((cond == cc_always && is_int26(offset)) || is_int16(offset));
switch (cond) {
case cc_always:
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
balc(offset);
break;
case eq:
if (!is_near(L, bits)) return false;
Subu(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
break;
case ne:
if (!is_near(L, bits)) return false;
Subu(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
break;
// Signed comparison.
case greater:
// rs > rt
if (rs.code() == rt.rm().reg_code) {
break; // No code needs to be emitted.
} else if (rs.is(zero_reg)) {
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bltzalc(scratch, offset);
} else if (IsZero(rt)) {
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bgtzalc(rs, offset);
} else {
if (!is_near(L, bits)) return false;
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
}
break;
case greater_equal:
// rs >= rt
if (rs.code() == rt.rm().reg_code) {
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
balc(offset);
} else if (rs.is(zero_reg)) {
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
blezalc(scratch, offset);
} else if (IsZero(rt)) {
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bgezalc(rs, offset);
} else {
if (!is_near(L, bits)) return false;
Slt(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
}
break;
case less:
// rs < rt
if (rs.code() == rt.rm().reg_code) {
break; // No code needs to be emitted.
} else if (rs.is(zero_reg)) {
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bgtzalc(scratch, offset);
} else if (IsZero(rt)) {
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
bltzalc(rs, offset);
} else {
if (!is_near(L, bits)) return false;
Slt(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
}
break;
case less_equal:
// rs <= r2
if (rs.code() == rt.rm().reg_code) {
bits = OffsetSize::kOffset26;
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
balc(offset);
} else if (rs.is(zero_reg)) {
if (!is_near(L, bits)) return false;
scratch = GetRtAsRegisterHelper(rt, scratch);
offset = GetOffset(offset, L, bits);
bgezalc(scratch, offset);
} else if (IsZero(rt)) {
if (!is_near(L, bits)) return false;
offset = GetOffset(offset, L, bits);
blezalc(rs, offset);
} else {
if (!is_near(L, bits)) return false;
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
}
break;
// Unsigned comparison.
case Ugreater:
// rs > r2
if (!is_near(L, bits)) return false;
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
break;
case Ugreater_equal:
// rs >= r2
if (!is_near(L, bits)) return false;
Sltu(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
break;
case Uless:
// rs < r2
if (!is_near(L, bits)) return false;
Sltu(scratch, rs, rt);
offset = GetOffset(offset, L, bits);
bnezalc(scratch, offset);
break;
case Uless_equal:
// rs <= r2
if (!is_near(L, bits)) return false;
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
offset = GetOffset(offset, L, bits);
beqzalc(scratch, offset);
break;
default:
UNREACHABLE();
}
return true;
}
// Pre r6 we need to use a bgezal or bltzal, but they can't be used directly
// with the slt instructions. We could use sub or add instead but we would miss
// overflow cases, so we keep slt and add an intermediate third instruction.
bool TurboAssembler::BranchAndLinkShortHelper(int16_t offset, Label* L,
Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
DCHECK(L == nullptr || offset == 0);
if (!is_near(L, OffsetSize::kOffset16)) return false;
Register scratch = t8;
BlockTrampolinePoolScope block_trampoline_pool(this);
switch (cond) {
case cc_always:
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bal(offset);
break;
case eq:
bne(rs, GetRtAsRegisterHelper(rt, scratch), 2);
nop();
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bal(offset);
break;
case ne:
beq(rs, GetRtAsRegisterHelper(rt, scratch), 2);
nop();
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bal(offset);
break;
// Signed comparison.
case greater:
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bgezal(scratch, offset);
break;
case greater_equal:
Slt(scratch, rs, rt);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bltzal(scratch, offset);
break;
case less:
Slt(scratch, rs, rt);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bgezal(scratch, offset);
break;
case less_equal:
Slt(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bltzal(scratch, offset);
break;
// Unsigned comparison.
case Ugreater:
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bgezal(scratch, offset);
break;
case Ugreater_equal:
Sltu(scratch, rs, rt);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bltzal(scratch, offset);
break;
case Uless:
Sltu(scratch, rs, rt);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bgezal(scratch, offset);
break;
case Uless_equal:
Sltu(scratch, GetRtAsRegisterHelper(rt, scratch), rs);
addiu(scratch, scratch, -1);
offset = GetOffset(offset, L, OffsetSize::kOffset16);
bltzal(scratch, offset);
break;
default:
UNREACHABLE();
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
return true;
}
bool TurboAssembler::BranchAndLinkShortCheck(int32_t offset, Label* L,
Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
if (!L) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
DCHECK(is_int26(offset));
return BranchAndLinkShortHelperR6(offset, nullptr, cond, rs, rt);
} else {
DCHECK(is_int16(offset));
return BranchAndLinkShortHelper(offset, nullptr, cond, rs, rt, bdslot);
}
} else {
DCHECK(offset == 0);
if (kArchVariant == kMips64r6 && bdslot == PROTECT) {
return BranchAndLinkShortHelperR6(0, L, cond, rs, rt);
} else {
return BranchAndLinkShortHelper(0, L, cond, rs, rt, bdslot);
}
}
return false;
}
void TurboAssembler::Jump(Register target, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (kArchVariant == kMips64r6 && bd == PROTECT) {
if (cond == cc_always) {
jic(target, 0);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jic(target, 0);
}
} else {
if (cond == cc_always) {
jr(target);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jr(target);
}
// Emit a nop in the branch delay slot if required.
if (bd == PROTECT) nop();
}
}
void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
Label skip;
if (cond != cc_always) {
Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
}
// The first instruction of 'li' may be placed in the delay slot.
// This is not an issue, t9 is expected to be clobbered anyway.
li(t9, Operand(target, rmode));
Jump(t9, al, zero_reg, Operand(zero_reg), bd);
bind(&skip);
}
void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond,
Register rs, const Operand& rt, BranchDelaySlot bd) {
DCHECK(!RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
}
void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(code.address()), rmode, cond, rs, rt, bd);
}
int TurboAssembler::CallSize(Register target, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bd) {
int size = 0;
if (cond == cc_always) {
size += 1;
} else {
size += 3;
}
if (bd == PROTECT && kArchVariant != kMips64r6) size += 1;
return size * kInstrSize;
}
// Note: To call gcc-compiled C code on mips, you must call thru t9.
void TurboAssembler::Call(Register target, Condition cond, Register rs,
const Operand& rt, BranchDelaySlot bd) {
#ifdef DEBUG
int size = IsPrevInstrCompactBranch() ? kInstrSize : 0;
#endif
BlockTrampolinePoolScope block_trampoline_pool(this);
Label start;
bind(&start);
if (kArchVariant == kMips64r6 && bd == PROTECT) {
if (cond == cc_always) {
jialc(target, 0);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jialc(target, 0);
}
} else {
if (cond == cc_always) {
jalr(target);
} else {
BRANCH_ARGS_CHECK(cond, rs, rt);
Branch(2, NegateCondition(cond), rs, rt);
jalr(target);
}
// Emit a nop in the branch delay slot if required.
if (bd == PROTECT) nop();
}
#ifdef DEBUG
CHECK_EQ(size + CallSize(target, cond, rs, rt, bd),
SizeOfCodeGeneratedSince(&start));
#endif
}
int TurboAssembler::CallSize(Address target, RelocInfo::Mode rmode,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
int size = CallSize(t9, cond, rs, rt, bd);
return size + 4 * kInstrSize;
}
void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond,
Register rs, const Operand& rt, BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Label start;
bind(&start);
int64_t target_int = reinterpret_cast<int64_t>(target);
li(t9, Operand(target_int, rmode), ADDRESS_LOAD);
Call(t9, cond, rs, rt, bd);
DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd),
SizeOfCodeGeneratedSince(&start));
}
int TurboAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
return CallSize(code.address(), rmode, cond, rs, rt, bd);
}
void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
BlockTrampolinePoolScope block_trampoline_pool(this);
Label start;
bind(&start);
DCHECK(RelocInfo::IsCodeTarget(rmode));
Call(code.address(), rmode, cond, rs, rt, bd);
DCHECK_EQ(CallSize(code, rmode, cond, rs, rt, bd),
SizeOfCodeGeneratedSince(&start));
}
void TurboAssembler::Ret(Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bd) {
Jump(ra, cond, rs, rt, bd);
}
void TurboAssembler::BranchLong(Label* L, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT &&
(!L->is_bound() || is_near_r6(L))) {
BranchShortHelperR6(0, L);
} else {
EmitForbiddenSlotInstruction();
BlockTrampolinePoolScope block_trampoline_pool(this);
{
BlockGrowBufferScope block_buf_growth(this);
// Buffer growth (and relocation) must be blocked for internal references
// until associated instructions are emitted and available to be patched.
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
j(L);
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT) nop();
}
}
void TurboAssembler::BranchAndLinkLong(Label* L, BranchDelaySlot bdslot) {
if (kArchVariant == kMips64r6 && bdslot == PROTECT &&
(!L->is_bound() || is_near_r6(L))) {
BranchAndLinkShortHelperR6(0, L);
} else {
EmitForbiddenSlotInstruction();
BlockTrampolinePoolScope block_trampoline_pool(this);
{
BlockGrowBufferScope block_buf_growth(this);
// Buffer growth (and relocation) must be blocked for internal references
// until associated instructions are emitted and available to be patched.
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
jal(L);
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT) nop();
}
}
void TurboAssembler::DropAndRet(int drop) {
DCHECK(is_int16(drop * kPointerSize));
Ret(USE_DELAY_SLOT);
daddiu(sp, sp, drop * kPointerSize);
}
void TurboAssembler::DropAndRet(int drop, Condition cond, Register r1,
const Operand& r2) {
// Both Drop and Ret need to be conditional.
Label skip;
if (cond != cc_always) {
Branch(&skip, NegateCondition(cond), r1, r2);
}
Drop(drop);
Ret();
if (cond != cc_always) {
bind(&skip);
}
}
void TurboAssembler::Drop(int count, Condition cond, Register reg,
const Operand& op) {
if (count <= 0) {
return;
}
Label skip;
if (cond != al) {
Branch(&skip, NegateCondition(cond), reg, op);
}
Daddu(sp, sp, Operand(count * kPointerSize));
if (cond != al) {
bind(&skip);
}
}
void MacroAssembler::Swap(Register reg1,
Register reg2,
Register scratch) {
if (scratch.is(no_reg)) {
Xor(reg1, reg1, Operand(reg2));
Xor(reg2, reg2, Operand(reg1));
Xor(reg1, reg1, Operand(reg2));
} else {
mov(scratch, reg1);
mov(reg1, reg2);
mov(reg2, scratch);
}
}
void TurboAssembler::Call(Label* target) { BranchAndLink(target); }
void TurboAssembler::Push(Smi* smi) {
li(at, Operand(smi));
push(at);
}
void TurboAssembler::Push(Handle<HeapObject> handle) {
li(at, Operand(handle));
push(at);
}
void MacroAssembler::PushObject(Handle<Object> handle) {
if (handle->IsHeapObject()) {
li(at, Operand(Handle<HeapObject>::cast(handle)));
} else {
li(at, Operand(Smi::cast(*handle)));
}
push(at);
}
void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
DCHECK(!src.is(scratch));
mov(scratch, src);
dsrl32(src, src, 0);
dsll32(src, src, 0);
push(src);
dsll32(scratch, scratch, 0);
push(scratch);
}
void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
DCHECK(!dst.is(scratch));
pop(scratch);
dsrl32(scratch, scratch, 0);
pop(dst);
dsrl32(dst, dst, 0);
dsll32(dst, dst, 0);
or_(dst, dst, scratch);
}
void MacroAssembler::MaybeDropFrames() {
// Check whether we need to drop frames to restart a function on the stack.
ExternalReference restart_fp =
ExternalReference::debug_restart_fp_address(isolate());
li(a1, Operand(restart_fp));
Ld(a1, MemOperand(a1));
Jump(isolate()->builtins()->FrameDropperTrampoline(), RelocInfo::CODE_TARGET,
ne, a1, Operand(zero_reg));
}
// ---------------------------------------------------------------------------
// Exception handling.
void MacroAssembler::PushStackHandler() {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
// Link the current handler as the next handler.
li(a6,
Operand(ExternalReference(IsolateAddressId::kHandlerAddress, isolate())));
Ld(a5, MemOperand(a6));
push(a5);
// Set this new handler as the current one.
Sd(sp, MemOperand(a6));
}
void MacroAssembler::PopStackHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
pop(a1);
Daddu(sp, sp, Operand(static_cast<int64_t>(StackHandlerConstants::kSize -
kPointerSize)));
li(at,
Operand(ExternalReference(IsolateAddressId::kHandlerAddress, isolate())));
Sd(a1, MemOperand(at));
}
void MacroAssembler::Allocate(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
DCHECK(object_size <= kMaxRegularHeapObjectSize);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
li(result, 0x7091);
li(scratch1, 0x7191);
li(scratch2, 0x7291);
}
jmp(gc_required);
return;
}
DCHECK(!AreAliased(result, scratch1, scratch2, t9, at));
// Make object size into bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
object_size *= kPointerSize;
}
DCHECK(0 == (object_size & kObjectAlignmentMask));
// Check relative positions of allocation top and limit addresses.
// ARM adds additional checks to make sure the ldm instruction can be
// used. On MIPS we don't have ldm so we don't need additional checks either.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
DCHECK((limit - top) == kPointerSize);
// Set up allocation top address and allocation limit registers.
Register top_address = scratch1;
// This code stores a temporary value in t9.
Register alloc_limit = t9;
Register result_end = scratch2;
li(top_address, Operand(allocation_top));
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into alloc_limit.
Ld(result, MemOperand(top_address));
Ld(alloc_limit, MemOperand(top_address, kPointerSize));
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry.
Ld(alloc_limit, MemOperand(top_address));
Check(eq, kUnexpectedAllocationTop, result, Operand(alloc_limit));
}
// Load allocation limit. Result already contains allocation top.
Ld(alloc_limit, MemOperand(top_address, static_cast<int32_t>(limit - top)));
}
// We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
// the same alignment on ARM64.
STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
if (emit_debug_code()) {
And(at, result, Operand(kDoubleAlignmentMask));
Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top.
Daddu(result_end, result, Operand(object_size));
Branch(gc_required, Ugreater, result_end, Operand(alloc_limit));
Sd(result_end, MemOperand(top_address));
// Tag object.
Daddu(result, result, Operand(kHeapObjectTag));
}
void MacroAssembler::Allocate(Register object_size, Register result,
Register result_end, Register scratch,
Label* gc_required, AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
li(result, 0x7091);
li(scratch, 0x7191);
li(result_end, 0x7291);
}
jmp(gc_required);
return;
}
// |object_size| and |result_end| may overlap, other registers must not.
DCHECK(!AreAliased(object_size, result, scratch, t9, at));
DCHECK(!AreAliased(result_end, result, scratch, t9, at));
// Check relative positions of allocation top and limit addresses.
// ARM adds additional checks to make sure the ldm instruction can be
// used. On MIPS we don't have ldm so we don't need additional checks either.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
DCHECK((limit - top) == kPointerSize);
// Set up allocation top address and object size registers.
Register top_address = scratch;
// This code stores a temporary value in t9.
Register alloc_limit = t9;
li(top_address, Operand(allocation_top));
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into alloc_limit.
Ld(result, MemOperand(top_address));
Ld(alloc_limit, MemOperand(top_address, kPointerSize));
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry.
Ld(alloc_limit, MemOperand(top_address));
Check(eq, kUnexpectedAllocationTop, result, Operand(alloc_limit));
}
// Load allocation limit. Result already contains allocation top.
Ld(alloc_limit, MemOperand(top_address, static_cast<int32_t>(limit - top)));
}
// We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
// the same alignment on ARM64.
STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
if (emit_debug_code()) {
And(at, result, Operand(kDoubleAlignmentMask));
Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top. Object size may be in words so a shift is
// required to get the number of bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
Dlsa(result_end, result, object_size, kPointerSizeLog2);
} else {
Daddu(result_end, result, Operand(object_size));
}
Branch(gc_required, Ugreater, result_end, Operand(alloc_limit));
// Update allocation top. result temporarily holds the new top.
if (emit_debug_code()) {
And(at, result_end, Operand(kObjectAlignmentMask));
Check(eq, kUnalignedAllocationInNewSpace, at, Operand(zero_reg));
}
Sd(result_end, MemOperand(top_address));
// Tag object if.
Daddu(result, result, Operand(kHeapObjectTag));
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
Label* not_unique_name) {
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
Label succeed;
And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
Branch(&succeed, eq, at, Operand(zero_reg));
Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE));
bind(&succeed);
}
// Allocates a heap number or jumps to the label if the young space is full and
// a scavenge is needed.
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* need_gc,
MutableMode mode) {
// Allocate an object in the heap for the heap number and tag it as a heap
// object.
Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc,
NO_ALLOCATION_FLAGS);
Heap::RootListIndex map_index = mode == MUTABLE
? Heap::kMutableHeapNumberMapRootIndex
: Heap::kHeapNumberMapRootIndex;
AssertIsRoot(heap_number_map, map_index);
// Store heap number map in the allocated object.
Sd(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
}
void MacroAssembler::AllocateHeapNumberWithValue(Register result,
FPURegister value,
Register scratch1,
Register scratch2,
Label* gc_required) {
LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required);
Sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
}
void MacroAssembler::AllocateJSValue(Register result, Register constructor,
Register value, Register scratch1,
Register scratch2, Label* gc_required) {
DCHECK(!result.is(constructor));
DCHECK(!result.is(scratch1));
DCHECK(!result.is(scratch2));
DCHECK(!result.is(value));
// Allocate JSValue in new space.
Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Initialize the JSValue.
LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2);
Sd(scratch1, FieldMemOperand(result, HeapObject::kMapOffset));
LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
Sd(scratch1, FieldMemOperand(result, JSObject::kPropertiesOrHashOffset));
Sd(scratch1, FieldMemOperand(result, JSObject::kElementsOffset));
Sd(value, FieldMemOperand(result, JSValue::kValueOffset));
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
}
void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
Register end_address,
Register filler) {
Label loop, entry;
Branch(&entry);
bind(&loop);
Sd(filler, MemOperand(current_address));
Daddu(current_address, current_address, kPointerSize);
bind(&entry);
Branch(&loop, ult, current_address, Operand(end_address));
}
void MacroAssembler::SubNanPreservePayloadAndSign_s(FPURegister fd,
FPURegister fs,
FPURegister ft) {
FloatRegister dest = fd.is(fs) || fd.is(ft) ? kLithiumScratchDouble : fd;
Label check_nan, save_payload, done;
Register scratch1 = t8;
Register scratch2 = t9;
sub_s(dest, fs, ft);
// Check if the result of subtraction is NaN.
BranchF32(nullptr, &check_nan, eq, fs, ft);
Branch(USE_DELAY_SLOT, &done);
dest.is(fd) ? nop() : mov_s(fd, dest);
bind(&check_nan);
// Check if first operand is a NaN.
mfc1(scratch1, fs);
BranchF32(nullptr, &save_payload, eq, fs, fs);
// Second operand must be a NaN.
mfc1(scratch1, ft);
bind(&save_payload);
// Reserve payload.
And(scratch1, scratch1,
Operand(kSingleSignMask | ((1 << kSingleNaNShift) - 1)));
mfc1(scratch2, dest);
And(scratch2, scratch2, Operand(kSingleNaNMask));
Or(scratch2, scratch2, scratch1);
mtc1(scratch2, fd);
bind(&done);
}
void MacroAssembler::SubNanPreservePayloadAndSign_d(FPURegister fd,
FPURegister fs,
FPURegister ft) {
FloatRegister dest = fd.is(fs) || fd.is(ft) ? kLithiumScratchDouble : fd;
Label check_nan, save_payload, done;
Register scratch1 = t8;
Register scratch2 = t9;
sub_d(dest, fs, ft);
// Check if the result of subtraction is NaN.
BranchF64(nullptr, &check_nan, eq, fs, ft);
Branch(USE_DELAY_SLOT, &done);
dest.is(fd) ? nop() : mov_d(fd, dest);
bind(&check_nan);
// Check if first operand is a NaN.
dmfc1(scratch1, fs);
BranchF64(nullptr, &save_payload, eq, fs, fs);
// Second operand must be a NaN.
dmfc1(scratch1, ft);
bind(&save_payload);
// Reserve payload.
li(at, Operand(kDoubleSignMask | (1L << kDoubleNaNShift)));
Dsubu(at, at, Operand(1));
And(scratch1, scratch1, at);
dmfc1(scratch2, dest);
And(scratch2, scratch2, Operand(kDoubleNaNMask));
Or(scratch2, scratch2, scratch1);
dmtc1(scratch2, fd);
bind(&done);
}
void MacroAssembler::CompareMapAndBranch(Register obj,
Register scratch,
Handle<Map> map,
Label* early_success,
Condition cond,
Label* branch_to) {
Ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
CompareMapAndBranch(scratch, map, early_success, cond, branch_to);
}
void MacroAssembler::CompareMapAndBranch(Register obj_map,
Handle<Map> map,
Label* early_success,
Condition cond,
Label* branch_to) {
Branch(branch_to, cond, obj_map, Operand(map));
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
Label success;
CompareMapAndBranch(obj, scratch, map, &success, ne, fail);
bind(&success);
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
Ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
LoadRoot(at, index);
Branch(fail, ne, scratch, Operand(at));
}
void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
li(value, Operand(cell));
Ld(value, FieldMemOperand(value, WeakCell::kValueOffset));
}
void TurboAssembler::FPUCanonicalizeNaN(const DoubleRegister dst,
const DoubleRegister src) {
sub_d(dst, src, kDoubleRegZero);
}
void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
Label* miss) {
GetWeakValue(value, cell);
JumpIfSmi(value, miss);
}
void TurboAssembler::MovFromFloatResult(const DoubleRegister dst) {
if (IsMipsSoftFloatABI) {
if (kArchEndian == kLittle) {
Move(dst, v0, v1);
} else {
Move(dst, v1, v0);
}
} else {
Move(dst, f0); // Reg f0 is o32 ABI FP return value.
}
}
void TurboAssembler::MovFromFloatParameter(const DoubleRegister dst) {
if (IsMipsSoftFloatABI) {
if (kArchEndian == kLittle) {
Move(dst, a0, a1);
} else {
Move(dst, a1, a0);
}
} else {
Move(dst, f12); // Reg f12 is n64 ABI FP first argument value.
}
}
void TurboAssembler::MovToFloatParameter(DoubleRegister src) {
if (!IsMipsSoftFloatABI) {
Move(f12, src);
} else {
if (kArchEndian == kLittle) {
Move(a0, a1, src);
} else {
Move(a1, a0, src);
}
}
}
void TurboAssembler::MovToFloatResult(DoubleRegister src) {
if (!IsMipsSoftFloatABI) {
Move(f0, src);
} else {
if (kArchEndian == kLittle) {
Move(v0, v1, src);
} else {
Move(v1, v0, src);
}
}
}
void TurboAssembler::MovToFloatParameters(DoubleRegister src1,
DoubleRegister src2) {
if (!IsMipsSoftFloatABI) {
const DoubleRegister fparg2 = f13;
if (src2.is(f12)) {
DCHECK(!src1.is(fparg2));
Move(fparg2, src2);
Move(f12, src1);
} else {
Move(f12, src1);
Move(fparg2, src2);
}
} else {
if (kArchEndian == kLittle) {
Move(a0, a1, src1);
Move(a2, a3, src2);
} else {
Move(a1, a0, src1);
Move(a3, a2, src2);
}
}
}
// -----------------------------------------------------------------------------
// JavaScript invokes.
void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg,
Register scratch0, Register scratch1) {
#if DEBUG
if (callee_args_count.is_reg()) {
DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
scratch1));
} else {
DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
}
#endif
// Calculate the end of destination area where we will put the arguments
// after we drop current frame. We add kPointerSize to count the receiver
// argument which is not included into formal parameters count.
Register dst_reg = scratch0;
Dlsa(dst_reg, fp, caller_args_count_reg, kPointerSizeLog2);
Daddu(dst_reg, dst_reg,
Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize));
Register src_reg = caller_args_count_reg;
// Calculate the end of source area. +kPointerSize is for the receiver.
if (callee_args_count.is_reg()) {
Dlsa(src_reg, sp, callee_args_count.reg(), kPointerSizeLog2);
Daddu(src_reg, src_reg, Operand(kPointerSize));
} else {
Daddu(src_reg, sp,
Operand((callee_args_count.immediate() + 1) * kPointerSize));
}
if (FLAG_debug_code) {
Check(lo, kStackAccessBelowStackPointer, src_reg, Operand(dst_reg));
}
// Restore caller's frame pointer and return address now as they will be
// overwritten by the copying loop.
Ld(ra, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
Ld(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Now copy callee arguments to the caller frame going backwards to avoid
// callee arguments corruption (source and destination areas could overlap).
// Both src_reg and dst_reg are pointing to the word after the one to copy,
// so they must be pre-decremented in the loop.
Register tmp_reg = scratch1;
Label loop, entry;
Branch(&entry);
bind(&loop);
Dsubu(src_reg, src_reg, Operand(kPointerSize));
Dsubu(dst_reg, dst_reg, Operand(kPointerSize));
Ld(tmp_reg, MemOperand(src_reg));
Sd(tmp_reg, MemOperand(dst_reg));
bind(&entry);
Branch(&loop, ne, sp, Operand(src_reg));
// Leave current frame.
mov(sp, dst_reg);
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label regular_invoke;
// Check whether the expected and actual arguments count match. If not,
// setup registers according to contract with ArgumentsAdaptorTrampoline:
// a0: actual arguments count
// a1: function (passed through to callee)
// a2: expected arguments count
// The code below is made a lot easier because the calling code already sets
// up actual and expected registers according to the contract if values are
// passed in registers.
DCHECK(actual.is_immediate() || actual.reg().is(a0));
DCHECK(expected.is_immediate() || expected.reg().is(a2));
if (expected.is_immediate()) {
DCHECK(actual.is_immediate());
li(a0, Operand(actual.immediate()));
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
li(a2, Operand(expected.immediate()));
}
}
} else if (actual.is_immediate()) {
li(a0, Operand(actual.immediate()));
Branch(&regular_invoke, eq, expected.reg(), Operand(a0));
} else {
Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
}
if (!definitely_matches) {
Handle<Code> adaptor =
isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor));
Call(adaptor);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
Branch(done);
}
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&regular_invoke);
}
}
void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual) {
Label skip_hook;
ExternalReference debug_hook_active =
ExternalReference::debug_hook_on_function_call_address(isolate());
li(t0, Operand(debug_hook_active));
Lb(t0, MemOperand(t0));
Branch(&skip_hook, eq, t0, Operand(zero_reg));
{
FrameScope frame(this,
has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
if (expected.is_reg()) {
SmiTag(expected.reg());
Push(expected.reg());
}
if (actual.is_reg()) {
SmiTag(actual.reg());
Push(actual.reg());
}
if (new_target.is_valid()) {
Push(new_target);
}
Push(fun);
Push(fun);
CallRuntime(Runtime::kDebugOnFunctionCall);
Pop(fun);
if (new_target.is_valid()) {
Pop(new_target);
}
if (actual.is_reg()) {
Pop(actual.reg());
SmiUntag(actual.reg());
}
if (expected.is_reg()) {
Pop(expected.reg());
SmiUntag(expected.reg());
}
}
bind(&skip_hook);
}
void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
DCHECK(function.is(a1));
DCHECK_IMPLIES(new_target.is_valid(), new_target.is(a3));
if (call_wrapper.NeedsDebugHookCheck()) {
CheckDebugHook(function, new_target, expected, actual);
}
// Clear the new.target register if not given.
if (!new_target.is_valid()) {
LoadRoot(a3, Heap::kUndefinedValueRootIndex);
}
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, &done, &definitely_mismatches, flag,
call_wrapper);
if (!definitely_mismatches) {
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
Register code = t0;
Ld(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
Call(code);
call_wrapper.AfterCall();
} else {
DCHECK(flag == JUMP_FUNCTION);
Jump(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
}
void MacroAssembler::InvokeFunction(Register function,
Register new_target,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in a1.
DCHECK(function.is(a1));
Register expected_reg = a2;
Register temp_reg = t0;
Ld(temp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// The argument count is stored as int32_t on 64-bit platforms.
// TODO(plind): Smi on 32-bit platforms.
Lw(expected_reg,
FieldMemOperand(temp_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount expected(expected_reg);
InvokeFunctionCode(a1, new_target, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in a1.
DCHECK(function.is(a1));
// Get the function and setup the context.
Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
InvokeFunctionCode(a1, no_reg, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
li(a1, function);
InvokeFunction(a1, expected, actual, flag, call_wrapper);
}
void MacroAssembler::IsObjectJSStringType(Register object,
Register scratch,
Label* fail) {
DCHECK(kNotStringTag != 0);
Ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
Lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
And(scratch, scratch, Operand(kIsNotStringMask));
Branch(fail, ne, scratch, Operand(zero_reg));
}
// ---------------------------------------------------------------------------
// Support functions.
void MacroAssembler::GetMapConstructor(Register result, Register map,
Register temp, Register temp2) {
Label done, loop;
ld(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset));
bind(&loop);
JumpIfSmi(result, &done);
GetObjectType(result, temp, temp2);
Branch(&done, ne, temp2, Operand(MAP_TYPE));
ld(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset));
Branch(&loop);
bind(&done);
}
void MacroAssembler::GetObjectType(Register object,
Register map,
Register type_reg) {
Ld(map, FieldMemOperand(object, HeapObject::kMapOffset));
Lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
}
// -----------------------------------------------------------------------------
// Runtime calls.
void MacroAssembler::CallStub(CodeStub* stub,
Condition cond,
Register r1,
const Operand& r2,
BranchDelaySlot bd) {
DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd);
}
void TurboAssembler::CallStubDelayed(CodeStub* stub, Condition cond,
Register r1, const Operand& r2,
BranchDelaySlot bd) {
DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
BlockTrampolinePoolScope block_trampoline_pool(this);
li(at, Operand::EmbeddedCode(stub));
Call(at);
}
void MacroAssembler::TailCallStub(CodeStub* stub,
Condition cond,
Register r1,
const Operand& r2,
BranchDelaySlot bd) {
Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd);
}
bool TurboAssembler::AllowThisStubCall(CodeStub* stub) {
return has_frame() || !stub->SometimesSetsUpAFrame();
}
void MacroAssembler::ObjectToDoubleFPURegister(Register object,
FPURegister result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* not_number,
ObjectToDoubleFlags flags) {
Label done;
if ((flags & OBJECT_NOT_SMI) == 0) {
Label not_smi;
JumpIfNotSmi(object, &not_smi);
// Remove smi tag and convert to double.
// dsra(scratch1, object, kSmiTagSize);
dsra32(scratch1, object, 0);
mtc1(scratch1, result);
cvt_d_w(result, result);
Branch(&done);
bind(&not_smi);
}
// Check for heap number and load double value from it.
Ld(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
Branch(not_number, ne, scratch1, Operand(heap_number_map));
if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
// If exponent is all ones the number is either a NaN or +/-Infinity.
Register exponent = scratch1;
Register mask_reg = scratch2;
Lwu(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
li(mask_reg, HeapNumber::kExponentMask);
And(exponent, exponent, mask_reg);
Branch(not_number, eq, exponent, Operand(mask_reg));
}
Ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
bind(&done);
}
void MacroAssembler::SmiToDoubleFPURegister(Register smi,
FPURegister value,
Register scratch1) {
dsra32(scratch1, smi, 0);
mtc1(scratch1, value);
cvt_d_w(value, value);
}
static inline void BranchOvfHelper(TurboAssembler* tasm, Register overflow_dst,
Label* overflow_label,
Label* no_overflow_label) {
DCHECK(overflow_label || no_overflow_label);
if (!overflow_label) {
DCHECK(no_overflow_label);
tasm->Branch(no_overflow_label, ge, overflow_dst, Operand(zero_reg));
} else {
tasm->Branch(overflow_label, lt, overflow_dst, Operand(zero_reg));
if (no_overflow_label) tasm->Branch(no_overflow_label);
}
}
void MacroAssembler::AddBranchOvf(Register dst, Register left,
const Operand& right, Label* overflow_label,
Label* no_overflow_label, Register scratch) {
if (right.is_reg()) {
AddBranchOvf(dst, left, right.rm(), overflow_label, no_overflow_label,
scratch);
} else {
if (kArchVariant == kMips64r6) {
Register right_reg = t9;
DCHECK(!left.is(right_reg));
li(right_reg, Operand(right));
AddBranchOvf(dst, left, right_reg, overflow_label, no_overflow_label);
} else {
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!left.is(overflow_dst));
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
// Left is overwritten.
Addu(dst, left, static_cast<int32_t>(right.immediate()));
xor_(scratch, dst, scratch); // Original left.
// Load right since xori takes uint16 as immediate.
Addu(overflow_dst, zero_reg, right);
xor_(overflow_dst, dst, overflow_dst);
and_(overflow_dst, overflow_dst, scratch);
} else {
Addu(dst, left, static_cast<int32_t>(right.immediate()));
xor_(overflow_dst, dst, left);
// Load right since xori takes uint16 as immediate.
Addu(scratch, zero_reg, right);
xor_(scratch, dst, scratch);
and_(overflow_dst, scratch, overflow_dst);
}
BranchOvfHelper(this, overflow_dst, overflow_label, no_overflow_label);
}
}
}
void MacroAssembler::AddBranchOvf(Register dst, Register left, Register right,
Label* overflow_label,
Label* no_overflow_label, Register scratch) {
if (kArchVariant == kMips64r6) {
if (!overflow_label) {
DCHECK(no_overflow_label);
DCHECK(!dst.is(scratch));
Register left_reg = left.is(dst) ? scratch : left;
Register right_reg = right.is(dst) ? t9 : right;
DCHECK(!dst.is(left_reg));
DCHECK(!dst.is(right_reg));
Move(left_reg, left);
Move(right_reg, right);
addu(dst, left, right);
Bnvc(left_reg, right_reg, no_overflow_label);
} else {
Bovc(left, right, overflow_label);
addu(dst, left, right);
if (no_overflow_label) bc(no_overflow_label);
}
} else {
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!left.is(overflow_dst));
DCHECK(!right.is(overflow_dst));
DCHECK(!left.is(scratch));
DCHECK(!right.is(scratch));
if (left.is(right) && dst.is(left)) {
mov(overflow_dst, right);
right = overflow_dst;
}
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
addu(dst, left, right); // Left is overwritten.
xor_(scratch, dst, scratch); // Original left.
xor_(overflow_dst, dst, right);
and_(overflow_dst, overflow_dst, scratch);
} else if (dst.is(right)) {
mov(scratch, right); // Preserve right.
addu(dst, left, right); // Right is overwritten.
xor_(scratch, dst, scratch); // Original right.
xor_(overflow_dst, dst, left);
and_(overflow_dst, overflow_dst, scratch);
} else {
addu(dst, left, right);
xor_(overflow_dst, dst, left);
xor_(scratch, dst, right);
and_(overflow_dst, scratch, overflow_dst);
}
BranchOvfHelper(this, overflow_dst, overflow_label, no_overflow_label);
}
}
void MacroAssembler::SubBranchOvf(Register dst, Register left,
const Operand& right, Label* overflow_label,
Label* no_overflow_label, Register scratch) {
DCHECK(overflow_label || no_overflow_label);
if (right.is_reg()) {
SubBranchOvf(dst, left, right.rm(), overflow_label, no_overflow_label,
scratch);
} else {
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!left.is(overflow_dst));
DCHECK(!left.is(scratch));
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
// Left is overwritten.
Subu(dst, left, static_cast<int32_t>(right.immediate()));
// Load right since xori takes uint16 as immediate.
Addu(overflow_dst, zero_reg, right);
xor_(overflow_dst, scratch, overflow_dst); // scratch is original left.
xor_(scratch, dst, scratch); // scratch is original left.
and_(overflow_dst, scratch, overflow_dst);
} else {
Subu(dst, left, right);
xor_(overflow_dst, dst, left);
// Load right since xori takes uint16 as immediate.
Addu(scratch, zero_reg, right);
xor_(scratch, left, scratch);
and_(overflow_dst, scratch, overflow_dst);
}
BranchOvfHelper(this, overflow_dst, overflow_label, no_overflow_label);
}
}
void MacroAssembler::SubBranchOvf(Register dst, Register left, Register right,
Label* overflow_label,
Label* no_overflow_label, Register scratch) {
DCHECK(overflow_label || no_overflow_label);
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!overflow_dst.is(left));
DCHECK(!overflow_dst.is(right));
DCHECK(!scratch.is(left));
DCHECK(!scratch.is(right));
// This happens with some crankshaft code. Since Subu works fine if
// left == right, let's not make that restriction here.
if (left.is(right)) {
mov(dst, zero_reg);
if (no_overflow_label) {
Branch(no_overflow_label);
}
}
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
subu(dst, left, right); // Left is overwritten.
xor_(overflow_dst, dst, scratch); // scratch is original left.
xor_(scratch, scratch, right); // scratch is original left.
and_(overflow_dst, scratch, overflow_dst);
} else if (dst.is(right)) {
mov(scratch, right); // Preserve right.
subu(dst, left, right); // Right is overwritten.
xor_(overflow_dst, dst, left);
xor_(scratch, left, scratch); // Original right.
and_(overflow_dst, scratch, overflow_dst);
} else {
subu(dst, left, right);
xor_(overflow_dst, dst, left);
xor_(scratch, left, right);
and_(overflow_dst, scratch, overflow_dst);
}
BranchOvfHelper(this, overflow_dst, overflow_label, no_overflow_label);
}
void TurboAssembler::DaddBranchOvf(Register dst, Register left,
const Operand& right, Label* overflow_label,
Label* no_overflow_label, Register scratch) {
if (right.is_reg()) {
DaddBranchOvf(dst, left, right.rm(), overflow_label, no_overflow_label,
scratch);
} else {
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!left.is(overflow_dst));
li(overflow_dst, right); // Load right.
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
Daddu(dst, left, overflow_dst); // Left is overwritten.
xor_(scratch, dst, scratch); // Original left.
xor_(overflow_dst, dst, overflow_dst);
and_(overflow_dst, overflow_dst, scratch);
} else {
Daddu(dst, left, overflow_dst);
xor_(scratch, dst, overflow_dst);
xor_(overflow_dst, dst, left);
and_(overflow_dst, scratch, overflow_dst);
}
BranchOvfHelper(this, overflow_dst, overflow_label, no_overflow_label);
}
}
void TurboAssembler::DaddBranchOvf(Register dst, Register left, Register right,
Label* overflow_label,
Label* no_overflow_label, Register scratch) {
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!left.is(overflow_dst));
DCHECK(!right.is(overflow_dst));
DCHECK(!left.is(scratch));
DCHECK(!right.is(scratch));
if (left.is(right) && dst.is(left)) {
mov(overflow_dst, right);
right = overflow_dst;
}
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
daddu(dst, left, right); // Left is overwritten.
xor_(scratch, dst, scratch); // Original left.
xor_(overflow_dst, dst, right);
and_(overflow_dst, overflow_dst, scratch);
} else if (dst.is(right)) {
mov(scratch, right); // Preserve right.
daddu(dst, left, right); // Right is overwritten.
xor_(scratch, dst, scratch); // Original right.
xor_(overflow_dst, dst, left);
and_(overflow_dst, overflow_dst, scratch);
} else {
daddu(dst, left, right);
xor_(overflow_dst, dst, left);
xor_(scratch, dst, right);
and_(overflow_dst, scratch, overflow_dst);
}
BranchOvfHelper(this, overflow_dst, overflow_label, no_overflow_label);
}
void TurboAssembler::DsubBranchOvf(Register dst, Register left,
const Operand& right, Label* overflow_label,
Label* no_overflow_label, Register scratch) {
DCHECK(overflow_label || no_overflow_label);
if (right.is_reg()) {
DsubBranchOvf(dst, left, right.rm(), overflow_label, no_overflow_label,
scratch);
} else {
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!left.is(overflow_dst));
DCHECK(!left.is(scratch));
li(overflow_dst, right); // Load right.
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
Dsubu(dst, left, overflow_dst); // Left is overwritten.
xor_(overflow_dst, scratch, overflow_dst); // scratch is original left.
xor_(scratch, dst, scratch); // scratch is original left.
and_(overflow_dst, scratch, overflow_dst);
} else {
Dsubu(dst, left, overflow_dst);
xor_(scratch, left, overflow_dst);
xor_(overflow_dst, dst, left);
and_(overflow_dst, scratch, overflow_dst);
}
BranchOvfHelper(this, overflow_dst, overflow_label, no_overflow_label);
}
}
void TurboAssembler::DsubBranchOvf(Register dst, Register left, Register right,
Label* overflow_label,
Label* no_overflow_label, Register scratch) {
DCHECK(overflow_label || no_overflow_label);
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!overflow_dst.is(left));
DCHECK(!overflow_dst.is(right));
DCHECK(!scratch.is(left));
DCHECK(!scratch.is(right));
// This happens with some crankshaft code. Since Subu works fine if
// left == right, let's not make that restriction here.
if (left.is(right)) {
mov(dst, zero_reg);
if (no_overflow_label) {
Branch(no_overflow_label);
}
}
if (dst.is(left)) {
mov(scratch, left); // Preserve left.
dsubu(dst, left, right); // Left is overwritten.
xor_(overflow_dst, dst, scratch); // scratch is original left.
xor_(scratch, scratch, right); // scratch is original left.
and_(overflow_dst, scratch, overflow_dst);
} else if (dst.is(right)) {
mov(scratch, right); // Preserve right.
dsubu(dst, left, right); // Right is overwritten.
xor_(overflow_dst, dst, left);
xor_(scratch, left, scratch); // Original right.
and_(overflow_dst, scratch, overflow_dst);
} else {
dsubu(dst, left, right);
xor_(overflow_dst, dst, left);
xor_(scratch, left, right);
and_(overflow_dst, scratch, overflow_dst);
}
BranchOvfHelper(this, overflow_dst, overflow_label, no_overflow_label);
}
static inline void BranchOvfHelperMult(TurboAssembler* tasm,
Register overflow_dst,
Label* overflow_label,
Label* no_overflow_label) {
DCHECK(overflow_label || no_overflow_label);
if (!overflow_label) {
DCHECK(no_overflow_label);
tasm->Branch(no_overflow_label, eq, overflow_dst, Operand(zero_reg));
} else {
tasm->Branch(overflow_label, ne, overflow_dst, Operand(zero_reg));
if (no_overflow_label) tasm->Branch(no_overflow_label);
}
}
void TurboAssembler::MulBranchOvf(Register dst, Register left,
const Operand& right, Label* overflow_label,
Label* no_overflow_label, Register scratch) {
DCHECK(overflow_label || no_overflow_label);
if (right.is_reg()) {
MulBranchOvf(dst, left, right.rm(), overflow_label, no_overflow_label,
scratch);
} else {
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!left.is(overflow_dst));
DCHECK(!left.is(scratch));
if (dst.is(left)) {
Mul(scratch, left, static_cast<int32_t>(right.immediate()));
Mulh(overflow_dst, left, static_cast<int32_t>(right.immediate()));
mov(dst, scratch);
} else {
Mul(dst, left, static_cast<int32_t>(right.immediate()));
Mulh(overflow_dst, left, static_cast<int32_t>(right.immediate()));
}
dsra32(scratch, dst, 0);
xor_(overflow_dst, overflow_dst, scratch);
BranchOvfHelperMult(this, overflow_dst, overflow_label, no_overflow_label);
}
}
void TurboAssembler::MulBranchOvf(Register dst, Register left, Register right,
Label* overflow_label,
Label* no_overflow_label, Register scratch) {
DCHECK(overflow_label || no_overflow_label);
Register overflow_dst = t9;
DCHECK(!dst.is(scratch));
DCHECK(!dst.is(overflow_dst));
DCHECK(!scratch.is(overflow_dst));
DCHECK(!overflow_dst.is(left));
DCHECK(!overflow_dst.is(right));
DCHECK(!scratch.is(left));
DCHECK(!scratch.is(right));
if (dst.is(left) || dst.is(right)) {
Mul(scratch, left, right);
Mulh(overflow_dst, left, right);
mov(dst, scratch);
} else {
Mul(dst, left, right);
Mulh(overflow_dst, left, right);
}
dsra32(scratch, dst, 0);
xor_(overflow_dst, overflow_dst, scratch);
BranchOvfHelperMult(this, overflow_dst, overflow_label, no_overflow_label);
}
void TurboAssembler::CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid,
SaveFPRegsMode save_doubles,
BranchDelaySlot bd) {
const Runtime::Function* f = Runtime::FunctionForId(fid);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
PrepareCEntryArgs(f->nargs);
PrepareCEntryFunction(ExternalReference(f, isolate()));
CallStubDelayed(new (zone) CEntryStub(nullptr, 1, save_doubles));
}
void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles,
BranchDelaySlot bd) {
// All parameters are on the stack. v0 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
PrepareCEntryArgs(num_arguments);
PrepareCEntryFunction(ExternalReference(f, isolate()));
CEntryStub stub(isolate(), 1, save_doubles);
CallStub(&stub, al, zero_reg, Operand(zero_reg), bd);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments,
BranchDelaySlot bd) {
PrepareCEntryArgs(num_arguments);
PrepareCEntryFunction(ext);
CEntryStub stub(isolate(), 1);
CallStub(&stub, al, zero_reg, Operand(zero_reg), bd);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
DCHECK_EQ(1, function->result_size);
if (function->nargs >= 0) {
PrepareCEntryArgs(function->nargs);
}
JumpToExternalReference(ExternalReference(fid, isolate()));
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
BranchDelaySlot bd,
bool builtin_exit_frame) {
PrepareCEntryFunction(builtin);
CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
builtin_exit_frame);
Jump(stub.GetCode(),
RelocInfo::CODE_TARGET,
al,
zero_reg,
Operand(zero_reg),
bd);
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
if (FLAG_native_code_counters && counter->Enabled()) {
li(scratch1, Operand(value));
li(scratch2, Operand(ExternalReference(counter)));
Sw(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
li(scratch2, Operand(ExternalReference(counter)));
Lw(scratch1, MemOperand(scratch2));
Addu(scratch1, scratch1, Operand(value));
Sw(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
li(scratch2, Operand(ExternalReference(counter)));
Lw(scratch1, MemOperand(scratch2));
Subu(scratch1, scratch1, Operand(value));
Sw(scratch1, MemOperand(scratch2));
}
}
// -----------------------------------------------------------------------------
// Debugging.
void TurboAssembler::Assert(Condition cc, BailoutReason reason, Register rs,
Operand rt) {
if (emit_debug_code())
Check(cc, reason, rs, rt);
}
void TurboAssembler::Check(Condition cc, BailoutReason reason, Register rs,
Operand rt) {
Label L;
Branch(&L, cc, rs, rt);
Abort(reason);
// Will not return here.
bind(&L);
}
void TurboAssembler::Abort(BailoutReason reason) {
Label abort_start;
bind(&abort_start);
#ifdef DEBUG
const char* msg = GetBailoutReason(reason);
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
if (FLAG_trap_on_abort) {
stop(msg);
return;
}
#endif
Move(a0, Smi::FromInt(static_cast<int>(reason)));
// Disable stub call restrictions to always allow calls to abort.
if (!has_frame()) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
} else {
Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
}
// Will not return here.
if (is_trampoline_pool_blocked()) {
// If the calling code cares about the exact number of
// instructions generated, we insert padding here to keep the size
// of the Abort macro constant.
// Currently in debug mode with debug_code enabled the number of
// generated instructions is 10, so we use this as a maximum value.
static const int kExpectedAbortInstructions = 10;
int abort_instructions = InstructionsGeneratedSince(&abort_start);
DCHECK(abort_instructions <= kExpectedAbortInstructions);
while (abort_instructions++ < kExpectedAbortInstructions) {
nop();
}
}
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
Ld(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
Ld(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in esi).
Move(dst, cp);
}
}
void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
Ld(dst, NativeContextMemOperand());
Ld(dst, ContextMemOperand(dst, index));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch) {
// Load the initial map. The global functions all have initial maps.
Ld(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
Branch(&ok);
bind(&fail);
Abort(kGlobalFunctionsMustHaveInitialMap);
bind(&ok);
}
}
void TurboAssembler::StubPrologue(StackFrame::Type type) {
li(at, Operand(StackFrame::TypeToMarker(type)));
PushCommonFrame(at);
}
void TurboAssembler::Prologue(bool code_pre_aging) {
PredictableCodeSizeScope predictible_code_size_scope(
this, kNoCodeAgeSequenceLength);
// The following three instructions must remain together and unmodified
// for code aging to work properly.
if (code_pre_aging) {
// Pre-age the code.
Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
nop(Assembler::CODE_AGE_MARKER_NOP);
// Load the stub address to t9 and call it,
// GetCodeAge() extracts the stub address from this instruction.
li(t9,
Operand(reinterpret_cast<uint64_t>(stub->instruction_start())),
ADDRESS_LOAD);
nop(); // Prevent jalr to jal optimization.
jalr(t9, a0);
nop(); // Branch delay slot nop.
nop(); // Pad the empty space.
} else {
PushStandardFrame(a1);
nop(Assembler::CODE_AGE_SEQUENCE_NOP);
nop(Assembler::CODE_AGE_SEQUENCE_NOP);
nop(Assembler::CODE_AGE_SEQUENCE_NOP);
}
}
void MacroAssembler::EmitLoadFeedbackVector(Register vector) {
Ld(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
Ld(vector, FieldMemOperand(vector, JSFunction::kFeedbackVectorOffset));
Ld(vector, FieldMemOperand(vector, Cell::kValueOffset));
}
void TurboAssembler::EnterFrame(StackFrame::Type type) {
int stack_offset, fp_offset;
if (type == StackFrame::INTERNAL) {
stack_offset = -4 * kPointerSize;
fp_offset = 2 * kPointerSize;
} else {
stack_offset = -3 * kPointerSize;
fp_offset = 1 * kPointerSize;
}
daddiu(sp, sp, stack_offset);
stack_offset = -stack_offset - kPointerSize;
Sd(ra, MemOperand(sp, stack_offset));
stack_offset -= kPointerSize;
Sd(fp, MemOperand(sp, stack_offset));
stack_offset -= kPointerSize;
li(t9, Operand(StackFrame::TypeToMarker(type)));
Sd(t9, MemOperand(sp, stack_offset));
if (type == StackFrame::INTERNAL) {
DCHECK_EQ(stack_offset, kPointerSize);
li(t9, Operand(CodeObject()));
Sd(t9, MemOperand(sp, 0));
} else {
DCHECK_EQ(stack_offset, 0);
}
// Adjust FP to point to saved FP.
Daddu(fp, sp, Operand(fp_offset));
}
void TurboAssembler::LeaveFrame(StackFrame::Type type) {
daddiu(sp, fp, 2 * kPointerSize);
Ld(ra, MemOperand(fp, 1 * kPointerSize));
Ld(fp, MemOperand(fp, 0 * kPointerSize));
}
void MacroAssembler::EnterBuiltinFrame(Register context, Register target,
Register argc) {
Push(ra, fp);
Move(fp, sp);
Push(context, target, argc);
}
void MacroAssembler::LeaveBuiltinFrame(Register context, Register target,
Register argc) {
Pop(context, target, argc);
Pop(ra, fp);
}
void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space,
StackFrame::Type frame_type) {
DCHECK(frame_type == StackFrame::EXIT ||
frame_type == StackFrame::BUILTIN_EXIT);
// Set up the frame structure on the stack.
STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
// This is how the stack will look:
// fp + 2 (==kCallerSPDisplacement) - old stack's end
// [fp + 1 (==kCallerPCOffset)] - saved old ra
// [fp + 0 (==kCallerFPOffset)] - saved old fp
// [fp - 1 StackFrame::EXIT Smi
// [fp - 2 (==kSPOffset)] - sp of the called function
// [fp - 3 (==kCodeOffset)] - CodeObject
// fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
// new stack (will contain saved ra)
// Save registers and reserve room for saved entry sp and code object.
daddiu(sp, sp, -2 * kPointerSize - ExitFrameConstants::kFixedFrameSizeFromFp);
Sd(ra, MemOperand(sp, 4 * kPointerSize));
Sd(fp, MemOperand(sp, 3 * kPointerSize));
li(at, Operand(StackFrame::TypeToMarker(frame_type)));
Sd(at, MemOperand(sp, 2 * kPointerSize));
// Set up new frame pointer.
daddiu(fp, sp, ExitFrameConstants::kFixedFrameSizeFromFp);
if (emit_debug_code()) {
Sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
// Accessed from ExitFrame::code_slot.
li(t8, Operand(CodeObject()), CONSTANT_SIZE);
Sd(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
// Save the frame pointer and the context in top.
li(t8,
Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate())));
Sd(fp, MemOperand(t8));
li(t8,
Operand(ExternalReference(IsolateAddressId::kContextAddress, isolate())));
Sd(cp, MemOperand(t8));
const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
if (save_doubles) {
// The stack is already aligned to 0 modulo 8 for stores with sdc1.
int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
int space = kNumOfSavedRegisters * kDoubleSize;
Dsubu(sp, sp, Operand(space));
// Remember: we only need to save every 2nd double FPU value.
for (int i = 0; i < kNumOfSavedRegisters; i++) {
FPURegister reg = FPURegister::from_code(2 * i);
Sdc1(reg, MemOperand(sp, i * kDoubleSize));
}
}
// Reserve place for the return address, stack space and an optional slot
// (used by the DirectCEntryStub to hold the return value if a struct is
// returned) and align the frame preparing for calling the runtime function.
DCHECK(stack_space >= 0);
Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize));
if (frame_alignment > 0) {
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
And(sp, sp, Operand(-frame_alignment)); // Align stack.
}
// Set the exit frame sp value to point just before the return address
// location.
daddiu(at, sp, kPointerSize);
Sd(at, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
bool restore_context, bool do_return,
bool argument_count_is_length) {
// Optionally restore all double registers.
if (save_doubles) {
// Remember: we only need to restore every 2nd double FPU value.
int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
Dsubu(t8, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp +
kNumOfSavedRegisters * kDoubleSize));
for (int i = 0; i < kNumOfSavedRegisters; i++) {
FPURegister reg = FPURegister::from_code(2 * i);
Ldc1(reg, MemOperand(t8, i * kDoubleSize));
}
}
// Clear top frame.
li(t8,
Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate())));
Sd(zero_reg, MemOperand(t8));
// Restore current context from top and clear it in debug mode.
if (restore_context) {
li(t8, Operand(ExternalReference(IsolateAddressId::kContextAddress,
isolate())));
Ld(cp, MemOperand(t8));
}
#ifdef DEBUG
li(t8,
Operand(ExternalReference(IsolateAddressId::kContextAddress, isolate())));
Sd(a3, MemOperand(t8));
#endif
// Pop the arguments, restore registers, and return.
mov(sp, fp); // Respect ABI stack constraint.
Ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
Ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
if (argument_count.is_valid()) {
if (argument_count_is_length) {
daddu(sp, sp, argument_count);
} else {
Dlsa(sp, sp, argument_count, kPointerSizeLog2, t8);
}
}
if (do_return) {
Ret(USE_DELAY_SLOT);
// If returning, the instruction in the delay slot will be the addiu below.
}
daddiu(sp, sp, 2 * kPointerSize);
}
int TurboAssembler::ActivationFrameAlignment() {
#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one Mips
// platform for another Mips platform with a different alignment.
return base::OS::ActivationFrameAlignment();
#else // V8_HOST_ARCH_MIPS
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so this is controlled from a
// flag.
return FLAG_sim_stack_alignment;
#endif // V8_HOST_ARCH_MIPS
}
void MacroAssembler::AssertStackIsAligned() {
if (emit_debug_code()) {
const int frame_alignment = ActivationFrameAlignment();
const int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
Label alignment_as_expected;
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
andi(at, sp, frame_alignment_mask);
Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
// Don't use Check here, as it will call Runtime_Abort re-entering here.
stop("Unexpected stack alignment");
bind(&alignment_as_expected);
}
}
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
Register reg,
Register scratch,
Label* not_power_of_two_or_zero) {
Dsubu(scratch, reg, Operand(1));
Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
scratch, Operand(zero_reg));
and_(at, scratch, reg); // In the delay slot.
Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
}
void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
DCHECK(!reg.is(overflow));
mov(overflow, reg); // Save original value.
SmiTag(reg);
xor_(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0.
}
void MacroAssembler::SmiTagCheckOverflow(Register dst,
Register src,
Register overflow) {
if (dst.is(src)) {
// Fall back to slower case.
SmiTagCheckOverflow(dst, overflow);
} else {
DCHECK(!dst.is(src));
DCHECK(!dst.is(overflow));
DCHECK(!src.is(overflow));
SmiTag(dst, src);
xor_(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0.
}
}
void MacroAssembler::SmiLoadUntag(Register dst, MemOperand src) {
if (SmiValuesAre32Bits()) {
Lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
} else {
Lw(dst, src);
SmiUntag(dst);
}
}
void MacroAssembler::SmiLoadScale(Register dst, MemOperand src, int scale) {
if (SmiValuesAre32Bits()) {
// TODO(plind): not clear if lw or ld faster here, need micro-benchmark.
Lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
dsll(dst, dst, scale);
} else {
Lw(dst, src);
DCHECK(scale >= kSmiTagSize);
sll(dst, dst, scale - kSmiTagSize);
}
}
// Returns 2 values: the Smi and a scaled version of the int within the Smi.
void MacroAssembler::SmiLoadWithScale(Register d_smi,
Register d_scaled,
MemOperand src,
int scale) {
if (SmiValuesAre32Bits()) {
Ld(d_smi, src);
dsra(d_scaled, d_smi, kSmiShift - scale);
} else {
Lw(d_smi, src);
DCHECK(scale >= kSmiTagSize);
sll(d_scaled, d_smi, scale - kSmiTagSize);
}
}
// Returns 2 values: the untagged Smi (int32) and scaled version of that int.
void MacroAssembler::SmiLoadUntagWithScale(Register d_int,
Register d_scaled,
MemOperand src,
int scale) {
if (SmiValuesAre32Bits()) {
Lw(d_int, UntagSmiMemOperand(src.rm(), src.offset()));
dsll(d_scaled, d_int, scale);
} else {
Lw(d_int, src);
// Need both the int and the scaled in, so use two instructions.
SmiUntag(d_int);
sll(d_scaled, d_int, scale);
}
}
void MacroAssembler::UntagAndJumpIfSmi(Register dst,
Register src,
Label* smi_case) {
// DCHECK(!dst.is(src));
JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT);
SmiUntag(dst, src);
}
void TurboAssembler::JumpIfSmi(Register value, Label* smi_label,
Register scratch, BranchDelaySlot bd) {
DCHECK_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
}
void MacroAssembler::JumpIfNotSmi(Register value,
Label* not_smi_label,
Register scratch,
BranchDelaySlot bd) {
DCHECK_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
}
void MacroAssembler::JumpIfNotBothSmi(Register reg1,
Register reg2,
Label* on_not_both_smi) {
STATIC_ASSERT(kSmiTag == 0);
// TODO(plind): Find some better to fix this assert issue.
#if defined(__APPLE__)
DCHECK_EQ(1, kSmiTagMask);
#else
DCHECK_EQ((int64_t)1, kSmiTagMask);
#endif
or_(at, reg1, reg2);
JumpIfNotSmi(at, on_not_both_smi);
}
void MacroAssembler::JumpIfEitherSmi(Register reg1,
Register reg2,
Label* on_either_smi) {
STATIC_ASSERT(kSmiTag == 0);
// TODO(plind): Find some better to fix this assert issue.
#if defined(__APPLE__)
DCHECK_EQ(1, kSmiTagMask);
#else
DCHECK_EQ((int64_t)1, kSmiTagMask);
#endif
// Both Smi tags must be 1 (not Smi).
and_(at, reg1, reg2);
JumpIfSmi(at, on_either_smi);
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
andi(at, object, kSmiTagMask);
Check(ne, kOperandIsASmi, at, Operand(zero_reg));
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
andi(at, object, kSmiTagMask);
Check(eq, kOperandIsASmi, at, Operand(zero_reg));
}
}
void MacroAssembler::AssertFixedArray(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, t8);
Check(ne, kOperandIsASmiAndNotAFixedArray, t8, Operand(zero_reg));
GetObjectType(object, t8, t8);
Check(eq, kOperandIsNotAFixedArray, t8, Operand(FIXED_ARRAY_TYPE));
}
}
void MacroAssembler::AssertFunction(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, t8);
Check(ne, kOperandIsASmiAndNotAFunction, t8, Operand(zero_reg));
GetObjectType(object, t8, t8);
Check(eq, kOperandIsNotAFunction, t8, Operand(JS_FUNCTION_TYPE));
}
}
void MacroAssembler::AssertBoundFunction(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, t8);
Check(ne, kOperandIsASmiAndNotABoundFunction, t8, Operand(zero_reg));
GetObjectType(object, t8, t8);
Check(eq, kOperandIsNotABoundFunction, t8, Operand(JS_BOUND_FUNCTION_TYPE));
}
}
void MacroAssembler::AssertGeneratorObject(Register object) {
if (!emit_debug_code()) return;
STATIC_ASSERT(kSmiTag == 0);
SmiTst(object, t8);
Check(ne, kOperandIsASmiAndNotAGeneratorObject, t8, Operand(zero_reg));
GetObjectType(object, t8, t8);
Label done;
// Check if JSGeneratorObject
Branch(&done, eq, t8, Operand(JS_GENERATOR_OBJECT_TYPE));
// Check if JSAsyncGeneratorObject
Branch(&done, eq, t8, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE));
Abort(kOperandIsNotAGeneratorObject);
bind(&done);
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
Register scratch) {
if (emit_debug_code()) {
Label done_checking;
AssertNotSmi(object);
LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
Branch(&done_checking, eq, object, Operand(scratch));
Ld(t8, FieldMemOperand(object, HeapObject::kMapOffset));
LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex);
Assert(eq, kExpectedUndefinedOrCell, t8, Operand(scratch));
bind(&done_checking);
}
}
void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
if (emit_debug_code()) {
DCHECK(!reg.is(at));
LoadRoot(at, index);
Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at));
}
}
void MacroAssembler::JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number) {
Ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
}
void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
Register first, Register second, Register scratch1, Register scratch2,
Label* failure) {
// Test that both first and second are sequential one-byte strings.
// Assume that they are non-smis.
Ld(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
Ld(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
Lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
Lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
scratch2, failure);
}
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Check that neither is a smi.
STATIC_ASSERT(kSmiTag == 0);
And(scratch1, first, Operand(second));
JumpIfSmi(scratch1, failure);
JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
scratch2, failure);
}
void TurboAssembler::Float32Max(FPURegister dst, FPURegister src1,
FPURegister src2, Label* out_of_line) {
if (src1.is(src2)) {
Move_s(dst, src1);
return;
}
// Check if one of operands is NaN.
BranchF32(nullptr, out_of_line, eq, src1, src2);
if (kArchVariant >= kMips64r6) {
max_s(dst, src1, src2);
} else {
Label return_left, return_right, done;
BranchF32(&return_right, nullptr, lt, src1, src2);
BranchF32(&return_left, nullptr, lt, src2, src1);
// Operands are equal, but check for +/-0.
mfc1(t8, src1);
dsll32(t8, t8, 0);
Branch(&return_left, eq, t8, Operand(zero_reg));
Branch(&return_right);
bind(&return_right);
if (!src2.is(dst)) {
Move_s(dst, src2);
}
Branch(&done);
bind(&return_left);
if (!src1.is(dst)) {
Move_s(dst, src1);
}
bind(&done);
}
}
void TurboAssembler::Float32MaxOutOfLine(FPURegister dst, FPURegister src1,
FPURegister src2) {
add_s(dst, src1, src2);
}
void TurboAssembler::Float32Min(FPURegister dst, FPURegister src1,
FPURegister src2, Label* out_of_line) {
if (src1.is(src2)) {
Move_s(dst, src1);
return;
}
// Check if one of operands is NaN.
BranchF32(nullptr, out_of_line, eq, src1, src2);
if (kArchVariant >= kMips64r6) {
min_s(dst, src1, src2);
} else {
Label return_left, return_right, done;
BranchF32(&return_left, nullptr, lt, src1, src2);
BranchF32(&return_right, nullptr, lt, src2, src1);
// Left equals right => check for -0.
mfc1(t8, src1);
dsll32(t8, t8, 0);
Branch(&return_right, eq, t8, Operand(zero_reg));
Branch(&return_left);
bind(&return_right);
if (!src2.is(dst)) {
Move_s(dst, src2);
}
Branch(&done);
bind(&return_left);
if (!src1.is(dst)) {
Move_s(dst, src1);
}
bind(&done);
}
}
void TurboAssembler::Float32MinOutOfLine(FPURegister dst, FPURegister src1,
FPURegister src2) {
add_s(dst, src1, src2);
}
void TurboAssembler::Float64Max(FPURegister dst, FPURegister src1,
FPURegister src2, Label* out_of_line) {
if (src1.is(src2)) {
Move_d(dst, src1);
return;
}
// Check if one of operands is NaN.
BranchF64(nullptr, out_of_line, eq, src1, src2);
if (kArchVariant >= kMips64r6) {
max_d(dst, src1, src2);
} else {
Label return_left, return_right, done;
BranchF64(&return_right, nullptr, lt, src1, src2);
BranchF64(&return_left, nullptr, lt, src2, src1);
// Left equals right => check for -0.
dmfc1(t8, src1);
Branch(&return_left, eq, t8, Operand(zero_reg));
Branch(&return_right);
bind(&return_right);
if (!src2.is(dst)) {
Move_d(dst, src2);
}
Branch(&done);
bind(&return_left);
if (!src1.is(dst)) {
Move_d(dst, src1);
}
bind(&done);
}
}
void TurboAssembler::Float64MaxOutOfLine(FPURegister dst, FPURegister src1,
FPURegister src2) {
add_d(dst, src1, src2);
}
void TurboAssembler::Float64Min(FPURegister dst, FPURegister src1,
FPURegister src2, Label* out_of_line) {
if (src1.is(src2)) {
Move_d(dst, src1);
return;
}
// Check if one of operands is NaN.
BranchF64(nullptr, out_of_line, eq, src1, src2);
if (kArchVariant >= kMips64r6) {
min_d(dst, src1, src2);
} else {
Label return_left, return_right, done;
BranchF64(&return_left, nullptr, lt, src1, src2);
BranchF64(&return_right, nullptr, lt, src2, src1);
// Left equals right => check for -0.
dmfc1(t8, src1);
Branch(&return_right, eq, t8, Operand(zero_reg));
Branch(&return_left);
bind(&return_right);
if (!src2.is(dst)) {
Move_d(dst, src2);
}
Branch(&done);
bind(&return_left);
if (!src1.is(dst)) {
Move_d(dst, src1);
}
bind(&done);
}
}
void TurboAssembler::Float64MinOutOfLine(FPURegister dst, FPURegister src1,
FPURegister src2) {
add_d(dst, src1, src2);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first, Register second, Register scratch1, Register scratch2,
Label* failure) {
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
DCHECK(kFlatOneByteStringTag <= 0xffff); // Ensure this fits 16-bit immed.
andi(scratch1, first, kFlatOneByteStringMask);
Branch(failure, ne, scratch1, Operand(kFlatOneByteStringTag));
andi(scratch2, second, kFlatOneByteStringMask);
Branch(failure, ne, scratch2, Operand(kFlatOneByteStringTag));
}
static const int kRegisterPassedArguments = 8;
int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments) {
int stack_passed_words = 0;
num_reg_arguments += 2 * num_double_arguments;
// O32: Up to four simple arguments are passed in registers a0..a3.
// N64: Up to eight simple arguments are passed in registers a0..a7.
if (num_reg_arguments > kRegisterPassedArguments) {
stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
}
stack_passed_words += kCArgSlotCount;
return stack_passed_words;
}
void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
Register index,
Register value,
Register scratch,
uint32_t encoding_mask) {
Label is_object;
SmiTst(string, at);
Check(ne, kNonObject, at, Operand(zero_reg));
Ld(at, FieldMemOperand(string, HeapObject::kMapOffset));
Lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset));
andi(at, at, kStringRepresentationMask | kStringEncodingMask);
li(scratch, Operand(encoding_mask));
Check(eq, kUnexpectedStringType, at, Operand(scratch));
// TODO(plind): requires Smi size check code for mips32.
Ld(at, FieldMemOperand(string, String::kLengthOffset));
Check(lt, kIndexIsTooLarge, index, Operand(at));
DCHECK(Smi::kZero == 0);
Check(ge, kIndexIsNegative, index, Operand(zero_reg));
}
void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
int num_double_arguments,
Register scratch) {
int frame_alignment = ActivationFrameAlignment();
// n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots.
// O32: Up to four simple arguments are passed in registers a0..a3.
// Those four arguments must have reserved argument slots on the stack for
// mips, even though those argument slots are not normally used.
// Both ABIs: Remaining arguments are pushed on the stack, above (higher
// address than) the (O32) argument slots. (arg slot calculation handled by
// CalculateStackPassedWords()).
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (frame_alignment > kPointerSize) {
// Make stack end at alignment and make room for num_arguments - 4 words
// and the original value of sp.
mov(scratch, sp);
Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
And(sp, sp, Operand(-frame_alignment));
Sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
Register scratch) {
PrepareCallCFunction(num_reg_arguments, 0, scratch);
}
void TurboAssembler::CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments) {
li(t8, Operand(function));
CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments);
}
void TurboAssembler::CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments) {
CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
}
void TurboAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void TurboAssembler::CallCFunction(Register function, int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void TurboAssembler::CallCFunctionHelper(Register function,
int num_reg_arguments,
int num_double_arguments) {
DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters);
DCHECK(has_frame());
// Make sure that the stack is aligned before calling a C function unless
// running in the simulator. The simulator has its own alignment check which
// provides more information.
// The argument stots are presumed to have been set up by
// PrepareCallCFunction. The C function must be called via t9, for mips ABI.
#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
if (emit_debug_code()) {
int frame_alignment = base::OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
Label alignment_as_expected;
And(at, sp, Operand(frame_alignment_mask));
Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
// Don't use Check here, as it will call Runtime_Abort possibly
// re-entering here.
stop("Unexpected alignment in CallCFunction");
bind(&alignment_as_expected);
}
}
#endif // V8_HOST_ARCH_MIPS
// Just call directly. The function called cannot cause a GC, or
// allow preemption, so the return address in the link register
// stays correct.
if (!function.is(t9)) {
mov(t9, function);
function = t9;
}
Call(function);
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (base::OS::ActivationFrameAlignment() > kPointerSize) {
Ld(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
Daddu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
#undef BRANCH_ARGS_CHECK
void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask,
Condition cc, Label* condition_met) {
And(scratch, object, Operand(~Page::kPageAlignmentMask));
Ld(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
And(scratch, scratch, Operand(mask));
Branch(condition_met, cc, scratch, Operand(zero_reg));
}
void MacroAssembler::JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black) {
HasColor(object, scratch0, scratch1, on_black, 1, 1); // kBlackBitPattern.
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
}
void MacroAssembler::HasColor(Register object,
Register bitmap_scratch,
Register mask_scratch,
Label* has_color,
int first_bit,
int second_bit) {
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t8));
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t9));
GetMarkBits(object, bitmap_scratch, mask_scratch);
Label other_color;
// Note that we are using two 4-byte aligned loads.
LoadWordPair(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
And(t8, t9, Operand(mask_scratch));
Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg));
// Shift left 1 by adding.
Daddu(mask_scratch, mask_scratch, Operand(mask_scratch));
And(t8, t9, Operand(mask_scratch));
Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg));
bind(&other_color);
}
void MacroAssembler::GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg) {
DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
// addr_reg is divided into fields:
// |63 page base 20|19 high 8|7 shift 3|2 0|
// 'high' gives the index of the cell holding color bits for the object.
// 'shift' gives the offset in the cell for this object's color.
And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits);
Dlsa(bitmap_reg, bitmap_reg, t8, Bitmap::kBytesPerCellLog2);
li(t8, Operand(1));
dsllv(mask_reg, t8, mask_reg);
}
void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
Register mask_scratch, Register load_scratch,
Label* value_is_white) {
DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, t8));
GetMarkBits(value, bitmap_scratch, mask_scratch);
// If the value is black or grey we don't need to do anything.
DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
// Since both black and grey have a 1 in the first position and white does
// not have a 1 there we only need to check one bit.
// Note that we are using a 4-byte aligned 8-byte load.
if (emit_debug_code()) {
LoadWordPair(load_scratch,
MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
} else {
Lwu(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
}
And(t8, mask_scratch, load_scratch);
Branch(value_is_white, eq, t8, Operand(zero_reg));
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
Ld(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
}
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
Lwu(dst, FieldMemOperand(map, Map::kBitField3Offset));
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
}
void MacroAssembler::EnumLength(Register dst, Register map) {
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
Lwu(dst, FieldMemOperand(map, Map::kBitField3Offset));
And(dst, dst, Operand(Map::EnumLengthBits::kMask));
SmiTag(dst);
}
void MacroAssembler::LoadAccessor(Register dst, Register holder,
int accessor_index,
AccessorComponent accessor) {
Ld(dst, FieldMemOperand(holder, HeapObject::kMapOffset));
LoadInstanceDescriptors(dst, dst);
Ld(dst,
FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset
: AccessorPair::kSetterOffset;
Ld(dst, FieldMemOperand(dst, offset));
}
void MacroAssembler::CheckEnumCache(Label* call_runtime) {
Register null_value = a5;
Register empty_fixed_array_value = a6;
LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
Label next, start;
mov(a2, a0);
// Check if the enum length field is properly initialized, indicating that
// there is an enum cache.
Ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
EnumLength(a3, a1);
Branch(
call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel)));
LoadRoot(null_value, Heap::kNullValueRootIndex);
jmp(&start);
bind(&next);
Ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
// For all objects but the receiver, check that the cache is empty.
EnumLength(a3, a1);
Branch(call_runtime, ne, a3, Operand(Smi::kZero));
bind(&start);
// Check that there are no elements. Register a2 contains the current JS
// object we've reached through the prototype chain.
Label no_elements;
Ld(a2, FieldMemOperand(a2, JSObject::kElementsOffset));
Branch(&no_elements, eq, a2, Operand(empty_fixed_array_value));
// Second chance, the object may be using the empty slow element dictionary.
LoadRoot(at, Heap::kEmptySlowElementDictionaryRootIndex);
Branch(call_runtime, ne, a2, Operand(at));
bind(&no_elements);
Ld(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
Branch(&next, ne, a2, Operand(null_value));
}
void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
DCHECK(!output_reg.is(input_reg));
Label done;
li(output_reg, Operand(255));
// Normal branch: nop in delay slot.
Branch(&done, gt, input_reg, Operand(output_reg));
// Use delay slot in this branch.
Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg));
mov(output_reg, zero_reg); // In delay slot.
mov(output_reg, input_reg); // Value is in range 0..255.
bind(&done);
}
void MacroAssembler::ClampDoubleToUint8(Register result_reg,
DoubleRegister input_reg,
DoubleRegister temp_double_reg) {
Label above_zero;
Label done;
Label in_bounds;
Move(temp_double_reg, 0.0);
BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg);
// Double value is less than zero, NaN or Inf, return 0.
mov(result_reg, zero_reg);
Branch(&done);
// Double value is >= 255, return 255.
bind(&above_zero);
Move(temp_double_reg, 255.0);
BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg);
li(result_reg, Operand(255));
Branch(&done);
// In 0-255 range, round and truncate.
bind(&in_bounds);
cvt_w_d(temp_double_reg, input_reg);
mfc1(result_reg, temp_double_reg);
bind(&done);
}
void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver_reg,
Register scratch_reg,
Label* no_memento_found) {
Label map_check;
Label top_check;
ExternalReference new_space_allocation_top_adr =
ExternalReference::new_space_allocation_top_address(isolate());
const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag;
const int kMementoLastWordOffset =
kMementoMapOffset + AllocationMemento::kSize - kPointerSize;
// Bail out if the object is not in new space.
JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found);
// If the object is in new space, we need to check whether it is on the same
// page as the current top.
Daddu(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset));
li(at, Operand(new_space_allocation_top_adr));
Ld(at, MemOperand(at));
Xor(scratch_reg, scratch_reg, Operand(at));
And(scratch_reg, scratch_reg, Operand(~Page::kPageAlignmentMask));
Branch(&top_check, eq, scratch_reg, Operand(zero_reg));
// The object is on a different page than allocation top. Bail out if the
// object sits on the page boundary as no memento can follow and we cannot
// touch the memory following it.
Daddu(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset));
Xor(scratch_reg, scratch_reg, Operand(receiver_reg));
And(scratch_reg, scratch_reg, Operand(~Page::kPageAlignmentMask));
Branch(no_memento_found, ne, scratch_reg, Operand(zero_reg));
// Continue with the actual map check.
jmp(&map_check);
// If top is on the same page as the current object, we need to check whether
// we are below top.
bind(&top_check);
Daddu(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset));
li(at, Operand(new_space_allocation_top_adr));
Ld(at, MemOperand(at));
Branch(no_memento_found, ge, scratch_reg, Operand(at));
// Memento map check.
bind(&map_check);
Ld(scratch_reg, MemOperand(receiver_reg, kMementoMapOffset));
Branch(no_memento_found, ne, scratch_reg,
Operand(isolate()->factory()->allocation_memento_map()));
}
Register GetRegisterThatIsNotOneOf(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6) {
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
for (int i = 0; i < config->num_allocatable_general_registers(); ++i) {
int code = config->GetAllocatableGeneralCode(i);
Register candidate = Register::from_code(code);
if (regs & candidate.bit()) continue;
return candidate;
}
UNREACHABLE();
}
bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4,
Register reg5, Register reg6, Register reg7, Register reg8,
Register reg9, Register reg10) {
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() +
reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
reg7.is_valid() + reg8.is_valid() + reg9.is_valid() +
reg10.is_valid();
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
if (reg7.is_valid()) regs |= reg7.bit();
if (reg8.is_valid()) regs |= reg8.bit();
if (reg9.is_valid()) regs |= reg9.bit();
if (reg10.is_valid()) regs |= reg10.bit();
int n_of_non_aliasing_regs = NumRegs(regs);
return n_of_valid_regs != n_of_non_aliasing_regs;
}
CodePatcher::CodePatcher(Isolate* isolate, byte* address, int instructions,
FlushICache flush_cache)
: address_(address),
size_(instructions * Assembler::kInstrSize),
masm_(isolate, address, size_ + Assembler::kGap, CodeObjectRequired::kNo),
flush_cache_(flush_cache) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
if (flush_cache_ == FLUSH) {
Assembler::FlushICache(masm_.isolate(), address_, size_);
}
// Check that the code was patched as expected.
DCHECK(masm_.pc_ == address_ + size_);
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void CodePatcher::Emit(Instr instr) {
masm()->emit(instr);
}
void CodePatcher::Emit(Address addr) {
// masm()->emit(reinterpret_cast<Instr>(addr));
}
void CodePatcher::ChangeBranchCondition(Instr current_instr,
uint32_t new_opcode) {
current_instr = (current_instr & ~kOpcodeMask) | new_opcode;
masm_.emit(current_instr);
}
void MacroAssembler::TruncatingDiv(Register result,
Register dividend,
int32_t divisor) {
DCHECK(!dividend.is(result));
DCHECK(!dividend.is(at));
DCHECK(!result.is(at));
base::MagicNumbersForDivision<uint32_t> mag =
base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
li(at, Operand(static_cast<int32_t>(mag.multiplier)));
Mulh(result, dividend, Operand(at));
bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
if (divisor > 0 && neg) {
Addu(result, result, Operand(dividend));
}
if (divisor < 0 && !neg && mag.multiplier > 0) {
Subu(result, result, Operand(dividend));
}
if (mag.shift > 0) sra(result, result, mag.shift);
srl(at, dividend, 31);
Addu(result, result, Operand(at));
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS64