blob: ddbf586e6a0fe5b616593f46c0398014d17ae9e0 [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_WASM_BASELINE_LIFTOFF_ASSEMBLER_H_
#define V8_WASM_BASELINE_LIFTOFF_ASSEMBLER_H_
#include <iosfwd>
#include <memory>
#include "src/base/bits.h"
#include "src/frames.h"
#include "src/macro-assembler.h"
#include "src/wasm/baseline/liftoff-assembler-defs.h"
#include "src/wasm/baseline/liftoff-register.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/wasm/wasm-value.h"
namespace v8 {
namespace internal {
// Forward declarations.
namespace compiler {
class CallDescriptor;
}
namespace wasm {
class LiftoffAssembler : public TurboAssembler {
public:
// Each slot in our stack frame currently has exactly 8 bytes.
static constexpr uint32_t kStackSlotSize = 8;
static constexpr ValueType kWasmIntPtr =
kPointerSize == 8 ? kWasmI64 : kWasmI32;
class VarState {
public:
enum Location : uint8_t { kStack, kRegister, KIntConst };
explicit VarState(ValueType type) : loc_(kStack), type_(type) {}
explicit VarState(ValueType type, LiftoffRegister r)
: loc_(kRegister), type_(type), reg_(r) {
DCHECK_EQ(r.reg_class(), reg_class_for(type));
}
explicit VarState(ValueType type, int32_t i32_const)
: loc_(KIntConst), type_(type), i32_const_(i32_const) {
DCHECK(type_ == kWasmI32 || type_ == kWasmI64);
}
bool operator==(const VarState& other) const {
if (loc_ != other.loc_) return false;
if (type_ != other.type_) return false;
switch (loc_) {
case kStack:
return true;
case kRegister:
return reg_ == other.reg_;
case KIntConst:
return i32_const_ == other.i32_const_;
}
UNREACHABLE();
}
bool is_stack() const { return loc_ == kStack; }
bool is_gp_reg() const { return loc_ == kRegister && reg_.is_gp(); }
bool is_fp_reg() const { return loc_ == kRegister && reg_.is_fp(); }
bool is_reg() const { return loc_ == kRegister; }
bool is_const() const { return loc_ == KIntConst; }
ValueType type() const { return type_; }
Location loc() const { return loc_; }
int32_t i32_const() const {
DCHECK_EQ(loc_, KIntConst);
return i32_const_;
}
WasmValue constant() const {
DCHECK(type_ == kWasmI32 || type_ == kWasmI64);
DCHECK_EQ(loc_, KIntConst);
return type_ == kWasmI32 ? WasmValue(i32_const_)
: WasmValue(int64_t{i32_const_});
}
Register gp_reg() const { return reg().gp(); }
DoubleRegister fp_reg() const { return reg().fp(); }
LiftoffRegister reg() const {
DCHECK_EQ(loc_, kRegister);
return reg_;
}
RegClass reg_class() const { return reg().reg_class(); }
void MakeStack() { loc_ = kStack; }
private:
Location loc_;
// TODO(wasm): This is redundant, the decoder already knows the type of each
// stack value. Try to collapse.
ValueType type_;
union {
LiftoffRegister reg_; // used if loc_ == kRegister
int32_t i32_const_; // used if loc_ == KIntConst
};
};
ASSERT_TRIVIALLY_COPYABLE(VarState);
struct CacheState {
// Allow default construction, move construction, and move assignment.
CacheState() = default;
CacheState(CacheState&&) = default;
CacheState& operator=(CacheState&&) = default;
// TODO(clemensh): Improve memory management here; avoid std::vector.
std::vector<VarState> stack_state;
LiftoffRegList used_registers;
uint32_t register_use_count[kAfterMaxLiftoffRegCode] = {0};
LiftoffRegList last_spilled_regs;
bool has_unused_register(RegClass rc, LiftoffRegList pinned = {}) const {
if (kNeedI64RegPair && rc == kGpRegPair) {
LiftoffRegList available_regs =
kGpCacheRegList.MaskOut(used_registers).MaskOut(pinned);
return available_regs.GetNumRegsSet() >= 2;
}
DCHECK(rc == kGpReg || rc == kFpReg);
LiftoffRegList candidates = GetCacheRegList(rc);
return has_unused_register(candidates, pinned);
}
bool has_unused_register(LiftoffRegList candidates,
LiftoffRegList pinned = {}) const {
LiftoffRegList available_regs =
candidates.MaskOut(used_registers).MaskOut(pinned);
return !available_regs.is_empty();
}
LiftoffRegister unused_register(RegClass rc,
LiftoffRegList pinned = {}) const {
if (kNeedI64RegPair && rc == kGpRegPair) {
Register low = pinned.set(unused_register(kGpReg, pinned)).gp();
Register high = unused_register(kGpReg, pinned).gp();
return LiftoffRegister::ForPair(low, high);
}
DCHECK(rc == kGpReg || rc == kFpReg);
LiftoffRegList candidates = GetCacheRegList(rc);
return unused_register(candidates, pinned);
}
LiftoffRegister unused_register(LiftoffRegList candidates,
LiftoffRegList pinned = {}) const {
LiftoffRegList available_regs =
candidates.MaskOut(used_registers).MaskOut(pinned);
return available_regs.GetFirstRegSet();
}
void inc_used(LiftoffRegister reg) {
if (reg.is_pair()) {
inc_used(reg.low());
inc_used(reg.high());
return;
}
used_registers.set(reg);
DCHECK_GT(kMaxInt, register_use_count[reg.liftoff_code()]);
++register_use_count[reg.liftoff_code()];
}
// Returns whether this was the last use.
void dec_used(LiftoffRegister reg) {
DCHECK(is_used(reg));
if (reg.is_pair()) {
dec_used(reg.low());
dec_used(reg.high());
return;
}
int code = reg.liftoff_code();
DCHECK_LT(0, register_use_count[code]);
if (--register_use_count[code] == 0) used_registers.clear(reg);
}
bool is_used(LiftoffRegister reg) const {
if (reg.is_pair()) return is_used(reg.low()) || is_used(reg.high());
bool used = used_registers.has(reg);
DCHECK_EQ(used, register_use_count[reg.liftoff_code()] != 0);
return used;
}
uint32_t get_use_count(LiftoffRegister reg) const {
if (reg.is_pair()) {
DCHECK_EQ(register_use_count[reg.low().liftoff_code()],
register_use_count[reg.high().liftoff_code()]);
reg = reg.low();
}
DCHECK_GT(arraysize(register_use_count), reg.liftoff_code());
return register_use_count[reg.liftoff_code()];
}
void clear_used(LiftoffRegister reg) {
register_use_count[reg.liftoff_code()] = 0;
used_registers.clear(reg);
}
bool is_free(LiftoffRegister reg) const { return !is_used(reg); }
void reset_used_registers() {
used_registers = {};
memset(register_use_count, 0, sizeof(register_use_count));
}
LiftoffRegister GetNextSpillReg(LiftoffRegList candidates,
LiftoffRegList pinned = {}) {
LiftoffRegList unpinned = candidates.MaskOut(pinned);
DCHECK(!unpinned.is_empty());
// This method should only be called if none of the candidates is free.
DCHECK(unpinned.MaskOut(used_registers).is_empty());
LiftoffRegList unspilled = unpinned.MaskOut(last_spilled_regs);
if (unspilled.is_empty()) {
unspilled = unpinned;
last_spilled_regs = {};
}
LiftoffRegister reg = unspilled.GetFirstRegSet();
last_spilled_regs.set(reg);
return reg;
}
// TODO(clemensh): Don't copy the full parent state (this makes us N^2).
void InitMerge(const CacheState& source, uint32_t num_locals,
uint32_t arity, uint32_t stack_depth);
void Steal(CacheState& source);
void Split(const CacheState& source);
uint32_t stack_height() const {
return static_cast<uint32_t>(stack_state.size());
}
private:
// Make the copy assignment operator private (to be used from {Split()}).
CacheState& operator=(const CacheState&) = default;
// Disallow copy construction.
CacheState(const CacheState&) = delete;
};
LiftoffAssembler();
~LiftoffAssembler() override;
LiftoffRegister PopToRegister(LiftoffRegList pinned = {});
void PushRegister(ValueType type, LiftoffRegister reg) {
DCHECK_EQ(reg_class_for(type), reg.reg_class());
cache_state_.inc_used(reg);
cache_state_.stack_state.emplace_back(type, reg);
}
void SpillRegister(LiftoffRegister);
uint32_t GetNumUses(LiftoffRegister reg) {
return cache_state_.get_use_count(reg);
}
// Get an unused register for class {rc}, reusing one of {try_first} if
// possible.
LiftoffRegister GetUnusedRegister(
RegClass rc, std::initializer_list<LiftoffRegister> try_first,
LiftoffRegList pinned = {}) {
for (LiftoffRegister reg : try_first) {
DCHECK_EQ(reg.reg_class(), rc);
if (cache_state_.is_free(reg)) return reg;
}
return GetUnusedRegister(rc, pinned);
}
// Get an unused register for class {rc}, potentially spilling to free one.
LiftoffRegister GetUnusedRegister(RegClass rc, LiftoffRegList pinned = {}) {
if (kNeedI64RegPair && rc == kGpRegPair) {
LiftoffRegList candidates = kGpCacheRegList;
Register low = pinned.set(GetUnusedRegister(candidates, pinned)).gp();
Register high = GetUnusedRegister(candidates, pinned).gp();
return LiftoffRegister::ForPair(low, high);
}
DCHECK(rc == kGpReg || rc == kFpReg);
LiftoffRegList candidates = GetCacheRegList(rc);
return GetUnusedRegister(candidates, pinned);
}
// Get an unused register of {candidates}, potentially spilling to free one.
LiftoffRegister GetUnusedRegister(LiftoffRegList candidates,
LiftoffRegList pinned = {}) {
if (cache_state_.has_unused_register(candidates, pinned)) {
return cache_state_.unused_register(candidates, pinned);
}
return SpillOneRegister(candidates, pinned);
}
void MergeFullStackWith(CacheState&);
void MergeStackWith(CacheState&, uint32_t arity);
void Spill(uint32_t index);
void SpillLocals();
void SpillAllRegisters();
// Call this method whenever spilling something, such that the number of used
// spill slot can be tracked and the stack frame will be allocated big enough.
void RecordUsedSpillSlot(uint32_t index) {
if (index >= num_used_spill_slots_) num_used_spill_slots_ = index + 1;
}
// Load parameters into the right registers / stack slots for the call.
// Move {*target} into another register if needed and update {*target} to that
// register, or {no_reg} if target was spilled to the stack.
void PrepareCall(FunctionSig*, compiler::CallDescriptor*,
Register* target = nullptr,
Register* target_instance = nullptr);
// Process return values of the call.
void FinishCall(FunctionSig*, compiler::CallDescriptor*);
// Move {src} into {dst}. {src} and {dst} must be different.
void Move(LiftoffRegister dst, LiftoffRegister src, ValueType);
// Parallel register move: For a list of tuples <dst, src, type>, move the
// {src} register of type {type} into {dst}. If {src} equals {dst}, ignore
// that tuple.
struct ParallelRegisterMoveTuple {
LiftoffRegister dst;
LiftoffRegister src;
ValueType type;
template <typename Dst, typename Src>
ParallelRegisterMoveTuple(Dst dst, Src src, ValueType type)
: dst(dst), src(src), type(type) {}
};
void ParallelRegisterMove(Vector<ParallelRegisterMoveTuple>);
void MoveToReturnRegisters(FunctionSig*);
#ifdef ENABLE_SLOW_DCHECKS
// Validate that the register use counts reflect the state of the cache.
bool ValidateCacheState() const;
#endif
////////////////////////////////////
// Platform-specific part. //
////////////////////////////////////
// This function emits machine code to prepare the stack frame, before the
// size of the stack frame is known. It returns an offset in the machine code
// which can later be patched (via {PatchPrepareStackFrame)} when the size of
// the frame is known.
inline int PrepareStackFrame();
inline void PatchPrepareStackFrame(int offset, uint32_t stack_slots);
inline void FinishCode();
inline void AbortCompilation();
inline void LoadConstant(LiftoffRegister, WasmValue,
RelocInfo::Mode rmode = RelocInfo::NONE);
inline void LoadFromInstance(Register dst, uint32_t offset, int size);
inline void SpillInstance(Register instance);
inline void FillInstanceInto(Register dst);
inline void Load(LiftoffRegister dst, Register src_addr, Register offset_reg,
uint32_t offset_imm, LoadType type, LiftoffRegList pinned,
uint32_t* protected_load_pc = nullptr,
bool is_load_mem = false);
inline void Store(Register dst_addr, Register offset_reg, uint32_t offset_imm,
LiftoffRegister src, StoreType type, LiftoffRegList pinned,
uint32_t* protected_store_pc = nullptr,
bool is_store_mem = false);
inline void LoadCallerFrameSlot(LiftoffRegister, uint32_t caller_slot_idx,
ValueType);
inline void MoveStackValue(uint32_t dst_index, uint32_t src_index, ValueType);
inline void Move(Register dst, Register src, ValueType);
inline void Move(DoubleRegister dst, DoubleRegister src, ValueType);
inline void Spill(uint32_t index, LiftoffRegister, ValueType);
inline void Spill(uint32_t index, WasmValue);
inline void Fill(LiftoffRegister, uint32_t index, ValueType);
// Only used on 32-bit systems: Fill a register from a "half stack slot", i.e.
// 4 bytes on the stack holding half of a 64-bit value. The two half_indexes
// corresponding to slot {index} are {2*index} and {2*index-1}.
inline void FillI64Half(Register, uint32_t half_index);
// i32 binops.
inline void emit_i32_add(Register dst, Register lhs, Register rhs);
inline void emit_i32_sub(Register dst, Register lhs, Register rhs);
inline void emit_i32_mul(Register dst, Register lhs, Register rhs);
inline void emit_i32_divs(Register dst, Register lhs, Register rhs,
Label* trap_div_by_zero,
Label* trap_div_unrepresentable);
inline void emit_i32_divu(Register dst, Register lhs, Register rhs,
Label* trap_div_by_zero);
inline void emit_i32_rems(Register dst, Register lhs, Register rhs,
Label* trap_rem_by_zero);
inline void emit_i32_remu(Register dst, Register lhs, Register rhs,
Label* trap_rem_by_zero);
inline void emit_i32_and(Register dst, Register lhs, Register rhs);
inline void emit_i32_or(Register dst, Register lhs, Register rhs);
inline void emit_i32_xor(Register dst, Register lhs, Register rhs);
inline void emit_i32_shl(Register dst, Register src, Register amount,
LiftoffRegList pinned = {});
inline void emit_i32_sar(Register dst, Register src, Register amount,
LiftoffRegList pinned = {});
inline void emit_i32_shr(Register dst, Register src, Register amount,
LiftoffRegList pinned = {});
inline void emit_i32_shr(Register dst, Register src, int amount);
// i32 unops.
inline bool emit_i32_clz(Register dst, Register src);
inline bool emit_i32_ctz(Register dst, Register src);
inline bool emit_i32_popcnt(Register dst, Register src);
// i64 binops.
inline void emit_i64_add(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs);
inline void emit_i64_sub(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs);
inline void emit_i64_mul(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs);
inline bool emit_i64_divs(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs, Label* trap_div_by_zero,
Label* trap_div_unrepresentable);
inline bool emit_i64_divu(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs, Label* trap_div_by_zero);
inline bool emit_i64_rems(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs, Label* trap_rem_by_zero);
inline bool emit_i64_remu(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs, Label* trap_rem_by_zero);
inline void emit_i64_and(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs);
inline void emit_i64_or(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs);
inline void emit_i64_xor(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs);
inline void emit_i64_shl(LiftoffRegister dst, LiftoffRegister src,
Register amount, LiftoffRegList pinned = {});
inline void emit_i64_sar(LiftoffRegister dst, LiftoffRegister src,
Register amount, LiftoffRegList pinned = {});
inline void emit_i64_shr(LiftoffRegister dst, LiftoffRegister src,
Register amount, LiftoffRegList pinned = {});
inline void emit_i64_shr(LiftoffRegister dst, LiftoffRegister src,
int amount);
inline void emit_i32_to_intptr(Register dst, Register src);
inline void emit_ptrsize_add(Register dst, Register lhs, Register rhs) {
if (kPointerSize == 8) {
emit_i64_add(LiftoffRegister(dst), LiftoffRegister(lhs),
LiftoffRegister(rhs));
} else {
emit_i32_add(dst, lhs, rhs);
}
}
inline void emit_ptrsize_sub(Register dst, Register lhs, Register rhs) {
if (kPointerSize == 8) {
emit_i64_sub(LiftoffRegister(dst), LiftoffRegister(lhs),
LiftoffRegister(rhs));
} else {
emit_i32_sub(dst, lhs, rhs);
}
}
inline void emit_ptrsize_and(Register dst, Register lhs, Register rhs) {
if (kPointerSize == 8) {
emit_i64_and(LiftoffRegister(dst), LiftoffRegister(lhs),
LiftoffRegister(rhs));
} else {
emit_i32_and(dst, lhs, rhs);
}
}
inline void emit_ptrsize_shr(Register dst, Register src, int amount) {
if (kPointerSize == 8) {
emit_i64_shr(LiftoffRegister(dst), LiftoffRegister(src), amount);
} else {
emit_i32_shr(dst, src, amount);
}
}
// f32 binops.
inline void emit_f32_add(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f32_sub(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f32_mul(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f32_div(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f32_min(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f32_max(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f32_copysign(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
// f32 unops.
inline void emit_f32_abs(DoubleRegister dst, DoubleRegister src);
inline void emit_f32_neg(DoubleRegister dst, DoubleRegister src);
inline bool emit_f32_ceil(DoubleRegister dst, DoubleRegister src);
inline bool emit_f32_floor(DoubleRegister dst, DoubleRegister src);
inline bool emit_f32_trunc(DoubleRegister dst, DoubleRegister src);
inline bool emit_f32_nearest_int(DoubleRegister dst, DoubleRegister src);
inline void emit_f32_sqrt(DoubleRegister dst, DoubleRegister src);
// f64 binops.
inline void emit_f64_add(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f64_sub(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f64_mul(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f64_div(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f64_min(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f64_max(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
inline void emit_f64_copysign(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs);
// f64 unops.
inline void emit_f64_abs(DoubleRegister dst, DoubleRegister src);
inline void emit_f64_neg(DoubleRegister dst, DoubleRegister src);
inline bool emit_f64_ceil(DoubleRegister dst, DoubleRegister src);
inline bool emit_f64_floor(DoubleRegister dst, DoubleRegister src);
inline bool emit_f64_trunc(DoubleRegister dst, DoubleRegister src);
inline bool emit_f64_nearest_int(DoubleRegister dst, DoubleRegister src);
inline void emit_f64_sqrt(DoubleRegister dst, DoubleRegister src);
inline bool emit_type_conversion(WasmOpcode opcode, LiftoffRegister dst,
LiftoffRegister src, Label* trap = nullptr);
inline void emit_i32_signextend_i8(Register dst, Register src);
inline void emit_i32_signextend_i16(Register dst, Register src);
inline void emit_i64_signextend_i8(LiftoffRegister dst, LiftoffRegister src);
inline void emit_i64_signextend_i16(LiftoffRegister dst, LiftoffRegister src);
inline void emit_i64_signextend_i32(LiftoffRegister dst, LiftoffRegister src);
inline void emit_jump(Label*);
inline void emit_jump(Register);
inline void emit_cond_jump(Condition, Label*, ValueType value, Register lhs,
Register rhs = no_reg);
// Set {dst} to 1 if condition holds, 0 otherwise.
inline void emit_i32_eqz(Register dst, Register src);
inline void emit_i32_set_cond(Condition, Register dst, Register lhs,
Register rhs);
inline void emit_i64_eqz(Register dst, LiftoffRegister src);
inline void emit_i64_set_cond(Condition condition, Register dst,
LiftoffRegister lhs, LiftoffRegister rhs);
inline void emit_f32_set_cond(Condition condition, Register dst,
DoubleRegister lhs, DoubleRegister rhs);
inline void emit_f64_set_cond(Condition condition, Register dst,
DoubleRegister lhs, DoubleRegister rhs);
inline void StackCheck(Label* ool_code, Register limit_address);
inline void CallTrapCallbackForTesting();
inline void AssertUnreachable(AbortReason reason);
inline void PushRegisters(LiftoffRegList);
inline void PopRegisters(LiftoffRegList);
inline void DropStackSlotsAndRet(uint32_t num_stack_slots);
// Execute a C call. Arguments are pushed to the stack and a pointer to this
// region is passed to the C function. If {out_argument_type != kWasmStmt},
// this is the return value of the C function, stored in {rets[0]}. Further
// outputs (specified in {sig->returns()}) are read from the buffer and stored
// in the remaining {rets} registers.
inline void CallC(FunctionSig* sig, const LiftoffRegister* args,
const LiftoffRegister* rets, ValueType out_argument_type,
int stack_bytes, ExternalReference ext_ref);
inline void CallNativeWasmCode(Address addr);
// Indirect call: If {target == no_reg}, then pop the target from the stack.
inline void CallIndirect(FunctionSig* sig,
compiler::CallDescriptor* call_descriptor,
Register target);
inline void CallRuntimeStub(WasmCode::RuntimeStubId sid);
// Reserve space in the current frame, store address to space in {addr}.
inline void AllocateStackSlot(Register addr, uint32_t size);
inline void DeallocateStackSlot(uint32_t size);
////////////////////////////////////
// End of platform-specific part. //
////////////////////////////////////
uint32_t num_locals() const { return num_locals_; }
void set_num_locals(uint32_t num_locals);
uint32_t GetTotalFrameSlotCount() const {
return num_locals_ + num_used_spill_slots_;
}
ValueType local_type(uint32_t index) {
DCHECK_GT(num_locals_, index);
ValueType* locals =
num_locals_ <= kInlineLocalTypes ? local_types_ : more_local_types_;
return locals[index];
}
void set_local_type(uint32_t index, ValueType type) {
ValueType* locals =
num_locals_ <= kInlineLocalTypes ? local_types_ : more_local_types_;
locals[index] = type;
}
CacheState* cache_state() { return &cache_state_; }
const CacheState* cache_state() const { return &cache_state_; }
bool did_bailout() { return bailout_reason_ != nullptr; }
const char* bailout_reason() const { return bailout_reason_; }
void bailout(const char* reason) {
if (bailout_reason_ != nullptr) return;
AbortCompilation();
bailout_reason_ = reason;
}
private:
uint32_t num_locals_ = 0;
static constexpr uint32_t kInlineLocalTypes = 8;
union {
ValueType local_types_[kInlineLocalTypes];
ValueType* more_local_types_;
};
static_assert(sizeof(ValueType) == 1,
"Reconsider this inlining if ValueType gets bigger");
CacheState cache_state_;
uint32_t num_used_spill_slots_ = 0;
const char* bailout_reason_ = nullptr;
LiftoffRegister SpillOneRegister(LiftoffRegList candidates,
LiftoffRegList pinned);
};
std::ostream& operator<<(std::ostream& os, LiftoffAssembler::VarState);
// =======================================================================
// Partially platform-independent implementations of the platform-dependent
// part.
#ifdef V8_TARGET_ARCH_32_BIT
namespace liftoff {
template <void (LiftoffAssembler::*op)(Register, Register, Register)>
void EmitI64IndependentHalfOperation(LiftoffAssembler* assm,
LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs) {
// If {dst.low_gp()} does not overlap with {lhs.high_gp()} or {rhs.high_gp()},
// just first compute the lower half, then the upper half.
if (dst.low() != lhs.high() && dst.low() != rhs.high()) {
(assm->*op)(dst.low_gp(), lhs.low_gp(), rhs.low_gp());
(assm->*op)(dst.high_gp(), lhs.high_gp(), rhs.high_gp());
return;
}
// If {dst.high_gp()} does not overlap with {lhs.low_gp()} or {rhs.low_gp()},
// we can compute this the other way around.
if (dst.high() != lhs.low() && dst.high() != rhs.low()) {
(assm->*op)(dst.high_gp(), lhs.high_gp(), rhs.high_gp());
(assm->*op)(dst.low_gp(), lhs.low_gp(), rhs.low_gp());
return;
}
// Otherwise, we need a temporary register.
Register tmp =
assm->GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(lhs, rhs)).gp();
(assm->*op)(tmp, lhs.low_gp(), rhs.low_gp());
(assm->*op)(dst.high_gp(), lhs.high_gp(), rhs.high_gp());
assm->Move(dst.low_gp(), tmp, kWasmI32);
}
} // namespace liftoff
void LiftoffAssembler::emit_i64_and(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs) {
liftoff::EmitI64IndependentHalfOperation<&LiftoffAssembler::emit_i32_and>(
this, dst, lhs, rhs);
}
void LiftoffAssembler::emit_i64_or(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs) {
liftoff::EmitI64IndependentHalfOperation<&LiftoffAssembler::emit_i32_or>(
this, dst, lhs, rhs);
}
void LiftoffAssembler::emit_i64_xor(LiftoffRegister dst, LiftoffRegister lhs,
LiftoffRegister rhs) {
liftoff::EmitI64IndependentHalfOperation<&LiftoffAssembler::emit_i32_xor>(
this, dst, lhs, rhs);
}
#endif // V8_TARGET_ARCH_32_BIT
// End of the partially platform-independent implementations of the
// platform-dependent part.
// =======================================================================
class LiftoffStackSlots {
public:
explicit LiftoffStackSlots(LiftoffAssembler* wasm_asm) : asm_(wasm_asm) {}
void Add(const LiftoffAssembler::VarState& src, uint32_t src_index,
RegPairHalf half) {
slots_.emplace_back(src, src_index, half);
}
void Add(const LiftoffAssembler::VarState& src) { slots_.emplace_back(src); }
inline void Construct();
private:
struct Slot {
// Allow move construction.
Slot(Slot&&) = default;
Slot(const LiftoffAssembler::VarState& src, uint32_t src_index,
RegPairHalf half)
: src_(src), src_index_(src_index), half_(half) {}
explicit Slot(const LiftoffAssembler::VarState& src)
: src_(src), half_(kLowWord) {}
const LiftoffAssembler::VarState src_;
uint32_t src_index_ = 0;
RegPairHalf half_;
};
std::vector<Slot> slots_;
LiftoffAssembler* const asm_;
};
} // namespace wasm
} // namespace internal
} // namespace v8
// Include platform specific implementation.
#if V8_TARGET_ARCH_IA32
#include "src/wasm/baseline/ia32/liftoff-assembler-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "src/wasm/baseline/x64/liftoff-assembler-x64.h"
#elif V8_TARGET_ARCH_ARM64
#include "src/wasm/baseline/arm64/liftoff-assembler-arm64.h"
#elif V8_TARGET_ARCH_ARM
#include "src/wasm/baseline/arm/liftoff-assembler-arm.h"
#elif V8_TARGET_ARCH_PPC
#include "src/wasm/baseline/ppc/liftoff-assembler-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/wasm/baseline/mips/liftoff-assembler-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/wasm/baseline/mips64/liftoff-assembler-mips64.h"
#elif V8_TARGET_ARCH_S390
#include "src/wasm/baseline/s390/liftoff-assembler-s390.h"
#else
#error Unsupported architecture.
#endif
#endif // V8_WASM_BASELINE_LIFTOFF_ASSEMBLER_H_