blob: 12bc9b49e9714e7754076605a77e1b63698f48ac [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/media/webrtc/webrtc_rtp_dump_writer.h"
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <memory>
#include "base/big_endian.h"
#include "base/bind.h"
#include "base/files/file_util.h"
#include "base/files/scoped_temp_dir.h"
#include "base/run_loop.h"
#include "base/sequenced_task_runner.h"
#include "base/stl_util.h"
#include "content/public/browser/browser_thread.h"
#include "content/public/test/test_browser_thread_bundle.h"
#include "content/public/test/test_utils.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/zlib/zlib.h"
static const size_t kMinimumRtpHeaderLength = 12;
static void CreateFakeRtpPacketHeader(size_t csrc_count,
size_t extension_header_count,
std::vector<uint8_t>* packet_header) {
packet_header->resize(kMinimumRtpHeaderLength +
csrc_count * sizeof(uint32_t) +
(extension_header_count + 1) * sizeof(uint32_t));
memset(&(*packet_header)[0], 0, packet_header->size());
// First byte format: vvpxcccc, where 'vv' is the version, 'p' is padding, 'x'
// is the extension bit, 'cccc' is the CSRC count.
(*packet_header)[0] = 0;
(*packet_header)[0] |= (0x2 << 6); // version.
// The extension bit.
(*packet_header)[0] |= (extension_header_count > 0 ? (0x1 << 4) : 0);
(*packet_header)[0] |= (csrc_count & 0xf);
// Set extension length.
size_t offset = kMinimumRtpHeaderLength +
(csrc_count & 0xf) * sizeof(uint32_t) + sizeof(uint16_t);
base::WriteBigEndian(reinterpret_cast<char*>(&(*packet_header)[offset]),
static_cast<uint16_t>(extension_header_count));
}
static void FlushTaskRunner(base::SequencedTaskRunner* task_runner) {
base::RunLoop run_loop;
task_runner->PostTask(FROM_HERE, run_loop.QuitClosure());
run_loop.Run();
}
class WebRtcRtpDumpWriterTest : public testing::Test {
public:
WebRtcRtpDumpWriterTest()
: thread_bundle_(content::TestBrowserThreadBundle::IO_MAINLOOP),
temp_dir_(new base::ScopedTempDir()) {}
void SetUp() override {
ASSERT_TRUE(temp_dir_->CreateUniqueTempDir());
incoming_dump_path_ = temp_dir_->GetPath().AppendASCII("rtpdump_recv");
outgoing_dump_path_ = temp_dir_->GetPath().AppendASCII("rtpdump_send");
writer_.reset(new WebRtcRtpDumpWriter(
incoming_dump_path_,
outgoing_dump_path_,
4 * 1024 * 1024,
base::Bind(&WebRtcRtpDumpWriterTest::OnMaxSizeReached,
base::Unretained(this))));
}
// Verifies that the dump contains records of |rtp_packet| repeated
// |packet_count| times.
void VerifyDumps(size_t incoming_packet_count, size_t outgoing_packet_count) {
std::string incoming_dump;
std::string outgoing_dump;
if (incoming_packet_count) {
EXPECT_TRUE(base::ReadFileToString(incoming_dump_path_, &incoming_dump));
EXPECT_TRUE(VerifyCompressedDump(&incoming_dump, incoming_packet_count));
} else {
EXPECT_FALSE(base::PathExists(incoming_dump_path_));
}
if (outgoing_packet_count) {
EXPECT_TRUE(base::ReadFileToString(outgoing_dump_path_, &outgoing_dump));
EXPECT_TRUE(VerifyCompressedDump(&outgoing_dump, outgoing_packet_count));
} else {
EXPECT_FALSE(base::PathExists(outgoing_dump_path_));
}
}
MOCK_METHOD2(OnEndDumpDone, void(bool, bool));
MOCK_METHOD0(OnMaxSizeReached, void(void));
protected:
// Verifies the compressed dump file contains the expected number of packets.
bool VerifyCompressedDump(std::string* dump, size_t expected_packet_count) {
EXPECT_GT(dump->size(), 0U);
std::vector<uint8_t> decompressed_dump;
EXPECT_TRUE(Decompress(dump, &decompressed_dump));
size_t actual_packet_count = 0;
EXPECT_TRUE(ReadDecompressedDump(decompressed_dump, &actual_packet_count));
EXPECT_EQ(expected_packet_count, actual_packet_count);
return true;
}
// Decompresses the |input| into |output|.
bool Decompress(std::string* input, std::vector<uint8_t>* output) {
z_stream stream = {0};
int result = inflateInit2(&stream, 15 + 16);
EXPECT_EQ(Z_OK, result);
output->resize(input->size() * 100);
stream.next_in =
reinterpret_cast<unsigned char*>(const_cast<char*>(&(*input)[0]));
stream.avail_in = input->size();
stream.next_out = &(*output)[0];
stream.avail_out = output->size();
result = inflate(&stream, Z_FINISH);
DCHECK_EQ(Z_STREAM_END, result);
result = inflateEnd(&stream);
DCHECK_EQ(Z_OK, result);
output->resize(output->size() - stream.avail_out);
return true;
}
// Tries to read |dump| as a rtpplay dump file and returns the number of
// packets found in the dump.
bool ReadDecompressedDump(const std::vector<uint8_t>& dump,
size_t* packet_count) {
static const char kFirstLine[] = "#!rtpplay1.0 0.0.0.0/0\n";
static const size_t kDumpFileHeaderSize = 4 * sizeof(uint32_t);
*packet_count = 0;
size_t dump_pos = 0;
// Verifies the first line.
EXPECT_EQ(memcmp(&dump[0], kFirstLine, base::size(kFirstLine) - 1), 0);
dump_pos += base::size(kFirstLine) - 1;
EXPECT_GT(dump.size(), dump_pos);
// Skips the file header.
dump_pos += kDumpFileHeaderSize;
EXPECT_GT(dump.size(), dump_pos);
// Reads each packet dump.
while (dump_pos < dump.size()) {
size_t packet_dump_length = 0;
if (!VerifyPacketDump(&dump[dump_pos],
dump.size() - dump_pos,
&packet_dump_length)) {
DVLOG(0) << "Failed to read the packet dump for packet "
<< *packet_count << ", dump_pos = " << dump_pos
<< ", dump_length = " << dump.size();
return false;
}
EXPECT_GE(dump.size(), dump_pos + packet_dump_length);
dump_pos += packet_dump_length;
(*packet_count)++;
}
return true;
}
// Tries to read one packet dump starting at |dump| and returns the size of
// the packet dump.
bool VerifyPacketDump(const uint8_t* dump,
size_t dump_length,
size_t* packet_dump_length) {
static const size_t kDumpHeaderLength = 8;
size_t dump_pos = 0;
base::ReadBigEndian(reinterpret_cast<const char*>(dump + dump_pos),
reinterpret_cast<uint16_t*>(packet_dump_length));
if (*packet_dump_length < kDumpHeaderLength + kMinimumRtpHeaderLength)
return false;
EXPECT_GE(dump_length, *packet_dump_length);
dump_pos += sizeof(uint16_t);
uint16_t rtp_packet_length = 0;
base::ReadBigEndian(reinterpret_cast<const char*>(dump + dump_pos),
&rtp_packet_length);
if (rtp_packet_length < kMinimumRtpHeaderLength)
return false;
dump_pos += sizeof(uint16_t);
// Skips the elapsed time field.
dump_pos += sizeof(uint32_t);
return IsValidRtpHeader(dump + dump_pos,
*packet_dump_length - kDumpHeaderLength);
}
// Returns true if |header| is a valid RTP header.
bool IsValidRtpHeader(const uint8_t* header, size_t length) {
if ((header[0] & 0xC0) != 0x80)
return false;
size_t cc_count = header[0] & 0x0F;
size_t header_length_without_extn = kMinimumRtpHeaderLength + 4 * cc_count;
if (length < header_length_without_extn)
return false;
uint16_t extension_count = 0;
base::ReadBigEndian(
reinterpret_cast<const char*>(header + header_length_without_extn + 2),
&extension_count);
if (length < (extension_count + 1) * 4 + header_length_without_extn)
return false;
return true;
}
content::TestBrowserThreadBundle thread_bundle_;
std::unique_ptr<base::ScopedTempDir> temp_dir_;
base::FilePath incoming_dump_path_;
base::FilePath outgoing_dump_path_;
std::unique_ptr<WebRtcRtpDumpWriter> writer_;
};
TEST_F(WebRtcRtpDumpWriterTest, NoDumpFileIfNoPacketDumped) {
// The scope is used to make sure the EXPECT_CALL is checked before exiting
// the scope.
{
EXPECT_CALL(*this, OnEndDumpDone(false, false));
writer_->EndDump(RTP_DUMP_BOTH,
base::Bind(&WebRtcRtpDumpWriterTest::OnEndDumpDone,
base::Unretained(this)));
FlushTaskRunner(writer_->background_task_runner().get());
base::RunLoop().RunUntilIdle();
FlushTaskRunner(writer_->background_task_runner().get());
base::RunLoop().RunUntilIdle();
}
EXPECT_FALSE(base::PathExists(incoming_dump_path_));
EXPECT_FALSE(base::PathExists(outgoing_dump_path_));
}
TEST_F(WebRtcRtpDumpWriterTest, WriteAndFlushSmallSizeDump) {
std::vector<uint8_t> packet_header;
CreateFakeRtpPacketHeader(1, 2, &packet_header);
writer_->WriteRtpPacket(
&packet_header[0], packet_header.size(), 100, true);
writer_->WriteRtpPacket(
&packet_header[0], packet_header.size(), 100, false);
// The scope is used to make sure the EXPECT_CALL is checked before exiting
// the scope.
{
EXPECT_CALL(*this, OnEndDumpDone(true, true));
writer_->EndDump(RTP_DUMP_BOTH,
base::Bind(&WebRtcRtpDumpWriterTest::OnEndDumpDone,
base::Unretained(this)));
FlushTaskRunner(writer_->background_task_runner().get());
base::RunLoop().RunUntilIdle();
FlushTaskRunner(writer_->background_task_runner().get());
base::RunLoop().RunUntilIdle();
}
VerifyDumps(1, 1);
}
TEST_F(WebRtcRtpDumpWriterTest, WriteOverMaxLimit) {
// Reset the writer with a small max size limit.
writer_.reset(new WebRtcRtpDumpWriter(
incoming_dump_path_,
outgoing_dump_path_,
100,
base::Bind(&WebRtcRtpDumpWriterTest::OnMaxSizeReached,
base::Unretained(this))));
std::vector<uint8_t> packet_header;
CreateFakeRtpPacketHeader(3, 4, &packet_header);
const size_t kPacketCount = 200;
// The scope is used to make sure the EXPECT_CALL is checked before exiting
// the scope.
{
EXPECT_CALL(*this, OnMaxSizeReached()).Times(testing::AtLeast(1));
// Write enough packets to overflow the in-memory buffer and max limit.
for (size_t i = 0; i < kPacketCount; ++i) {
writer_->WriteRtpPacket(
&packet_header[0], packet_header.size(), 100, true);
writer_->WriteRtpPacket(
&packet_header[0], packet_header.size(), 100, false);
}
EXPECT_CALL(*this, OnEndDumpDone(true, true));
writer_->EndDump(RTP_DUMP_BOTH,
base::Bind(&WebRtcRtpDumpWriterTest::OnEndDumpDone,
base::Unretained(this)));
FlushTaskRunner(writer_->background_task_runner().get());
base::RunLoop().RunUntilIdle();
FlushTaskRunner(writer_->background_task_runner().get());
base::RunLoop().RunUntilIdle();
}
VerifyDumps(kPacketCount, kPacketCount);
}
TEST_F(WebRtcRtpDumpWriterTest, DestroyWriterBeforeEndDumpCallback) {
EXPECT_CALL(*this, OnEndDumpDone(testing::_, testing::_)).Times(0);
writer_->EndDump(RTP_DUMP_BOTH,
base::Bind(&WebRtcRtpDumpWriterTest::OnEndDumpDone,
base::Unretained(this)));
writer_.reset();
// Two |RunUntilIdle()| calls are needed as the first run posts a task that
// we need to give a chance to run with the second call.
base::RunLoop().RunUntilIdle();
base::RunLoop().RunUntilIdle();
}
TEST_F(WebRtcRtpDumpWriterTest, EndDumpsSeparately) {
std::vector<uint8_t> packet_header;
CreateFakeRtpPacketHeader(1, 2, &packet_header);
writer_->WriteRtpPacket(
&packet_header[0], packet_header.size(), 100, true);
writer_->WriteRtpPacket(
&packet_header[0], packet_header.size(), 100, true);
writer_->WriteRtpPacket(
&packet_header[0], packet_header.size(), 100, false);
// The scope is used to make sure the EXPECT_CALL is checked before exiting
// the scope.
{
EXPECT_CALL(*this, OnEndDumpDone(true, false));
EXPECT_CALL(*this, OnEndDumpDone(false, true));
writer_->EndDump(RTP_DUMP_INCOMING,
base::Bind(&WebRtcRtpDumpWriterTest::OnEndDumpDone,
base::Unretained(this)));
writer_->EndDump(RTP_DUMP_OUTGOING,
base::Bind(&WebRtcRtpDumpWriterTest::OnEndDumpDone,
base::Unretained(this)));
FlushTaskRunner(writer_->background_task_runner().get());
base::RunLoop().RunUntilIdle();
FlushTaskRunner(writer_->background_task_runner().get());
base::RunLoop().RunUntilIdle();
}
VerifyDumps(2, 1);
}